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Abstract—We present a comprehensive pipeline, augmented by a
visual analytics system named ‘“GapMiner”, that is aimed at exploring
and exploiting untapped opportunities within the empty areas of
high-dimensional datasets. Our approach begins with an initial dataset
and then uses a novel Empty Space Search Algorithm (ESA) to identify
the center points of these uncharted voids, which are regarded as
reservoirs containing potentially valuable novel configurations. Initially,
this process is guided by user interactions facilitated by GapMiner.
GapMiner visualizes the Empty Space Configurations (ESC) identified
by the search within the context of the data, enabling domain experts
to explore and adjust ESCs using a linked parallel-coordinate display.
These interactions enhance the dataset and contribute to the iterative
training of a connected deep neural network (DNN). As the DNN
trains, it gradually assumes the task of identifying high-potential ESCs,
diminishing the need for direct user involvement. Ultimately, once
the DNN achieves adequate accuracy, it autonomously guides the
exploration of optimal configurations by predicting performance and
refining configurations, using a combination of gradient ascent and
improved empty-space searches. Domain users were actively engaged
throughout the development of our system. Our findings demonstrate
that our methodology consistently produces substantially superior
novel configurations compared to conventional randomization-based
methods. We illustrate the effectiveness of our method through
several case studies addressing various objectives, including parameter
optimization, adversarial learning, and reinforcement learning.

Index Terms—High-dimensional data, multivariate data, empty
space, data augmentation, configuration space, parameter optimization

I. INTRODUCTION

HIS paper focuses on a methodology for effectively discovering
T‘empty spaces”—regions where data points are absent—in
multivariate and high-dimensional datasets. Identifying and
exploring these empty spaces is both a challenge and an opportunity.
The challenge is rooted in the curse of dimensionality, which is the
exponential increase in volume and data sparsity associated with
adding dimensions [3]. It makes the search for meaningful empty
spaces increasingly complex, even for just a moderate number of
attributes parameterizing the data.

Overcoming this complexity is not merely academic. It directly
impacts the practicality of discovering and verifying new, unknown,
and yet unimagined configurations that might reside within these
empty spaces. Advocating for a configuration-discovery technique
that can explore unconventional or even radical changes brought by
unknown configurations and parameter settings offers a powerful
alternative to conventional parameter tuning and optimization. These
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tasks are increasingly recognized as high priorities across diverse
fields, including aerospace engineering [9], manufacturing [16],
computer systems [2], personalized healthcare [[63]], and others,
where techniques of this sort often address optimization problems
with multiple objectives.

The emergence of crossover cars and hybrid vehicles illustrates
well the high potential of exploring large parameter spaces to
discover unique and unexpected configurations. Crossovers blend
features from different vehicle types, offering drivers the versatility
of an SUV with the agility of a sedan. Similarly, hybrids integrate
gasoline engines with electric motors, improving fuel efficiency
and reducing emissions without sacrificing performance. These
examples demonstrate how investigating gaps within extensive
parameter spaces can challenge conventional design constraints and
embrace unconventional configurations. Clearly, innovation of this
sort can also occur in lesser contexts.

While ingenious configurations become obvious once discovered,
there are a multitude of them that defy practicality. Also, more often
than not, high cost and substantial effort are required to obtain or
simulate a hypothesized configuration to verify its merit. A human
expert is often the best judge to decide whether to take up the risk
of engaging in such a testing effort at all. But even with the human
in the loop, the challenge lies in ideating meritorious configurations
in the presence of this massive realm of possibilities.

To illustrate this challenge, consider a 4-dimensional parameter
space with 50 levels for each dimension. This results in 50* = 6.25
million possible configurations. Suppose we have data on the merit
of 10,000 configurations from previous experiments. This means
we have information on only 10,000/6,250,000 = 0.16% of the
parameter space. While it is impractical to expect valid data at every
location of the parameter space, the challenge lies in identifying
which configurations are most useful. This uncertainty underscores
the importance of intelligent sampling and discovery techniques
to uncover valuable and innovative solutions.

While Al holds promise to replace human experts in this search,
it requires ample high-quality training data to be effective. Our
research supports this role of Al Inspired by human-in-the-loop
(HITL) [45] machine learning, our pipeline integrates the training
of a deep neural network that evolves alongside the exploration
process. This network aids in evaluating identified configurations
and improves with accumulated data, enhancing search efficiency
for verifying new configurations.

Conceptually, our method looks for gaps in high-D data spaces.
While in theory the pairwise distances among data points in high-D
space tend to be normally distributed with small variance, in
practice, however, data configurations aggregate into hubs—points
that occur more often in k-neighborhoods of nearby points than
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others [60]. Likewise, there are also anti-hubs—points that are
unusually far away from most other points [50]. When these points
exist, they are referred to as outliers, hiding in gaps and sparsly
occupied pockets of the data space. Essentially, our method looks
for hypothetical outliers—thus-far unsampled configurations that
might bear promise or are adversarial.

The major contributions of our paper are hence as follows:

o A scalable, parallelizable Empty Space Search Algorithm (ESA)
that can identify empty spaces in any high-dimensional dataset.

o A visual analytics system, GapMiner, by which users can fur-
ther modify the identified Empty Space Configurations (ESC).

o A Human-in-the-Loop (HITL) to Al pipeline that trains an
Al agent (a DNN) for eventual ESC search autonomy.

« A dimension-reduction method that allows visualization of
the neighbor distributions around empty spaces.

« Several case studies that demonstrate the effectiveness of our
methodology in diverse application domains and objectives.

e A user study that evaluates our methodology and
implementation.

In the following, Sec. [[I] presents related work. Sec. [[V]describes
our empty space search algorithm. Sec. [V] introduces our visual
analytics system, GapMiner. Sec. [VI|explains our Human-in-the-
Loop to Al pipeline. Sec. [VII| showcases our method applied to the
computer systems domain and Sec. [VII presents an associated user
study. Sec. [[X] describes three further case studies. Sec. [X]concludes
and discusses future work.

II. RELATED WORK

The research literature on the specific topic of empty space
visualization is sparse; we only know of two research groups who
tackled this.

Strnad et al. [55] investigated the identification of empty spaces in
protein structures. However, their study was limited to 3D space and
did not address the concept of empty spaces in other fields. Addition-
ally, their algorithm, which relies on Delaunay Triangulation, faces
scalability issues in higher dimensions, as discussed in Sec.

Giesen et al. [23] introduced the Sclow plot for identifying and
visualizing empty spaces. They use flow lines to depict these empty
spaces and employ a scatter-plot matrix to provide a comprehensive
view of the high-D dataset along with the flow lines. A downside
of this approach, however, is that the flow lines become cluttered
and difficult to track and explain at large scales and the scatter-plot
matrix view suffers from quadratic growth with increasing data
dimensionality, which further complicates the visualization. Also,
Sclow plots focus on detecting data distribution features, while
our work concentrates on applying empty space points for optimal
configuration search and multi-objective optimization.

We separate the remaining related research into three areas:
(1) high-D visualization, (2) identification of empty space via
computational geometry, and (3) optimal configuration search.

A. High Dimensional Space Visualization

Understanding empty spaces within high-D environments relies
on effective visualization. While various dimension-reduction
methods have been devised to project high-D datasets onto a 2D
screen, it is important to note that dimension reduction capitalizes
on the existence of empty spaces, deflating them to pack the existing

points as efficiently as possible in the 2D display. Therefore it is
best to conduct empty-space analysis in the native high-D space,
with only redundant dimensions removed.

Prominent linear techniques include Principal Component
Analysis (PCA) [27], Linear Discriminant Analysis (LDA) [17]], and
classical Multidimensional Scaling (MDS) [44]], all of which project
data to a lower-dimensional space while preserving global structure
and minimizing distortion. However, these methods often struggle
to capture the complexities of data manifolds. On the other hand,
manifold-learning techniques such as Locally Linear Embedding
(LLE) [51], Uniform Manifold Approximation and Projection
(UMAP) [43]], and t-distributed Stochastic Neighbor Embedding
(tSNE) [58]] excel at revealing nonlinear relationships and intrinsic
data geometries but the embedding process loses the context of
the attributes. The Data Context Map (DCM) [15] offers a unified
view for visualizing both variables and data items. Zhang et al. [64]
enhanced DCM with graphical contours to identify exemplars, while
Bian et al. [6] improved dimension-reduction methods by using
glyphs to denote intrinsic dimensions in low-D representations.

Parallel-Coordinate Plots (PCPs) [29] directly explore the
original data space, thus avoiding potential information loss and
distortion. PCPs arrange dimensions linearly, aiding in uncovering
data relationships and patterns. But PCPs are not without challenges,
which has inspired efforts to reduce visual clutter [20], enhance
subset tracing and correlation through bundle representation [48],
employ graphical abstraction [42], and introduce a many-to-many
axis format to reveal deeper variable relationships [39]. We combine
PCPs with PCA to visualize the essential attributes of high-D
datasets. This integrated approach synergizes the strengths of both
techniques, providing a comprehensive, user-centric exploration
of high-D spaces in a cohesive and interactive manner.

Subspace analysis is yet another technique for dimension
reduction [34]. It decomposes the high-D data space into a set of
lower-D subspaces. This can help reveal data patterns obscured
by irrelevant (e.g., noisy) data dimensions. A challenge here is the
combinatorial explosion in the set of possible subspaces, and this
has been the subject of extensive research [41} 61 (62} 56]. Our
method could readily incorporate these techniques, and we plan
to study this in future work.

B. Empty-Space Identification in Computational Geometry

One approach to identify empty spaces is from a geometrical
perspective. Computational-geometry techniques offer a complete
partition of the data space based on the dataset, and this can be
used to locate empty regions accurately among points. These
techniques use Delaunay Triangulation, Voronoi Diagrams, and
Convex Hulls, all of which are interconnected: the d-dimensional
Delaunay Triangulation corresponds to the (d + 1)-dimensional
convex hull; Delaunay Triangulation and Voronoi Diagrams are in
duality, i.e., the circumscribed circle centers of Delaunay triangles
serve as vertices of Voronoi Diagrams [[18].

We initially studied these techniques with a specific focus on
Delaunay Triangulation. Each circumscribed circle of a Delaunay
triangle describes an empty space, facilitating a comprehensive
exploration. However, the downside is its exponential time
and space complexity, both O(n[%/21) [54]. Efforts to mitigate
time complexity constraints have explored parallel-computing
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Fig. 1. Our three-phase workflow.

acceleration, which has shown promise in 2D and 3D spaces [/,
47). However, extending these methods to higher dimensions is
non-trivial and this limits their utility in analyzing empty spaces
within multivariate datasets. App. [C|presents empirical studies we
conducted that reveals these shortcomings.

Other solutions include approximation methods. Peled et al. [26]
proposed a Voronoi Diagram replacement with linear space com-
plexity. Balestriero et al. [3]] introduced Deep Hull, which employs a
deep neural network to determine points within or outside the convex
hull. Graham et al. [24]) proposed a method for higher-dimensional
convex hull identification, but its unordered points impede the
transferability of Delaunay triangulation. Although these methods
reduce time or space complexity, they either approximate specific
attributes or lack a meaningful order, limiting their applicability.

C. Optimal Configuration Search

A defining goal of ours is optimal configuration search, which
involves systematically navigating through various configurations,
arrangements, or settings within a system, application, or model
to identify those that deliver the best performance based on specific
criteria or objectives.

Optimizing an algorithm or machine-learning model’s
hyperparameters is often complex. Grid search, which equally
divides the range of each variable and examines every point
within the high-dimensional data space, is intuitive but inefficient.
Alternative strategies like Iterated Local Search (ILS) [40] and its
enhancements, such as ParamILS and Focused ILS [28]], use hill
climbing to iteratively adjust and improve the current solution. Most
recent methods rely on population based optimization to explore the
hyperparameters space efficiently [49, 30]. These methods require
many evaluations to effectively explore the solution space. Our
approach, in contrast, focuses on directly identifying and probing
candidate solutions that are most distant from existing ones, aiming
to find new data instances outside the current range.

Deep neural networks (DNNs) have also been employed for
optimal configuration search, serving as function approximators to
expedite configuration optimization [59}|12]]. While powerful, DNN-
based approaches require large datasets for training to ensure reliable
results, which can be challenging when working with limited data.

III. OVERVIEW

Fig. [I] presents an overview of our methodology. It comprises
three phases centered around training an assistive deep neural
network (DNN) that becomes increasingly adept at recommending
useful empty space configurations (ESCs) for the target (domain)
application’s possibly multiple objectives. The process begins with
a fully untrained DNN, where the user (typically a domain expert)
and our empty space search algorithm (ESA) collaborate to identify
initial “raw” ESC candidates; this is depicted in the top branch
of Fig. [T} These candidates are then interactively refined by the
user using visual tools and applied within the target application,
as shown in the bottom branch of Fig. [T} The application is run
with these configurations, and their performance is measured. Once
verified, these ESCs augment the dataset and are used to train the
DNN (per the middle branch of Fig.[T). As the DNN improves, the
user’s involvement gradually decreases.

Ultimately, the pipeline operates autonomously: the ESA
identifies ESC candidates, the DNN optimizes and approximates
the target application’s outcomes, and the dataset is continuously
updated with new ESCs. In the following we describe the various
components of this workflow.

IV. EMPTY SPACE SEARCH ALGORITHM

The search for empty regions in a high-D data space is a main
premise in our work. The challenge here is to describe this space
effectively, without enumerating all of the points that reside within
each continuous (empty) region. A key requirement is that interior
points within an empty space should be far from known points. To lo-
cate the emptiest region within a group of data points, one could use
Delaunay Triangulation, where the circumscribed center represents
the emptiest point. However, as mentioned, computational-geometry
methods face the curse of dimensionality.

We instead propose an agent-based approach. Here, the agent
is repelled from known data points if it comes too close and is
attracted back if it strays too far. This premise is the aim of a
physics-inspired function called the Lennard-Jones Potential, which
is the principle guiding our heuristic search algorithm. A particular
advantage of this scheme is that it is easily parallelizable. Agents
can be deployed throughout the high-D data space and operate
autonomously to identify empty space points. Next, we describe
this physics-inspired search method in detail.

A. Physics Background: The Lennard-Jones Potential

There are multiple causes of intermolecular interactions,
including Van der Waals forces, hydrogen bonds, and electrostatic
interactions. Some of the forces are repulsive and others are
attractive, so that a dynamic equilibrium of molecules is maintained.
The Lennard-Jones (L-J) Potential [35] (see Fig. |Z| for an example)
is a popular model of intermolecular interactions and is described as:

V() =e|(2)2-(2)°]

r r

0

where r and V' (r) are the distance and potential of a pair of particles,
and e represents the depth of the potential well, correlating to the
strength of the interaction between two particles. o represents the
effective diameter of the particles, that is, the distance at which
the total potential energy between two particles becomes zero. At
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Fig. 2. An example of Lennard-Jones Potential. The x axis is the distance between
particles (r) and the y axis is the outcome V'(r). The potential is positive when
the particle distance is less than o, indicating a repulsive force, and negative for
larger distances, where there is an attractive force. The minimum potential (strongest
attraction) is —e.

distances less than o, the repulsive force dominates, causing the
potential energy to increase sharply. At distances greater than o, the
attractive force is stronger, pulling the particles together, but this
force diminishes with r. The nature of intermolecular interactions
keeps a point dynamically steady in a local region. Our search
algorithm uses the L-J Potential function.

B. Our Lennard-Jones Potential Based Search Algorithm

We assume that there is a possibly small initial dataset with
verified configurations, and we populate the high-D search space
with these known configurations. Then we place an agent in this
space to search for Empty Space Configurations (ESC)—the raw
ESCs in Fig. [} The agent starts from a randomly sampled initial
position and uses the L-J Potential function to move to a location
where the potential becomes zero. This trajectory is sampled along
the way to form a set of raw ESCs.

The vector intermolecular force F'(r) driving the agent is:

Fry=0) o€ [2(0) . (f) 7] 2)

dr o r T

To adhere to physical reality, we use the resultant force TF to
determine the direction of motion d, rather than simply using V (r).
However, we will stop the agent if ||| falls below a threshold
as this indicates it has moved beyond the data manifold. Y F is the
sum of forces due to the agent’s k nearest neighbors in the dataset:

YF

=—s 3)
1=F]]

k
SF=Y uiF(r;) d
where k is the number of neighbors and ; is the unit vector from
the agent to the ith neighbor.

Alg.[I|illustrates the details of our empty-space search. It returns
the trajectory 7 of an agent, where each element is a raw ESC. Users
can set two accuracy levels for the DNN, defined by the DNN’s ac-
ceptable prediction error, measured in %. When the DNN performs
worse than the lower accuracy level, which occurs in the initial learn-
ing phase, it cannot reliably estimate the value of an ESC. In this case
we set v =0, causing the agent 7 to simply move in the direction of
J; when converged it returns the end of 7 as the ESC. This strategy
encourages the algorithm to identify as many gaps as possible, fos-
tering the development of a robust neural network and accelerating
training. However, it may also lead to convergence on local minima.

The time complexity of ESA is O(dknp + nplog N') where d
is the dimensionality of the dataset, k is the number of nearest

Algorithm 1: Empty-Space Search for a Single Agent

Set the number of neighbors &, the particle effective diameter
o, the number of search steps n, the step size «, the discount
factor -y, the vanishing threshold § and the rollout interval j;

Initialize a trajectory
7=[] and an agent 7 =c where c is a random coordinate;
set cumulative magnitude L =0, momentum 1m = 0 ;

Specify constraints on agent:

f1(7r) <=0; f2(71') <=0;..., fp(’/T) <=0

fori...ndo

if i % 7 == O then
‘ Add current coordinate of 7 to 7;

end

Get k nearest neighbors of the agent from the dataset;

Use Eq. to calculate || F|| and d;

if || SF| <6 then
| return 7

end

d=(d+||ZF||+m«L)/(L+||SF));

T=7+ Ei *Qv,

L=v+L+||ZF]|;

T——

m=m/||m||;

if  violates any constraint f then
| return 7

end

end
return 7,

neighbors, 7 is the number of search steps, p is the number of
agents, and N is the size of the dataset. O(dknp) represents the
time complexity to determine the next step, while O(nplog V)
represents the time complexity to query k nearest neighbors; the
space complexity of ESA is O(dp). In contrast, the time and space
complexity of Delaunay Triangulation is O(N1%/21), as mentioned
before. ESA is considerably more efficient in both time and space.

Once the DNN has developed further (phase 2 in the workflow of
Fig.|1) and meets the lower accuracy level, we begin incorporating
a momentum 773 with factor v > 0 to move the agent along.
This mechanism considers historical directions alongside those
calculated by Eq. [3] resulting in a smoother update for the direction
of . We constrain y < 1 to prevent a long-term effect; thus, the
effect of historical forces gets lower and lower with each search
step. The momentum mechanism encourages the agent 7 to explore
the space in a broader range before converging to the empty region,
leading it to discover global minima. Then, upon terminating
it returns 7 as a list of ESCs. Eventually the DNN is accurate
enough to achieve the higher accuracy level. We then improve
by DNN-enabled gradient ascent and pick the best result.

Fig. B|shows our algorithm’s outcomes for a 2D dataset. Agents
tend to converge to a small region without momentum (Fig. [3{a)),
but to a larger region with momentum (Fig. [3(b)). Larger regions
are explored more thoroughly in the latter case while smaller gaps
are left alone.

We note that the ESA works in local space with simple
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Fig. 3. Given 300 random samples (blue) and 600 random agents (red) in 2D space,
we show the results of ESA (a) without and (b) with momentum.

calculations and scales well to higher dimensions and larger
datasets (see also Sec. [IX]). As mentioned, since each agent operates
independently, it is feasible to expedite the empty space search
using a GPU and deploy a large batch of agents concurrently. DT
does not offer this kind of parallelism.

V. GAPMINER

Our visual analytics system, GapMiner, combines data space
exploration and HITL to aid users in identifying promising ESCs
during the first two phases of the workflow when the DNN is not
yet fully trained.

A. Design Goals

Following the design model devised by Munzner[46], we
studied popular datasets on Kaggle, reviewed recent research in our
example domain (computer systems [60]), and interviewed several
domain experts. This study yielded the essential features an effective
visual analytics system for empty-space search should have:

« F1: Subset/Subspace selection. Users often focus on specific
data segments; e.g., a system designer with a limited budget
might want to explore moderate options first. Sometimes these
subsets are so small that their key features are hidden within
the entire dataset. Hence, explorations within data subspaces
must be supported.

« F2: Data distribution visualization and cluster highlighting.

For data with categorical outcomes, each label typically
forms a distinct cluster. For continuous outcomes, high and
low values usually don’t overlap. Highlighting clusters and
visualizing distributions will help users identify valuable
empty spaces for exploration.

o F3: HITL ESC fine-tuning. While the ESA identifies
numerous ESCs, they are not fully refined configurations, but
only starting points for exploration. Users should be able to
define empty space search regions and refine raw ESCs based
on their expertise.

o F4: ESC neighbor visualization. In order to select promising
ESCs, users need to understand the distribution of their
neighbors, i.e., the shape of the empty space (hypersphere,
paraboloid, hyperbolas, etc.), to aid informed decision making.

¢ F5: Outcome evaluation. Users must be able to evaluate
the performance of an ESC which sometimes is gauged by
more than a single outcome variable. Additionally, the cost
of obtaining certain configurations can also be important.

B. Terms, Color Semantics, and Representations

Fig. [ shows the GapMiner interface. The dataset displayed
consists of a set of multi-tier cache configurations used to replay
a real-world block I/O trace, each with three devices: L1, L2,
and L3. Each cache device has three variables: size and average
read/write latencies (the size of the backend storage device L3 is
fixed for all configurations and so it is not included). See Sec.
for more detail. The target variables are average throughput and
total purchase cost, used to evaluate the performance and cost of
each configuration, respectively.

The term existing configurations used in Fig. 4] (A) refers to
configurations in the dataset that have been verified, whereas
proposed configurations are configurations proposed by the various
available ESC search algorithms but which have not been verified
yet. GapMiner distinguishes these two types with different colors.
All gray points and lines in the interface represent proposed
configurations, while everything related to existing configurations
is colored blue, including density contours in Fig. @] (B), histogram
bars in Fig. ] (A) and Fig. 4] (C), and scatter points in Fig. {] (B).
Additionally, we apply an orange-to-red colormap in Fig. ] (D) to
encode target variables in the Pareto front of existing configurations,
and the same colormap in Fig. ] (C) to encode target variables of
existing neighbors around the proposed one.

Zhang et al. [64] illustrated the benefits of contour maps in
exemplar identification while Li et al. [36] combined density
contours and scattered points for outlier examination. In the PCA
map in Fig. | (B), we follow their design pattern, employing density
contours to abstract existing configurations and scattered points to
denote proposed configurations. In the PCP, we visualize proposed
configurations as dashed lines and existing configurations as solid
lines shown in Fig. ] (C).

Next we describe all of GapMiner’s components in detail,
referring to the Interface in Fig. 4] and the Design Goals they satisfy.

C. Control Panel

After loading the dataset containing the initial verified configu-
rations with values for all variables, the user will head to the Target
Configurator (A) to select a target variable subject to optimization.
The target variable can either be a native outcome variable such as
performance or cost, or it can be a ratio like performance/cost. The
latter provides quick insights into efficiency, while the former two
can be optimized within our multi-objective optimization to account
for the user’s preferences. The user can now utilize the slider below
to evenly split the range (F1) of the selected target variable. This
action divides the dataset according to the selected value interval
and the histogram below visualizes the distribution (F2). The user
can now choose among one of three empty space search methods
from the dropdown menu: the physics-based ESA described above,
random sampling, Pareto improvement, and a baseline (see Sec. [VI).

The ESC Range Selector enables users to select one or more
subsets of the data, as specified in the Target Configurator (see
above), using the checkboxes in the “existing”/*proposed” group
(F1). The “Size” in the verified “existing” group indicates the
number of these configurations.

D. Overview Display

The PCA-based Overview Display (B) linearly transforms
the high-dimensional data space into a variance-maximizing 2D
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target variable intervals are used for display and ESC proposals. (¢) Overview Quality Monitor screeplot that shows the amount of data variance captured by the Overview
(PCA) Display. (B) Overview (PCA) Display with data distribution contours, raw or modified ESCs rendered as points, and color legends. (C) Empty Space Configuration
(ESC) Editor. From left to right: (a) Parallel Coordinate Plot where users can configure ESCs starting from a raw ESC or an existing configuration. (b) Neighbor plot
of the selected ESC providing a local view of the distribution of its nearest existing configurations. (D) Progress Tracker. From top to bottom: (a) Budget/Reward Display
that captures the aggregated evaluation cost and merit of the ESC exploration so far. (b) Training Status Display of the assistive DNN. (c) Pareto Frontier Plot that shows
the Pareto frontiers of existing configurations (red) and ESCs (gray) with respect to two user-chosen merit (target) variables.

projection. It is an intuitive way to visualize data distributions and
identify clusters (F2), We chose the linear dimension reduction
provided by PCA since evaluating results from nonlinear methods
like tSNE is challenging and connecting their embedding space to
the original space is difficult.

Once a checkbox is selected in the ESC Range Selector, the
associated subset of the data will be displayed in the Overview
Display either as density contours (“existing”) or as scattered points
(“proposed” or selected via other means). The scented color legend
bars on the left map values to color: the left one represents the target
variable density of the chosen subset, while the right one shows the
value range of the entire dataset. The “Use global PCA” checkbox
in the ESC Range Selector (A) determines whether the PCA layout
is applied to the chosen data subset (F2) or the entire dataset; the
PCA map will update accordingly. Applying the PCA layout to
the currently selected data subset will reduce the layout loss and
make the display more accurate and focused. This improvement
is quantified in the Overview Monitor scree plot.

The loading vectors in the PCA display represent the projection
of Cartesian axes from the original space, forming a biplot. Due
to the linear nature of PCA, any value change along one axis in
the original high-D space results in a proportional update along the
corresponding loading vector in the PCA map. Additionally, the
loading vector projection is translation-invariant; any point can be
chosen as an anchor to project the Cartesian basis. We derive this
mechanism in closed form in App. [A]

E. Empty Space Configuration (ESC) Editor

This interface panel has two displays: a PCP (left) where an ESC
can be configured and refined and a neighborhood plot (right) that
shows the topology of the ESC’s immediate point neighborhood.

PCP display. The PCP allows users to fine-tune a proposed ESC
or propose one on their own. It is the most effective display for this
task as it provides simultaneous access to all variables and allows for
easy adjustments through simple mouse interactions. For additional
insight we provide two scented bars along each PCP axis (F1, F2).

The (blue) density bar next to each axis shows that variable’s
value distribution in the currently chosen data subset, with darker
blue indicating higher density in that range. This visual information
complements the density contours in the Overview Display (B).
The correlation bar next to the density bar shows the relationship
between the variable and the selected target variable, calculated from
all existing configurations. Users can select the target variable for this
calculation by clicking the radio button along its corresponding axis
(for example in (C) there are three such variables—two native vari-
ables and one ratio variable). For a linear relationship, the orange-red
bar along each variable axis indicates whether the correlation with
the selected target is positive or negative. For a nonlinear relationship,
it reveals which value interval corresponds to a higher target value

(darker color) and which to a lower target value (lighter orange).

Lastly, when users modify an ESC in the PCP, its 2D position in
the Overview Display is updated proportionally along the direction

of the corresponding loading vector. This is particularly useful
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when there is an empty space in the Overview Display, providing
users with important feedback that they are on the right track.

Neighborhood Plot. This display, located to the right of the
PCP, helps users understand the shape of an empty space as well
as the neighbor distribution of the associated ESC (F4). To create
this visualization we devised a dedicated dimension-reduction
method we call cos-MDS to visualize the neighbor distribution
around an agent. This method embeds the agent at the center and
places its immediate high-D neighbors around it. The distance from
each neighbor to the agent in the visualization represents their true
distance in the high-D space. Neighbors’ pairwise cosine distance,
measured from the agent, approximates their true cosine distance
in the high-D space. The method effectively reveals the distances
and distribution of neighbors around the agent, as well as the shape
and topology of the empty space (fully enclosed, semi-enclosed,
cluster boundaries, or anti-hub outliers).

cos-MDS is inspired by MDS to arrange the neighbors around
the agent such that the shape and topology of their constellation is
revealed in 2D. Similar to MDS, we normalize each agent-neighbor
vector to the unit hypersphere, compute a pairwise cosine-distance
matrix, perform eigenvalue decomposition, and use the top two
eigenvalues and their eigenvectors for the low-dimensional embed-
ding. Finally, we scale the low-D agent-neighbor vector to the true
length in the original space (see App. [B]for a detailed description.)

The example shown in the ESC Editor (D) has neighbors
uniformly surrounding the configuration, and the distances to it
are almost equal. In essence this is a case where the empty space
is fully enclosed—a pocket in a high-D point cloud. Users can also
change the number of neighbors by clicking the +/- button next
to the Neighbors button in the control panel. This provides a more
comprehensive perspective to understand the empty space, e.g., in a
hypersphere, within a paraboloid, or between hyperbolas. Detailed
examples can be found in App.

E. Progress Tracker

The Progress Tracker (D) keeps the user abreast of the
achievements made so far (F5). It has three main components
(top to bottom): (1) a Budget/Reward Display that captures the
aggregated evaluation cost and merit of the ESC exploration
so far, (2) a Training Status Display of the assistive DNN, and
(3) a Pareto Frontier Plot that shows the Pareto frontiers of
existing configurations (red) and ESCs (gray) with respect to two
user-chosen merit (target) variables. We now present these three
displays in reverse order according to their use in practice.

Pareto Frontier Plot. The Pareto frontier is an effective
mechanism for evaluating a set of proposed configurations in the
presence of multiple target variables. To reduce visual complexity
we currently restrict the number of target variables to two. Our
goal is to aid users in recognizing trade-offs among the two target
variables and identify ESCs that can expand the frontier (push the
envelope) at desirable trade-off points on the curve.

We use the following color scheme in this plot: (1) existing
configurations are colored blue, with their Pareto front connected
by edges. The configurations defining these edges (and the edges
themselves) are colored by their respective target variable values
according to the red-toned color map to the left of the Overview
Display and are represented as larger nodes there; (2) proposed

configurations are colored gray, with their Pareto front connected by
gray lines. Comparing the two curves facilitates an understanding
of a candidate ESC’s merits in the context what is known already
and what the user’s trade-off preferences are.

When the user modifies an ESC (say, in the PCP) its position
in the grey Pareto plot and frontier (and Overview Display) will
update accordingly. Then, upon verification, the ESC is added to
the “existing” set, its Pareto point is colored blue, and the red Pareto
front updates.

DNN Training Status Display. As mentioned, once the user
loads the initial dataset, GapMiner trains an assistive DNN on the
backend for ESC performance prediction. The DNN evaluates the
performance of each proposed configuration before verification
takes place. The testing error of the DNN is then shown in the DNN
Training Status Display. We observe in (D) that there is a fairly
large error in the initial stage (first part of the curve), hence at that
stage user involvement is typically necessary to identify optimal
configurations. The DNN is retrained whenever new configurations
are added to the dataset and are verified.

The two horizontal lines in the display signify the user-specified
DNN error tolerance. The DNN can be used to filter out poor
configurations once it reaches below the first line, and it can be used
for configuration optimization once it reaches below the second line.
Details of the progressive search pipeline are introduced in Sec. [VI]

Budget/Reward Display. There are also two other important
objectives in practical applications, namely cost and benefit/reward.
Maintaining a balanced optimization across both of these objectives
is challenging but crucial. To gauge the progress of reward
quantitatively, we incorporate the concept of Pareto dominance area
[10] into the Progress Tracker (D) to monitor the Pareto front of
the dataset. The Pareto dominance area is a well-established quality
metric in multi-objective optimization that measures the volume of
the objective space dominated by the Pareto front. As more ESCs
are identified and verified, the Pareto front should extend further,
dominating a larger area in the plot.

On the other hand, configuration verification can be expensive
or time-consuming. For example, in the dataset we demonstrate,
users had to purchase a configuration and run it for a week to
obtain the real average throughput. In our application, thanks to
CloudPhysics [60], we could simulate a configuration quickly to get
an approximated result. However, verification costs are unavoidable
in many scenarios. To address this, we provide a budget counter
in the Progress Tracker (D) to remind users of the aggregate cost
of continued ESC verification.

We chose donut charts for both the Pareto Dominance-based
Reward Display and the Budget Display due to their compactness
and their ability to effectively convey proportional data at a glance.

VI. DNN-ASSISTED CONFIGURATION SEARCH PIPELINE

While GapMiner effectively assists users in the search for optimal
ESCs, manually identifying a large number of optimal ESCs can be
tedious. To address this challenge, we propose a pipeline that trains
an assistive DNN to eventually automate this process, positioning
the analyst as a mentor to the DNN. This section provides a
breakdown of the pipeline, as illustrated in Fig. (I} We begin by
describing the various search methods we have implemented and
then describe their role in the DNN-training process.
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Fig. 5. An example Pareto front at the three key stages. (a) The initial stage when

the DNN has just started training. There are only few configurations in the “existing”

set, colored blue. (b) The front when the DNN has achieved ¢1. The “existing” set
has grown. (c) The front when the DNN has achieved ¢2. The “existing” set now
covers much of the front’s interior.

A. Configuration Search Methods

In addition to the physics-inspired ESA, GapMiner integrates
three more methods for investigating the empty space: random
sampling, Pareto improvement, and a blank baseline. The blank
baseline is a configuration with every variable set to 0.5, locating
it at [0,0] in the PCA map. This strategy provides no hint from
the initial position, requiring users to rely solely on GapMiner
interactions to optimize a configuration.

Random sampling, as the name suggests, samples configurations
in a random manner. Pareto improvement, on the other hand,
starts from the Pareto front of the existing set, allowing users to
improve a configuration from a Pareto-optimal point. While Pareto
improvement can be a good starting point for breakthroughs, it
does not provide insights into the empty space. Empty-space search
and random sampling are likely to find configurations better than
those based on the Pareto front. Initially, we used another strategy,
random walk, but experiments showed it was statistically similar
to random sampling, so we did not include it in GapMiner.

All of these methods, including ESA, work as initial
configuration hints for users in the startup stage. Users can then
fine-tune the configurations proposed by these strategies to get
better configurations. Additionally, users can also let the algorithm
propose and verify a batch of configurations. The batch size is
determined by the slider in the ESA Configurator in Fig. f[A).
Once new configurations have been verified, they will be added
to the “existing” configuration set and used to retrain the DNN.

B. Pipeline Throughout the DNN Training

Fig. [5shows the Pareto front development at the three pipeline
stages. We now describe these in more detail.

Initial Stage. In the early stage the dataset is still small and its
empty space regions remain largely unexplored. With the data set
still being insufficient to train a usable neural network, users can
utilize GapMiner and its various exploration tools to identify empty
spaces, propose new configurations, optimize them, and verify their
effectiveness. In our studies with analysts we found that combining
various configuration search strategies yields more diverse and
higher-quality results to grow the dataset than sticking with only
one search algorithm. Additionally, the visual feedback provided by
the Progress Tracker incorporates elements of gamification. It not
only indicates progress but also challenges users to find high-quality
ESCs in a cost-effective manner.

Developed Stages. As the set of existing configurations grows,
paying attention to the error plot in Fig. f] (D) becomes crucial. As
mentioned, it shows the average percentage error of the DNN along
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Fig. 6. Improvement of the Pareto front by interaction in the PCP followed by DNN
estimation of the target values and subsequent verification in the domain application
which revealed a lack of DNN training. (a) PCP showing the result of some user
interactions; (b) annotated Pareto front.

with the two user-set accuracy levels ¢; and 5. Once the error is be-
low t1, the system will use the DNN to evaluate the proposed config-
urations, improving the quality of suggestions. Users can rely more
on the system at this stage but still apply their domain knowledge to
enhance results. Then, when the error drops below ¢, the system will
go one step beyond, using gradient ascent of the DNN to refine con-
figurations further. The performance estimation now becomes accu-
rate enough to find optimal configurations without user supervision.
At this stage, the DNN and ESA can completely replace the user.

VII. APPLICATION EXAMPLE

To illustrate our pipeline, we present a use case in the application
area of computer system optimization (see Sec. [V-B] for an
introduction to the data). Fig. ] shows a snapshot taken of the
interface during this session.

We used a trace of a real workload run on actual machines,
provided by CloudPhysics [60]. We chose trace wil, which
captures a week of virtual disk activity from a production VMware
environment. This trace file contains I/O requests recorded over the
week, which can then be replayed using either a physical machine
or a simulator of that machine. To save time and energy, we used
the simulator for all our experiments.

Given the size of the workload, evaluating a configuration is an
expensive process. Additionally, there is a vast number of potential
multi-tier configurations. Thus, conducting an exhaustive search of
this space is infeasible, making the efficient identification of optimal
configurations highly valuable to system administrators [22} |21].

To begin, we collected a small number of configurations
with the help of system experts. We then invited a field expert
to try GapMiner, ESA, and the overall pipeline. Empirically, a
configuration with good avg_throughput is usually more expensive;
thus the expert’s goal was to find optimal configurations with good
performance at a lower price.
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The expert began by loading the dataset and setting the
two DNN thresholds: ¢; = 20%, to = 10%. Next, he selected
avg_throughput/$ as the target variable since it captures a
reasonable first compromise between the two main objectives
avg_throughput and purchase_cost. After bracketing the target
variable he learned from the range histogram (Fig. 4] (A)) that there
were just a few configurations in the best and worst value intervals.
Next the expert ran the ESA algorithm and then checked the (higher)
8710 interval of the “existing” group and the 6°8 and 8710 groups
from the “proposed” configurations found by the ESA (see (Fig.[4]
(A)). This action revealed the former as a density plot and the latter
as scattered points in the Overview Display (Fig. 4] (B)). A Pareto
front, computed from the “proposed” configurations, appeared in
the Pareto front display (Fig. (D)) in grey, with the points defining
the front being drawn as larger nodes in the Overview Display.

The red curve in this Pareto front display shows the front of the
“existing”, verified configurations, and the configurations that define
it are colored by the selected target variable, avg_throughput/$,
according to the red-toned colormap to the left of the Overview
Display. The expert noticed that the grey front only surpassed the red
front in the high purchase_cost area but had poor avg_throughput
for low purchase_cost configurations. He decided not to evaluate or
verify any of the proposed ESCs but rather focused on the red Pareto
front in the low purchase_cost area. He found a lower-performing
configuration there, indicated by its orange, less vibrant red color
(see Fig.[6|b)). He first tried to improve it by moving it to the dense

region in the Overview Display where the high-performing “existing”

configurations reside, but this strategy failed. To investigate why, he
examined the scree plot in Fig.[d] (A) and noticed the slow growth of
the aggregate curve. This essentially means that the PCA map did
not explain much of the data variance and so moving configurations
along loading vectors that pointed directly to the dense region was
not sufficient. Some short or nearly orthogonal loading vectors like
L1_size or L1_write_latency might also matter.

Looking for an alternative approach he turned to the density
bars in the PCP to learn about the per-variable distributions. Fig.
[l@) shows the PCP with the polyline of the Pareto configuration
under consideration colored in orange, indicating its lower
performance. And indeed, despite residing in a dense PCA
region, this configuration suffered from sub-optimal L1 _size and
L1_write_latency settings (it falls in less dense and lightly colored
regions in the density and correlation bars, respectively, for both
variables). These variables minimally contributed to the PCA space
but apparently significantly impacted the target variable outcomes.

The expert adjusted the configuration to dense intervals in both
variables, as indicated by arrows in Fig.[6[). He then asked the DNN
to estimate the value for avg_throughput and calculated other target
variables, which showed significant improvement and expanded the
Pareto front in the upper region (grey node in Fig. [6{b). Pleased, the
expert clicked the Verify button to obtain the true performance. After
some time, the verification results showed that this configuration
was even better than the DNN prediction (red node at the top of
Fig.[6(b)), and the dominance area increased significantly.

While this was a positive development, the expert also realized
that the DNN did not perform well in the upper region of the
Pareto front (see the large prediction error in Fig. [f[b)). More
configurations in that range were needed to train the DNN
effectively. To address this, the PCP interface enables users to
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Fig. 7. Rewards achieved by users, ESA, and random sampling. Each dot represents
a search round (5 verifications). The reward is defined by dominance area in the
Pareto plot. The bar within each strip is the mean value.

select specific value intervals and run ESA exclusively within these
intervals to generate ESC batches.

As the expert created more ESC batches and verified some of the
generated ESCs, the DNN eventually reached the ¢; threshold. At
this point, the expert was able to rely more on the DNN to assess the
quality of ESCs and he started to only focus on the ESCs located
on the proposed Pareto front for verification. Finally, once the DNN
surpassed t, the Al model completely took over the expert’s role.
As shown in Fig.[3] this three-stage pipeline increased the dominance
area from 0.27 to an impressive 0.56, more than doubling it.

VIII. USER STUDY

We conducted a user study to evaluate GapMiner with the
same system dataset (see App.|D|for a detailed description of this
experiment). We asked 10 graduate students with CS backgrounds
to perform an optimal-configuration search from an initial stage
that had 200 configurations in the set. The users could make full
use of GapMiner with all search methods: ESA, random sampling,
Pareto improvement, and the blank baseline. The batch size for
searching was fixed to 50 for all users. They could click the search
button multiple times, but they could click the verify button only 5
times to get the true avg_throughput. Once they believed they had
a good configuration, they ran one of their alloted verifications. We
calculated the dominance area and updated it in the reward donut
chart in Fig. {f] (D)[10] as the evaluation metric.

A. Result Analysis

We compared the GapMiner-aided performance of the users
with the outcomes achieved with (1) ESA-based search only and
(2) verifying the initial random samples directly, in order to see
whether GapMiner helped users with the task. Noticing that users
clicked search three times on average, we set the batch size to 150
for the two baselines (ESA and random) to match the user behavior,
calculated the Pareto front estimated by the naive neural network,
and then verified the naive Pareto front. We ran each baseline
10 times to match the number of participants. We did not choose
the top five for verification in the baselines because we found no
difference between verifying the top five and the whole Pareto front
in the dominance area. Our results are given in Fig.[/| We can see a
clear advantage in user performance compared to the two baselines.
The average reward of ESA is 0.319 and the average reward of
random sampling is 0.295, both of which are much lower than our
users’ average reward, 0.393. 7 users reached higher rewards than
ESA and 9 reached higher rewards than random sampling.

We also did a between-subjects ANOVA with Tukey’s Honestly
Significant Difference (HSD) to analyze our data’s statistical
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significance; the analysis is shown in Tab. [Illllin App.[D} Cohen’s f
from ANOVA was 0.85, indicating a large effect size. We observe
that GapMiner is significantly better than both baselines, while the
outcomes between the two baselines do not differ statistically.

B. System Usability

We evaluated the usability of GapMiner with the popular
questionnaire System Usability Scale (SUS)[8], which has 10
carefully designed questions that evaluate the system in various
aspects. We distributed the SUS to the users after completion of
the study and received 5 responses. Our score calculated from the
questionnaire was 73. According to SUS score analyses from Bangor
et al. [4] and Sauro et al. [53], our system is ranked B (SUS score >
72.6) and is thus considered good (SUS score > 71.1). Therefore, we
believe that GapMiner has shown good usability in these initial tests.

C. Comparison Experiments

In addition to testing user performance against algorithms in the
initial stage of the pipeline, we also did two experiments to compare
how ESA outperforms random methods in developed stages with the
help of a neural network. These experiments did not involve users,
but employed the well-trained DNN to evaluate and fine-tune ESCs.
In the standard pipeline described in Sec. [V]] there is an evolutionary
DNN working as a critic to determine promising ESCs, and a black
box to collect true values. Based on the advice of field experts, we
simplified the pipeline in the block-trace scenario by replacing the
critic and the black box with a well-trained DNN. The DNN had an
average percentage error of 7.9%, working as a surrogate model to
simultaneously determine good ESCs and verify outcome values.

We employed two baselines in this section: random sampling
(RS) and random walk (RW). Random sampling simply samples
configurations in the data space. Random walk further walks in a
random direction for each of 400 steps, which is the same number
we used in the ESA.

In the first experiment, we fast-forwarded to a developed stage
that had 1,000 configurations in the dataset instead of iterating from
an initial stage. In RS, we randomly sampled 1,500 configurations
at once. Starting from the same initial positions as used in RS, we
ran ESA and RW, and chose the best ones evaluated by the DNN
on each trajectory independently. We repeated the process 50 times
to reduce result variance. As before, we used the dominance area
as the evaluation metric. The average rewards of ESA, RS, and RW
were 0.450, 0.409, and 0.413, respectively. ESA was statistically
better than RS and RW, and there was no significant difference
between RS and RW. The effect size 7> was 0.3, indicating that
the magnitude of the difference between the averages was large.
The full statistical analysis is shown in Tab.[V]in App.

In the second experiment, we fast-forwarded to a stage with 3,000
configurations, using the same surrogate DNN as before. We did the
same experiments as in the previous one, the difference being that
we used gradient ascent to optimize the best configuration for each
trajectory in ESA, RS, and RW. The average rewards were 0.453,
0.418, and 0.422 respectively. There was a statistically significant
difference between ESA and random baselines, but no difference
between RS and RW. 7? was 0.3, indicating a large level of effect
size. The full statistical analysis is given in Tab. [VI|in App.

All of these experiments and statistical analyses clearly show that
our empty search algorithm is much better than random methods.

IX. FURTHER CASE STUDIES

In addition to the experiments in system research, we applied our
work to an entirely different domain, wine investigation. Further-
more, to show that empty-space search is also a valuable technique
for other fields of research, we also demonstrate its potential
with adversarial learning in computer vision and Reinforcement
Learning (RL) in the MuJoCo environment. Our case studies show
the effectiveness of our ESA in a wide range of applications.

A. Application in Wine Investigation

We tested our work on the wine dataset [52] to show gener-
alizability to domain-agnostic scenarios. Different from system
verification, the wine dataset was collected from the real world. It has
11 chemical properties and a quality rating associated with each wine
instance. The 11 chemical properties include{fixed, volatile, citric}
acidity, residual sugar, chlorides,{free, fixed} sulfur dioxide, density,
pH, sulphates, and alcohol. The wine quality ranges from 3 to 8.

Imagine there is a winemaker fermenting new wine. With quality
being the primary concern in mind, the winemaker also wants to
minimize the free sulfur dioxide due to potential health issues. We
can help the winemaker with GapMiner. First, the scree plot in
GapMiner reveals that the PCA space explains about 60% of the
variance, which means that the corresponding region in the original
space is less variant given a dense region in the PCA space. Next,
the distribution of wine quality—3, 4, 7, and 8 in the PCA space
(see Fig. [§[a))—illustrates that alcohol and citric acid point to the
high-quality region while volatile acidity and density point to the
low. Thus, given a wine instance, increasing alcohol and citric
acid while reducing volatile acidity and density is more likely to
improve the quality. Moreover, the PCP scented widgets indicate
that wine quality is independent from free sulfur dioxide. Thus,
wine instances in every quality can be fine-tuned to reduce free
sulfur dioxide, fitting a wide range of customers.

Looking at the histogram of outcome variable intervals, we
noticed that the dataset is severely imbalanced: almost 85% of the
wine instances are ranked quality 5 or 6; only 1% are ranked quality
3 or 8, which results in a low prediction accuracy. Therefore, we had
to augment the imbalanced quality groups. To do so, we first referred
to the PCP scented widgets to learn the property distributions of
each quality. For example, wine in quality 4 has higher volatile
acidity but lower citric acidity, while that in quality 7 is the opposite.
After finding the distributions, we constrained the search range to a
dense interval of each property by brushing on the scented widgets
in the PCP. Thus, ESA ran in a specific quality region.

Due to the difficulty of obtaining the quality of new wine
instances by ourselves, we made it the same as the nearest existing
neighbor. This simple but effective strategy is widely used in
imbalanced learning [11]]. Having identified over 6,000 ESCs, the
DNN accuracy improved from 60% to 80% on quality prediction.
On the other hand, free sulfur dioxide was integrated with other
properties during the empty-space search. Therefore, its value was
determined by ESA, which also reduced the DNN’s mean-squared
error from 0.018 to 0.002. During the pipeline execution, we were
able to find numerous wines with low free sulfur dioxide in each
quality. We show the results in Fig. [8|and App.

To summarize, our ESA, GapMiner, and the pipeline were
able to balance the dataset by augmentation, and improve DNN
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Fig. 8. The key results of GapMiner on the wine dataset: (a)The PCA map showing
the distribution of wine instances. The dark region on top represents wine instances
with qualities 7 and 8, while the dark region below it corresponds to qualities 3
and 4; (b)ESA results in the Pareto plot. We plot the wine set as blue points and the
associated Pareto front as a red line, while ESCs are gray points and the associated
Pareto front is a gray line; (c) The full property values of the global optimal wine
instance (highlighted in green in (b)).

performance. Though we were unable to verify these results in the

field, our work could identify numerous innovative wine instances
predicted to have good quality or low free sulfur dioxide.

B. Empty-Space Images in Adversarial Learning

Latent space has long been studied and has proven to be
informative in image generation [31} |1, |37]. In this section, we
study the application of GapMiner in the latent space of the MNIST
dataset. We spanned the latent space by using an AutoEncoder that
transforms a 28%28 image to a 4D point. Additionally, we trained
a convolutional neural network (CNN) to do a digit-recognition task
and obtained an accuracy of 99.17%.

In this experiment, we initialized agents randomly in the latent
space and ran ESA without momentum. Then we reconstructed
images from empty-space points. The results showed numerous
meaningful empty-space images that were falsely classified by
the CNN. We show some of the adversarial images in Fig.[0]and
describe additional details in App. [F-C] It is interesting to note
that though these empty-space images in Fig. [P(b) were falsely
predicted by the CNN, some of them were mapped to the right
cluster by tSNE. While latent space has long been studied for
image generation, our work shows that there are many potential
adversarial attacks within it, which is an open research area.

C. Empty-Space Search in RL

RL research and its potential to exceed human performance have
attracted great attention. Specifically, Actor-Critic [33] is an impor-
tant RL algorithm that has been widely used as the backbone in a
broad range of fields, e.g., in offline meta-RL, network management,
and trading [38} |13, /19]. The Actor-Critic algorithm trains a value
network to evaluate the value of an observation, and an independent
policy network to take an action in reaction to the observation via

1

(a) (b)

Fig. 9. Empty-space adversarial images from MNIST identified by ESA. We
visualize the latent space by dimension reduction and highlight some of the
adversarial points (compare a point’s color with the colors of the clusters via the
color legend on the right). We show the PCA map at (a), which is directly from
GapMiner, and the tSNE map at (b). All the images from MNIST are abstracted
to contours. We can see clear clusters of digits.

TABLEI
PERFORMANCE OF TRAINING POLICIES AND EMPTY-SPACE POLICIES

Policy = Max Return Avg Return
Training Policy 319.20 272.29 +24.23
Empty-Space Policy 362.79 330.27 +9.08

the feedback from the value network. Here we employed a popular
variation, Soft Actor Critic (SAC) [25], for empty-space study.

Mujoco[57] is a physical simulation engine widely accepted for
its robot control environments as RL benchmarks. We deployed
one of the environments, AntDir, whose task is to control an ant
robot to move in a given direction. The reward of AntDir is defined
as the velocity towards the right direction, the higher the better.
Observations are in a 27D continuous space and actions form an
8D continuous space.

In this case, we studied the possibility of getting a better policy
from empty-parameter-space exploration. We trained a SAC agent
on the AntDir environment for 200 iterations with a checkpoint
saved at each iteration. Next, we extracted all the parameters from
the policy network in each checkpoint and converted them to a
22,160D point. There are a total of 200 points in the 22,160D
parameter space.

Empty-Space Policies. We first visualized the parameter space
using PCA and found a clear training trajectory from a scratch
policy to a well-trained one. (The PCA results can be found in App.
[F-D]) Therefore, we focused on the promising local space where
the last 20 checkpoints were located, and searched empty space
policies. For each of the last 20 policies, the average position of
5 nearest neighbors was taken as an agent’s initial position, giving
20 agents. Then we ran ESA to propose candidate policies.

We evaluated those empty-space policies by running them on
AntDir to get their performance. Each policy ran 10 episodes, and
we used the average of the cumulative reward over an episode (also
known as the return) as our metric. The results are listed in Tab.
Our empty-space policy clearly outperformed the training policies,
not only showing ESA’s utility in searching for DNN parameters,
but also unveiling a new way to train neural networks that is much
less computation-intensive.
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X. DISCUSSION AND FUTURE WORK

Empty-space exploration for mining new innovative
configurations in high-dimensional parameter spaces is a
promising activity that has long been overlooked. In this paper, we
propose a novel empty space search algorithm (ESA) to identify
empty space configurations, integrate it into a newly devised HITL
visual analytics system, GapMiner, and incorporate it all into a
workflow that gradually evolves the search process from HITL to
Al-driven search. Our user study demonstrates the effectiveness
of GapMiner, supported by comparison experiments showcasing its
superiority over random and ESA-only search. Additionally, several
case studies illustrate the technique’s potential across diverse fields.
‘We plan follow-up research to find broader applications in security
fields, e.g., network intrusion in cybersecurity [[14].

The current initialization strategy of ESA agents is random
sampling, which is likely to miss important regions. In future
work, we plan to integrate subspace analysis to achieve more
efficient agent deployment. Also, our ESA assumes that variables
are mutually independent. However, in real-world scenarios
there may be complex causal relationship among the variables
which our algorithm might fail to uncover. On the other hand,
the emerging large language models have shown effectiveness in
causal relationship inference [32} 65]. In future research, we plan to
leverage the power of large language models to incorporate causal
information into the empty-space search process.

Another aspect to improve is the progressive neural network
training process. Currently, our empty-space search focuses on
optimal configuration search, but it never speeds up neural network
training. As a topic of future work, we plan to incorporate active
learning to identify ESCs that are both significant to network
convergence and optimal.
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APPENDIX A
CONNECTION BETWEEN PCA SPACE AND ORIGINAL SPACE
Given any multivariate configuration V = [vy,vs,...vx]T in an

N —dimensional dataset, let the PCA transformation matrix be

mi1  Mi2 miN

ma1 a2 maN
M=

Mnp1  Mnp2 mnN

The corresponding position v = [v},v3,...,v]T in n—dimensional
PCA space is given by v = M V. Changing the value of V' at the
kth variable by dv, can be written as 6V = [0,...duvg, ..., 0], and
Vaew=V+V.

Notice that the ith row of M is the ¢th principal component in the
data space, P, = [m1,m;2,...,m;n], and the jth column of M is the
loading vector of variable j: L; =[m1;,maj,...,mn;] . Therefore,
the moving step jv in PCA space can be derived as follows:

Unew =M Vpew
=M(V+4V)
=[Py, Py,.... P))'V +[L1,La,..., LN ]SV
=v+Lidvg
== 0V ="Vpew —V
ZLké’l}k

“

From Eq. 4] we can conclude that the moving direction in PCA
space is determined only by the corresponding loading vector, and
the step size is determined by the value difference and the loading
vector’s magnitude. Thus we can connect the original space in
the Parallel Coordinate Plot with the PCA space in the PCA map:
changing the value on a PCP axis will lead to a position update in
PCA map as determined by Eq.[]

APPENDIX B
AGENT-CENTERED DIMENSION REDUCTION

First we show how we embed a hypersphere. Given n points
P=[P,,P,,...,P,]" on a d-dimensional unit hypersphere, let P
be the vector from O to P;. Then we have

IBl=1vPeP
EiBy=||Eill[|Pj|cosby;
=cosb;;

Therefore, the product of any two points from the unit hypersphere
is the cosine distance. We construct the cosine distance matrix as
M=PPT,

Then we perform the eigenvalue decomposition :

M=VAVT

1 1 5
=VAzAzVT ©)

where V is the eigenvector matrix and A is the eigenvalue diagonal
matrix. Thus, we can conclude from Eq. |5|that P = VA3, Next
we determine the k largest square-rooted eigenvalues A*3 and
corresponding eigenvectors V*. This yields P* = V*A*2, the
low-dimensional embeddings of P whose pairwise dot products
fit cosine distances in P.

A. Nearest-Neighbor Visualization Algorithm

We show the process cos-MDS in Alg. 2} In addition to
dimension reduction, we also scale each embedding vector to the
same length as it has in the original space, so that the distance from
the embedding to the center represents the true distance from the
neighbor to the agent.

B. Examples for Basic Geometric Structures

We demonstrate the application of cos-MDS on three synthetic
datasets: a 3D hyperboloid, a 4D paraboloid, and a 4D hypersphere.
For each dataset, we approximately placed the agent at the center
of the empty space and set the number of neighbors equal to the
size of the dataset.

We generated the 3D hyperboloid dataset by uniformly sampling
the 30 coordinates from [—1,1] on the = and y axis, respectively.
We then calculated 2 by

72 Y2
0.04 + 0.04 +

There are 900 points in this dataset and we placed the agent at
(0,0,0). The synthetic dataset is directly plotted in Fig.[I0fa). The
corresponding result of cos-MDS can be found in Fig.[I0[b).

The 4D paraboloid dataset was generated by uniformly sampling
10 points from [—5,5] on «, y, and z axis independently, and the
points on the paraboloid were defined by (x,y,2,22). This dataset
includes 1000 points. We set the agent at (0,0,0,20). The cos-MDS
result on this dataset can be found in Fig. [I0{c).

For the 4D hypersphere dataset, we first uniformly sampled
1,000 angles (1,0,¢), where ¢ € [0,2x7], 6 € [0,7], and ¢ € [0,7].
Then we calculated the points (z,y,z,w) on the hypersphere by

x=cos())sin(0)sin(¢)
y=sin()sin()sin(p)
z=cos(0)sin(¢)
w=cos(P)

This synthetic dataset contains 1,000 points as well. Again, we
located the agent at (0, 0, 0, 0). The cos-MDS result can be found
in Fig.[10(d).

From the results in Fig.[I0] we observe that cos-MDS visualizes
a 3D hyperboloid (a) as a 2D hyperbola (b), transforms a 4D
hypersphere into a 2D circle (d), and projects a 4D paraboloid
onto the plane such that the distribution still approximates the
pattern of a parabola (c). Our results indicate that this method
successfully extracts the intrinsic features of the high-dimensional
data distribution and intuitively visualizes them in the 2D plane,
thus highlighting its great potential for empty space visualization.

z=12x%

©)

APPENDIX C
COMPARING ESA AND DELAUNAY TRIANGULATION

Our investigation into high-dimensional Delaunay triangulation
acceleration and approximation revealed a scarcity of research
addressing the exponential complexity increase with dimensionality.
Hence, we conducted some experiments to study this topic further.
Our empirical findings underscore the computational and storage
impracticality of these types of approaches for our purposes,
even for datasets as small as 1,000 points, when the number of
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Algorithm 2: Dimension Reduction for Cosine Distance

Pick n nearest neighbors
[P1,P,...,P,] around the agent 7 in d dimensional space;
fori...ndo
Let ]5; be the vector from 7 to P;;
L=IB:
P=PF/|Pl];
end
Calculate a local embedding [p1,p3,...,pn) from cos-MDS;
fori...ndo
| mi=Lixpi/|lpill;
end
return [p1,p3,...,p) as neighbor plot results.

3D Hyperboloid 100
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Fig. 10. Examples of cos-MDS on 3 synthetic datasets. The blue points are the
synthetic dataset and the red point is the center agent. (a) The 3D hyperboloid
dataset; (b) cos-MDS result on the 3D hyperboloid dataset; (c) cos-MDS result on
the 4D paraboloid dataset; (d) cos-MDS result on the 4D hypersphere dataset

dimensions exceeds 7. Fig. [[Tfa) and Fig[TT[b) show the empty
space search results from our search algorithm (ESA) and from
Delaunay Triangulation (DT) in the 2D case, respectively. While
both methods identify all the empty spaces, DT requires many more
triangles compared to the number of agents used in our ESA. It is
this abundance (and complexity) of geometric primitives that limits
DT’s scalability to higher dimensions.

APPENDIX D
USER-STUDY RESULTS

The user-study data including user performance, ESA
performance, and random sampling performance are listed in Tab.
The parameters used in this study and comparison experiments
were k=9, o = mean distance of k neighbors, n =400, «=0.001,
j=10,6=10"", and y=0.9, respectively.

-0.25 -0.25

-0.50 -0.50

075 -0.75

—1.00 -1.00

~1.00-0.75-0.50-0.25 0.00 0.25 0.50 0.75 100 -1.00-0.75-0.50-0.25 0.00 025 050 0.75 100

(@) (b)

Fig. 11. Given 300 random samples (blue) and 600 random agents (red) in 2D
space, we show the outcomes of empty space search using (a) our empty space
search algorithm (ESA) and (b) Delaunay Triangulation (DT).

A. ANOVA of User Study
The ANOVA of user study can be found in Tab.

B. System Usability Scale
The SUS questionnaire included the 10 questions listed below:

o [ think that I would like to use this system frequently.
« [ found the system unnecessarily complex.
o I thought the system was easy to use.
o I think that I would need the support of a technical person to
be able to use this system.
o I found the various functions in this system were well
integrated.
o I thought there was too much inconsistency in this system.
o I would imagine that most people would learn to use this
system very quickly.
« [ found the system very cumbersome to use.
« I felt very confident using the system.
« Ineeded to learn a lot of things before I could get going with
this system
Each question was ranked from 1 (strongly disagree) to 5 (strongly
agree). The final score was calculated by summing the normalized
scores and multiplying them by 2.5 to convert the original score of
0-40 to 0-100. 5 users responded to our questionnaire. The results
are given in Tab.[[V]

C. Comparison Experiment Data

Fig. [12] presents detailed results achieved by ESA, random
sampling and random walk.

D. ANOVA of Comparison Experiments

The ANVOA of developed stage and expert stage can be found
in Tab.[V]and Tab. [V] respectively.

APPENDIX E
EXTRAPOLATION BEHAVIOR OF OUR ESA-BASED SEARCH

Our ESA focuses on identifying empty spaces within the data
distribution. The repulsive component prevents it from straying too
far from the existing distribution. However, empty spaces outside
the current distribution can be meaningful and essential. This
experiment demonstrates ESA’s ability to search for these empty
spaces beyond the current distribution.
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TABLE II
REWARDS OF EACH ROUND OF OUR USER STUDY (TOP), ESA (MIDDLE) AND RANDOM SAMPLING (BELOW).

Userl User2 User3 User4  User5  User6  User7  User8  User9  UserlO
0487 04323 04317 0.36 0.301 0.368 043 0.518 0.287 0.317
ESALl ESA2 ESA3 ESA4 ESAS ESA6 ESA7 ESA8 ESA9 ESA10
0.288  0.329 0.295 0306  0.283 0334 0293 0412 0.293 0.352
Randl Rand2 Rand3 Rand4 Rand5 Rand6 Rand7 Rand® Rand9  Randl0
0.31 0.326 0.283 0.283 0.284 0.312 0.284 0.292 0.294 0.284
TABLE IIT Developed stage

THE BETWEEN-SUBJECTS ANOVA (ABOVE) AND TUKEY HSD (BELOW) OF
USER PERFORMANCE WITH GAPMINER (X1) AGAINST THE TWO BASELINES
ESA-ONLY (X2) AND RANDOM SAMPLES-ONLY (X3).

Source  DF SS Mean Square  F Statistic P-value
Groups 2 0.052 0.026 9.746 <0.001

Error 27 0.073 0.003

Total 29 0.125 0.004

Pair Diff SE Q CI Bounds CM P-value
x1-x2 0075 0016  4.555 0.01770.132 0.058 0.009
xl-x3 0098 0016 5976 0.04170.156 0.058  <0.001
x2-x3 0023 0016 1421 -0.0340.081  0.058 0.580

TABLE IV

RESPONSES FROM 5 USERS. Q1-Q10 REFER TO 10 QUESTIONS; R1-R5 REFER
TO USER RESPONSES. NS IN THE LAST ROW IS THE NORMALIZED SCORE OVER
5 RESPONSES.

Rsp QI Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 QIO
Rl 3 2 4 2 4 2 4 2 4 3
R2 5 1 4 4 5 1 2 2 4 3
R3 5 2 3 23 1 4 2 5 4
Ré& 2 3 4 4 5 1 5 3 4 4
RS 4 1 4 2 5 1 5 1 5 3
NS 28 32 28 22 34 38 3 3 34 16

TABLE V

THE WITHIN-SUBJECTS ANOVA (ABOVE) AND TUKEY HSD (BELOW) OF ESA
(x1), RS (x2), AND RW (X3) AT A DEVELOPED STAGE. SUBJECTS ARE THE
INITIAL POSITIONS OF AGENTS, TREATMENTS ARE THE EMPTY SPACE SEARCH

ESA

@D ¢ emocwe pmes ese  ©cme

sampling strategy

@D 0 enmee cojme we ome o o

T T T T
0.44 0.46 0.48 0.50

reward

(@)

T T T
0.38 0.40 0.42

Expert stage

ESA

campcanfocss @ ® ¢ o ®

sampling strategy

® esmonademem weo o o ® o

T T T T
0.44 0.46 0.48 0.50 0.52

reward

(b)

Fig. 12. Comparison experiment: (a) shows the rewards found by ESA, random
walk, and random sampling at the development stage; (b) shows the rewards found
by the three methods at the expert stage. In both figures, each dot represents a search
process with 1,500 random agents involved. Each method in both stages has 50
search processes.

T T
0.36 0.38 0.40 0.42

METHODS. TABLE VI
THE WITHIN-SUBJECTS ANOVA (ABOVE) AND TUKEY HSD (BELOW) OF ESA
Source  DF SS MS F Statistic P-value (x1), RS (x2), AND RW (X3) AT AN EXPERT STAGE. SUBJECTS ARE THE
INITIAL POSITIONS OF AGENTS, TREATMENTS ARE THE EMPTY SPACE SEARCH
Between Subjects 49 0.042 0.001 1.115 (49,98) 0.320 ’ METHODS
Between Treatments 2 0.051 0.026  33.224 (2,98) <1076 ’
Error 98 0.075 0.001
Total 149 0.168 0.001 Source DF SS MS F Statistic P-value
Pair Diff SE Q CI Bounds CM P-value Between Subjects 49 0.033 0.001 1.201 (49,98) 0.220
Between Treatments 2 0.037 0.019 33.233 (2,98) <1076
x1-x2 0.041 0.004 10.250 0.02870.054 0.013 <10°¢ Error 98 0.055 0.001
x1-x3 0.037 0.004 9.272 0.02470.050 0.013 <1078 Total 149 0.125 0.001
x2-x3 0.004 0.004 0.979 -0.00970.017 0.013 0.769
Pair Diff SE Q CI Bounds CM P-value
x1-x2  0.035 0.003 10.161 0.02470.047 0.012 <107°
o . . x1-x3 0031 0003 9082 00200043 0012 <107°
‘We used the distribution of the wine dataset for demonstration; x2-x3 0004 0003 1079  -0.0080.015 0012 0.726

we ignored the meaning of each variable and removed the target
variable to focus solely on the distribution of the dataset in each
dimension. This marked the dataset as the initial distribution. We
ran ESA for six iterations, selecting 300 data items from the dataset
with the largest average distance to their 8 nearest neighbors as the
initial agent position. ESA search was conducted, and the results
were added to the dataset. After each iteration, we measured the
distance of the ESA results from the initial distribution and created

a histogram. The histograms, shown in Fig. [I3] indicate that the
configurations found by ESA progressively move further from
the initial distribution. This demonstrated ESA’s ability to explore
empty spaces beyond an initial data distribution.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

Iteration 0

Iteration 1

H embl
10

05

05

emb?2
10

05

05

emb3
10

05

00

05

emb4
10

05

00

05

s H
8 so 8 s0
25 25
0 0
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35
Mean distance to the dataset Mean distance to the dataset
Iteration 2 Iteration 3
100 100
o 75 o 75
£ H
H 5
8 so 8 s0
25 25
0 0+
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35
Mean distance to the dataset Mean distance to the dataset
Iteration 4 Iteration 5
100 100
e 75 = 75
g H
H 5
8 so 8 so
25 25
0+ 0
00 05 10 15 20 25 30 35 00 05 10 15 20 25 30 35
Mean distance to the dataset Mean distance to the dataset

Fig. 13. Histograms of the configurations identified by the ESA with regards to
the initial distribution as a function of iteration. We observe that the ESA results
progressively move further from the initial distribution, demonstrating ESA’s ability
to explore empty spaces beyond an initial data distribution.

APPENDIX F
DETAILS FOR THE APPLICATION CASES

In this section we present more detail on the various application
examples shown in the paper.

A. Systems Dataset

Fig. [16] shows the full view of GapMiner for the application
example described in Fig. [VI] the systems dataset.

B. Wine Investigation

Fig. [I7]show the full view of GapMiner for the wine dataset.

C. Empty Space Images in Adversarial Learning

Our first step was to choose relevant digit classes from the control
panel and learn the distribution in latent space by using the PCA
map and the PCP. With this in hand, we explored the latent space
by manipulating a line in the PCP. When the latent point moves in
the PCA map, we reconstructed the image with the decoder and
visualized it in the neighbor plot. Fig.[T4[a) shows an example of
the empty-space exploration. Starting from a digit 7, we can see that
all of its neighbor images are 7 except one 9, and all are close to the
empty space image (dashed line). Changing the image a bit in the
latent space results in a shallow line at the head, making ita 9, but the
CNN fails to recognize it, still classifying it as a 7. Fig.[I4[b) shows

another adversarial image by ESA, which is a 7 misclassified as a 5.

Additionally, from Fig.[9[b) we can see that tSNE can correctly
embed an adversarial image from Fig.[T4{a) into cluster 9 (the pink
circle in cluster 9), but it fails for the image from Fig. @b) (the
yellow circle in cluster 5).

H H RO
e
e
-

(b)

Fig. 14. Some key results from GapMiner. Fig. E| shows the corresponding PCA
map. The leftmost color bar is the legend, where each color represents a digit. The
dashed line in the PCP is the empty-space image and the solid lines are its neighbors
from MNIST. The line color refers to the true label of images from MNIST or the
predicted label of the empty-space image. On the right is the neighbor plot, where
the center is the empty-space image (dashed line in the PCP) and around it are the
MNIST neighbors (solid lines in the PCP).

traning policy + training policy 350

(a) (b)

Fig. 15. Policy networks visualized by PCA. The color encodes the policy’s return
averaged over 10 episodes. (a) Policy checkpoints from all the training iterations.
Each point represents one training policy at a checkpoint. (b) Empty space policies
and their neighbor training policies. Here, points represent training policies and stars
represent empty ones. This is a local space of the last 20 training policies (the top
left corner in (a)) since the empty-space policies were identified among the last 20.

D. Empty-Space Search in Reinforcement Learning

We visualize the training policies in the PCA space in Fig. [[5(a),
and the empty-space policies in the PCA space in Fig.[T5]b).

E. Cheetah Direction

We demonstrate an additional application of GapMiner in a
physical-simulation scenario.

CheetahDir is an environment in MUJOCO that controls a half
cheetah robot to move forward. The reward function is composed of
two components: forward reward and control cost. Forward reward
is the velocity in the given direction, the faster the better. Control
cost is the rooted squared sum of the action, indicating the cost
to execute the action, the smaller the better. The total reward is
the forward reward minus the control cost. The action space has
6 variables: back thigh, back shin, back foot, front thigh, front shin
and front foot. All of them are numerical and continuous.
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Fig. 16. The full view of GapMiner for the system dataset. The black arrows in the overview display, the PCP, and the Pareto frontier plot show the direction of optimization.
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Fig. 17. The full view of GapMiner for the wine dataset study. We highlight the global optimal wine instance in green in the PCA map, the PCP, and the neighbor plot.
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Fig. 18. We trained a neural network to predict forward reward and calculate the control cost; then we calculate the reward of an action as forward reward minus control
cost. We applied the dataset to GapMiner, from which we could see a distribution shift from low-reward actions to high-reward actions. It indicated that front foot and
back foot are more important to the reward. Then we ran ESA to search empty-space actions and plot the predicted forward reward and control cost in the Pareto plot.
It showed that actions from the expert agent always have high cost, but some don’t have high reward. ESA can find actions that are either cheaper while maintaining
good reward, or expensive but even higher reward. Notice that RL is a sequential decision-making problem. A high immediate reward doesn’t necessarily imply a long-term
benefit. Searching empty-space actions with higher Q values is another interesting application scenario.

The dataset is collected by an expert agent. Given an observation,
it samples actions from its output distribution randomly. In this
scenario, we explored the ability to find better empty space actions
than the expert agent given the observation. The visual analytics
can be found in Fig.[T§]
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