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Abstract

Multimodal language analysis is a rapidly evolving field that leverages multiple
modalities to enhance the understanding of high-level semantics underlying human
conversational utterances. Despite its significance, little research has investigated
the capability of multimodal large language models (MLLMs) to comprehend
cognitive-level semantics. In this paper, we introduce MMLA, a comprehensive
benchmark specifically designed to address this gap. MMLA comprises over
61K multimodal utterances drawn from both staged and real-world scenarios, cov-
ering six core dimensions of multimodal semantics: intent, emotion, dialogue
act, sentiment, speaking style, and communication behavior. We evaluate eight
mainstream branches of LLMs and MLLMs using three methods: zero-shot in-
ference, supervised fine-tuning, and instruction tuning. Extensive experiments
reveal that even fine-tuned models achieve only about 60%~70% accuracy, un-
derscoring the limitations of current MLLMs in understanding complex human
language. We believe that MMLA will serve as a solid foundation for exploring the
potential of large language models in multimodal language analysis and provide
valuable resources to advance this field. The datasets and code are open-sourced at
https://github.com/thuiar/MMLAL

1 Introduction

Multimodal language analysis has emerged as a prominent research area [11], utilizing various
modalities to decode cognitive-level semantics in human utterances (e.g., emotion and intent). This
analysis is crucial for understanding psychological and behavioral motivations, and it has broad
applications in virtual assistants [58]], recommender systems [9]], and social behavior analysis [40].

This field has attracted significant attention, with early works focusing on annotating sentiment inten-
sity from social media videos [68,[71] and conversations from various TV shows or movies [66} 37]].
Additionally, researchers have provided emotion categories for TV shows [45] based on Ekman’s six
universal emotions [15]]. Building on these resources, numerous methods have been developed to learn
complementary information and alleviate the challenges posed by the heterogeneous nature of differ-
ent modalities [53} 23] 26, [78]]. In addition to sentiment and emotion, researchers have investigated
other linguistic properties such as sarcasm [5}80] and humor [21}8]], with multimodal fusion methods
specifically designed for binary classification tasks [22}46]. More recently, studies have focused on
analyzing coarse-grained and fine-grained intents using new datasets and taxonomies [49] 73| [74]],
although this area is still in its early stages [52, [85]].
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Figure 1: Overview of the MMLA benchmark. The left side shows examples from six evaluation
dimensions and nine datasets. The right side displays three methods for evaluating both LLMs and
MLLMs: (1) zero-shot inference (top right), which generates predictions from task-specific prompts;
(2) supervised fine-tuning (middle right), which trains on each supervised task; and (3) instruction
tuning (bottom right), which trains on multiple tasks simultaneously. Both (2) and (3) utilize LoRA
to efficiently adapt foundation models.

Despite these advances, existing methods predominantly rely on fusion techniques built on lightweight
neural networks [48] [6], which show limited performance on more complicated reasoning
tasks [63]]. The advent of MLLMs [33]33] [84] [56]] reveals the huge potential for emergent cross-modal
reasoning capabilities through scalable model parameters [65]. However, existing MLLM benchmarks
mainly focus on low-level perceptual semantics, such as scene and procedure understanding [32]],
instance location [38]], and elementary cognitive-level tasks like video content analysis and
commonsense reasoning [63]. These benchmarks fail to address high-level semantics in conversations.
Other benchmarks in this field include only a few semantic dimensions, such as emotion and
intent [63][36]], or are incapable of evaluating LLMs [34].

To address these challenges, we propose MMLA, the first comprehensive benchmark for multimodal
language analysis, aimed at evaluating foundation models. Figure[T] provides an overview of MMLA.
In this benchmark, we introduce six representative semantic dimensions for evaluation: infent,
emotion, dialogue act, sentiment, speaking style, and communication behavior. These dimensions
cover the most important cognitive-level semantic aspects of multimodal conversational interactions.
We then collect nine publicly available multimodal language datasets, totaling over 61K multimodal
utterances across more than 76 hours of video, with each utterance containing text, video, and audio
modalities. These datasets span various sources, including both staged scenarios (e.g., TV series,
films, TED talks) and real-world settings (e.g., spontaneous social media videos and motivational
interviews). Detailed speaker demographics for these publicly available datasets are collected and
reported in the appendix tables[3] Next, we evaluate state-of-the-art (SOTA) LLMs and MLLMs on
MMLA. In particular, five branches of MLLMs are employed to leverage both language and video
modalities. Additionally, three branches of LLMs that process only text are used for comparison with
MLLMs, to assess the effect of non-verbal modalities. The sizes of these models range from 0.5B
to 72B parameters. We apply zero-shot inference, supervised fine-tuning, and instruction tuning as
evaluation methods.

Extensive experiments demonstrate that existing MLLMs show limited performance in understanding
high-level cognitive semantics. Supervised fine-tuning can significantly enhance the multimodal
capabilities and achieve new SOTA performance on most tasks. In particular, smaller-scale models
show great potential with performance comparable to that of larger-scale models. Through instruction
tuning, foundation models can successfully handle multiple tasks with a unified model, achieving



performance comparable to supervised fine-tuning. However, even after tuning, these models still
exhibit a significant limitation on these tasks, with average accuracy scores below 70%.

Our contributions are summarized as follows: (1) We propose MMLA, a large-scale multimodal
language analysis benchmark containing 61K multimodal utterances drawn from over 76 hours of
video. MMLA spans six core dimensions that are crucial for understanding high-level cognitive
semantics. (2) To the best of our knowledge, MMLA is the first to comprehensively assess the
capabilities of foundation models in multimodal language analysis, by evaluating nine mainstream
models across three strategies. (3) Extensive experiments reveal new insights into foundation models
for multimodal language analysis. MMLA also pushes the limits of existing MLLMs, providing a
solid basis and promising new directions for further research. The code is publicly available, and the
data are released under their respective licenses (see Appendix [A]for details).

2 Related Works

Multimodal Language Datasets. With the boom in multimodal language analysis, many significant
tasks have emerged alongside the development of benchmark datasets. For example, early research
focused on multimodal sentiment analysis and emotion recognition, and there are numerous datasets
designed to analyze multilingual opinion sentiment [44} 168} 66l 37]. Zadeh et al. [71] constructed the
first large-scale dataset in this field and additionally annotated emotion labels following Ekman’s
taxonomies [[15]]. However, these datasets only involve individual opinions and lack conversational
interactions among multiple speakers. Busso et al. [3] introduced a dataset that records conversations
between two speakers and annotates each utterance with emotion labels from nine categories in
multimodal contexts. Nonetheless, dyadic sessions pose limitations when dealing with real-world
multi-party scenarios. To address this, Poria et al. [45] provided sentiment and emotion labels
for conversations taken from a TV series involving multiple speakers. These abundant resources
have led to extensive research on designing effective multimodal fusion methods, including tensor
operation-based [[69} 139, [70] and transformer-based approaches [53\ 148}, 123} 20, 26} [75].

Beyond the relatively shallow semantics of sentiment or emotion, researchers have begun to explore
more diverse and complex intent semantics in utterances, resulting in substantial new resources. Early
work in this field analyzed authors’ intents on social media platforms. For instance, Kruk et al. [30]
proposed a taxonomy of eight intents based on rhetorical classes, and Zhang et al. [72] introduced four
intent classes related to metaphor. However, these intents differ from those found in conversational
scenarios. Saha et al. [49] annotated 12 dialogue acts drawn from the Switchboard[19] tag set for two
multimodal emotion recognition datasets [3,145]. Nevertheless, these dialogue acts are coarse-grained
communicative intents that are not directly applicable to real-world applications [73]]. To address
this issue, Zhang et al. [73]] proposed the first hierarchical intent taxonomy specifically designed for
multimodal contexts and introduced the first multimodal conversational intent recognition dataset.
Zhang et al. [[74] subsequently extended this dataset into a larger-scale version that accommodates
multi-party interactions and includes out-of-scope utterances, reflecting real-world conditions. In
addition, some research has focused on individual speaking styles, such as humor [21] and sarcasm [J5]],
which are driven by particular human intents, such as joking or mocking. Recently, Wu et al.
[60] investigated more complex communication behaviors between clients and therapists through
motivational interviewing in counseling scenarios.

Benchmarks. There are also multimodal benchmarks related to this work. For example, Multi-
Bench [34] constructs a large-scale multimodal learning benchmark spanning various areas, such as
healthcare and robotics. Nevertheless, it only covers dimensions related to affective computing and
evaluates traditional multimodal machine learning methods without incorporating powerful MLLM:s.
To investigate the capability of MLLMs, numerous benchmarks have been proposed in recent years.
However, most benchmarks focus on perceptual-level or elementary cognitive-level tasks such as
visual recognition [32]], optical character recognition [[17], multimodal question answering [41], video
content analysis [[1}16], scientific calculation [38]], and visual reasoning [35]]. While previous bench-
marks cover diverse domains and tasks, none specifically target large-scale multimodal language
analysis. MMLA is the first benchmark designed to advance this field in foundation models.

Multimodal Large Language Models. Multimodal large language models have emerged as a new
paradigm in multimodal learning due to their superior scalability and cross-modal reasoning capabili-
ties. For example, VideoLLaMAZ2 [[7] introduces a Spatio-Temporal Convolution (STC) connector
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Table 1: Dataset statistics for each dimension in the MMLA benchmark. #C, #U, #Train, #Val, and
#Test represent the number of label classes, utterances, training, validation, and testing samples,
respectively. avg. and max. refer to the average and maximum lengths.

that excels in capturing spatiotemporal dynamics for audio-visual tasks. LLaVA-OneVision [31]
pioneers cross-modal transfer learning, excelling in zero-shot video understanding despite being
trained only on image datasets. LLaVA-Video [79] introduces a new video representation technique
that allows maximizing the sampling of video frames, and a high-quality dataset is constructed to
promote its instruction-following capability. Qwen2-VL [55] leads in vision-language understanding
and generation, performing well in both zero-shot and few-shot settings. MiniCPM-V [64] innovates
in model compression to enable efficient mobile deployment without compromising performance.
Although current MLLMs perform well on various tasks, no benchmark evaluates their ability to
handle complex multimodal language analysis.

3 MMLA Benchmark

3.1 Evaluation Dimensions

To comprehensively evaluate the complexity and diversity of human interactions, we select six
representative dimensions across various linguistic and interactional levels: intent, dialogue act,
emotion, sentiment, speaking style, and communication behavior. These dimensions collectively
encapsulate the core aspects of multimodal language analysis [50, [18]. In particular, intent captures
the ultimate purpose or goal of human communication, such as requesting information or making
decisions [47]. In contrast, dialogue act is a more coarse-grained type of intent [49]]. It typically
focuses on the dynamic progression of communication, such as questioning or stating opinions [51].
Nonverbal signals (e.g., gaze shifts, gestures, and facial expressions) provide valuable clues to resolve
ambiguities in both perspectives [[73} [74].

Sentiment, emotion, and speaking style are three significant aspects often accompanying communica-
tive interactions. Sentiment refers to the polarity (e.g., positive or negative) of subjective opinions [11],
emotion conveys the speaker’s internal psychological state (e.g., happiness, anger) [14]], and speaking
style refers to individual expressive variations in communication (e.g., sarcasm, humor) [43]]. Multi-
modal cues (e.g., facial expressions and gestures) play a crucial role in inferring these communicative
characteristics [62, 22]142]]. Communication behavior explores the interaction behaviors between
individuals (e.g., sustain, change, and reflection), which facilitate the progression of conversations
and exhibit social properties within groups [60]. Non-verbal signals (e.g., eye contact and gestures)
can help uncover these behaviors and offer insights into modeling social cohesion [54]]. Detailed
information about the labels used for each dimension in each dataset can be found in Appendix [B]

3.2 Data Sources

We collect nine typical publicly available multimodal language datasets corresponding to the evalua-
tion dimensions. Detailed statistics for these datasets are provided in Table[T] We further summarize
additional details on the release timeline of each dataset and on the overlap of speakers and scenes
across data splits in Appendix [FI] For the intent dimension, we use two pioneering multimodal
intent datasets, MIntRec [[73] and MIntRec2.0 [74]], which cover up to 30 intent classes commonly
occurring in daily life. For the emotion dimension, we utilize two widely used multimodal emotion
recognition datasets, MELD [45] and IEMOCAP [3]], both containing Ekman’s six universal emotion



categories as suggested in [26]. Additionally, MELD includes a neutral class. For the dialogue act
dimension, we use curated versions of the MELD and IEMOCAP datasets, with annotations provided
by EmoTyDA [49]. These annotations consist of 12 commonly occurring classes selected from the
SwitchBoard tag set [[19]. For the sentiment dimension, we use two popular multimodal sentiment
analysis datasets: MOSI [68] and CH-SIMS v2.0 [37]]. Both are annotated with sentiment intensity
values in the range of [-3, 3]. Following [67], we convert these annotations into polarity-based
two-class and three-class labels for evaluation. For the speaking style dimension, we focus on two
properties that play significant roles in social interactions: humor and sarcasm. We use UR-FUNNY-
v2 [21] and MUStARD [5] for binary classification tasks, respectively. For the communication
behavior dimension, we employ the Anno-MI [60] dataset, which involves motivational interviewing
(MI) in counseling dialogues. This dataset is divided into two subsets, each analyzing three or four
typical behaviors exhibited by clients and therapists. Details of the annotation quality assurance for
each dataset are provided in Appendix [C]

These datasets contain a wide variety of characters, scenes, and background contexts in both English
and Mandarin. They are sourced from popular TV series (e.g., Friends, The Big Bang Theory,
Superstore, etc.), films, online video-sharing platforms (e.g., YouTube, Vimeo, Bilibili), idea-sharing
platforms (e.g., TED), and scripted dyadic sessions. We perform necessary cleaning and corrections
to ensure the quality of each multimodal sample, aligning transcriptions, raw videos, and audio data.
The datasets in the benchmark consist of 61,016 high-quality multimodal samples, totaling 76.6 hours
of video, with 12,093 samples reserved for testing.

3.3 Method Overview

Zero-shot Inference. We leverage the generalization capabilities of foundation models for zero-shot
inference. Specifically, for LLMs, the prompt template includes the transcribed utterances of speakers
as text information, followed by a task-specific query with candidate labels. The LLM generates a
response by predicting the next token in an autoregressive manner [2]], which corresponds to the most
appropriate label. For MLLMs, we extend this template by adding the special token <video> at the
beginning of the instruction, with its number aligned to the number of videos. This ensures structured
alignment across modalities, enhancing the model’s capacity to process multimodal input. Details of
the prompt templates used for inference can be found in Appendix

Supervised Fine-tuning (SFT). We further optimize foundation models to enhance their instruction-
following capabilities using SFT techniques while employing the same instruction templates as used
during inference. Fine-tuning is performed by minimizing the cross-entropy loss between the model’s
autoregressively predicted token probabilities and the ground-truth tokens corresponding to the labels.
Let the input sequence be x = (z1, 2, ..., z,) and the target sequence be y = (y1,y2,- - -, Ym)-
The cross-entropy loss Lcg is defined as:

‘CCE = — Zlogp(yt|$7y<t;9)7

t=1

where P(y;|x, y<¢;0) is the probability of token y; given the input z, the previous tokens y¢, and
the model parameters 6. To ensure training stability and reduce computational cost, we adopt the
Low-Rank Adaptation (LoRA) [25] technique, which significantly reduces the number of parameters
to be fine-tuned while preserving the model’s generalization capabilities.

Instruction Tuning (IT). Since SFT addresses only the single-task scenario, we further explore the
generalization ability of foundation models on multiple tasks. We first combine the training data from
all datasets of each task for training, then we use the same template as the other two strategies, with
the difference being that the task is not limited to one. The optimization objective follows SFT and
uses the candidate labels of each task as supervised targets.

4 Experiments

Evaluation Metrics. We employ six commonly used metrics: accuracy (ACC), weighted F1-score
(WF1), weighted precision (WP), macro F1-score (F1), recall (R), and precision (P) for evaluation, as
suggested in the literature [[74} 45183168, [22]]. In particular, we report the primary results of ACC in
this paper, with additional results for the remaining metrics provided in the Appendices.



Evaluation Baselines. We apply the three evaluation methods as described in Section[3.3on advanced
LLMs and MLLMs as baselines. We also compare the foundation models with SOTA multimodal
machine learning (MML) methods.

* LLMs. Three series of different parameter scales of unimodal foundation models are included:
Llama-3 [13] (8B), InternLM-2.5 (7B) [4], and Qwen?2 [61]] (0.5B, 1.5B, and 7B).

* MLLMs. Five series of different parameter scales of multimodal foundation models are included:
VideoLLaMA?2 [7] (7B), Qwen2-VL [55] (7B and 72B), LLaVA-Video [79] (7B and 72B), LLaVA-
OneVision (LLaVA-OV) [31] (7B and 72B), and MiniCPM-V-2.6 [64] (8B). For language decoding,
the first series use Mistral [28]], and the last four series use Qwen2 with the same parameter scale as
the MLLM. We follow the same vision encoders as those in the corresponding released open-source
models. We also apply zero-shot inference on one closed-source MLLM, GPT-40 [27] as a baseline.

* MML Methods. We collect open-source MML methods with SOTA performance for each
dataset for a detailed comparison. Specifically, for MIntRec: MIntOOD [76l], MIntRec2.0:
MulT [53], MELD and IEMOCAP: UniMSE [26], MELD-DA: TCL-MAP [83], IEMOCAP-
DA: MIntOOD [76], MOSI: MMML [59]], CH-SIMS v2.0: ALMT [77]], UR-FUNNY-v2 and
MUStARD: SimMMDG [12]. The results are reported as they appear in the corresponding papers.

Experimental Setup. We mostly follow the original data splits for training, validation, and testing
for each dataset, as detailed in Table[T} Each sample consists of text and video data aligned at the
utterance level for speakers. For SFT and IT methods, we utilize LLaMAFactory [82] for all LLMs
and Qwen2-VL, SwiFT [81]] for MiniCPM-V-2.6 LLaVA-NeXTE|for LLaVA-OV and LLaVA-Video,
and VideoLLaMA?2 using its own public codeﬁ respectively. We employ FlashAttention-2 [10]]
to optimize the attention modules of transformers, reducing memory and time costs. Besides, we
leverage the DeepSpeed library for distributed training (e.g., using ZeRO-3 for memory optimization)
and parallel computation. The precision type is set to BF16, offering reduced computational costs
compared to FP16 or FP32. The learning rates range from 2e-5 to le-3, and a cosine learning
rate scheduler with warmup ratios from 0.1 to 0.3 is applied. The training batch sizes are chosen
from {4,8,16,24}. The rank and « parameters of the LoRA module are set to {8, 16, 64,128}
and {16, 32,128, 256}, respectively. All experiments are conducted on NVIDIA A100 GPUs. We
monitor model accuracy on the validation set to select the best checkpoint for inference. Details of
the used hyperparameters and the full experimental results are shown in Appendix [El To quantify
run-to-run variability, we repeat Qwen2-VL-7B under SFT and IT with three random seeds and
report mean-std across all six metrics in Appendix [H](Table[5). We report evaluation efficiency as
inference time in Appendix

5 Results and Discussion

5.1 Main Results

To clearly illustrate the performance differences between foun-
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InternLM?2.5-7B achieves comparable performance, within approximately a 2% difference. Fur-
thermore, among models with a similar scale (7B or 8B parameters), most MLLMs exhibit lower
performance than LLMs. For example, InternLM2.5 and Qwen2 outperform most MLLMs (e.g.,
LLaVA-Video, VideoLLaMA?2) by 5~8%. These results indicate that existing MLLMs have sig-
nificant limitations in leveraging non-verbal information to capture complex high-level semantics
without supervision from domain-specific data.

Small MLLMs Rival Large Ones After SFT and IT. Although MLLMs exhibit substantial perfor-
mance gaps in zero-shot inference, parameter size matters far less once they’re trained with SFT or
IT. For example, as shown in Figure[3] 7B MLLM:s trained with SFT achieve 67.47~68.30% ACC,
while their 72B counterparts reach 68.44~69.18%, a performance gap of only 1~2%. Specially, the
8B MiniCPM-V-2.6 after SFT attains second place with 68.88%, only 0.3% lower in ACC than the
top model, and surpasses several much larger MLLMs. 7B, 8B, and 72B MLLMs trained with IT
also achieve ACC scores within 2% of each other (i.e., 67.25~68.87%). These results show that
small-scale well-trained MLLMs can capture the cognitive semantics underlying human language,
suggesting lightweight foundation models are feasible and significantly reduce costs.
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Although SFT offers the advantage of task-specific fine-tuning — Bssais Bl B AL n st
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From Figures [2] and 3] we observe that the best MLLM
in zero-shot inference (GPT-40) achieves only 52.6% ACC, Figure 3: Rank of foundation mod-
and the best model after training with supervised data (72B els after SFT and IT.

Qwen2-VL) reaches just 69.18% ACC, still exhibiting huge

limitations. These findings underscore the difficulty and importance of the MMLA benchmark,
pushing the boundaries of existing MLLMs and laying a solid foundation for future related research.

5.2 Fine-grained Performance on Different Dimensions

To further investigate fine-grained performance across different dimensions, we present the results of
three methods for each MLLM and LLM on every dataset, as shown in Figures[dand[5]

Foundation Models Struggle with Zero-Shot Inference. As shown in Figure ] zero-shot per-
formance is substantially limited, with ACC scores below 60% on many challenging semantic
dimensions (e.g., Intent, Emotion, Dialogue Act, and Communication Behavior). This shortcoming
arises because these dimensions typically involve numerous categories with nuanced differences. In
contrast, performance on the Sentiment and Speaking Style dimensions is generally higher because
these tasks are simpler, requiring only two or three classes to be distinguished. GPT-40 achieves
the best results in several dimensions, such as Intent, Dialogue Act, and Sentiment, highlighting its
strong ability to leverage multiple modalities for reasoning. However, it still struggles with tasks
like sarcasm detection, emotion recognition, and communication behavior recognition, likely due to
interference from scene context, background, and characters. Finally, while LLMs show performance
comparable to or better than MLLMs of the same parameter scale, their scores remain below 60% in
most cases, underscoring the significant limitations of current foundation models on our benchmark.
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Figure 4: Fine-grained zero-shot inference and SFT performance (ACC). Within each bar, the light-
colored lower segment corresponds to zero-shot inference performance, while the darker upper
segment represents the additional gains from SFT. The performance of SOTA MML methods (if
available) and GPT-4o are indicated with purple and green dashed lines, respectively.

Foundation Models Significantly Improve After SFT. As shown in Figure [ foundation models
exhibit a notable performance boost after SFT. For example, ACC scores increase by 20~40%
on Intent, 10~40% on Dialogue Act, 4~20% on Speaking Style, and 5~50% on Communication
Behavior. Specifically, MiniCPM-V-2.6 achieves improvements of over 30% across most dimensions.
These results demonstrate that training with supervised instruction data effectively helps MLLMs
and LLMs distinguish complex semantic categories. Moreover, although both MLLMs and LLMs
benefit from SFT, MLLMs consistently outperform LLM:s (see Figure[3)), despite showing similar
zero-shot performance. This suggests that SFT not only aligns modalities better to activate multimodal
reasoning, but also that incorporating non-verbal information reduces hallucinations more effectively
than using text alone. Finally, MLLMs after SFT set new state-of-the-art results on most datasets
except [IEMOCAP and MUStARD, highlighting their great potential in multimodal language analysis.

Foundation Models Master Multiple Tasks After IT. As shown in Figure |5, MLLMs after I'T
can simultaneously match or surpass previous SOTA methods on most datasets. In particular,
72B Qwen2-VL is the first to exceed human performance on MIntRec [73|] (86.3% vs. 85.5%),
marking remarkable progress toward human-level semantic comprehension. 72B LLaVA-Video
improves over the SOTA method by 6.3% and approaches human performance on MIntRec2.0 [74].
Similarly, most MLLMs exhibit superior results on sentiment analysis (Ch-sims-v2), humor detection
(UR-FUNNY-v2), and emotion recognition (MELD). We also observe that the small-scale MLLM
(i.e., 8B MiniCPM-V-2.6) outperforms SOTA on seven datasets across five dimensions and achieves
the best score on Ch-sims-v2. Moreover, small-scale MLLMs outperform LLMs on nearly every
dataset and task, underscoring that IT enhances multimodal reasoning and demonstrating the potential
of training a unified MLLM to tackle multiple complex multimodal language tasks.

5.3 Scalability of Foundation Models on MMLA

To examine the scalability of foundation models [29]], we analyze the effect of parameter scale using
Qwen2 and Qwen2-VL, presenting both zero-shot inference and SFT results in Figure [6]
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Figure 5: Fine-grained performance (ACC) of instruction-tuned MLLMs and LLMs on each dataset
across six dimensions. The performance of SOTA MML methods and humans are indicated with
dashed lines, if available.

Scaling Performance of Zero-Shot Inference. In zero-shot inference, scaling Qwen2 from 0.5B
to 1.5B parameters achieves significant improvements across all dimensions except Communication
Behavior. When scaling from 1.5B to 7B, performance gains accelerate on Intent and Communication
Behavior, slow down on Emotion and Dialogue Act, and even slightly decrease on Sentiment and
Speaking Style. This phenomenon indicates that larger gains occur with smaller scale changes. When
moving from Qwen2 to Qwen2-VL, performance is comparable or better in all dimensions except for
Communication Behavior, which shows a dramatic drop. However, scaling Qwen2-VL from 7B to
72B yields substantial improvements, further validating the scalability of MLLMs.

Scaling Performance of SFT. After SFT, scaling Zero-shot Inference Supervised Fine-tuning
Qwen?2 from 0.5B to 7B yields modest improvements
of 3~5% on the Intent, Sentiment, Speaking Style, and
Emotion dimensions, with limited gains of less than 2%
on Communication Behavior and Dialogue Act. Besides,
scaling Qwen2-VL from 7B to 72B achieves substantial
improvements of over 5% on Speaking Style and Intent
dimensions, while yielding under 2% gains in Sentiment,
Communication Behavior, and Dialogue Act. These re-
sults suggest that simply enlarging model parameters
provides little benefit for analyzing complex multimodal NEINCS
language semantics when using supervised instructions
as prior knowledge. They also highlight the significant Etin o Sone oot B
challenge posed by this benchmark and underscore the

need to design appropriate architectures and curate high- Figure 6: Scalability of Qwen2 and
quality data for learning high-level cognitive semantics. ~ Qwen2-VL on the MMLA benchmark.
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6 Conclusions

This paper proposes MMLA, the first large-scale benchmark for evaluating foundation models on
multimodal language analysis. It covers six core semantic dimensions across more than 61,000
utterances from nine diverse datasets spanning text, audio, and video modalities. We evaluate five
branches of MLLMs and three branches of LLMs, ranging from 0.5B to 72B parameters, using three
methods to provide a comprehensive analysis. This benchmark yields several new insights. First,
existing MLLMs exhibit poor capabilities and offer no advantage over LLMs in zero-shot inference.
Second, supervised fine-tuning (SFT) effectively activates MLLMs, enabling them to leverage non-



verbal modalities to understand cognitive-level semantics, and achieves substantial improvements
over LLMs. Third, instruction tuning (IT) can further fine-tune a unified model to achieve comparable
or better performance on all SFT tasks. Interestingly, we find that smaller MLLMs, after both SFT
and IT, demonstrate enormous potential, achieving performance comparable to much larger models
while significantly reducing computational costs. Finally, existing MLLMs still face significant
challenges, with an average accuracy below 70%, underscoring the importance and difficulty of the
proposed benchmark. MMLA establishes a rigorous foundation for advancing multimodal language
understanding and cognitive-level human—AlI interaction. Details of the limitations and broader
societal impacts appear in Appendices [[land[l}
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We make the main claims in abstract and introduction, which clearly state our contribu-
tions and research scope.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our works in Appendix[l]

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]|

Justification: This work provides a comprehensive benchmark for evaluating foundation models in
multimodal language analysis and does not include any new theoretical derivations or analytical
results.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All implementation details required for replication are provided in Section[4] in Appen-
dices[D]and[E] and in Tables [OH12}

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: All videos and text utterances for each dataset are available under their respective licenses
on Hugging Faceﬂ and Google Driveﬂ and the complete code for all methods of both LLMs and
MLLMs is publicly available on GitHulﬂ to facilitate reproducibility.

*https://huggingface.co/datasets/THUIAR/MMLA-Datasets
Ynttps://drive.google.com/drive/folders/1nCkhkz72F6ucseB73XVbqCaDG-pihpSS
*https://github.com/thuiar/MMLA
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10.

11.

12.

13.

14.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The data splits are detailed in Section[I] Core hyperparameters and experimental settings
are described in Section[d] and the full hyperparameters are listed in Tables [OHIZ]

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars are reported only for Qwen2-VL-7B in the appendix, as repeating all experi-
ments to estimate errors for every model would be computationally and temporally prohibitive.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: As stated in Section[d] all experiments are run on NVIDIA A100 GPUs, each with 40
GB of memory, using approximately eight GPUs for most experiments and one GPU for zero-shot
inference of LLMs.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We affirm that all research presented in this paper fully adheres to the NeurIPS Code of
Ethics.

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]
Justification: We discuss the broader societal impact of our works in Appendix [J}
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]
Justification: The paper does not present any such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All data were gathered under the terms of their respective licenses, which are detailed in
Appendix [A]
New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: We release the complete and systematic benchmark code—including running scripts,
configuration files, and frameworks—and leaderboards for both zero-shot inference and fine-tuning of
each foundation model in MMLA, available in the main paper and online.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?
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Answer: [NA]

Justification: The paper does not involve crowdsourcing or experiments with human subjects, and
includes only publicly available datasets.

. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?
Answer: [NA]

Justification: The paper does not involve crowdsourcing or experiments with human subjects, and
includes only publicly available datasets.

. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [Yes]

Justification: Section[3.3]presents three methods for evaluating LLMs and MLLMs. Sectionfd]describes
the LLMs and MLLMs employed, and Appendix [D]details the prompts used for both model types.
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A License

This benchmark uses nine datasets, each of which is employed strictly in accordance with its official license
and exclusively for academic research purposes. We fully respect the datasets’ copyright policies, license
requirements, and ethical standards. For those datasets whose licenses explicitly permit redistribution, we release
the original video data (e.g., MIntRed’] MiIntRec2.(} MELDF] UR-FUNNY-v2] MUStARD"} MELD-D
CH-SIMS VZ.@ and Anno-Mﬂ. For datasets that restrict video redistribution, users should obtain the videos
directly from their official repositories (e.g., MOS]PEL IEMOCAP and IEMOCAP—DAE]). In compliance with
all relevant licenses, we also provide the original textual data unchanged, together with the specific dataset
splits used in our experiments. This approach ensures reproducibility and academic transparency while strictly
adhering to copyright obligations and protecting the privacy of individuals featured in the videos.

B Used Labels for Each Dataset

Intent. The MIntRec dataset uses 20 predefined intent categories derived from two coarse-grained classes
(i.e., achieve goals and express emotions and attitudes), as described in [73]]. These categories are: complain,
praise, apologize, thank, criticize, agree, taunt, flaunt, joke, oppose, comfort, care, inform, advise, arrange,
introduce, leave, prevent, greet, and ask for help. MIntRec2.0 adds 10 more labels (i.e., doubt, acknowledge,
refuse, warn, emphasize, ask for opinions, confirm, explain, invite, and plan) to the original 20. We use the
in-scope portion of this dataset for intent recognition.

Dialogue Act. The MELD-DA and IEMOCAP-DA datasets select the 12 most frequent dialogue-act tags
in everyday conversation, based on the 42 acts defined in [51]. The chosen tags are: greeting, question, an-
swer, statement-opinion, statement-non-opinion, apology, command, agreement, disagreement, acknowledge,
backchannel, and others.

¢ Emotion. The IEMOCAP dataset adopts Ekman’s six universal emotions (as in prior work [57, 24]): angry,
happy, sad, neutral, frustrated, and excited. The MELD dataset uses seven emotion classes [45]: neutral,
surprise, fear, sadness, joy, anger, and disgust.

Sentiment. For the MOSI and CH-SIMS v2.0 datasets, sentiment intensity scores range from —3 to 3 and are
mapped to two- or three-way polarity classes (e.g., positive, neutral, negative), as recommended in [68,137]].
Speaking Style. The UR-FUNNY-v2 and MUStARD datasets both perform binary classification tasks: humor
detection (humorous vs. serious) and sarcasm detection (sarcastic vs. sincere), respectively.

¢ Communication Behavior. The Anno-MI dataset is split into two parts for counseling dialogue analysis. The
first part contains four therapist communication skills: question, input, reflection, and other. The second part
contains three client talk types: change, neutral, and sustain.

C Assurance of Annotation Quality

We employ rigorous procedures to select datasets with high-quality annotations. Quality is ensured through the
following strategies and statistical measures for each dataset:

¢ MIntRec [73] and MIntRec2.0 [74]]. Intent labels are assigned by majority voting (three of five and two of
three annotators, respectively). Fleiss’s kappa values of 0.88 for MIntRec and 0.69 for MIntRec2.0 indicate
excellent and substantial agreement, respectively.

e MELD [45] and IEMOCAP [3]]. Emotion labels are determined by three-annotator majority voting, yielding
Fleiss’s kappa values of 0.43 (MELD) and 0.40 (IEMOCAP), reflecting acceptable reliability for emotion
annotation.

* MELD-DA and IEMOCAP-DA [49]. Dialogue-act labels are annotated by three experts, achieving over 80%
inter-annotator agreement.

* MUStARD [35]. Three annotators achieved a Cohen’s kappa of 0.588 for sarcasm detection.

®https://github.com/thuiar/MIntRec
"https://github.com/thuiar/MIntRec2.0
$https://github.com/declare-lab/MELD
nttps://github.com/ROC-HCI/UR-FUNNY
Uhttps://github.com/soujanyaporia/MUStARD
"https://github.com/sahatulikal5/EMOTyDA
Phttps://github.com/thuiar/ch-sims-v2
Bhttps://github.com/uccollab/AnnoMI
Yhttps://github.com/matsuolab/CMU-Mult imodalSDK
Bhttps://sail.usc.edu/iemocap
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¢ UR-FUNNY-v2 [21]. The original UR-FUNNY was annotated based on direct laughter markers in punchlines;
noisy and overlapping instances were removed to form the second version, which we use in our benchmark.

MOSI [68]. Five master workers (approval rate > 95%) annotated sentiment intensity, with a Krippendorff’s
alpha of 0.77.

Anno-MI [60]. Ten therapists from the International Organization of Authoritative Motivational-Interviewing
Trainers annotated communication behavior labels, with Fleiss’s kappa values of 0.74 (therapist) and 0.47
(client), indicating substantial and moderate agreement, respectively.

¢ CH-SIMS v2.0 [37]. This version corrects potential errors in the original CH-SIMS [66]. Seven well-trained
annotators rated sentiment intensity: the highest and lowest scores were removed, and the average of the
remaining five was mapped to discrete sentiment labels. We use this latest release, which also addresses
potential misalignment issues.

D Used Prompts

Zero-shot inference, supervised fine-tuning (SFT), and instruction tuning (IT) employ the following template:

You are presented with a video in which the speaker says: <context>.
Based on the textual, visual, and audio content, what is the <dimension>
of this speaker?

The candidate labels for <dimension> are: <the 1list of labels>.

Respond in the following format: <dimension>: label.

Only one label should be provided.

Here, <context> denotes the the speaker’s utterance, while <dimension> refers to one of the six evaluation
dimensions described in Section[3.1] The placeholder <the list of labels> corresponds to the specific label set
for each dimension (cf. Appendix [B). In SFT, the ground-truth dimension and label are provided for supervised
training. In IT, neither the queried dimension nor its label set is fixed to a single dataset, unlike in SFT.

E Detailed Experimental Results

Due to space constraints, the main paper presents only a subset of the results. Here, we provide the complete
results for zero-shot inference, supervised fine-tuning, and instruction-tuning across six evaluation metrics (ACC,
WF1, WP, F1, P, R) in Table[6] Table[7] and Table[§} For both LLMs and MLLMs, the best and second-best
results are highlighted in bold and underline, respectively.

The results align with the discussions and conclusions in the main paper. For zero-shot inference, multimodal
models with 72B parameters achieve the best overall performance across all datasets. However, when comparing
LLMs and MLLM:s of the same scale, LLMs often exhibit competitive or even superior performance. After
supervised fine-tuning, MLLMs show significant improvements and surpass LLMs on almost all datasets across
all six metrics, underscoring the importance of incorporating non-verbal modalities for cognitively demanding
tasks. After instruction-tuning, both the 7B and 72B MLLMs achieve excellent performance on all tasks,
with results comparable to or better than those from supervised fine-tuning, indicating the potential of small-
scale MLLM:s to solve multiple tasks simultaneously. Moreover, under this evaluation protocol, MLLMs also
outperform LLMs, further confirming the benefit of leveraging non-verbal modalities.

We also evaluate one powerful closed-source MLLM, GPT-4o0. Specifically, we use OpenAI’s GPT-40 API for
zero-shot inference with the same prompts as in Appendix [D} During inference, we find that GPT-40 can be
overly cautious with certain videos. For example, it sometimes fails to select a label from the candidate list
and instead outputs responses like: I'm unable to determine the dimension based on the given information. To
address this, we iteratively modify the prompts based on such outputs until GPT-40 consistently chooses a label
from the list. The final results, shown in Table [6] demonstrate that GPT-40 achieves the best or second-best
performance on most metrics across datasets, highlighting its effectiveness on this challenging task.

Details of the hyperparameters used for supervised fine-tuning (SFT) and instruction-tuning (IT) of all LLMs
and MLLMs are provided in Table[9} Table[I0} Table[TT] and Table[T2]

F Additional dataset details

F.1 Dataset collection timeline and speaker/scene overlap
The MMLA Benchmark aggregates nine widely used multimodal language analysis datasets to evaluate the

generalization ability of large-scale models in this field. As shown in Table[J] five out of nine datasets contain no
overlap of speakers or scenes, enabling a more rigorous assessment of model generalization. The remaining
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datasets exhibit partial overlap, which helps isolate semantic understanding by reducing extraneous variability.
Together, these datasets provide a comprehensive and balanced evaluation setting. This information will be
further updated in the final version. Redistribution of the benchmark is strictly limited to academic research and
subject to the original dataset licenses.

Dataset Release Time Overlap of Speakers and Scenes
MintRec 2022/10 Yes
MintRec2.0 2024/01 Yes
MELD 2019/05 Yes
MELD-DA and IEMOCAP-DA 2020/07 -
IEMOCAP 2008/12 No
MOSI 2016/06 No
CH-SIMS v2.0 2022/09 Yes
UR-FUNNY v2 2019/11 No
MUStARD 2019/07 Yes
Anno-MI 2023/03 No

Table 2: Summary of datasets included in the MMLA Benchmark.The table lists each dataset’s
release time and whether there exists an overlap of speakers or scenes between the training, validation,
and test splits.

F.2 Speaker Demographics across Datasets

We summarize the speaker demographics of the datasets used in the MMLA benchmark in Table[3] For datasets
derived from scripted or publicly released video materials, including MIntRec, MintRec2.0, MELD, MELD-DA,
MUSIARD, and IEMOCAP/IEMOCAP-DA, we provide detailed statistics on key characters, actors, proportions,
gender, ethnicity, and age. These datasets primarily originate from well-known television series such as Friends,
The Big Bang Theory, and Superstore, as well as other scripted settings involving professional or trained actors.
For datasets without explicit speaker-level metadata, we briefly describe their composition below.

The MOSI dataset includes 89 distinct speakers (41 female and 48 male), most aged between 20 and 30. Speakers
represent diverse ethnic backgrounds (e.g., Caucasian, African American, Hispanic, Asian), and all recordings
are in English, sourced from YouTube videos originating in the United States and the United Kingdom.

The UR-FUNNY-v2 dataset contains 1,866 videos from 1,741 distinct TED speakers covering 417 topics,
reflecting a broad range of speaking styles, contexts, and presentation settings.

Overall, the benchmark incorporates both professionally acted and real-world spontaneous speech data, enabling
a comprehensive evaluation of multimodal language understanding models across diverse demographic and
communicative conditions.

G Model Evaluation Efficiency

To evaluate the scalability of our benchmark, we measured the inference time required for various foundation
models on the test split (12,093 samples). All experiments were conducted using four NVIDIA A800-80G GPUs.
The remaining data are reserved for training and validation.

Overall, most models with 7B parameters completed inference within two hours, while larger variants (72B)
typically required 5-7 hours. These results suggest that large-scale evaluation across 61K multimodal utterances
is computationally feasible for current foundation models.

H Performance Variability

To further examine the stability of model performance, we conducted additional statistical analyses on the
Qwen2-VL-7B model under both supervised fine-tuning (SFT) and instruction tuning (IT) settings across all
datasets in the MMLA benchmark. Each experiment was repeated three times with different random seeds,
and the mean + standard deviation (std) of six evaluation metrics was computed. The results (see Table[3)) are
consistent with the main findings reported in the paper: the overall performance trends remain unchanged, and
the model demonstrates stable behavior across most datasets, confirming the robustness of our conclusions in the
main text.
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Table 3: Speaker demographics across datasets in the MMLA benchmark. For datasets lacking

specific fields (e.g., [IEMOCAP), missing values are denoted by “-.

Character Actor Prop.  Gender Race / Ethn. Age Series
Rachel Green Jennifer Aniston 13.5% F White 24-34 (1994-2004)  Friends
Monica Geller Courteney Cox 14.6% F White 3040 (1994-2004)  Friends
Phoebe Buffay Lisa Kudrow 12.2% F White 3141 (1994-2004)  Friends
Joey Tribbiani Matt LeBlanc 13.5% M White 26-36 (1994-2004)  Friends
Chandler Bing Matthew Perry 16.0% M White 24-34 (1994-2004)  Friends

< Ross Geller David Schwimmer  15.8% M White 27-37 (1994-2004)  Friends

% Leonard Hofstadter Johnny Galecki 17.4% M White 32-44 (2007-2019) TBBT

&  Sheldon Cooper Jim Parsons 22.7% M White 34-46 TBBT

S Penny Hofstadter Kaley Cuoco 11.5% F White 21-32 TBBT

= Howard Wolowitz Simon Helberg 6.0% M White 26-38 TBBT

? Raj Koothrappali Kunal Nayyar 4.0% M Indian (S. Asian) 26-38 TBBT

é Amy Farrah Fowler Mayim Bialik 31.5% F White 31-42 TBBT

E Bernadette Wolowitz ~ Melissa Rauch 0.9% F White 27-36 TBBT

= Jonah Simms Ben Feldman 16.1% M White 35-41 Superstore
Dina Fox Lauren Ash 14.2% F White 32-38 Superstore
Garrett McNeill Colton Dunn 8.9% M African American 45-51 Superstore
Cheyenne Thompson  Nichole Sakura 6.7% F Asian 27-33 Superstore
Glenn Sturgis Mark McKinney 18.3% M White 56-62 Superstore
Male-1 - 10.87% M - - -
Female-1 - 8.70% F - - -

S Male2 - 8.70% M - - -

« Female-2 - 8.70% F - - -

% Male-3 - 10.87% M - - -

¢ Female-3 - 8.70% F - - -

g Male-4 - 8.70% M - - -

=) Female-4 - 10.87% F - - -
Male-5 - 10.87% M - - -
Female-5 - 13.04% F - - -

« Rachel Green Jennifer Aniston 13.5% F White 24-34 (1994-2004)  Friends

A  Monica Geller Courteney Cox 14.0% F White 3040 (1994-2004)  Friends

@ Phoebe Buffay Lisa Kudrow 13.0% F White 31-41 (1994-2004)  Friends

5 Joey Tribbiani Matt LeBlanc 16.0% M White 26-36 (1994-2004)  Friends

= Chandler Bing Matthew Perry 11.0% M White 24-34 (1994-2004)  Friends

= Ross Geller David Schwimmer 14.0% M White 27-37 (1994-2004)  Friends
Rachel Green Jennifer Aniston 4.64% F White 25-34 Friends
Monica Geller Courteney Cox 4.20% F White 30-40 Friends
Phoebe Buffay Lisa Kudrow 5.07% F White 31-41 Friends
Joey Tribbiani Matt LeBlanc 5.22% M White 26-36 Friends
Chandler Bing Matthew Perry 22.90% M White 24-34 Friends

a Ross Geller David Schwimmer ~ 5.51% M White 27-37 Friends

&  Sheldon Cooper Jim Parsons 12.90% M White 34-46 TBBT

g Leonard Hofstadter Johnny Galecki 4.93% M White 32-44 TBBT

2 Raj Koothrappali Kunal Nayyar 3.77% M Indian (S. Asian) 26-38 TBBT

= Howard Wolowitz Simon Helberg 6.81% M White 26-38 TBBT
Amy Farrah Fowler Mayim Bialik 2.46% F White 3142 TBBT
Bernadette Wolowitz ~ Melissa Rauch 1.59% F White 27-36 TBBT
Penny Hofstadter Kaley Cuoco 4.93% F White 21-32 TBBT
Dorothy Zbornak Bea Arthur 5.65% F White 63-70 Golden Girls
Rose Nylund Betty White 0.14% F White 63-70 Golden Girls

21



Model Parameters Type Inference Time (h)

Qwen2 7B LLM 1.9
LLaMA3 8B LLM 4.8
InternL.M2.5 7B LLM 6.7
VideoLLaMA2 7B MLLM 7.3
Qwen2-VL 7B MLLM 1.6
Qwen2-VL 72B MLLM 6.4
LLaVA-Video 7B MLLM 1.5
LLaVA-Video 72B MLLM 53
LLaVA-OneVision 7B MLLM 1.6
LLaVA-OneVision 72B MLLM 54
MiniCPM-V2.6 8B MLLM 1.9

Table 4: Inference time comparison across foundation models using 4 x A800-80G GPUs.

Table 5: Mean and standard deviation (mean + std) of six evaluation metrics across datasets for two
fine-tuning configurations conducted using the Qwen2-VL-7B model.

Dataset ACC F1 Precision Recall WF1 WP
MintRec 79.33+£0.34  7596+143 7697+1.50 76.04+151 79.01+£0.33 79.45+0.40
MintRec2.0 63.68 £0.26 59.18+0.30 64.02+0.68 5832+0.52 62.72+0.39 64.87 +£0.27
MELD 67.57+0.31 51.52+046 58.14+1.17 4899+1.02 6630+045 66.72+0.49

IEMOCAP 55.06+£0.27 51.23+£2.66 5429+348 51.03+2.68 5497+032 57.63+0.77
MELD-DA 61.53+0.31 50.45+0.54 5821+0.56 4935+1.63 59.87+042 61.55+0.16

=~ IEMOCAP-DA  68.99+045 6557+287 71.68+3.16 6327+3.74 6853+0.72 70.32+0.83
% MOSI 88.44+0.10 8843+0.10 8845+0.09 88.44+0.09 88.44+0.10 88.46+0.09
CH-sims 7541 +1.00 60.41+393 60.76£525 61.69+3.05 7355+1.92 72.76+3.35
MUStARD 67.39+042 6645+034 6743+£039 6646+038 66.94+0.14 67.43+0.40
UR-FUNNY 7418 £0.53  7386+0.71 75.64+£0.78 7428+0.50 73.83+0.73 75.71+0.83
Annomi-client 63.95+1.01 4839+3.08 64.60+£087 4726+£257 58.65+2.19 65.07+0.19
Annomi-therapist 75.81+0.11 7478 +0.16 7507039 7536+0.32 7598+0.11 77.14+0.61
MintRec 82.10£045 80.20+0.31 8276+091 80.46+0.33 82.04+046 84.07+0.61
MiIntRec2.0 64.35+0.63 5840+080 65.96+1.52 5690+1.11 63.41+0.68 67.05+1.47

MELD 6623 +0.67 50.71+0.54 60.19+1.17 4857+0.25 6527+0.50 67.40+0.79
IEMOCAP 49.08 +0.37 4724+028 57.17+£398 51.66+1.01 47.76+0.21 62.61 +4.84
MELD-DA 57.54+2.57 48.64+1.15 5873+£3.17 47.89+143 5531216 60.41+3.24

— IEMOCAP-DA  6440+1.12 5872+0.76 68.83+473 58.05+1.16 6258+1.02 67.93+1.79
= MOSI 84.99+2.77 77.11+10.65 7847+9.31 76.14£11.63 86.43+134 88.44+0.67
CH-sims 75.00+0.78 61.28+226 6556+£0.09 61.94+£239 7323+046 73.69+0.76

MUStARD 6546+0.24 6528+0.13 65.79+047 6546+024 6528+0.13 65.79 +£0.47
UR-FUNNY 72.50+0.47  7235+£051 7298+0.25 7250+041 7235+0.52 7299 +0.24
Annomi-client 62.53+1.40 4896+2.18 60.84+1.54 50.16+395 59.64+1.06 65.77 +3.57
Annomi-therapist 75.05+0.83  73.88+0.87 74.53+0.68 7447+087 7522+0.88 76.75+0.68

I Limitations

Potential Noise in Real-world Scenarios. The datasets included in this benchmark provide full videos and text
utterances from human speakers. However, in real-world scenarios, there might be noise in the videos or text
utterances. Future work can explore the generalization capability of foundation models when encountering noisy
data and focus on improving the design of more robust foundation models.

Better Optimization of Foundation Models. Although we have made efforts to optimize the hyperparameters
using LoRA techniques to achieve the best performance of foundation models ranging from 7 to 72B parameters
for each task and dimension, there is still potential for better optimization with more diverse strategies. The
provided results establish baseline standards for our benchmark and offer valuable references for future work.

Foundation Models Updates. Given the rapid advancements in foundation model research, we have done our
best to use the state-of-the-art models for building baselines. However, new models may have been released
in the past one or two months. We will continuously update and maintain our leaderboard and open-source
repositories, incorporating the latest powerful models as soon as possible.
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J Broader Societal Impact

J.1 Positive Impacts

Lower Deployment Cost. Parameter-efficient MLLMs (e.g., 7B parameters) achieve performance close to much
larger models, reducing computation and energy budgets and making multimodal semantic technology more
affordable for real-world applications.

Human-centred Applications. Accurate recognition of intent, emotion, and dialogue acts can power more
empathetic virtual assistants, enrich accessibility services (e.g., adaptive captions), and support well-being tools
that provide real-time behavioural feedback.

J.2 Negative Impacts

Workforce Shift. Automation of multimodal analysis may shift certain roles—such as manual annotation
or routine customer-interaction monitoring—toward machine assistance. Although large-scale displacement
is unlikely, affected workers may need reskilling, and organisations should plan for a gradual transition to
human-in-the-loop workflows.

Privacy Risk. Fine-grained inference from audio—video streams could be repurposed for intrusive surveillance;
as researchers, we explicitly discourage commercial misuse and urge developers to embed consent mechanisms
and favour on-device processing to limit abuse.
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Table 6: Full experimental results on the MMLA benchmark using zero-shot inference.

Datasets | MIntRec MintRec2.0 MELD
Models | ACC WFI WP | FI R P ACC WFI WP | FI R P ACC WFI WP | FI R P
Qwen2-0.5B 18.88 15.08 26.81 9.03 10.03 16.06 6.79 4.08 11.33 3.15 5.49 9.48 21.03 12.89 52.20 11.79 19.00 37.51
Llama-3.2-1B 23.60 18.60 26.71 15.08 16.06 25.55 13.63 9.93 23.98 9.56 12.98 22.73 2234 18.60 47.81 18.30 2333 25.34
Qwen2-1.5B 33.26 24.79 29.97 17.29 21.16 21.48 20.31 16.59 34.48 15.36 18.79 28.24 43.56 4535 51.16 30.97 33.85 32.05
£|  Llama-3.2-3B 37.98 33.62 42.04 30.99 35.60 36.84 28.58 26.34 42.81 23.27 26.76 34.87 38.56 59.46 30.60 34.59 34.35
= Qwen2-7B 56.18 56.06 62.22 50.16 53.18 54.36 36.25 36.08 43.31 32.37 35.73 37.11 57.96 63.46 40.16 40.87 41.76
Llama-3-8B 49.44 4857 5522 41.16 43.98 47.12 28.92 28.50 43.77 24.58 27.96 35.30 41.47 59.17 31.95 34.20 34.59
Llama-3.1-8B 50.56 50.53 58.96 44.57 46.70 49.88 34.58 34.96 43.26 31.17 3529 35.28 39.04 40.39 61.66 34.32 37.46 37.80
Internlm-2.5-7B 56.63 51.99 62.51 43.92 47.92 61.03 37.28 34.15 43.54 31.33 35.90 40.50 56.36 56.30 59.67 37.19 3745 41.18
VideoLLaMA2-7B |  44.94 39.71 51.18 33.01 3822 45.75 27.84 24.32 39.82 20.61 2122 36.53 55.06 5359 57.71 32.94 32.92 39.10
Qwen2-VL-7B 56.40 56.22 62.26 51.00 5243 56.43 3527 3459 44.32 31.24 3391 3854 6031 56.55 59.70 35.91 32.62 47.34
LLaVA-Video-7B 55.06 53.75 61.36 45.63 49.25 54.33 3433 32.93 37.79 29.74 3356 32.84 42.38 41.14 59.14 32.02 36.64 41.97
Z| LLaVA-OV-7B 52.36 51.09 61.91 43.95 47.07 54.02 32.02 31.47 43.18 2747 2891 39.11 34.18 30.66 60.44 26.15 32.63 42.68
2 | MiniCPM-V-2.6-8B | 41.35 43.72 60.00 37.20 3527 54.39 21.10 24.62 41.75 21.51 19.08 36.26 31.03 3670 62.26 28.64 27.00 38.88
S| Qwen2-VL-72B 61.35 60.89 65.44 55.47 60.14 57.55 39.50 39.91 51.32 36.25 39.84 42.64 63.18 60.06 6323 41.17 37.72 50.21
LLaVA-Video-72B |  62.70 62.42 68.83 55.78 59.27 60.93 40.88 40.28 48.25 36.18 41.36 41.49 40.23 37.37 62.94 33.69 42.73 35.99
LLaVA-OV-72B 62.92 62.46 67.96 55.88 59.17 59.89 43.78 43.12 48.60 38.80 42.63 42.97 41.30 39.68 63.44 3459 40.73 41.25
GPT-40 63.37 63.68 69.69 58.37 61.46 62.13 42.32 43.60 52.98 37.49 42.38 4201 51.17 52.80 61.45 21.32 23.99 21.05
Datasets | IEMOCAP MELD-DA IEMOCAP-DA
Models | ACC WFI wp | FI. R P ACC WFI WP | FI. R P ACC WFI WP | FI R P
Qwen2-0.5B 2491 1240 41.94 9.53 16.82 30.62 4.75 2.06 8.00 431 8.87 7.28 2.65 2.92 19.23 449 1373 9.53
Llama-3.2-1B 24.17 2321 41.64 19.17 21.45 35.61 1141 8.74 13.69 9.86 13.01 12.93 1821 13.09 16.81 10.74 18.45 12.60
Qwen2-1.5B 3379 29.16 49.46 24.17 2656 41.62 31.43 2745 37.87 21.87 27.10 25.37 38.32 32.71 35.87 21.93 2621 22.16
4| Llama-3.2-3B 35.02 3547 4231 29.34 28.98 35.67 33.08 33.65 45.47 25.61 34.62 28.06 33.92 34.88 44.73 21.81 31.54 23.71
= Qwen2-7B 39.27 37.35 48.95 3111 31.54 4175 35.84 3577 46.81 29.72 35.78 33.05 41.08 40.13 50.25 28.92 33.65 32.85
Llama-3-8B 37.73 39.01 43.55 32.77 3141 36.67 42.09 40.19 44.32 30.59 36.56 32.96 43.58 42.09 52.59 30.30 34.17 3545
Llama-3.1-8B 35.82 36.93 44.32 31.29 29.65 38.00 39.34 38.96 47.48 29.07 39.52 29.23 40.34 40.59 53.26 2733 34.76 30.47
Internlm-2.5-7B 38.84 35.17 50.73 29.87 3229 41.97 46.30 41.39 46.93 26.61 3031 37.00 44.59 40.68 52.98 25.65 29.36 38.94
VideoLLaMA2-7B | 38.29 33.38 50.01 31.72 35.24 50.93 40.59 38.65 39.14 26.21 33.05 24.45 34.50 32.14 39.03 21.94 33.61 22.82
Qwen2-VL-7B 3224 24.16 58.41 23.65 27.61 59.96 3478 3242 47.01 27.83 3330 3321 38.75 32.82 38.68 27.74 31.57 32.99
LLaVA-Video-7B 41.18 36.63 51.15 30.20 3550 42.69 29.33 24.30 46.13 26.86 38.42 35.81 37.00 30.57 40.89 25.47 34.41 30.04
2| LLaVA-OV-7B 39.09 3520 48.97 33.19 4093 47.03 31.33 26.16 34.38 26.83 32.78 29.06 38.75 30.89 41.71 26.44 29.89 37.88
2| MiniCPM-V-2.6-8B | 31.94 33.12 52.09 25.99 2391 46.01 27.93 24.93 42.23 25.01 33.40 29.05 33.17 31.05 38.79 23.13 28.11 24.25
S| Qwen2-VL-72B 3829 34.03 55.34 3333 34.00 55.48 38.59 34.58 53.49 34.40 4022 4147 44.32 36.16 55.51 34.17 35.85 45.28
LLaVA-Video-72B | 4353 41.81 48.96 35.32 38.44 41.19 50.25 47.22 50. 38.62 39.79 45.22 52.87 50.11 54.29 36.84 38.05 42.04
LLaVA-OV-72B 43.46 41.59 49.79 34.67 35.95 43.05 48.95 47.10 55. 37.64 41.78 47.71 5271 50.64 55.37 35.60 38.68 38.01
GPT-40 45.81 43.38 55.47 40.26 40.77 58.40 49.00 46.50 36.70 46.24 40.77 53.56 49.99 54.47 33.80 40.01 34.59
Datasets ‘ MOSI CH-SIMS v2.0 UR-FUNNY-v2
Models ACC WFI WP FI. R P ACC WFI WP FI. R P ACC WFI WP | FI R P
Qwen2-0.5B 61.22 67.27 74.76 44.83 40.79 49.84 2747 2521 68.65 25.24 3877 54.10 45.27 47.11 4927 31.42 3021 32.84
Llama-3.2-1B 70.99 72.57 78.10 48.36 47.23 52.15 65.28 61.12 58.60 34.55 36.63 33.36 55.43 55.08 55.48 55.02 55.31 55.48
Qwen2-1.5B 80.17 81.50 84.15 54.35 53.52 56.06 65.18 66.94 69.64 43.02 4375 4345 62.37 61.23 63.93 40.75 4142 42.66
£| Llama-3.2-3B 81.20 82.52 86.63 54.98 54.03 57.81 66.73 65.28 64.29 39.44 39.79 39.78 66.80 66.79 66.80 66.78 66.78 66.80
= Qwen2-7B 81.92 8552 89.49 57.01 54.60 59.66 6248 6630 74.48 43.55 46.37 46.20 57.95 50.23 69.23 3330 38.26 46.29
Llama-3-8B 81.63 82.63 86.04 55.07 5433 57.42 60.35 64.85 70.21 41.62 3939 44.38 63.98 66.15 68.50 44.08 42.63 45.66
Llama-3.1-8B 84.26 84.72 86.44 56.46 56.10 57.67 67.41 68.18 69.20 57.49 57.75 57.56 67.10 67.74 68.82 45.17 44.78 45.85
Internlm-2.5-7B 84.55 86.28 83.26 57.51 56.34 58.86 6248 6534 71.11 42.53 4426 44.11 61.67 5830 66.50 58.13 61.27 66.62
VideoLLaMA2-7B |  79.74 79.44 81.83 79.47 79.88 81.74 51.90 53.52 69.98 30.67 30.30 39.06 64.29 6191 68.43 61.77 63.94 68.55
Qwen2-VL-7B 86.59 86.54 87.03 86.53 86.52 87.07 73.91 69.30 65.27 52.30 55.87 49.20 57.65 50.96 65.42 50.70 57.13 65.57
LLaVA-Video-7B 84.11 8422 85.20 56.16 56.13 56.76 57.25 61.09 68.24 34.65 32.76 38.30 59.46 54.68 65.38 54.47 59.00 65.51
Z| LLaVA-ov-7B 87.17 87.49 87.86 58.32 58.10 58.58 67.58 66.94 68.37 38.01 38.70 38.49 56.04 46.41 68.82 46.09 55.44 69.03
= | MiniCPM-V-2.6-8B | 79.74 82.72 86.37 55.14 53.12 57.61 60.91 62.76 64.98 35.64 34.70 36.78 57.55 55.67 64.98 36.99 38.11 43.39
S| Qwen2-VL-72B 88.05 88.24 88.53 58.83 58.71 59.00 72.45 68.26 6637 38.65 41.41 37.27 68.01 67.03 70.06 66.95 67.77 70.15
LLaVA-Video-72B |  86.44 86.50 86.59 57.66 57.62 57.73 66.60 67.81 70.24 38.45 38.00 39.58 65.19 62.73 69.99 62.59 64.83 70.13
LLaVA-OV-72B 88.48 $8.60 88.78 59.07 58.97 59.20 65.34 67.89 71.98 38.57 37.36 40.62 63.68 60.13 70.39 59.96 63.27 70.55
GPT-40 87.32 87.22 88.36 87.20 87.22 88.43 67.80 71.30 79.16 47.40 51.04 49.76 73.11 73.11 7312 73.11 73.11 73.11
Datasets ‘ MUStARD Anno-MI (client) Anno-MI (therapist)
Models | ACC WFIL WP | FI R P ACC WFI WP | FI. R P ACC WFI WP | FI. R P
Qwen2-0.5B 50.00 33.50 25.18 22.33 3333 16.79 57.04 49.22 49.63 27.58 31.72 2570 25.55 27.59 1876 19.27 19.71
51.45 37.61 62.87 37.61 51.45 62.87 28.34 30.10 45.86 34.79 34.64 22.19 22.89 30.10 16.97 16.70 21.86
52.90 52.90 52.90 52.90 52.90 52.90 36.67 4045 52.43 28.48 30.84 40.18 37.14 47.12 37.73 41.17 45.99
< 5725 52.16 62.61 52.16 57.25 62.61 43.93 46.77 52.03 2670 32.97 43.60 43.35 49.07 34.43 34.98 38.05
= 57.25 5645 58.63 37.63 38.16 39.09 49.87 49.25 54.96 32.99 34.63 54.21 52.63 66.77 42.22 43.93 51.52
52.90 54.19 62.94 36.13 35.27 41.96 47.65 49.98 29.64 3191 3553 28.09 48.90 25.00 31.07 40.06
54.35 54.72 60.77 36.48 36.23 40.51 32.42 34.66 52.83 25.99 3030 57.98 58.53 67.16 47.06 47.51 51.74
Internlm-2.5-7B 61.59 61.35 61.90 61.35 61.59 61.90 58.99 51.52 51.63 38.53 41.16 38.86 33.63 36.03 35.64 41.57 36.28
VideoLLaMA2-7B |  60.87 60.86 60.88 60.86 60.87 60.88 2029 16.67 51.14 18.43 35.57 41.69 35.71 3537 40.14 37.00 38.85 40.91
Qwen2-VL-7B 56.52 55.93 56.89 55.93 56.52 56.89 31.38 30.97 54.69 25.15 38.30 43.39 49.69 46.81 55.70 40.26 4327 44.76
LLaVA-Video-7B 51.45 47.69 52.03 47.69 5145 52.03 38.92 42.33 49.41 34.90 36.00 37.78 47.06 37.98 32.12 34.18 42.12 28.99
%| LLaVA-ov-7B 57.97 51.02 68.45 51.02 57.97 6845 16.58 10.84 46.19 15.24 32.56 35.46 43.90 35.63 59.17 31.81 4047 43.79
2| MiniCPM-V-2.6-8B | 60.87 59.71 69.01 39.81 40.58 46.01 27.64 28.56 55.50 18.85 27.65 33.13 48.25 41.87 57.49 37.06 42.25 45.65
S| Qwen2-VL-72B 63.04 6233 64.11 62.33 63.04 64.11 53.90 47.65 52.17 34.81 37.06 43.62 49.43 46.40 62.68 37.64 42.58 46.81
LLaVA-Video-72B |  53.62 45.24 59.35 45.24 53.62 59.35 48.58 49.00 50.99 30.02 30.62 31.21 6L11 61.33 65.21 48.24 48.59 50.86
LLaVA-OV-72B 57.97 53.68 62.66 53.68 57.97 62.66 44.33 45.17 50.79 27.10 29.59 30.21 61.81 60.93 62.11 47.56 47.94 49.34
GPT-40 55.07 44.60 70.80 44.60 55.07 70.80 28.90 2675 54.96 29.63 4276 4346 55.05 53.62 61.56 43.56 46.24 47.08
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Table 7: Full experimental results on the MMLA benchmark using supervised fine-tuning.

Datasets | MintRec | MIntRec2.0 | MELD |

Models | ACC WFI WP | Fl RP | ACC WFI Wp | FI R P | ACC WFI Wp | FI R P |
Qwen2-0.5B 70.11 70.01 71.37 66.97 66.90 68.97 55.83 55.04 55.74 48.08 47.03 51.22 63.95 62.73 62.15 45.04 43.43 4730
Llama-3.2-1B 73.26 73.45 73.93 71.19 7130 71.50 59.06 60.63 5349 53.17 5633 61.57 60.84 60.83 44.91 43.99 47.90
Qwen2-1.5B 74.61 74.71 75.88 72.85 72.30 74.96 57.78 59.06 5274 51.82 5625 64.71 63.74 63.57 47.16 45.96 49.89
2| Llama-32-3B 77.30 77.17 77.97 74.40 73.04 77.02 60.45 59.74 60.27 55.28 56.52 56.07 64.41 63.40 63.11 47.59 46.17 50.20
= Qwen2-7B 74.61 75.10 77.87 69.90 70.26 71.89 61.49 60.91 62.70 53.72 54.29 56.61 65.71 65.11 65.12 50.86 49.28 54.90
Liama-3-8B 77.30 77.26 77.99 74.40 73.82 75.95 62.91 62.58 63.70 57.03 57.38 58.91 64.41 63.84 63.64 48.45 47.50 50.29
Liama-3.1-8B 74.61 74.67 7673 71.99 73.13 73.04 62.86 6240 6328 57.12 57.52 58.97 65.02 64.16 63.95 49.40 47.84 5227
Internim-2.5-7B 77.30 76.41 76.57 72.32 72.28 74.01 61.83 61.12 62.06 57.14 56.87 60.00 66.25 65.18 65.11 48.78 46.66 55.56
VideoLLaMA2-7B | 7933 78.82 78.98 76.29 76.45 77.07 65.03 64.64 65.10 58.29 57.08 61.09 63.79 63.17 62.80 43.27 42.21 44.81
Qwen2-VL-7B 80.45 80.28 80.48 78.55 78.32 79.22 64.19 63.51 64.86 59.68 58.64 63.51 67.09 65.41 65.75 51.45 48.06 57.26
.| LLaVA-Video-7B | 80.00 79.71 80.85 77.89 77.87 79.87 63.11 62,93 63.66 57.19 56.49 59.28 63.49 62.44 62.44 40.67 38.90 46.05
2| LLaVA-OV-7B 80.00 80.02 80.97 78.05 78.03 79.39 63.60 63.04 63.98 56.44 55.36 59.83 62.72 62.90 63.85 43.90 43.92 46.17
2 | MiniCPM-V-2.6-8B | 79.10 78.88 79.78 77.44 79.10 76.29 63.99 63.28 66.15 57.43 58.05 6221 68.05 66.26 66.92 48.83 46.85 58.22
=| Qwen2-VL-72B 81.35 81.00 81.78 75.30 73.97 78.59 67.39 66.98 68.34 63.65 63.12 67.04 68.81 66.68 68.01 53.43 49.27 61.81
LLaVA-Video-72B |  82.47 82.41 83.34 79.19 79.33 80.69 65.81 65.82 66.23 62.38 61.70 63.69 60.65 61.43 64.27 48.88 50.79 49.22
LLaVA-OV-72B 84.04 84.00 84.94 81.70 81.62 83.04 66.01 66.15 66.80 61.01 60.36 62.51 61.00 61.79 65.06 49.94 50.86 51.84

Datasets IEMOCAP MELD-DA IEMOCAP-DA J

Models ACC WF1I WP | FI RP ACC WF1I WP | FI RP ACC WFI WP | Fl RP |
Qwen2-0.5B 46.61 45.90 47.25 43.61 43.44 46.54 57.31 56.11 56.26 48.98 47.79 53.58 68.21 68.00 68.84 65.01 61.75 75.87
Llama-3.2-1B 49.08 48.46 49.38 45.99 46.46 47.64 58.36 57.25 57.21 50.09 48.81 53.16 69.11 68.90 69.39 63.55 62.00 66.01
Qwen2-1.5B 49.88 49.46 51.22 47.61 4831 49.21 57.21 56.62 56.66 49.56 47.74 54.17 67.14 66.42 67.78 58.91 60.83 58.58
2| Llama-32-3B 50.00 49.24 51.04 47.28 48.28 48.89 58.71 57.36 56.90 49.70 47.80 53.59 71.39 70.95 71.31 67.71 68.66 67.62
= Qwen2-7B 52.10 50.96 52.20 4831 49.84 49.85 57.71 56.98 57.17 49.25 46.87 53.22 72.08 72.00 72.94 65.16 65.36 65.69
Llama-3-8B 51.42 50.32 51.84 47.92 49.18 49.48 57.21 56.74 57.29 48.63 47.05 51.35 7341 73.14 73.74 7105 69.17 74.16
Liama-3.1-8B 52.47 52.04 53.45 50.44 51.00 52.08 56.61 55.30 55.59 47.78 45.51 51.87 74.06 74.60 72.09 70.46 74.33
Internim-2.5-7B 38.41 34.18 51.24 28.64 31.25 42.74 58.81 58.00 58.45 50.22 50.22 52.28 71.80 72.35 68.57 68.65 69.44
VideoLLaMA2-7B |  56.84 56.93 59.16 47.63 47.75 49.62 61.01 60.11 59.86 47.67 46.23 50.71 76.28 76.58 68.39 66.62 70.65
Qwen2-VL-7B 55.12 55.08 56.27 45.99 45.74 47.40 60.91 60.15 61.26 49.70 49.13 57.26 67.09 68.72 59.85 56.91 66.75
| LLaVA-Video-7B | 5894 59.01 60.17 49.64 48.76 51.36 61.01 60.09 60.98 46.78 43.80 54.29 71.92 73.77 68.19 64.93 73.72
2| LLaVA-OV-7B 58.82 58.88 60.01 49.41 49.18 5047 59.81 59.16 59.36 48.63 47.51 52.21 72.36 73.25 68.83 66.86 72.13
2 | MiniCPM-V-2.6-8B |  56.47 56.64 57.94 56.19 57.39 5635 63.01 61.59 62.23 54.06 51.00 61.48 5 74.90 75.64 71.68 71.88 73.70
=| Qwen2-VL-72B 56.97 56.50 59.84 54.76 55.65 58.50 58.86 55.39 59.85 47.99 48.98 5537 72.38 74.88 7222 70.81 75.80
LLaVA-Video-72B |  60.17 60.10 62.21 58.87 58.26 61.68 61.11 60.59 60.47 52.71 51.58 54.80 3 75.31 76.09 7225 69.93 76.95
LLaVA-OV-72B 61.53 61.36 63.89 60.07 59.52 63.45 61.26 60.73 61.55 5337 52.10 56.75 74.50 71.86 69.74 76.10

Datasets | MOSI | CH-SIMS v2.0 | UR-FUNNY-v2 |

Models | ACC WF1 WP | FI R P | ACC WF1L WP | FI RP | ACC WF1L WP | FI RP |
Qwen2-0.5B 82.94 82.90 83.44 8291 83.01 83.40 68.96 68.61 68.29 57.73 57.63 57.90 65.59 65.54 65.63 65.51 65.54 65.64
Llama-3.2-1B 82.80 82.79 82.95 8279 82.83 82.92 64.70 65.00 65.70 54.54 54.57 54.88 69.62 69.60 69.72 69.61 69.65 69.69
Qwen2-1.5B 85.42 85.42 85.43 85.42 85.41 85.44 69.34 69.49 69.77 59.36 59.39 59.44 68.81 68.81 68.85 68.81 68.83 68.84
2| Llama-32-3B 86.44 86.44 86.46 86.44 86.43 86.46 66.25 66.09 65.94 55.19 55.18 55.22 7143 71.43 71.46 7143 7144 71.44
= Qwen2-7B 87.32 87.32 87.32 87.32 87.31 87.32 73.11 7171 71.36 61.41 60.62 64.51 71.33 71.33 71.35 71.33 71.34 71.34
Llama-3-8B 86.73 86.74 86.74 86.73 86.74 86.74 70.41 68.67 67.83 56.22 56.31 57.73 72.23 72.20 72.44 7221 7229 7241
Llama-3.1-8B 87.61 87.61 87.65 87.61 87.63 87.64 68.47 69.17 69.98 5890 59.21 58.85 72.64 72.60 72.83 72.61 72.69 72.80
Internim-2.5-7B 84.99 84.95 85.42 84.96 85.05 85.37 70.21 70.78 71.70 60.44 60.73 60.61 54.43 43.86 65.01 43.51 53.82 65.18
VideoLLaMA2-7B | 87.03 87.02 87.17 87.02 87.06 87.15 74.98 74.82 75.12 64.46 64.24 65.04 7475 7475 74.77 74.75 74.76 74.76
Qwen2-VL-7B 88.34 88.34 88.34 88.34 8833 88.34 74.49 6971 66.19 52.69 55.99 5027 74.04 73.99 74.17 73.97 73.98 74.19
| LLaVA-Video-7B | 8848 88.48 88.49 88.48 8849 88.48 70.50 71.18 72.00 60.88 61.21 60.83 73.64 73.60 73.73 73.58 73.59 7375
2| LLaVA-OV-7B 88.92 88.92 88.92 88.92 88.92 88.92 72.83 72.82 72.82 63.20 63.17 6323 74.65 74.64 74.66 74.62 74.62 74.67
2 | MiniCPM-V-2.6-8B |  84.26 84.10 85.87 84.12 84.38 85.78 76.24 76.68 77.47 67.11 67.44 67.17 75.45 75.26 76.50 75.28 75.58 76.43
2| Qwen2-VL-72B 87.03 86.98 87.63 86.99 87.10 87.58 75.56 70.95 68.27 53.60 57.52 51.22 7636 75.78 79.54 75.83 76.58 79.40
LLaVA-Video-72B | 8776 87.76 87.76 8775 87.76 87.76 7274 74.54 71.28 64.91 66.48 65.27 76.26 76.21 76.56 7623 7632 76.52
LLaVA-OV-72B 88.92 88.92 88.92 88.92 88.92 88.92 72.35 74.17 77.04 65.03 6691 6528 77.16 77.10 77.59 77.12 77.24 71.54

Datasets | MUStARD | Anno-MI (client) | Anno-MI (therapist) |

Models | ACC WF1L WP | FI RP | ACC WF1 WP | FI RP | ACC WF1 WP | FI RP |
Qwen2-0.5B 60.87 60.87 60.84 60.84 60.87 60.91 62.98 60.96 61.87 52.69 51.37 56.95 3 73.33 7451 71.34 71.47 7247
Llama-3.2-1B 65.94 65.94 6 [ 61.29 55.87 58.20 42.10 42.98 54.74 74.50 75.17 7277 73.04 73.13
Qwen2-1.5B 63.04 63.04 63.03 63.03 63.04 63.07 62.89 58.90 61.09 48.33 46.96 58.27 74.44 75.28 7291 73.50 72.96

2| Llama-32-3B 63.04 62.60 63.69 62.6 63.04 63.69 64.75 60.16 64.96 50.28 48.38 65.06 3 7371 75.93 7248

= Qwen2-7B 63.04 63.04 63.05 63.04 63.04 63.05 64.57 60.88 63.18 50.56 48.87 61.41 3 75.80 77.49 74.67 75.39 75.16
Llama-3-8B 64.49 64.48 64.52 64.48 64.49 64.52 65.28 60.70 64.70 49.47 48.09 6433 76.41 77.98 75.48 76.56 75.50
Llama-3.1-8B 60.14 59.67 60.65 59.67 60.14 60.65 39.15 41.84 53.19 37.18 40.87 41.38 76.03 77.85 74.83 75.68 75.15
Internlm-2.5-7B 68.12 68.11 68.13 68.11 68.12 68.13 62.71 59.50 61.19 49.83 48.39 56.72 73.78 76.02 72.50 73.03 73.56
VideoLLaMA2-7B | 7101 71.01 71.03 71.01 71.01 71.03 64.54 61.97 62.87 53.17 51.27 59.64 76.25 76.34 75.12 74.95 75.37
Qwen2-VL-7B 67.39 66.28 70.02 66.28 67.39 70.02 65.98 63.03 65.44 54.54 52.38 62.88 75.78 75.97 74.50 74.72 74.42
| LLaVA-Video-7B | 70.29 70.02 71.04 70.02 70.29 71.04 65.69 63.65 64.60 56.35 54.27 61.86 75.80 76.76 74.92 75.93 74.69
2| LLaVA-OV-7B 63.04 62.89 63.27 62.89 63.04 63.27 65.34 64.21 64.63 57.66 56.63 60.19 77.15 78.80 7611 7739 76.11
2| MiniCPM-V-2.6-8B |  68.84 68.84 68.84 68.84 68.84 68.84 64.66 60.70 64.41 51.87 49.69 63.91 76.17 78.03 74.99 75.57 75.87
2| Qwen2-VL-72B 74.64 74.60 74.77 74.60 74.64 74.77 65.53 59.57 70.30 48.68 47.21 73.38 77.90 79.56 61.55 62.34 61.67
LLaVA-Video-72B | 7174 71.62 72.12 71.62 7174 72.12 67.46 65.90 66.55 59.10 57.12 63.52 76.65 76.70 77.38 75.66 76.60 75.39
LLaVA-OV-72B 69.57 69.57 69.40 69.40 69.57 69.40 67.73 65.99 67.40 59.71 58.14 64.43 71.79 71.95 78.74 77.03 78.05 76.71
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Table 8: Full experimental results on the MMLA benchmark using instruction tuning.

LLMs

Datasets | MIntRec | MintRec2.0

Models | ACC WF1 WP | F1 R P | ACC WF1 WP | F1 R P
Qwen2-7B 77.53 77.78 79.08 74.66 75.42 75.57 61.49 61.07 62.56 57.48 56.55 61.02
Llama-3-8B 78.20 78.14 79.94 76.62 76.46 79.43 61.44 61.33 63.12 57.05 56.28 60.05

Internlm-2.5-7B

75.96 76.06 78.46

73.11 71.81 76.71

60.06 59.35 62.27

54.13 52.69 58.83

MLLMs

Qwen2-VL-7B
MiniCPM-V-2.6-8B
Qwen2-VL-72B
LLaVA-Video-72B

82.92 82.79 83.78
80.67 80.56 82.19
86.29 86.09 86.75
80.22 79.94 80.63

80.44 81.08 81.53
77.75 78.80 79.70
85.17 84.64 86.76

77.77 76.97 80.29

64.19 63.31 64.39
63.31 61.78 65.75
66.99 66.63 67.45
64.98 64.72 65.40

59.96 59.06 6331
55.88 55.64 65.71
62.96 62.05 65.24
60.86 59.97 63.20

Datasets | MELD | IEMOCAP

Models | ACC WFI WP | FI R P | ACC WFI WP | FI R P
2 Qwen2-7B 64.64 64.09 65.15 48.83 48.05 52.81 48.09 47.00 52.49 45.53 47.99 49.46

Llama-3-8B X .79 65. .86 48.77 53. 52.34 51.28 56. 51.04 53.07 54.

E 66.02 64.79 65.19 49.86 3.82 2.34 51.28 56.88 1.04 53.07 54.89
~ Internlm-2.5-7B 62.84 62.93 63.71 49.76 49.90 51.54 50.80 50.21 54.10 49.56 50.75 52.31
é’ Qwen2-VL-7B 67.55 66.15 66.26 51.78 48.60 57.86 49.88 49.10 51.13 46.98 45.82 51.21
j MiniCPM-V-2.6-8B 65.86 65.62 68.69 48.80 50.39 56.36 53.58 51.91 61.66 52.24 55.18 58.79
= Qwen2-VL-72B 67.59 65.08 66.67 50.71 45.59 61.56 54.07 53.33 57.92 50.95 52.81 56.19

LLaVA-Video-72B

65.36 65.24 65.49

51.93 51.18 53.78

59.93 59.86 60.16

58.63 58.40 59.19

Datasets | MELD-DA | IEMOCAP-DA

Models | ACC WFI WP | FI R P | ACC WFI WP | FI R P
4| Qwen2-7B 58.71 57.46 57.54 48.81 48.48 5223 65.50 64.91 66.69 60.28 63.67 63.60
Z|  Llama-3-8B 58.91 57.44 57.26 47.53 45.89 5229 69.06 68.36 69.38 62.65 64.99 64.40
2| Internlm-2.5-7B 57.51 55.80 54.94 45.16 44.79 47.29 67.57 66.91 67.60 50.69 61.16 61.67
Z| Qwen2-VL-7B 60.71 59.00 61.08 51.98 51.43 56.90 62.47 61.04 64.42 57.80 59.33 60.50
S | MiniCPM-V-2.6-8B | 61.71 59.00 59.71 48.10 45.12 56.61 68.15 66.15 70.01 62.29 61.48 66.88
S| Qwen2-VL-72B 62.36 60.80 61.72 51.20 51.31 5338 72.66 72.02 73.52 66.68 67.44 67.34

LLaVA-Video-72B

61.46 60.55 60.24

50.34 49.48 52.07

76.06 75.96 76.22

73.17 73.94 73.54

Datasets | MOSI | CH-SIMS v2.0

Models | ACC WFI WP | FI R P |  ACC WFI WP | FI R P
©» Qwen2-7B 87.17 87.17 87.20 87.17 87.18 87.18 70.50 69.59 68.88 58.09 57.97 58.69
= Llama-3-8B 87.32 87.31 87.35 87.31 87.30 87.36 69.54 70.04 70.62 60.50 60.86 60.32
3 70.04 70.62
— Internlm-2.5-7B 86.01 86.00 86.02 86.00 85.99 86.03 69.63 70.06 70.69 59.45 59.57 59.58
é’ Qwen2-VL-7B 79.45 83.78 89.74 55.82 52.89 59.86 75.85 73.05 73.07 59.54 59.82 65.70
j MiniCPM-V-2.6-8B 86.15 86.08 87.06 86.09 86.24 86.99 79.15 74.99 79.88 58.95 61.00 81.29
= Qwen2-VL-72B 81.63 81.31 84.25 81.34 81.79 84.14 72.65 68.26 67.52 51.56 55.53 50.45

LLaVA-Video-72B

86.88 86.88 86.88

86.88 86.88 86.88

70.69 71.64 73.20

61.49 62.12 61.77

Datasets | UR-FUNNY-v2 | MUStARD

Models | ACC WFI WP | FI R P | ACC WFI WP | FI R P
©» Qwen2-7B 70.22 70.22 70.22 70.21 70.21 70.22 63.04 61.34 65.84 61.34 63.04 65.84
5 Llama-3-8B 7213 72.12 72.15 72.10 72.10 72.16 57.97 55.25 60.53 55.25 57.97 60.53
'—1 Internlm-2.5-7B 69.11 68.99 69.57 69.01 69.21 69.53 65.94 64.59 68.82 64.59 65.94 68.82
ﬁ Qwen2-VL-7B 73.34 73.28 73.46 73.26 73.28 73.48 65.22 65.21 65.23 65.21 65.22 65.23
j MiniCPM-V-2.6-8B 74.14 74.15 74.15 74.14 74.15 74.14 60.87 60.84 60.91 60.84 60.87 60.91
s Qwen2-VL-72B 76.96 76.35 80.48 76.40 77.19 80.33 70.29 68.49 76.31 68.49 70.29 76.31

LLaVA-Video-72B

74.25 74.14 74.54

74.11 74.16 74.57

71.74 71.62 72.12

71.62 71.74 72.12

Datasets | Anno-MI (client) | Anno-MI (therapist)

Models | ACC WFI WP | FI R P |  ACC WFI WP | FI R P
% Qwen2-7B 64.04 61.00 62.87 52.00 50.43 58.88 7228 71.61 74.19 69.37 69.89 72.78
5 Llama-3-8B 66.16 61.34 68.87 52.60 50.38 69.72 75.26 75.40 76.26 74.21 75.00 74.06
— Internlm-2.5-7B 62.18 54.40 64.20 40.80 41.92 67.05 71.23 71.42 73.42 69.54 69.25 71.73
§ Qwen2-VL-7B 64.54 60.34 62.21 48.41 47.60 58.61 76.44 76.65 77.58 75.14 75.26 75.68
j MiniCPM-V-2.6-8B 64.48 57.16 71.31 42.60 43.75 78.95 75.18 75.27 77.83 74.00 74.96 75.30
= Qwen2-VL-72B 64.89 57.99 72.12 46.01 45.35 76.80 76.93 76.82 77.73 75.46 75.88 76.11

LLaVA-Video-72B

66.93 65.06 66.28

58.04 56.09 63.26

77.61 77.64 78.05

76.65 77.29 76.39
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Table 9: Primary hyperparameters for SFT and IT on the MIntRec, MIntRec2.0, and MELD datasets.

Datasets \ Methods Models Learning rate  Warmup ratio  Training Batch size  Epochs  Rank «
Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.00011 0.1 8 60 8 16
SFT LLaVA-Video-7B 0.0002 0.3 4 10 128 256
LLaVA-OV-7B 0.0001 0.1 6 15 128 256

MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32

E Qwen2-VL-72B 0.0001 0.1 4 20 8 16
= LLaVA-Video-72B 0.0001 0.3 1 5 8 16
E LLaVA-OV-72B 0.0001 0.3 1 5 8 16
Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.00012 0.3 16 30 8 16
SFT LLaVA-Video-7B 0.0002 0.3 6 5 128 256
LLaVA-OV-7B 0.0001 0.1 6 10 128 256

=) MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
Q Qwen2-VL-72B 0.0001 0.1 4 20 8 16
~ LLaVA-Video-72B 0.0001 0.3 1 5 8 16
E LLaVA-OV-72B 0.0001 0.3 1 5 8 16
= Llama3-8B 0.00005 0.1 1 8 16 32
Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.00011 0.1 16 30 8 16
SFT LLaVA-Video-7B 0.0001 0.2 4 8 64 128
LLaVA-OV-7B 0.0001 0.1 6 10 128 256

VideoChat2-7B 0.00001 0 1 10 16 32

la) MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
[j Qwen2-VL-72B 0.00011 0.4 4 10 8 16
= LLaVA-Video-72B 0.0001 0.3 1 5 8 16
LLaVA-OV-72B 0.0001 0.3 1 5 8 16

Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16
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Table 10: Primary hyperparameters for SFT and IT on the IEMOCAP, MELD-DA, and IEMOCAP-
DA datasets.

Datasets ‘ Methods Models Learning rate  Warmup ratio  Training Batch size  Epochs  Rank «a
Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.0001 0.2 2 15 8 16
SFT LLaVA-Video-7B 0.0002 0.2 6 8 128 256
LLaVA-OV-7B 0.0001 0.1 6 10 128 256

A MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
5 Qwen2-VL-72B 0.0001 0.2 2 7 8 16
o) LLaVA-Video-72B 0.0001 0.3 1 5 8 16
E LLaVA-OV-72B 0.0001 0.3 1 5 8 16
Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.0003 0.1 8 50 8 16
SFT LLaVA-Video-7B 0.0001 0.2 4 8 64 128
LLaVA-OV-7B 0.0001 0.1 6 10 128 256

< MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
a Qwen2-VL-72B 0.00011 0.5 4 10 8 16
3 LLaVA-Video-72B 0.0001 0.3 1 5 8 16
E LLaVA-OV-72B 0.0001 0.3 1 5 8 16
Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.0003 0.1 12 50 8 16
SFT LLaVA-Video-7B 0.0001 0.2 4 8 64 128
LLaVA-OV-7B 0.0001 0.1 4 10 128 256

g MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
a Qwen2-VL-72B 0.0003 0.1 8 5 8 16
5 LLaVA-Video-72B 0.0001 03 1 5 8 16
% LLaVA-OV-72B 0.0001 0.3 1 5 8 16
=) Llama3-8B 0.00005 0.1 1 8 16 32
Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16
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Table 11: Primary hyperparameters for SFT and IT on the MOSI, CH-SIMS v2.0, and UR-FUNNY-v2

datasets.

Datasets ‘ Methods Models Learning rate  Warmup ratio  Training Batch size  Epochs  Rank «a
Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.0001 0.1 8 20 8 16
SFT LLaVA-Video-7B 0.0002 0.3 6 5 128 256
LLaVA-OV-7B 0.0001 0.1 6 20 128 256

MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32

= Qwen2-VL-72B 0.0001 0.2 2 10 8 16
®) LLaVA-Video-72B 0.0001 0.3 1 5 8 16
= LLaVA-OV-72B 0.0001 0.3 1 5 8 16
Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.00011 0.1 12 30 8 16
SFT LLaVA-Video-7B 0.0002 0.3 6 5 128 256
- LLaVA-OV-7B 0.0001 0.1 6 15 128 256
< MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
; Qwen2-VL-72B 0.0001 0.2 4 10 8 16
= LLaVA-Video-72B 0.0001 0.3 1 5 8 16
5‘ LLaVA-OV-72B 0.0001 0.3 1 5 8 16
5 Llama3-8B 0.00005 0.1 1 8 16 32
Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16
VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.001 0.2 12 10 8 16
SFT LLaVA-Video-7B 0.0001 0.2 4 8 64 128
« LLaVA-OV-7B 0.0001 0.1 6 10 128 256
> MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32
E Qwen2-VL-72B 0.0003 0.1 4 3 8 16
Z LLaVA-Video-72B 0.0001 0.3 1 5 8 16
;::Dr LLaVA-OV-72B 0.0001 0.3 1 5 8 16
% Llama3-8B 0.00005 0.1 1 8 16 32
Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32
IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128
MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32
Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16
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Table 12: Primary hyperparameters for SFT and IT on the MUStARD, Anno-MI (client), and
Anno-MI (therapist) datasets.

Datasets ‘ Methods Models Learning rate  Warmup ratio  Training Batch size  Epochs  Rank «a

Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32

VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.001 0.2 2 10 8 16

SFT LLaVA-Video-7B 0.0002 0.4 2 10 128 256

LLaVA-OV-7B 0.0001 0.1 6 15 128 256

A MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32

~ Qwen2-VL-72B 0.0004 0.3 2 10 8 16

s LLaVA-Video-72B  0.0001 0.3 1 3 g8 16

E LLaVA-OV-72B 0.0001 0.2 1 20 8 16

Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32

IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128

MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32

Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16

VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.0003 0.1 8 50 8 16

SFT LLaVA-Video-7B 0.0001 0.2 4 8 64 128

= LLaVA-OV-7B 0.0001 0.1 6 10 128 256

§ MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32

S Qwen2-VL-72B 0.00011 0.5 4 10 8 16

E LLaVA-Video-72B 0.0001 0.3 1 5 8 16

S LLaVA-OV-72B 0.0001 0.3 1 5 8 16
=

E Llama3-8B 0.00005 0.1 1 8 16 32

Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32

IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128

MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32

Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16

Llama3-8B 0.0001 0.1 2 8 8 16

Qwen2-7B 0.0001 0.1 2 8 8 16

InternLM2.5-7B 0.0001 0.1 2 8 8 16

VideoLLaMA2-7B 0.00002 0.5 1 10 128 256

Qwen2-VL-7B 0.0003 0.1 12 50 8 16

SFT LLaVA-Video-7B 0.0001 0.2 4 8 64 128

‘2 LLaVA-OV-7B 0.0001 0.1 4 10 128 256

& MiniCPM-V-2.6-8B 0.0001 0.05 1 8 16 32

E Qwen2-VL-72B 0.0003 0.1 8 5 8 16

f LLaVA-Video-72B 0.0001 0.3 1 5 8 16

= LLaVA-OV-72B 0.0001 0.3 1 5 8 16

§ Llama3-8B 0.00005 0.1 1 8 16 32

< Qwen2-7B 0.00005 0.1 1 8 16 32

InternLM2.5-7B 0.00005 0.1 1 8 16 32

IT Qwen2-VL-7B 0.0001 0.3 8 5 64 128

MiniCPM-V-2.6-8B 0.0001 0.05 1 5 16 32

Qwen2-VL-72B 0.0001 0.3 2 3 64 128

LLaVA-Video-72B 0.0001 0.3 1 3 8 16
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