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Abstract
We provide a theoretical framework for
Reinforcement Learning with Human Feedback
(RLHF). Our analysis shows that when the
true reward function is linear, the widely used
maximum likelihood estimator (MLE) converges
under both the Bradley-Terry-Luce (BTL) model
and the Plackett-Luce (PL) model. However,
we show that when training a policy based on
the learned reward model, MLE fails while a
pessimistic MLE provides policies with improved
performance under certain coverage assumptions.
Additionally, we demonstrate that under the PL
model, the true MLE and an alternative MLE
that splits the K-wise comparison into pairwise
comparisons both converge. Moreover, the true
MLE is asymptotically more efficient. Our
results validate the empirical success of existing
RLHF algorithms in InstructGPT and provide
new insights for algorithm design. Furthermore,
our results unify the problem of RLHF and Max
Entropy Inverse Reinforcement Learning, and
provide the first sample complexity bound for
both problems.

1. Introduction
The alignment problem aims at aligning human values with
machine learning systems and steering learning algorithms
toward the goals and interests of humans. One of the most
promising tools for AI alignment, Reinforcement Learning
with Human Feedback (RLHF), has delivered significant
empirical success in the fields of game playing (Knox and
Stone, 2008; MacGlashan et al., 2017; Christiano et al.,
2017a; Warnell et al., 2018), robotics (Brown et al., 2019;
Shin et al., 2023) and language models (Ziegler et al.,
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2019; Stiennon et al., 2020; Wu et al., 2021; Nakano
et al., 2021; Ouyang et al., 2022; Menick et al., 2022;
Glaese et al., 2022; Gao et al., 2022; Bai et al., 2022a;
Ganguli et al., 2022; Ramamurthy et al., 2022). Notably,
the language model application ChatGPT is based on RLHF
and this underlies several of its skills: answering follow-
up questions, admitting its mistakes, challenging incorrect
premises, and rejecting inappropriate requests. One of the
key capabilities in RLHF is to learn a reward from human
feedback, in the form of pairwise or K-wise comparisons
between actions (responses). In this paper, we take the
first step towards providing a theoretical framework for
RLHF, with a specific focus on reward learning. We provide
a theoretical analysis that justifies the empirical success
of RLHF in InstructGPT and ChatGPT, along with new
insights for algorithm design.

Taking InstructGPT (Ouyang et al., 2022) as an example,
a typical deployment of RLHF for language modeling
includes the following steps:

(a) Pre-train a Large Language Model (LLM) using
supervised training.

(b) Train a reward model based on the pre-trained LLM
using human feedback.

(c) Fine-tune the existing LLM based on the learned reward
model using Proximal Policy Optimization (PPO).

During the reward training step, the prompts are first
sampled from a pre-collected dataset. Then K responses
are sampled by executing existing models on the sampled
prompts. Based on the prompt provided, a human labeler
ranks all the responses according to her own preference. The
reward model is trained based on a maximum likelihood
estimator (MLE), also known as the learning-to-rank
algorithm or cross-entropy minimization (Liu et al., 2009;
Xia et al., 2008; Cao et al., 2007; Christiano et al., 2017a;
Ouyang et al., 2022).

In the setting of InstructGPT, the ranking of responses is
based purely on the current prompt, which can be viewed
as the state in a contextual bandit. We accordingly start
with the setting of a contextual bandit, and later generalize
our results to Markov Decision Process (MDP) where there
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are transitions between states. Let S be the set of states
(prompts), and A be the set of actions (responses). For
each state-action pair (s, a), we assume that the reward is
parametrized by rθ(s, a) = ⟨θ, ϕ(s, a)⟩ for some known
and fixed feature function ϕ(s, a) : S × A 7→ Rd. In
an LLM, such a ϕ is usually derived by removing the last
layer of the pre-trained model.1 We denote the ground-truth
reward provided by a human as rθ⋆(s, a) for some parameter
θ⋆ ∈ Rd.

We are interested in the sample complexity for learning a
reward model rθ⋆ from pairwise or K-wise comparison
data. For the i-th sample, a state si is first sampled
from some fixed distribution ρ. Given the state si, K
actions (ai0, a

i
1, · · · , aiK−1) are sampled from some joint

distribution P(a0, · · · , aK−1 | si). Let σi : [K] 7→ [K]
denote the output of the human labeler, which is a
permutation function representing the ranking of the
actions. Here σi(0) represents the most preferred
action. We assume that the distribution of σi follows a
Plackett-Luce (PL) model (Plackett, 1975; Luce, 2012):

P(σi | si, ai0, ai1, · · · , aiK−1) =

K−1∏
k=0

exp(rθ⋆(si, aiσi(k)))∑K−1
j=k exp(rθ⋆(si, aiσi(j)))

.

When K = 2, this reduces to the pairwise comparison
of the Bradley-Terry-Luce (BTL) model (Bradley and
Terry, 1952), which is widely applied in existing RLHF
algorithms (Christiano et al., 2017a; Ouyang et al., 2022).

Since the learned reward model is mainly used for
downstream policy training, we measure the correctness
of the estimated reward model via the performance of a
greedy policy trained from a reward model rθ̂. Concretely,
for a greedy policy π̂(s) = arg maxa rθ̂(s, a), we compute
a performance gap compared to the optimal policy:

SubOpt(π̂) := Es∼ρ[rθ⋆(s, π⋆(s))− rθ⋆(s, π̂(s)].

Here π⋆ = arg maxa rθ⋆(s, a) is the optimal policy under
the true reward rθ⋆ .

Gao et al. (2022) has observed that in the reward model
trained from practice, there exists an over-optimization
phenomenon where the true reward first increases and then
decreases during the policy optimization stage. In this
paper, we study the potential sub-optimality of the MLE
in the RLHF setting. As a by-product, we also provide
a guarantee of the estimation error on the semi-norm of
the parameter estimation error, ∥θ̂ − θ⋆∥Σ, for a query-
dependent covariance matrix Σ.

From a broader perspective, the framework of RLHF can

1In InstructGPT, the function ϕ is still parametrized can be
further trained in the reward learning step. However, for simplicity
of theoretical analysis, we assume in this paper that ϕ is fixed and
one only fine-tunes the last layer with parameter θ.

be viewed as a special case of reward learning from pre-
collected data, which has been a primary focus in Inverse
Reinforcement Learning (IRL) and offline reinforcement
learning. Our techniques also provide theoretical guarantee
for the max-entropy IRL (Ziebart et al., 2008) and action-
based IRL algorithms (Ramachandran and Amir, 2007; Neu
and Szepesvári, 2009; Florence et al., 2022).

1.1. Main Results

Pairwise Comparison. We start with the setting of a
contextual bandit with pairwise comparison. We focus on
two algorithms, MLE and pessimistic MLE. The following
result from dueling bandits and RL Faury et al. (2020);
Pacchiano et al. (2021) shows that under a semi-norm ∥ · ∥Σ,
MLE converges to the true parameter.

Theorem 1.1 (Informal). Under certain regularity
conditions, the MLE satisfies the following with probability
at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD ≤ C ·
√

d+ log(1/δ)

n
.

Here ΣD = 1
n

∑n
i=1(ϕ(s

i, ai1) − ϕ(si, ai0))(ϕ(s
i, ai1) −

ϕ(si, ai0))
⊤.

However, when we consider the performance of the induced
policy, MLE provably fails while pessimistic MLE gives
a near-optimal rate. In essence, the pessimism principle
discounts actions that are less represented in the observed
dataset, and hence is conservative in outputting a policy.

Theorem 1.2 (Informal). Under certain coverage
assumptions, one can design a pessimistic MLE such that
the induced greedy policy π̂PE is good; i.e., with probability
at least 1− δ,

SubOpt(π̂PE) = Θ

(√
d+ log(1/δ)

n

)
.

In contrast, under the same assumption, one can find
instances such that the greedy policy w.r.t. MLE π̂MLE fails:

∀n > 1,E[SubOpt(π̂MLE)] ≥ 0.1.

K-wise Comparison. For K-wise comparison,
we analyze both the MLE and the algorithm in
InstructGPT (Ouyang et al., 2022) which splits the
ranking data into K(K − 1)/2 pairwise comparison data
and runs an MLE based on the BTL model. We show that
both converge in terms of the estimation error under the
semi-norm and give a near-optimal policy when combined
with pessimism. Asymptotically, the MLE is always more
efficient than the algorithm based on pairwise splitting.

Let the estimated parameter for the splitted estimator be θ̂
and the induced policy be π̂PE. We have:
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Theorem 1.3 (Informal). Under certain coverage and
regularity conditions, the following holds separately with
probability at least 1− δ:

∥θ̂ − θ⋆∥ΣD ≤ C ·
√

d+ log(1/δ)

n
,

SubOpt(π̂PE) ≤ C ′ ·
√

d+ log(1/δ)

n
,

Here ΣD = 2
K(K−1)n (

∑n
i=1

∑K−1
j=0

∑K−1
k=j+1(ϕ(s

i, aij) −
ϕ(si, aik))(ϕ(s

i, aij)− ϕ(si, aik))
⊤).

We also extend our results to the case of MDP and IRL; see
the detailed presentation in Section 5 and Appendix C. Let
the estimated parameter be θ̂ and the induced pessimistic
policy be π̂PE. For pairwise comparison we have:

Theorem 1.4 (Informal). In the MDP setting with horizon
H , under certain coverage and regularity conditions, the
following holds separately with probability at least 1− δ:

∥θ̂ − θ⋆∥ΣD ≤ C ·
√

d+ log(1/δ)

n
,

SubOpt(π̂PE) ≤ C ′ ·
√

d+ log(1/δ)

n
,

Here ΣD = 1
n

∑n
i=1(

∑H
h=0(ϕ(s

i
h, a

i
h) − ϕ(si′h , a

i′
h)))

(
∑H

h=0(ϕ(s
i
h, a

i
h)− ϕ(si′h , a

i′
h)))

⊤.

Our results not only explain the correctness of existing
algorithms, but also provide new insights for algorithm
design in RLHF. In particular, it suggests the importance
of introducing pessimism in the reward learning part,
which can be implemented via adding regularization in
policy training steps as in Ouyang et al. (2022), or using
existing offline RL algorithms, including but not limited to
Conservative Q-Learning (Kumar et al., 2020), Implicit Q-
Learning (Kostrikov et al., 2021) and Adversarially Trained
Actor Critic (Cheng et al., 2022). On the other hand, it
also sheds light on the design of active learning algorithms.
Since Theorem 1.1 provides a tight confidence bound on
θ̂, one can combine it with G-optimal design (Soare et al.,
2014) to achieve a near-optimal rate for pure exploration.

1.2. Related Work

Learning and Estimation from Pairwise Comparison
and Ranking. The problem of estimation and ranking
from pairwise or K-wise comparisons has been studied
extensively in the literature. In the literature of dueling
bandit, one compares two actions and aims to minimize
regret based on pairwise comparisons (Yue et al., 2012;
Zoghi et al., 2014b; Yue and Joachims, 2009; 2011; Saha
and Krishnamurthy, 2022; Ghoshal and Saha, 2022; Saha
and Gopalan, 2018a; Ailon et al., 2014; Zoghi et al., 2014a;

Komiyama et al., 2015; Gajane et al., 2015; Saha and
Gopalan, 2018b; 2019; Faury et al., 2020). (Novoseller
et al., 2019; Xu et al., 2020) analyze the sample complexity
of dueling RL under the tabular case, which is extended
to linear case and function approximation by the recent
work (Pacchiano et al., 2021; Chen et al., 2022). Chatterji
et al. (2022) studies a close setting where in each episode
only binary feedback is received. However, most of the
work focuses on regret minimization. We take a first step
towards the theoretical analysis for function approximation
for K-wise comparisons with policy learning as the target.

On the other hand, in the literature of ranking, most of
the theoretical work focuses on the tabular case where
the rewards for different actions are uncorrelated (Feige
et al., 1994; Shah et al., 2015; Shah and Wainwright, 2017;
Heckel et al., 2018; Mao et al., 2018; Jang et al., 2017; Chen
et al., 2013; Chen and Suh, 2015; Rajkumar and Agarwal,
2014; Negahban et al., 2018; Hajek et al., 2014; Heckel
et al., 2019). And a majority of the empirical literature
focuses on the framework of learning to rank (MLE) under
general function approximation, especially when the reward
is parameterized by a neural network (Liu et al., 2009;
Xia et al., 2008; Cao et al., 2007; Christiano et al., 2017a;
Ouyang et al., 2022; Brown et al., 2019; Shin et al., 2023;
Busa-Fekete et al., 2014; Wirth et al., 2016; 2017; Christiano
et al., 2017b; Abdelkareem et al., 2022). Similar idea of
RL with AI feedback also learns a reward model from
preference (Bai et al., 2022b), except for that the preference
is labeled by another AI model instead of human.

Inverse Reinforcement Learning and Offline
Reinforcement Learning. RLHF, IRL and offline
learning are all approaches that can be used to incorporate
human preferences or expertise into the decision-making
process of an agent. However, they differ in the way that
they use human input to guide the agent’s behavior. In
IRL and imitation learning, we only observe an expert’s
behavior and would like to infer the expert’s preferences
or goals (Ng et al., 2000; Abbeel and Ng, 2004; Ziebart
et al., 2008; Ramachandran and Amir, 2007; Neu and
Szepesvári, 2009; Ho and Ermon, 2016; Florence et al.,
2022; Hussein et al., 2017). In offline learning, we directly
observe the cardinal rewards for the state. But the actions
are likely to be sub-optimal. In RLHF, we observe ordinal
comparisons between pairs or a set of actions. In one of the
popular IRL frameworks, max-entropy IRL (Ziebart et al.,
2008), it is also assumed that human choice follows a PL
model. We unify the problem of RLHF and max-entropy
IRL, and provide the first sample complexity analysis for
max-entropy IRL.

Pessimism in Offline RL. The idea of pessimism for
offline RL has been studied in recent year (Jin et al., 2021;
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Rashidinejad et al., 2021; Li et al., 2022; Xie et al., 2021b;
Zanette, 2022; Zanette et al., 2021; Xie et al., 2021a; Xu and
Liang, 2022). In this paper, we connect RLHF with offline
RL and show that pessimism helps in RLHF.

2. Preliminaries
We begin with the notation that we use in the paper. We
discuss our formulations of contextual bandits and Markov
decision processes in Section 2.1. We introduce the data
collection model and the BTL and PL models in Section 2.2.

Notations. We use calligraphic letters for sets, e.g., S and
A. Given a set S, we write |S| to represent the cardinality
of S. For vectors x and y, we use ⟨x, y⟩ = x⊤y to denote
their inner product. We use [K] to denote the set of integers
from 0 to K−1. We write ∥x∥Σ =

√
x⊤Σx as a semi-norm

of x when Σ is some positive-semidefinite matrix. We write
Σ ⪰ Σ′ if Σ− Σ′ is positive semidefinite.

2.1. Markov decision processes

We consider a finite-horizon MDP described by a tuple M =
(S,A, H, {Ph}Hh=1, {Rh}Hh=1, ρ), where S is a (possibly
infinite) state space, A is a (possibly infinite) action space,
H is the horizon length, Ph : S×A 7→ ∆(S) is a probability
transition matrix at step h, Rh : S×A 7→ ∆([0, 1]) encodes
a family of reward distributions with rh : S × A 7→ [0, 1]
as the expected reward function, ρ : S 7→ ∆(S) is the
initial state distribution. At step h, upon executing action
a from state s, the agent receives a deterministic reward
rh(s, a) and transits to the next state s′ with probability
Ph(s

′|s, a). The MDP transits to an absorbing termination
state with zero reward at step H . When H = 1 and there
is no transition, the model reduces to the contextual bandit
problem.

A deterministic policy πh : S 7→ A is a function that
maps a state to an action at step h ∈ [H]. We use π to
denote the family of policies {πh}Hh=1. Correspondingly,
the value function V π : S 7→ R of the policy family
{πh}h∈[H] is defined as the expected sum of rewards
starting at state s and following policy πh at step h.
More precisely, we have for any s ∈ S, V π(s) :=

E
[∑H

h=0 rh(sh, ah) | s0 = s, ah = πh(sh),∀h ≥ 0
]
,

where the expectation is taken over the trajectory
generated according to the transition kernel
sh+1 ∼ Ph(· | sh, ah) and reward distribution
rh ∼ Rh(· | sh, ah). The Q-function Qπ : S × A → R
of policy π is defined analogously: Qπ(s, a) :=

E
[∑H

h=0 rh(sh, ah) | s0 = s, a0 = a, ah = πh(sh),∀h ≥ 0
]
.

Note that although we work with undiscounted episodic
case, it is straightforward to extend the framework and
analysis to discounted MDP. We define the expected value

of a policy π:

J(π) := Es∼ρ[V
π(s)] =

∑
s∈S

ρ(s)V π(s).

We use shorthands V ⋆ := V π⋆

and Q⋆ := Qπ⋆

to denote
the optimal value function and the optimal Q-function. We
define the sub-optimality of any policy π as

SubOpt(π) := J(π⋆)− J(π̂).

We also define the state occupancy measures dπ : S 7→
[0, H] and state-action occupancy measures dπ : S ×A 7→
[0, H] as dπ(s) :=

∑H
h=0 Ph(sh = s | π), dπ(s, a) :=∑H

h=0 Ph(sh = s; ah = a | π), where we use Ph(sh = s |
π) to denote the probability of visiting state sh = s (and
similarly sh = s, ah = a) at step h after executing policy π
and starting from s0 ∼ ρ(·).

Throughout the paper, we make the following assumption
on the parameterization of the reward:

Assumption 2.1. The reward lies in the family of linear
functions rθ(s, a) = θ⊤ϕ(s, a) for some known ϕ(s, a)
with maxs,a ∥ϕ(s, a)∥2 ≤ L. Let θ⋆ be the true parameter.
To ensure the identifiability of θ⋆, we let θ⋆ ∈ ΘB , where

ΘB = {θ ∈ Rd | ⟨1, θ⟩ = 0, ∥θ∥2 ≤ B}.

2.2. Sampling Procedure and Comparison Model

As in Ouyang et al. (2022), we assume that both the states
and actions in the training set come from a pre-collected
dataset. In a contextual bandit, for the i-th sample, a state
(prompt) si is first sampled from some fixed distribution
ρ. Given the state si, K actions (ai0, a

i
1, · · · , aiK−1) are

sampled from some joint distribution P(a0, · · · , aK−1 |
si)2. Let σi : [K] 7→ [K] be the output of the human
labeller, which is a permutation function that denotes the
ranking of the actions. Here σi(0) represents the most
preferred action. We use a0 > a1 to denote the event that
the action a0 is more preferred compared to a1. A common
model on the distribution of σ under K-ary comparisons is
a Plackett-Luce model (Plackett, 1975; Luce, 2012). The
Plackett-Luce model defines the probability of a state-action
pair (s, ai) being the largest among a given set {(s, ai)}K−1

i=0

as

P(ai > aj ,∀j ̸= i | s) = exp(rθ(s, ai))∑K−1
j=0 exp(rθ(s, aj))

.

2Indeed, it is not necessary to only compare actions under the
same state. Our results can be easily generalized to the case when
the states for K queries are completely different.
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Moreover, one can calculate the probability of observing the
permutation σ as3

P(σ | s, {ai}K−1
i=0 ) =

K−1∏
i=0

exp(rθ⋆(s, aσ(i)))∑K−1
j=i exp(rθ⋆(s, aσ(j)))

.

When K = 2, this reduces to the pairwise comparison
considered in the BTL model, which is used in existing
RLHF algorithms. In this case, the permutation σ can
be reduced to a Bernoulli random variable, representing
whether a0 is preferred compared to a1. Concretely, for
each queried state-actions pair (s, a0, a1), we observe a
sample y from a Bernoulli distribution with parameter

exp(rθ⋆ (s,a1))
exp(rθ⋆ (s,a0))+exp(rθ⋆ (s,a1))

; i.e., for any l ∈ {0, 1},

P(y = l | s, a0, a1) =
exp(rθ⋆(s, al))

exp(rθ⋆(s, a0)) + exp(rθ⋆(s, a1))
.

2.3. Organization

Section 3 presents the problem of learning with pairwise
comparisons under the contextual bandit framework, we
provide upper and lower bounds for MLE and pessimistic
MLE. We extend the result into K-wise comparisons in
Section 4 and MDP in Section 5. Due to space limitations
we present our experimental results in Appendix A. We also
discuss the analysis for nonlinear rewards in Appendix B
and IRL in Appendix C.

3. Learning from Pairwise Comparison
We begin with the problem of learning from pairwise
comparisons under the BTL model.

3.1. Algorithms: MLE and Pessimistic MLE

We first bound the estimation error for MLE, the most
common algorithm in learning to rank and RLHF (Liu
et al., 2009; Xia et al., 2008; Cao et al., 2007; Christiano
et al., 2017a; Ouyang et al., 2022). For any query-
observation dataset {(si, ai1, ai2, yi)}ni=1, MLE aims
at minimizing the negative log likelihood, defined as:

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

ℓD(θ) = −
n∑

i=1

log
( 1(yi = 1) · exp(rθ(si, ai1))
exp(rθ(si, ai0)) + exp(rθ(si, ai1))

+
1(yi = 0) · exp(rθ(si, ai0))

exp(rθ(si, ai0)) + exp(rθ(si, ai1))

)
= −

n∑
i=1

log
(
1(yi = 1) · sigmoid(⟨θ, ϕ(si, ai1)− ϕ(si, ai0)⟩)

+ 1(yi = 0) · sigmoid(⟨θ, ϕ(si, ai0)− ϕ(si, ai1)⟩)
)
.

3In practice, one may introduce an extra temperature parameter
σ and replace all rθ⋆ with rθ⋆/σ. Here we take σ = 1.

When the minimizer is not unique, we take any of the θ̂ that
achieve the minimum. Let D = {(si, ai1, ai2)}ni=1 denote
the queried state-action pairs. In this paper, we study how
one can utilize D to learn a near-optimal reward model and
policy. We first present a lemma on the estimation error
conditioned on the data D. The lemma is a generalization
of the upper bound in Shah et al. (2015, Theorem 1) and the
analysis follows a similar structure. The main difference is
that Shah et al. (2015) focus on the tabular case when ϕ(s, a)
is always a standard basis vector, while in our case ϕ(s, a)
can be an arbitrary d-dimensional vector. This confidence
bound guarantee is also similar to the guarantee for dueling
bandits and RL in Faury et al. (2020); Pacchiano et al.
(2021), except for that we have better rate in logarithmic
factors since union bound is not needed in our case.
Lemma 3.1. For any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2.

Here ΣD = 1
n

∑n
i=1(ϕ(s

i, ai1) − ϕ(si, ai0))(ϕ(s
i, ai1) −

ϕ(si, ai0))
⊤, γ = 1/(2 + exp(−LB) + exp(LB)).

The proof is deferred to Appendix D.1. The optimality of
the bound can be seen via a lower-bound argument akin to
that in Shah et al. (2015, Theorem 1).

Now consider the set of parameters

Θ(θ̂MLE, λ) =
{
θ ∈ ΘB | ∥θ̂MLE − θ∥ΣD+λI

≤ C ·

√
d+ log( 1δ )

γ2n
+ λB2

}
.

Lemma 3.1 shows that with probability at least 1− δ, one
has θ⋆ ∈ Θ(θ̂MLE). We thus consider the pessimistic MLE
in Algorithm 1, which takes the lower confidence bound
(LCB) as the reward estimate. In the context of LLM, the
features of meaningful prompts and responses usually lie
on a low-dimensional manifold. The idea of pessimism
is to assign larger reward for the responses that lie on the
manifold, and penalize the rarely seen responses that do
not lie on manifold. We have the following guarantee for
pessimistic MLE:
Theorem 3.2. Let π̂PE be the output of Algorithm 1 when

taking θ̂ = θ̂MLE, f(n, d, δ, λ) = C ·
√

d+log(1/δ)
γ2n + λB2,

q = ρ. For any λ > 0 and v ∈ Rd, with probability at least
1− δ,

SubOpt(π̂PE) ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2

· ∥(ΣD + λI)−1/2Es∼ρ[(ϕ(s, π
⋆(s))− v)]∥2.

The proof is deferred to Appendix D.2. We make several
remarks.
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Algorithm 1 Pessimistic MLE

Input: The current estimator θ̂, the data covariance
ΣD, the regularization parameter λ, the bound on the
semi-norm f(n, d, δ, λ), a reference vector v ∈ Rd, state
distribution q
Construct the confidence set

Θ(θ̂, λ) =
{
θ ∈ ΘB | ∥θ̂ − θ∥ΣD+λI ≤ f(n, d, δ, λ)

}
.

Compute the pessimistic expected value function

Ĵ(π) = min
θ∈Θ(θ̂,λ)

Es∼q[θ
⊤(ϕ(s, π(s))− v)]

= (Es∼q[ϕ(s, π(s))]− v)⊤θ̂

− ∥(ΣD + λI)−
1
2 (Es∼q[ϕ(s, π(s))]− v)∥2 · f(n, d, δ, λ)

Return: π̂ = arg maxπ Ĵ(π).

Remark 3.3 (The single concentratability coefficient
assumption). When v = 0, the term ∥(ΣD +
λI)−1/2Es∼ρ[ϕ(s, π

⋆(s))]∥2 is referred to as a “single
concentratability coefficient”, which is assumed to
be bounded in most of the literature on offline
learning (Rashidinejad et al., 2021; Li et al., 2022; Xie et al.,
2021b; Zanette, 2022; Zanette et al., 2021). A bounded
concentratability coefficient can be understood as certifying
good coverage of the target vector Es∼ρ[ϕ(s, π

⋆(s))] from
the dataset D in the feature space. The performance
guarantee also holds when we replace π⋆ with any reference
policy π on both sides.

Remark 3.4 (The choice of λ). When ΣD is invertible, or
when any θ ∈ ΘB is orthogonal to the nullspace of ΣD, the
above inequality holds for the case of λ = 0. In other cases,
one may minimize λ on the right-hand side, or simply take
λ = (d + log(1/δ)/(B2γ2n)) to achieve a near-optimal
rate up to a constant factor.

Remark 3.5 (The choice of v). Compared to the traditional
pessimism principle (Rashidinejad et al., 2021; Li et al.,
2022; Xie et al., 2021b; Zanette, 2022; Zanette et al.,
2021), we subtract an extra reference vector v in all
the feature vectors ϕ. Subtracting a constant vector
in feature space will not change the induced policy,
but may affect the concentratability coefficient ∥(ΣD +
λI)−1/2(Es∼ρ[ϕ(s, π(s))]− v)∥2.

We briefly describe the reason for introducing v here.
Consider the case where the differences between features lie
in the same subspace, while the feature ϕ itself does not. As
a concrete example, consider a single state s and two actions
a0, a1, we let ϕ(s, a0) = (1, 1) and ϕ(s, a1) = (1, 0).
The data covariance is (ϕ(si, ai1)− ϕ(si, ai0))(ϕ(s

i, ai1)−
ϕ(si, ai0))

⊤ = [0, 0; 0, 1]. Thus ∥(ΣD+λI)−1/2ϕ(s, a0)∥2
can be arbitrarily large as λ → 0 when v = 0. On the

other hand, when we take v = ϕ(s, a1), one can verify that
∥(ΣD + λI)−1/2(ϕ(s, a0)− v)∥2 ≤ 1.

The above example illustrates the importance of choosing
an appropriate v. A good rule of thumb for choosing v is
the most common feature vector ϕ that appears in the data,
so that more features can be covered. This also affords
additional design latitude for other pessimism algorithms.
Remark 3.6 (Implementation for neural network). When
rθ is a neural network, Algorithm 1 may not be directly
implementable. As an alternative, there has been a
number of heuristic approximations considered, including
Conservative Q-Learning (Kumar et al., 2020), Implicit Q-
Learning (Kostrikov et al., 2021) and Adversarially Trained
Actor Critic (Cheng et al., 2022). Furthermore, one may
also introduce pessimism in the policy training procedure.
For example, Ouyang et al. (2022) add regularization terms
in policy training, which enforces that the policy stays close
to the original policy, and within the coverage of the pre-
trained dataset. Our analysis supplies a theoretical rationale
for such regularization terms.
Remark 3.7 (Implications for online learning). Although
we mainly focus on offline learning, Lemma 3.1 also gives
a straightforward online learning algorithm when combined
with an optimism-based algorithm. In particular, a pure
exploration-based active learning scheme would seek to
compare pairs of actions whose feature difference is poorly
covered by the past observations; i.e., find (s, a1, a2) such
that ∥ϕ(s, a1) − ϕ(s, a2)∥(ΣD+λI)−1 is maximized. As a
corollary of Lemma 3.1 and exploration results for linear
bandits (Abbasi-Yadkori et al., 2011; Soare et al., 2014),
one can derive tight regret bound for online learning.
Remark 3.8 (Special Case: Multi-Armed Bandit). For
multi-armed bandits we have only a single state, such
that the feature ϕ(s, a) reduces to 1⃗a, which is a unit
vector with 1 on its a-th element. In this case, the data
covariance reduces to a Laplacian matrix, defined as ΣD =
1
n

∑n
i=1(⃗1a1

− 1⃗a0
)(⃗1a1

− 1⃗a0
)⊤. This is precisely the

problem considered in Shah et al. (2015). The Laplacian
matrix is positive semidefinite and always has a zero
eigenvalue, corresponding to an all ones eigenvector. When
the graph induced by the Laplacian matrix is connected, any
θ with ⟨1, θ⟩ = 0 is orthogonal to the nullspace of ΣD, thus
the theorem holds for the case of λ = 0.

3.2. Failure of MLE and Lower Bounds

We also show that there exists a simple linear bandit
where MLE fails and pessimistic MLE succeeds. Let
π̂MLE = arg maxπ E[rθ̂MLE

(s, π(s))] be the greedy policy
with respect to the MLE.
Theorem 3.9. There exists a linear bandit with four actions
and a sampling distribution such that for any n > 1,

E[SubOpt(π̂MLE)] ≥ 0.1.
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On the other hand, with probability at least 1− δ,

SubOpt(π̂PE) ≤
C · log(1/δ)√

n
.

Here C is some universal constant.

The proof is deferred to Appendix D.3. The results show
a separation between MLE and pessimistic MLE when the
concentratability coefficient is bounded. The failure of MLE
has also been empirically observed in Gao et al. (2022),
which leads to overoptimization with the trained reward
model.

We also show that for the problems with bounded
concentratability coefficient, pessimistic MLE is minimax-
rate optimal up to a constant factor. Consider the family of
contextual bandit instances as follows:

CB(Λ) = {ρ, {(si, ai1, ai2)}ni=1, θ
⋆ (1)

| ∥Σ−1/2
D Es∼ρ[ϕ(s, π

⋆(s))]∥2 ≤ Λ}.

Here we assume that ΣD is invertible to simplify the
presentation of the lower bound. For any Q ∈ CB(Λ),
we let SubOptQ(π) be the sub-optimality under instance
Q. We have the following lower bound result, the proof of
which is deferred to Appendix D.4.

Theorem 3.10. For any d > 6, n ≥ CdΛ2,Λ ≥ 2, there
exists a feature mapping ϕ such that the following lower
bound holds.

inf
π̂

sup
Q∈CB(Λ)

SubOptQ(π̂) ≥ CΛ ·
√

d

n
.

Comparing with the upper bound in Theorem 3.2, we see
that the pessimistic MLE is minimax-optimal up to constant
factors for the sub-optimality of induced policy.

4. Learning from K-wise comparisons
We now consider learning from K-wise comparisons under
the PL model. In this case, we design two different
estimators based on MLE. One involves directly maximizing
the likelihood under the PL model, denoted as MLEK .
The other involves splitting the K-wise comparison data
with pairwise comparisons and running MLE for pairwise
comparisons. We denote this estimator as MLE2.

4.1. Algorithms

Guarantee for MLEK . Let D = {(si, ai0, · · · , aiK)}ni=1

be the set of queried states and actions, and the permutation
function σi be the output of the i-th query. We can compute

its maximum likelihood estimator as

θ̂MLEK
∈ arg min

θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

log

(
exp(⟨θ, ϕ(si, aiσi(j)

)⟩)∑K−1
k=j exp(⟨θ, ϕ(si, aiσi(k)

)⟩)

)
.

Similar to Shah et al. (2015), we restrict our attention to
K = O(1) since it is known that it is difficult for human
to compare more than a small number of items due to a
limited information storage and processing capacity (Miller,
1956; Kiger, 1984; Shiffrin and Nosofsky, 1994; Saaty
and Ozdemir, 2003). For instance, Saaty and Ozdemir
(2003) recommend eliciting preferences over no more than
seven options. We have the following result for K-wise
comparisons.

Theorem 4.1. Let π̂MLEK
be the output of Algorithm 1

when taking θ̂ = θ̂MLEK
, f(n, d, δ, λ) = C ·√

K4(d+log(1/δ))
γ2n + λB2. For any λ > 0 and v ∈ Rd, with

probability at least 1− δ,

SubOpt(π̂MLEK
) ≤ C ·

√
K4(d+ log(1/δ))

γ2n
+ λB2

· ∥(ΣD + λI)−1/2Es∼ρ[(ϕ(s, π
⋆(s))− v)]∥2.

Here ΣD = 2
K(K−1)n (

∑n
i=1

∑K−1
j=0

∑K−1
k=j+1(ϕ(s

i, aij) −
ϕ(si, aik))(ϕ(s

i, aij)− ϕ(si, aik))
⊤), and γ = exp(−4LB).

The proof of Theorem 4.1 is provided in Appendix D.5,
where a guarantee on the estimation error similar to
Lemma 3.1 is also provided. Shah et al. (2015) also
study the extension from pairwise to K-wise comparisons.
However, they focus on the setting where only the maximum
is selected, where we assume a complete ranking among
K items is given. Also, they only provide an expectation
bound while we provide a high-probability bound.

Compared to the pairwise comparison result in Theorem 3.2,
the covariance matrix ΣD now takes the sum over the feature
differences between all pairs of actions among K-wise
comparisons. As a cost, the right-hand side bound also
introduces extra dependence on K. Our bound is likely to
be loose in terms of the dependence on K. However, since
we mainly focus on the case of K = O(1), such a bound
is still near-optimal due to the minimax lower bound for
pairwise comparisons. Furthermore, the gap between MLE
and pessimistic MLE for sub-optimality still exists since
Theorem 3.9 holds as a special case of K-wise comparison.
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Guarantee for MLE2 Besides the standard MLE
approach, another option is to replace the joint distribution
of K-ranking data with K(K − 1)/2 pairs of pairwise
comparisons. This can be understood as replacing the
true probability in MLEK with the product of marginals:

θ̂MLE2
∈ arg min

θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

log

(
exp(⟨θ, ϕ(si, aiσi(j)

)⟩)
exp(⟨θ, ϕ(si, aiσi(j)

)⟩) + exp(⟨θ, ϕ(si, aiσi(k)
)⟩)

)
.

This estimator is also applied in the current RLHF for
LLM (see, e.g., Ouyang et al., 2022). We show that it also
leads to a good induced policy, as is shown in the theorem
below.

Theorem 4.2. Let π̂MLE2
be the output of Algorithm 1 with

θ̂ = θ̂MLE2 , f(n, d, δ, λ) = C ·
√

d+log(1/δ)
γ2n + λB2, q = ρ.

For any λ > 0 and v ∈ Rd, with probability at least 1− δ,

SubOpt(π̂MLE2) ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2

· ∥(ΣD + λI)−1/2Es∼ρ[(ϕ(s, π
⋆(s))− v)]∥2.

Here ΣD = 2
K(K−1)n (

∑n
i=1

∑K−1
j=0

∑K−1
k=j+1(ϕ(s

i, aij) −
ϕ(si, aik))(ϕ(s

i, aij) − ϕ(si, aik))
⊤), and γ = 1/(2 +

exp(−2LB) + exp(2LB)).

The proof of Theorem 4.2 is provided in Appendix D.6. Our
theoretical analysis validates the empirical performance of
MLE2 in Ouyang et al. (2022).

Compared to the guarantee for MLEK , θ̂MLE2 seems to
have better non-asymptotic upper bound in terms of the
dependence on K. However, it is likely that this comes
from a loose analysis of MLEK . The MLE2 belongs to the
family of the M-estimators, whose asymptotic variance is
known to be larger than that of the MLE due to the view of
unbiased estimating equations (Godambe, 1960; Lee, 2008).
Thus, asymptotically, MLEK is more efficient than MLE2.
We also provide their asymptotic rate below.

Theorem 4.3. We have

√
n(θ̂MLEK

− θ⋆) → N (0, I(θ⋆)−1);
√
n(θ̂MLE2

− θ⋆) → N (0,Σ−1Eθ⋆

[
GG⊤]Σ−1).

where

I(θ⋆) = Eθ⋆

[
K−1∑
j=0

K−1∑
k=j

K−1∑
k′=j

exp(⟨θ⋆, ϕ(si, aiσi(k)
) + ϕ(si, aiσi(k′))⟩)

(
∑K−1

k′=j exp(⟨θ⋆, ϕ(si, aiσi(k′))⟩))2

· xi
σi(k)σi(k′)x

i⊤
σi(k)σi(k′)

]
,

Σ = Eθ⋆

[
K−1∑
j=0

K−1∑
k=j

exp(−⟨θ⋆, xi
σi(j)σi(k)

)⟩
(1 + exp(−⟨θ⋆, xi

σi(j)σi(k)
)⟩)2

· xi
σi(j)σi(k)

xi⊤
σi(j)σi(k)

]
,

G =

K−1∑
j=0

K−1∑
k=j+1

exp(−⟨θ⋆, xi
σi(j)σi(k)

)⟩
1 + exp(−⟨θ⋆, xi

σi(j)σi(k)
)⟩

· xi
σi(j)σi(k)

,

xi
jk = ϕ(si, aij)− ϕ(si, aik).

The proof follows directly the gradient and Hessian
computed in Appendix D.5 and D.6, combined with Van der
Vaart (2000, Section 5.3). It is also shown that V ≻ I(θ⋆)−1

in Godambe (1960); Lee (2008), since MLEK is the true
MLE estimator while MLE2 is the M-estimator.

5. Extension to MDPs
Thus far we have considered only contextual bandits. We
now extend our results to the MDP setting. Depending on
whether the comparison is based on a single action or a
whole trajectory, we have two regimes, namely action-based
comparison and trajectory-based comparison. We discuss in
Appendix C the connection and implication of our results
for Inverse Reinforcement Learning and Imitation Learning.

5.1. Trajectory-based Comparison

In trajectory-based comparison, we assume that two
trajectories that start from the same initial state are given,
and the comparison is based on the cumulative reward
of the two trajectories. Concretely, we first sample the
initial state s0 from some fixed distribution ρ, and then
sample two trajectories τ0 = (a0, s1, a1, · · · , sH , aH)
and τ1 = (a′0, s

′
1, a

′
1, · · · , s′H , a′H) from joint

distributions Pl(a0, s1, a1, · · · , sH , aH |s0) =∏
i πl(ai|si)P (si+1|si, ai), where l ∈ {0, 1}. For

each queried state-trajectory pair, we observe a
sample y from a Bernoulli distribution as follows:

P(y = 1 | s, τ0, τ1) =
exp(

∑H
h=0 rθ⋆(sh, ah))

exp(
∑H

h=0 rθ⋆(sh, ah)) + exp(
∑H

h=0 rθ⋆(s′h, a
′
h)))

.

Given the dataset {(si, τ i0, τ i1, yi}ni=1, the MLE is

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = −
n∑

i=1

log
( 1(yi = 1) · exp(

∑H
h=0 rθ(s

i
h, a

i
h))

exp(
∑H

h=0 rθ(s
i
h, a

i
h)) + exp(

∑H
h=0 rθ(s

i′
h , a

i′
h))

+
1(yi = 0) · exp(

∑H
h=0 rθ(s

i′
h , a

i′
h))

exp(
∑H

h=0 rθ(s
i
h, a

i
h)) + exp(

∑H
h=0 rθ(s

i′
h , a

i′
h))

)
.
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Compared to the pairwise comparison in the contextual
bandit, the exponent changes from a single reward to the
cumulative reward. Similarly, we provide the following
guarantee for the estimation error of MLE:

Lemma 5.1. Assume that ∥ϕ(·, ·)∥∞ ≤ L for any s, a.
Then for any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
d log(1/δ)

γ2n
+ λB2.

Here ΣD = 1
n

∑n
i=1(

∑H
h=0(ϕ(s

i
h, a

i
h) − ϕ(si′h , a

i′
h)))

(
∑H

h=0(ϕ(s
i
h, a

i
h) − ϕ(si′h , a

i′
h)))

⊤, and γ = 1/(2 +
exp(−2HLB) + exp(2HLB)).

The proof is deferred to Appendix D.7. Compared to the
result for contextual bandits in Lemma 3.1, the features in
the covariance are the difference between the cumulative
feature in trajectory τ and the cumulative feature in
trajectory τ ′. The result reduces to Lemma 3.1 when H = 1.

In order to bound the sub-optimality of the induced policy,
one needs to plug in a pessimistic version of the reward
estimate. Note that from the definition of dπ , one has

Es∼ρ[V
π(s)] = Es,a∼dπ [r(s, a)].

In the case when the transition distribution P is known,
one may directly compute dπ for any policy π and replace
the initial distribution ρ in the algorithm for the contextual
bandit. This gives the following result:

Theorem 5.2. Let π̂PE be the output of Algorithm 1 with

θ̂ = θ̂MLE, f(n, d, δ, λ) = C ·
√

d+log(1/δ)
γ2n + λB2, q = dπ .

For any λ > 0 and v ∈ Rd, with probability at least 1− δ,

SubOpt(π̂PE) ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2

· ∥(ΣD + λI)−1/2Es∼dπ⋆ [(ϕ(s, π⋆(s))− v)]∥2.

The proof is deferred to Appendix D.8. The result can be
generalized to the case of K-wise comparisons following
the same argument in Section 4.

5.2. Action-based Comparison

In action-based comparison, we assume that two actions
are sampled for each state, and the comparison is based
on the expected cumulative return starting from such state-
action pair. Let the optimal Q-function be parameterized
as Q⋆

θ(s, a) = θ⊤ϕ(s, a) for some given ϕ(s, a). Let θ⋆ be
the true parameter. During the training, we first sample the
state s from some fixed distribution ρ, and then sample a
pair of actions a0, a1 from a joint distribution P (a0, a1|s).
For each queried state-actions pair (s, a0, a1), we observe

a sample y from a Bernoulli distribution with parameter
exp(Qθ⋆ (s,a1))

exp(Qθ⋆ (s,a0))+exp(Qθ⋆ (s,a1))
, i.e.

P(y = 1 | s, a0, a1) =
exp(Qθ⋆(s, a1))

exp(Qθ⋆(s, a0)) + exp(Qθ⋆(s, a1))
.

In this case, one may use the same MLE to estimate θ⋆,
which results in an estimator Q̂ for the Q⋆-function. The
following lemma follows exactly the same analysis as
Lemma 3.1:
Lemma 5.3. Under the BTL model for action-based RLHF,
for any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2.

Here γ = 1/(2 + exp(−LB) + exp(LB)). ΣD =
1
n

∑n
i=1(ϕ(s

i, ai1)− ϕ(si, ai0))(ϕ(s
i, ai1)− ϕ(si, ai0))

⊤.

Introducing pessimism in this case can be hard due to the
need of constructing lower confidence bound for any Qπ.
However, given such confidence bound of θ̂MLE, one can
only construct confidence bound for Q⋆.

6. Conclusion
We have provided a theoretical analysis of the sample
complexity of RLHF. Our main results involve two insights:
(i) pessimism is important in training the reward model; (ii)
in K-wise comparison, both MLEK and MLE2 converge.
Moreover, MLEK is asymptotically more efficient.

While we have made progress in understanding the reward
learning aspect of RLHF, there are many additional
questions that remain to be answered.

1. We assumed that the policy trained is greedy with
respect to the learned reward. However, in practice
the reward is mostly used to fine-tune the pre-trained
policy. This requires a more extensive theory that
considers the whole procedure of pre-training the
policy, learning a reward model and then fine-tuning
the policy with policy gradient or PPO.

2. Although we focused on the BTL and PL models, there
have been a number of other models considered for the
modeling of human behavior, including the Thurstone
model and cardinal models. It would be interesting to
extend our analysis to cover these additional models.
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A. Experiments
There has been a large amount of empirical work that demonstrates the success of MLE and pessimistic MLE in RLHF for
game playing (Knox and Stone, 2008; MacGlashan et al., 2017; Christiano et al., 2017a; Warnell et al., 2018), robotics (Brown
et al., 2019; Shin et al., 2023) and language models (Ziegler et al., 2019; Stiennon et al., 2020; Wu et al., 2021; Nakano
et al., 2021; Ouyang et al., 2022; Menick et al., 2022; Glaese et al., 2022; Gao et al., 2022; Bai et al., 2022a; Ganguli et al.,
2022; Ramamurthy et al., 2022). Notably, the concurrent work Shin et al. (2023) proposes Offline Preference-Based Reward
Learning (OPRL), which trains pessimistic policy from the learned reward and shows empirically the superior performance
of pessimistic based method (which can be viewed as an approximation of pessimistic MLE).

In this section, we provide experiments for the contextual bandit case. In particular, we conduct both MLE and pessimistic
MLE on the example constructed in Appendix D.3. The results are included in Fig. 1. We range the number of samples n
from 10 to 500. Each sample size is repeated 100 times. The result verifies our theoretical analysis: MLE converges under
the semi-norm but fails to give good policy. On the other hand, pessimistic MLE gives vanishing rate when considering the
sub-optimality of the induced policy. Note that in the left figure we do not include pessimistic MLE, since both MLE and
pessimistic MLE rely on the same parameter θ̂MLE, and they only defer in how the induced policy is trained.

Figure 1: Left: the convergence of MLE under the semi-norm ∥ · ∥Σ; Right: the comparison between MLE and pessimistic
MLE under sub-optimality metric.

On the other hand, we compare the performance of MLE2 and MLEK when learning from K-wise comparisons. We take
K = 4 and K = 9, and range samples from 10 to 500. We randomly generate ϕ and θ⋆ as independent samples from
3-dimensional Gaussian distribution. The result is shown in Figure 2. One can see that as n grows larger, both estimators
converge, while MLEK has smaller estimation error than MLE2. The gap grows larger when K becomes larger. This is
consistent with our theoretical prediction in Section 4: since MLEK is the true MLE and MLE2 belongs to the family of
M-estimators, asymptotically MLEK shall be more efficient than MLE2.

Figure 2: The comparison of estimation error between MLE2 and MLEK , with K = 4 in the left and K = 9 in the right.
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B. Analysis for nonlinear rθ

Consider the case of pairwise comparison when rθ is not linear, the MLE can be written as

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = −
n∑

i=1

log

(
1(yi = 1) · exp(rθ(s

i, ai1))

exp(rθ(si, ai0)) + exp(rθ(si, ai1))
+ 1(yi = 0) · exp(rθ(s

i, ai0))

exp(rθ(si, ai0)) + exp(rθ(si, ai1))

)
.

Here we provide a guarantee for the case when rθ is nonlinear and non-convex. We first make the following boundedness
and smoothness assumption on rθ:

Assumption B.1. Assume that for any θ ∈ ΘB , s ∈ S, a0 ∈ A, a1 ∈ A with a0 ̸= a1, we have,

|rθ(s, a)| ≤ α0, (Bounded value)
∥∇rθ(s, a)∥2 ≤ α1, (Bounded gradient)

∥∇2rθ(s, a)∥2 ≤ α2. (Bounded Hessian / Lipschitz gradient)

One can verify that our linear reward satisfies the above assumption with α0 = LB,α1 = L,α2 = 0. Under this assumption,
we have

Theorem B.2. For any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
d+ log(1/δ)

γ2n
+ (λ+ α2/γ + α1α2B)B2.

Here γ = 1
2+exp(−2α0)+exp(2α0)

, ΣD = 1
n

∑n
i=1 ∇(rθ⋆(si, ai1)− rθ⋆(si, ai0))∇(rθ⋆(si, ai1)− rθ⋆(si, ai0))

⊤.

The proof is deferred to Appendix D.10. Our result recovers Lemma 3.1 when α2 = 0 and reveals how the gradient of
r plays a role in the bound for estimation error. However, the dependence on α2 will not vanish as n → ∞. It remains
open how to get vanishing rate for nonlinear reward functions. Similar argument can also be applied to the case of K-wise
comparison and MDP.

On the other hand, we can show that the true parameter θ⋆ is a global minimum of the population negative log likelihood
even when rθ is nonlinear and we use MLE2 for K-wise comparison. Recall that the MLE2 splits K-wise comparisons into
pairwise comparisons, and is given by

θ̂MLE2 ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

log

(
exp(rθ(s

i, aiσi(j)
))

exp(rθ(si, aiσi(j)
)) + exp(rθ(si, aiσi(k)

))

)
.

When there is infinite number of data, the loss become

E[ℓ(θ)] = −
∑
s

ρ(s)
∑

a0,a1∈A
ρ(a0, a1 | s) ·

( exp(rθ⋆(s, a0))

exp(rθ⋆(s, a0)) + exp(rθ⋆(s, a1))
log
( exp(rθ(s, a0))

exp(rθ(s, a0)) + exp(rθ(s, a1))

)
+

exp(rθ⋆(s, a1))

exp(rθ⋆(s, a0)) + exp(rθ⋆(s, a1))
log
( exp(rθ(s, a1))

exp(rθ(s, a0)) + exp(rθ(s, a1))

))
.

Here ρ(a0, a1 | s) is the probability that actions a0, a1 are included in the K-comparison when the state is s. Now we show

θ⋆ ∈ arg min
θ

E[ℓ(θ)]. (2)
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To see this, note that we have

E[ℓ(θ)] = −
∑
s

ρ(s)
∑

a0,a1∈A
ρ(a0, a1 | s) ·

( exp(rθ⋆(s, a0))

exp(rθ⋆(s, a0)) + exp(rθ⋆(s, a1))
log
( exp(rθ(s, a0))

exp(rθ(s, a0)) + exp(rθ(s, a1))

)
+

exp(rθ⋆(s, a1))

exp(rθ⋆(s, a0)) + exp(rθ⋆(s, a1))
log
( exp(rθ(s, a1))

exp(rθ(s, a0)) + exp(rθ(s, a1))

))
=
∑
s

ρ(s)
∑

a0,a1∈A
p(a0, a1 | s) · (H(pθ⋆(s, a0, a1)) + KL(pθ⋆(s, a0, a1)∥pθ(s, a0, a1))).

Here H(p) = p log(1/p) + (1 − p) log(1/(1 − p)) is the entropy of a Bernoulli distribution with parameter p. And
pθ(s, a0, a1) = exp(rθ(s,a1))

exp(rθ(s,a0))+exp(rθ(s,a1))
. Now note that KL is lower bounded by 0, with equality when θ = θ⋆. This

proves Equation (2).

C. Connection with Inverse Reinforcement Learning
In Inverse Reinforcement Learning (IRL), BTL and PL model are also popular model of human behavior. However, in IRL
it is assumed that we only observe the human behavior, which is sampled from the distribution under PL model. Thus no
comparison is queried. Depending on the comparison is action-based on trajectory-based, one has max-entropy IRL or
action-based IRL, discussed in details below.

C.1. Trajectory-based IRL

In max-entropy IRL (Ziebart et al., 2008), it is also assumed that the human selection of trajectory follows a PL model. A
common assumption in IRL or IL is that the observed trajectory collected by human behavior is likely to be the optimal
policy. Assumee that the transitions are deterministic. For any trajectory τ = (s0, a0, · · · , sH , aH), it is assumed that the
expert chooses trajectory τ under the following model:

P(τ) =
exp(

∑H
h=0⟨θ⋆, ϕ(sh, ah)⟩)∑

τ ′∈T (s0)
exp(

∑H
h=0⟨θ⋆, ϕ(s′h, a′h)⟩)

.

Here the set T (s0) denotes the set for all possible trajectories that start from s0. Each trajectory is represented by
τ ′ = {(s′h, a′h)}Hh=1. Assume that we are given a set of trajectories {sih, aih}i∈[n],h∈[H] that are sampled from the distribution
P(τ). When the denominator can be computed exactly, the algorithm of max entropy IRL also reduces to the MLE, which
can be written as

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

log

(
exp(

∑H
h=0⟨θ, ϕ(sih, aih)⟩)∑

τ ′∈T (si0)
exp(

∑H
h=0⟨θ, ϕ(s′h, a′h)⟩)

)
.

Although the enumeration of all trajectories T (si0) is not possible due to exponential growth of the possible trajectories
with respect to horizon H , Ziebart et al. (2008) provides an alternative way of computing the gradient via calculating the
expected state frequency. This enables the efficient implementation of MLE. One can show the performance guarantee for
max entropy IRL as follows:

Lemma C.1. Under the PL model, for any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
sups |T (s)|2 · (d+ log(1/δ))

γ2n
+ λB2.

Here ΣD = 1
n sups |T (s)|2

∑n
i=1

∑
{(sh,ah)}∈T (si0)

∑
{(s′h,a

′
h)}∈T (si0)

(
∑H

h=0(ϕ(sh, ah) − ϕ(s′h, a
′
h)))(

∑H
h=0(ϕ(sh, ah) −

ϕ(s′h, a
′
h)))

⊤, and γ = exp(−4LB)/2.

Given such guarantee for MLE, we also show that IRL, when combined with pessimism principle, will lead to a good policy.
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Theorem C.2. Let π̂PE be the output of Algorithm 1 when taking θ̂ = θ̂MLE, f(n, d, δ, λ) = C ·√
sups |T (s)|(d+log(1/δ))

γ2n + λB2, q = dπ . For any λ > 0 and v ∈ Rd, with probability at least 1− δ,

SubOpt(π̂PE) ≤ C ·

√
sups |T (s)|2(d+ log(1/δ))

γ2n
+ λB2

· ∥(ΣD + λI)−1/2Es∼ρ[(ϕ(s, π
⋆(s))− v)]∥2.

The proof of Lemma C.1 and Theorem C.2 is provided in Appendix D.9. For IRL we have the dependence of sups |T (s)|
in our bound, which can be much larger than d. Similar to the case of K-wise comparison, one may also split the one
observation into sups |T (s)| pairwise comparisons, which can help improve the dependence on sups |T (s)| in the current
analysis.

C.2. Action-based IRL

Similar to action-based RLHF, action-based IRL also models human choice based on Q⋆ instead of cumulative
reward (Ramachandran and Amir, 2007; Neu and Szepesvári, 2009; Florence et al., 2022). Concretely, the human
behavior is assumed to be based on the Q function Q⋆(s, a) = ⟨θ⋆, ϕ(s, a)⟩, i.e.

π⋆(a|s) = exp(⟨θ⋆, ϕ(s, a)⟩)∑
a′∈A exp(⟨θ⋆, ϕ(s, a′)⟩)

.

Here the denominator takes all possible actions. Unlike RLHF where a pair of actions are observed, in IRL or IL, only a
single human behavior is observed in each round and there is no comparison, i.e. the observed actions a are sampled from
π⋆(a | s). Given such observation, one can still run MLE and gives similar performance guarantee. In particular, the MLE
is given by

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

log

(
exp(⟨θ, ϕ(si, ai)⟩)∑

a′∈A exp(⟨θ, ϕ(si, a′)⟩)

)
.

The following lemma follows a similar analysis as Lemma 3.1 and Lemma C.1:

Lemma C.3. Under the PL model for action-based IRL, for any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
|A|2(d+ log(1/δ))

γ2n
+ λB2.

Here ΣD = 1
n|A|2

∑n
i=1

∑
a∈A

∑
a′∈A(ϕ(s

i, a)− ϕ(si, a′))(ϕ(si, a)− ϕ(si, a′)))⊤, and γ = exp(−4LB)/2.

Similar to the case of action-based RLHF, it remains an interesting open problem how one can introduce provable lower
confidence bound algorithm for policy learning.

D. Remaining Proofs
D.1. Proof of Lemma 3.1

Recall that the MLE is given by

17
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θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = −
n∑

i=1

log

(
1(yi = 1) · exp(rθ(s

i, ai1))

exp(rθ(si, ai0)) + exp(rθ(si, ai1))
+ 1(yi = 0) · exp(rθ(s

i, ai0))

exp(rθ(si, ai0)) + exp(rθ(si, ai1))

)

= −
n∑

i=1

log

(
1(yi = 1) · 1

1 + exp(rθ(si, ai0)− rθ(si, ai1))
+ 1(yi = 0) ·

(
1− 1

1 + exp(rθ(si, ai0)− rθ(si, ai1))

))

= −
n∑

i=1

log

(
1(yi = 1) · 1

1 + exp(θ⊤(ϕ(si, ai0)− ϕ(si, ai1)))
+ 1(yi = 0) ·

(
1− 1

1 + exp(θ⊤(ϕ(si, ai0)− ϕ(si, ai1)))

))

To simplify the notation, we let xi = ϕ(si, ai1) − ϕ(si, ai0). Our goal is to bound the estimation error of the MLE in the
squared semi-norm ∥v∥2ΣD+λI = vT (ΣD + λI)v.

Strong convexity of ℓ. We first show that ℓD is strongly convex at θ⋆ with respect to the semi-norm ∥ · ∥ΣD , meaning that
there is some constant γ > 0 such that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ∥∆∥2ΣD

(3)

for all perturbations ∆ ∈ Rd such that θ⋆ +∆ ∈ ΘB .

One can directly calculate the Hessian of ℓ as

∇2ℓD(θ) =
1

n

n∑
i=1

(
1(yi = 1) · exp(−⟨θ, xi⟩)

(exp(−⟨θ, xi⟩) + 1)2
+ 1(yi = 0) · exp(⟨θ, xi⟩)

(exp(⟨θ, xi⟩) + 1)2

)
· xix

T
i

=
1

n

n∑
i=1

exp(−⟨θ, xi⟩)
(exp(−⟨θ, xi⟩) + 1)2

· xix
T
i

Observe that ⟨θ, xi⟩ ∈ [−2LB, 2LB], which gives that

exp(−⟨θ, xi⟩)
(exp(−⟨θ, xi⟩) + 1)2

≥ 1

2 + exp(−2LB) + exp(2LB)
.

Putting together the pieces, we conclude that

vT∇2ℓD(θ)v ≥ γ

n
∥Xv∥22 for all v,

where γ = 1/(2 + exp(−2LB) + exp(2LB)), X ∈ Rn×d has the differencing vector xi ∈ Rd as its ith row. Thus, if we
introduce the error vector ∆ := θ̂MLE − θ⋆, then we may conclude that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ

n
∥X∆∥22 = γ∥∆∥2ΣD

,

showing that ℓD is strongly convex around θ⋆ with parameter γ.

Bounding the estimation error. Now we aim at bounding the estimation error ∥θ̂MLE − θ⋆∥ΣD . Since θ̂MLE is optimal
for ℓD, we have ℓD(θ̂MLE) ≤ ℓD(θ

⋆). (When θ̂MLE is approximately optimal, i.e. ℓD(θ̂MLE) ≤ minθ ℓD(θ) + ϵ, the same
argument also holds up to an extra additive term ϵ.) Defining the error vector ∆ = θ̂MLE − θ⋆, adding and subtracting the
quantity ⟨∇ℓD(θ

⋆), ∆⟩ yields the bound

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≤ −⟨∇ℓD(θ

⋆), ∆⟩.

By the γ-convexity condition, the left-hand side is lower bounded by γ∥∆∥2ΣD
. As for the right-hand side, note that

|⟨∇ℓD(θ
⋆), ∆⟩| ≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI for any λ > 0. Altogether we have

γ∥∆∥2ΣD
≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI .
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Now we further bound the term ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 . Observe that the gradient takes the form

∇ℓD(θ
⋆) =

−1

n

n∑
i=1

[
1[yi = 1]

exp(−⟨θ⋆, xi⟩)
1 + exp(−⟨θ⋆, xi⟩))

− 1[yi = 0]
1

1 + exp(−⟨θ⋆, xi⟩))

]
xi.

Define a random vector V ∈ Rn with independent components as

Vi =

{
exp(−⟨θ⋆, xi⟩)

1+exp(−⟨θ⋆, xi⟩)) w.p. 1
1+exp(−⟨θ⋆, xi⟩))

−1
1+exp(−⟨θ⋆, xi⟩)) w.p. exp(−⟨θ⋆, xi⟩)

1+exp(−⟨θ⋆, xi⟩)) .

With this notation, we have ∇ℓD(θ
⋆) = − 1

n XTV . One can verify that E[V ] = 0 and |Vi| ≤ 1.

Defining the n-dimensional square matrix M := 1
n2X(ΣD + λI)−1XT , we have ∥∇ℓD(θ

⋆)∥2(ΣD+λI)−1 = V TMV . Let
the eigenvalue decomposition of X⊤X be X⊤X = UΛU⊤. We can bound the trace and operator norm of M as

Tr(M) =
1

n2
Tr(U(Λ/n+ λI)−1U⊤UΛU⊤) ≤ d

n

Tr(M2) =
1

n4
Tr(U(Λ/n+ λI)−1U⊤UΛU⊤U(Λ/n+ λI)−1U⊤UΛU⊤) ≤ d

n2

∥M∥op = λmax(M) ≤ 1

n
,

Moreover, since the components of V are independent and of zero mean, and |Vi| ≤ 1, the variables are 1-sub-Gaussian, and
hence the Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem
2.1)) implies that with probability at least 1− δ,

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 = V ⊤MV ≤ C1 ·

d+ log(1/δ)

n
.

Here C1 is some universal constant. This gives us

γ∥∆∥2ΣD+λI ≤ ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI + 4λγB2

≤
√

C1 ·
d+ log(1/δ)

n
∥∆∥ΣD+λI + 4λγB2.

Solving the above inequality gives us that for some constant C2,

∥∆∥ΣD+λI ≤ C2 ·

√
d+ log(1/δ)

γ2n
+ λB2.

D.2. Proof of Theorem 3.2

Proof. Let J ′(π) = J(π)− ⟨θ⋆, v⟩. We have

SubOpt(π̂PE) = J(π⋆)− J(π̂PE)

= J ′(π⋆)− J ′(π̂PE)

= (J ′(π⋆)− Ĵ(π⋆)) + (Ĵ(π⋆)− Ĵ(π̂PE)) + (Ĵ(π̂PE)− J ′(π̂PE)).

Since π̂PE is the optimal policy under expected value J ′(π), we know that the second difference satisfies Ĵ(π⋆)−Ĵ(π̂PE) ≤ 0.
For the third difference, we have

Ĵ(π̂PE)− J ′(π̂PE) = min
θ∈Θ(θ̂MLE,λ)

Es∼ρ[θ
⊤(ϕ(s, π(s))− v)]− Es∼ρ[θ

⋆⊤(ϕ(s, π(s))− v)].
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From Lemma 3.1 we know that θ⋆ ∈ Θ(θ̂MLE, λ) with probability at least 1− δ. Thus we know that with probability at least
1− δ, Ĵ(π̂PE)− J ′(π̂PE) ≤ 0. Now combining everything together and condition on the above event, we have

SubOpt(π̂PE) ≤ J ′(π⋆)− Ĵ(π⋆)

= sup
θ∈Θ(θ̂MLE,λ)

Es∼ρ[(θ
⋆ − θ)⊤(ϕ(s, π⋆(s))− v)]

= sup
θ∈Θ(θ̂MLE,λ)

Es∼ρ[(θ
⋆ − θ̂MLE + θ̂MLE − θ)⊤(ϕ(s, π⋆(s))− v)]

= Es∼ρ[(θ
⋆ − θ̂MLE)

⊤(ϕ(s, π⋆(s))− v)] + sup
θ∈Θ(θ̂MLE,λ)

Es∼ρ[(θ̂MLE − θ)⊤(ϕ(s, π⋆(s))− v)].

By the definition of Θ(θ̂MLE, λ), we know that for any θ ∈ Θ(θ̂MLE, λ), one has Es∼ρ[(θ̂MLE − θ)⊤(ϕ(s, π⋆(s)) − v)] ≤
C ·
√

d+log(1/δ)
γ2n + λB2 · ∥(ΣD + λI)−1/2Es∼ρ[ϕ(s, π

⋆(s)) − v]∥2. Furthermore, we know that θ⋆ ∈ Θ(θ̂MLE, λ) from
Lemma 3.1. Altogether we have with probability 1− δ

SubOpt(π̂PE) ≤ 2C ·

√
d+ log(1/δ)

γ2n
+ λB2 · ∥(ΣD + λI)−1/2Es∼ρ[ϕ(s, π

⋆(s))− v]∥2.

D.3. Proof of Theorem 3.9

Proof. Consider 4 actions with parameter ϕ(a1) = [1, 1, 0], ϕ(a2) = [1, 0, 0], ϕ(a3) = [0, 0, 0], ϕ(a4) = [0, 1, 0]. Let the
true reward be θ⋆ = [−1, 0.1, 0.9] ∈ ΘB with B = 2. We query n − 1 times a1, a2 and 1 time a2, a3. For the single
pairwise comparison result Y2>3 between a2 and a3, we know that

P (Y2>3 = 1) =
exp((ϕ(a2)− ϕ(a3))

⊤θ⋆)

1 + exp((ϕ(a2)− ϕ(a3))⊤θ⋆)
> 0.26.

Now conditioned on the event that Y2>3 = 1, we know that the MLE aims to find

θ̂MLE = arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = −n1>2 · log
(

exp((ϕ(a1)− ϕ(a2))
⊤θ)

1 + exp((ϕ(a1)− ϕ(a2))⊤θ)

)
− n1<2 · log

(
exp((ϕ(a2)− ϕ(a1))

⊤θ)

1 + exp((ϕ(a2)− ϕ(a1))⊤θ)

)
− log

(
exp((ϕ(a2)− ϕ(a3))

⊤θ)

1 + exp((ϕ(a2)− ϕ(a3))⊤θ)

)
= −n1>2 · log

(
exp(θ2)

1 + exp(θ2)

)
− n1<2 · log

(
exp(−θ2)

1 + exp(−θ2)

)
− log

(
exp(θ1)

1 + exp(θ1)

)
.

By concentration of n1>2, we know that when n > 500, with probability at least 0.5, we have

n1<2 > 0.45n.

Under this case, the MLE will satisfy at θ̂1 > 0, θ̂2 < 0.5. Thus the policy based on MLE estimator will choose action a1 or
a2 instead of the optimal action a4 under the events above. The expected suboptimality is

E[V ⋆(s)− V π̂MLE(s)] ≥ 0.26 ∗ 0.5 ∗ 1 > 0.1.

On the other hand, one can calculate the coverage as

∥Σ−1/2
D Es∼ρ[ϕ(s, π

⋆(s))]∥2 =
n

n− 1
.

Thus by Theorem 3.2 we know that pessimistic MLE achieves vanishing error.
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D.4. Proof of Theorem 3.10

Proof. Assume without loss of generality that d/3 is some integer. We set S = [d/3], A = {a1, a2, a3, a4}. For each of the
s, ai, we set ϕ(s, a1) = e3s+1 + e3s+2, ϕ(s, a2) = e3s+1, ϕ(s, a3) = 0, ϕ(s, a4) = e3s+2. We set the initial distribution of
states as ρ = Unif([1, 2, · · · , S]), the query times n(s, a1, a2) = n/S · (1− 2/Λ2), n(s, a2, a3) = n/S · (2/Λ2).

Let v−1 = [1/d, 1/d+∆,−2/d−∆], v+1 = [1/d+ 2∆, 1/d+∆,−2/d− 3∆]. We construct 2S instances, indexed by
τ ∈ {±1}S , where each θτ = [vτ1 , vτ2 , · · · , vτS ]. One can see that E[VQ(π

⋆) − V ⋆
Q(π̂)] = 1/S ·

∑
s∈S(rQ(s, π

⋆(s)) −
rQ(s, π̂(s))). Under each θτ , the optimal policy π(s) is either a2 or a4. One can verify that ∥Σ−1/2

D Es∼ρ[ϕ(s, π
⋆(s)])]∥2 ≤

Λ and that θτ ∈ ΘB with B = 1 when d > 6 and ∆ < 1/6
√
d.

Furthermore, for any θτ , θτ ′ that differs only in the j-th coordinate of τ , we have

1/S · (rQτ
(j, π⋆(j))− rQτ

(j, π̂(j)) + rQτ′ (j, π
⋆(j))− rQτ′ (j, π̂(j))) ≥ ∆/S.

Thus by Assouad’s lemma (see e.g. (Yu, 1997)), we have

inf
π̂

sup
Q∈CB(λ)

E[VQ(π
⋆)− V ⋆

Q(π̂)] ≥ S · ∆

2S
min
τ∼τ ′

(1− TV(Pθτ ,Pθτ′ ))

≥ ∆

4
min
τ∼τ ′

exp(−DKL(Pθτ ,Pθτ′ )).

Here τ ∼ τ ′ refers to any τ, τ ′ that only differs in one element. And the last inequality is due to the Bretagnolle–Huber
inequality (Bretagnolle and Huber, 1979). To bound the KL divergence, we have the following lemma from (Shah et al.,
2015):

Lemma D.1 (Shah et al. (2015)). For any pair of quality score vectors θτ and θτ ′ , we have

DKL(Pθτ ∥Pθτ ) ≤ Cn(θτ − θτ ′)⊤ΣD(θτ − θτ ′). (4)

From the lemma, we have

inf
π̂

sup
Q∈CB(λ)

E[VQ(π
⋆)− V ⋆

Q(π̂)] ≥
∆

2
min
τ∼τ ′

exp(−DKL(Pθτ ,Pθτ′ ))

≥ ∆

2
exp(−Cn∆2/(SΛ2))

Taking ∆ = Λ
√

S/n and noting that S = d/3 finishes the proof.

D.5. Proof of Theorem 4.1

This section presents the proof of Theorem 4.1 for the setting of K-wise comparisons. We first prove the following lemma
on the estimation error:

Lemma D.2. Under the K-wise PL model, for any λ > 0, with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
K4(d+ log(1/δ))

γ2n
+ λB2.

Recall that the MLE is given by

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

log

(
exp(⟨θ, ϕ(si, aiσi(j)

)⟩)∑K−1
k=j exp(⟨θ, ϕ(si, aiσi(k)

)⟩)

)
.

Our goal is to bound the estimation error of the MLE in the squared semi-norm ∥v∥2ΣD+λI = vT (ΣD + λI)v.
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Strong convexity of ℓ. We first show that ℓD is strongly convex at θ⋆ with respect to the semi-norm ∥ · ∥ΣD , meaning that
there is some constant γ > 0 such that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ∥∆∥2ΣD

(5)

for all perturbations ∆ ∈ Rd such that θ⋆ +∆ ∈ ΘB .

The gradient of the negative log likelihood is

∇ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j

exp(⟨θ, ϕ(si, aiσi(k)
)⟩)∑K−1

k′=j exp(⟨θ, ϕ(si, aiσi(k′))⟩)
· (ϕ(si, aiσi(j)

)− ϕ(si, aiσi(k)
)).

The Hessian of the negative log likelihood can be written as

∇2ℓD(θ)

=
1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j

K−1∑
k′=j

exp(⟨θ, ϕ(si, aiσi(k)
) + ϕ(si, aiσi(k′))⟩)

2(
∑K−1

k′=j exp(⟨θ, ϕ(si, aiσi(k′))⟩))2
· (ϕ(si, aiσi(k)

)− ϕ(si, aiσi(k′)))(ϕ(s
i, aiσi(k)

)− ϕ(si, aiσi(k′)))
⊤.

Since exp(⟨θ, ϕ⟩) ∈ [exp(−LB), exp(LB)], we know that the coefficients satisfy

exp(⟨θ, ϕ(si, aiσi(k)
) + ϕ(si, aiσi(k′))⟩)

(
∑K−1

k′=j exp(⟨θ, ϕ(si, aiσi(k′))⟩))2
≥ exp(−4LB)

2(K − j)2
.

Set γ = exp(−4LB)/2. We can verify that for any vector v ∈ RK , one has

v⊤∇2ℓD(θ)v ≥ γ

n
v⊤

 n∑
i=1

K−1∑
j=0

1

(K − j)2

K−1∑
k=j

K−1∑
k′=k

(ϕ(si, aiσi(k)
)− ϕ(si, aiσi(k′)))(ϕ(s

i, aiσi(k)
)− ϕ(si, aiσi(k′)))

⊤

 v

≥ γ

n
v⊤

 n∑
i=1

min
σi∈Π[K]

K−1∑
j=0

1

(K − j)2

K−1∑
k=j

K−1∑
k′=k

(ϕ(si, aiσi(k)
)− ϕ(si, aiσi(k′)))(ϕ(s

i, aiσi(k)
)− ϕ(si, aiσi(k′)))

⊤

 v

≥ γv⊤ΣDv

= γ∥v∥2ΣD
.

Thus we know that ℓ is γ-strongly convex with respect to the semi-norm ∥ · ∥ΣD .

Bounding the estimation error. Now we aim at bounding the estimation error ∥θ̂MLE − θ⋆∥ΣD+λI
.

Since θ̂MLE is optimal for ℓD, we have ℓD(θ̂MLE) ≤ ℓD(θ
⋆). Defining the error vector ∆ = θ̂MLE−θ⋆, adding and subtracting

the quantity ⟨∇ℓD(θ
⋆), ∆⟩ yields the bound

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≤ −⟨∇ℓD(θ

⋆), ∆⟩.

By the γ-convexity condition, the left-hand side is lower bounded by γ∥∆∥2ΣD
. As for the right-hand side, note that

|⟨∇ℓD(θ
⋆), ∆⟩| ≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI for any λ > 0. Altogether we have

γ∥∆∥2ΣD
≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI .

Now we further bound the term ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 . Observe that the gradient takes the form

∇ℓD(θ
⋆) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j

exp(⟨θ⋆, ϕ(si, aiσi(k)
)⟩)∑K−1

k′=j exp(⟨θ⋆, ϕ(si, aiσi(k′))⟩)
· (ϕ(si, aiσi(j)

)− ϕ(si, aiσi(k)
)). (6)
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We set xi
jk = ϕ(si, aij) − ϕ(si, aik). X ∈ R(nK(K−1)/2)×d has the differencing vector xi

jk as its (iK(K − 1)/2 + k +∑K
l=K−j+1 l)

th row. We also define V i
jk be the random variable of the coefficient of xi

jk in Equation (6) under the PL
model, i.e. conditioned on an arbitrary permutation σi,

V i
jk =


exp(⟨θ⋆, ϕ(si,ai

k)⟩)∑K−1

k′=σ
−1
i

(j)
exp(⟨θ⋆, ϕ(si,ai

σi(k
′))⟩)

, if σ−1
i (j) < σ−1

i (k)

− exp(⟨θ⋆, ϕ(si,ai
j)⟩)∑K−1

k′=σ
−1
i

(k)
exp(⟨θ⋆, ϕ(si,ai

σi(k
′))⟩)

, otherwise.

Here σ−1
i (j) < σ−1

i (k) means that the j-th item ranks higher than the k-th item. Let Ṽi ∈ RK(K−1)/2 be the concatenated
random vector of {V i

jk}0≤j<k≤K−1, V ∈ RnK(K−1)/2 be the concatenated random vector of {Ṽi}ni=1. We know that Ṽi

and Ṽj are independent for each i ̸= j due to the independent sampling procedure. We can also verify that the mean of Ṽi is
0, the proof of which is deferred to the end of this section. Furthermore, since under any permutation, the sum of absolute
value of each element in Ṽi is at most K, we know that Ṽi is sub-Gaussian with parameter K. Thus we know that V is also
sub-Gaussian with mean 0 and parameter K. Now we know that the term ∥∇ℓD(θ

⋆)∥2(ΣD+λI)−1 can be written as

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 =

1

n2
V ⊤X(ΣD + λI)−1X⊤V.

Let M = K2

n I . One can verify that M ⪰ 1
n2X(ΣD+λI)−1X⊤ almost surely since λmax(X(ΣD+λI)−1X⊤/n2) ≤ K2/n.

Thus we can upper bound the original term as

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 ≤ K2

n
∥V ∥22.

By Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem 2.1)), we
know that with probability at least 1− δ,

∥V ∥22 ≤ CK2 · (d+ log(1/δ)).

Thus altogether, we have

γ∥∆∥2ΣD
≤
√

CK4 · (d+ log(1/δ))

n
∥∆∥ΣD+λI .

Similar to the pairwise comparison analysis in Appendix D.1, we can derive that with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·
√

K4(d+ log(1/δ))

n
+ λB2.

The rest of the proof on the sub-optimality upper bound follows the same argument as Theorem 3.2.

Lastly, we verify that the mean of Ṽi is 0. For any fixed j, k ∈ [K], let P be the ordered set of all elements which are ranked
higher than both j and k. Now conditioned on P , we have

E[V i
jk | P] = P(j follows P | P) · exp(⟨θ⋆, ϕ(si, aik)⟩)∑

k′∈P̄ exp(⟨θ⋆, ϕ(si, aik′)⟩)
− P(k follows P | P) ·

exp(⟨θ⋆, ϕ(si, aij)⟩)∑
k′∈P̄ exp(⟨θ⋆, ϕ(si, aik′)⟩)

=
1∑

k′∈P̄ exp(⟨θ⋆, ϕ(si, aik′)⟩)
·

(
exp(⟨θ⋆, ϕ(si, aij)⟩) exp(⟨θ⋆, ϕ(si, aik)⟩)− exp(⟨θ⋆, ϕ(si, aij)⟩) exp(⟨θ⋆, ϕ(si, aik)⟩)

exp(⟨θ⋆, ϕ(si, aij)⟩) + exp(⟨θ⋆, ϕ(si, aik)⟩)

)
= 0.

Here the second equality uses the fact that j follows P is equivalent to the event that j is larger than k and either j, k is the
largest among P̄ . Taking expectation over P gives us that E[V i

jk] = 0.
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D.6. Proof of Theorem 4.2

This section presents the proof of Theorem 4.2 for the setting of K-wise comparisons. We first prove the following lemma
on the estimation error.

Lemma D.3. Under the K-wise PL model, for any λ > 0, with probability at least 1− δ,

∥θ̂MLE2 − θ⋆∥ΣD+λI ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2.

Recall that the pairwise compairson based estimator is given by

θ̂MLE2
∈ arg min

θ∈ΘB

ℓD(θ),

where ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

log

(
exp(⟨θ, ϕ(si, aiσi(j)

)⟩)
exp(⟨θ, ϕ(si, aiσi(j)

)⟩) + exp(⟨θ, ϕ(si, aiσi(k)
)⟩)

)
.

Our goal is to bound the estimation error of the MLE in the squared semi-norm ∥v∥2ΣD+λI = vT (ΣD + λI)v.

Strong convexity of ℓ. Let xi
jk = ϕ(si, aij)− ϕ(si, aik). The gradient of the negative log likelihood is

∇ℓD(θ) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

exp(−⟨θ, xi
σi(j)σi(k)

)⟩
1 + exp(−⟨θ, xi

σi(j)σi(k)
)⟩

· xi
σi(j)σi(k)

.

The Hessian of the negative log likelihood can be written as

∇2ℓD(θ) =
1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j

exp(−⟨θ, xi
σi(j)σi(k)

)⟩
(1 + exp(−⟨θ, xi

σi(j)σi(k)
)⟩)2

· xi
σi(j)σi(k)

xi⊤
σi(j)σi(k)

.

Since exp(⟨θ, xi
σi(j)σi(k)

⟩) ∈ [exp(−2LB), exp(2LB)], we know that the coefficients satisfy

exp(−⟨θ, xi
σi(j)σi(k)

)⟩
(1 + exp(−⟨θ, xi

σi(j)σi(k)
)⟩)2

≥ 1

2 + exp(2LB) + exp(−2LB)
.

Set γ = 1
2+exp(2LB)+exp(−2LB) . We can verify that for any vector v ∈ RK , one has

v⊤∇2ℓD(θ)v ≥ γ

n
v⊤

 n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

xi
σi(j)σi(k)

xi⊤
σi(j)σi(k)

 v

=
γ

n
v⊤

 n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

xi
jkx

i⊤
jk

 v

= γK(K − 1)v⊤ΣDv/2

= γK(K − 1)∥v∥2ΣD
/2.

Thus we know that ℓ is γ-strongly convex with respect to the semi-norm ∥ · ∥ΣD .

Bounding the estimation error. Now we aim at bounding the estimation error ∥θ̂MLE2
− θ⋆∥ΣD+λI

.

Since θ̂MLE2
is optimal for ℓD, we have ℓD(θ̂MLE2

) ≤ ℓD(θ
⋆). Defining the error vector ∆ = θ̂MLE2

− θ⋆, adding and
subtracting the quantity ⟨∇ℓD(θ

⋆), ∆⟩ yields the bound

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≤ −⟨∇ℓD(θ

⋆), ∆⟩.
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By the γ-convexity condition, the left-hand side is lower bounded by γK(K − 1)∥∆∥2ΣD
/2. As for the right-hand side,

note that |⟨∇ℓD(θ
⋆), ∆⟩| ≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI for any λ > 0. Altogether we have

γ∥∆∥2ΣD
≤ 2∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI/K(K − 1).

Now we further bound the term ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 . Observe that the gradient takes the form

∇ℓD(θ
⋆) = − 1

n

n∑
i=1

K−1∑
j=0

K−1∑
k=j+1

exp(−⟨θ, xi
σi(j)σi(k)

)⟩
1 + exp(−⟨θ, xi

σi(j)σi(k)
)⟩

· xi
σi(j)σi(k)

. (7)

We set X ∈ R(nK(K−1)/2)×d with the differencing vector xi
jk as its (iK(K − 1)/2 + k +

∑K
l=K−j+1 l)

th row. We also
define V i

jk be the random variable of the coefficient of xi
jk in Equation (7) under the PL model, i.e. conditioned on an

arbitrary permutation σi,

V i
jk =


exp(−⟨θ, xi

jk)⟩
1+exp(−⟨θ, xi

jk)⟩
, if σ−1

i (j) < σ−1
i (k)

− 1
1+exp(−⟨θ, xi

jk)⟩
, otherwise.

Let Ṽi ∈ RK(K−1)/2 be the concatenated random vector of {V i
jk}0≤j<k≤K−1, V ∈ RnK(K−1)/2 be the concatenated

random vector of {Ṽi}ni=1. We know that Ṽi is independent for each i, and that V is sub-Gaussian with mean 0 and parameter√
K(K − 1)/2 since the PL model reduces to BTL model when considering pairwise comparisons. Now we know that the

term ∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 can be written as

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 =

1

n2
V ⊤X(ΣD + λI)−1X⊤V.

Let M = K2

n I . One can verify that M ⪰ 1
n2X(ΣD+λI)−1X⊤ almost surely since λmax(X(ΣD+λI)−1X⊤/n2) ≤ K2/n.

Thus we can upper bound the original term as

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 ≤ K2

n
∥V ∥22.

By Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem 2.1)), we
know that with probability at least 1− δ,

∥V ∥22 ≤ CK(K − 1) · (d+ log(1/δ)).

Thus altogether, we have

γ∥∆∥2ΣD
≤
√

C · (d+ log(1/δ))

n
∥∆∥ΣD+λI .

Similar to the pairwise comparison, we can derive that with probability at least 1− δ,

∥θ̂MLE2
− θ⋆∥ΣD+λI ≤ C ·

√
d+ log(1/δ)

n
+ λB2.

The rest of the proof on the sub-optimality upper bound follows the same argument as Theorem 3.2.
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D.7. Proof of Lemma 5.1

Recall that the MLE is given by

θ̂MLE ∈ arg min
θ∈ΘB

ℓD(θ),

where ℓD(θ) = −
n∑

i=1

log
(
1(yi = 1) ·

exp(
∑H

h=1 rθ(s
i
h, a

i
h))

exp(
∑H

h=1 rθ(s
i
h, a

i
h)) + exp(

∑H
h=1 rθ(s

i′
h , a

i′
h))

+ 1(yi = 0) ·
exp(

∑H
h=1 rθ(s

i′
h , a

i′
h))

exp(
∑H

h=1 rθ(s
i
h, a

i
h)) + exp(

∑H
h=1 rθ(s

i′
h , a

i′
h))

)
= −

n∑
i=1

log
(
1(yi = 1) · 1

exp(−
∑H

h=1(rθ(s
i
h, a

i
h)− rθ(si′h , a

i′
h))) + 1

+ 1(yi = 0) · 1

exp(
∑H

h=1(rθ(s
i
h, a

i
h)− rθ(si′h , a

i′
h))) + 1

)
= −

n∑
i=1

log
(
1(yi = 1) · 1

exp(−⟨θ,
∑H

h=1(ϕ(s
i
h, a

i
h)− ϕ(si′h , a

i′
h))⟩) + 1

+ 1(yi = 0) · 1

exp(⟨θ,
∑H

h=1(ϕ(s
i
h, a

i
h)− ϕ(si′h , a

i′
h))⟩) + 1

)
To simplify the notation, we let xi =

∑H
h=1(ϕ(s

i
h, a

i
h)− ϕ(si′h , a

i′
h)). Our goal is to bound the estimation error of the MLE

in the squared semi-norm ∥v∥2ΣD+λI = vT (ΣD + λI)v.

Strong convexity of ℓ. We first show that ℓD is strongly convex at θ⋆ with respect to the semi-norm ∥ · ∥ΣD , meaning that
there is some constant γ > 0 such that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ∥∆∥2ΣD

(8)

for all perturbations ∆ ∈ Rd such that θ⋆ +∆ ∈ ΘB .

One can directly calculate the Hessian of ℓ as

∇2ℓD(θ) =
1

n

n∑
i=1

(
1(yi = 1) · exp(−⟨θ, xi⟩)

(exp(−⟨θ, xi⟩) + 1)2
+ 1(yi = 0) · exp(⟨θ, xi⟩)

(exp(⟨θ, xi⟩) + 1)2

)
· xix

T
i ,

Observe that ⟨θ, xi⟩ ∈ [−2HLB, 2HLB], we have

vT∇2ℓD(θ)v ≥ γ

n
∥Xv∥22 for all v,

where γ = 1/(2 + exp(−2HLB) + exp(2HLB)), X ∈ Rn×d has the differencing vector xi ∈ Rd as its ith row.

Thus, if we introduce the error vector ∆ := θ̂MLE − θ⋆, then we may conclude that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ

n
∥X∆∥22 = γ∥∆∥2ΣD

,

showing that ℓD is strongly convex around θ⋆ with parameter γ.

Bounding the estimation error. Now we aim at bounding the estimation error ∥θ̂MLE − θ⋆∥ΣD .

Since θ̂MLE is optimal for ℓD, we have ℓD(θ̂MLE) ≤ ℓD(θ
⋆). Defining the error vector ∆ = θ̂MLE−θ⋆, adding and subtracting

the quantity ⟨∇ℓD(θ
⋆), ∆⟩ yields the bound

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≤ −⟨∇ℓD(θ

⋆), ∆⟩.
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By the γ-convexity condition, the left-hand side is lower bounded by γ∥∆∥2ΣD
. As for the right-hand side, note that

|⟨∇ℓD(θ
⋆), ∆⟩| ≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI for any λ > 0. Altogether we have

γ∥∆∥2ΣD
≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI .

Now we further bound the term ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 . Observe that the gradient takes the form

∇ℓD(θ
⋆) =

−1

n

n∑
i=1

[
1[yi = 1]

exp(−⟨θ⋆, xi⟩)
1 + exp(−⟨θ⋆, xi⟩))

− 1[yi = 0]
1

1 + exp(−⟨θ⋆, xi⟩))

]
xi.

Define a random vector V ∈ Rn with independent components as

Vi =

{
exp(−⟨θ⋆, xi⟩)

1+exp(−⟨θ⋆, xi⟩)) w.p. 1
1+exp(−⟨θ⋆, xi⟩))

−1
1+exp(−⟨θ⋆, xi⟩)) w.p. exp(−⟨θ⋆, xi⟩)

1+exp(−⟨θ⋆, xi⟩)) .

With this notation, we have ∇ℓD(θ
⋆) = − 1

n XTV . One can verify that E[V ] = 0 and |Vi| ≤ 1.

Defining the n-dimensional square matrix M := 1
n2X(ΣD + λI)−1XT , we have ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 = V TMV . Let
the eigenvalue decomposition of XX⊤ be XX⊤ = UΛU⊤. We can bound the trace and operator norm of M as

Tr(M) =
1

n2
Tr(U(Λ/n+ λI)−1U⊤UΛU⊤) ≤ d

n

∥M∥op = λmax(M) ≤ 1

n
,

Moreover, since the components of V are independent and of zero mean, and |Vi| ≤ 1, the variables are 1-sub-Gaussian, and
hence the Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem
2.1)) implies that with probability at least 1− δ,

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 = V ⊤MV ≤ C1 ·

d+ log(1/δ)

n
.

Here C1 is some universal constant. This gives us

γ∥∆∥2ΣD+λI ≤ ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI + 4λγB2

≤
√

C1 ·
d+ log(1/δ)

n
∥∆∥ΣD+λI + 4λγB2.

Solving the above inequality gives us that for some constant C2,

∥∆∥ΣD+λI ≤ C2 ·

√
d+ log(1/δ)

γ2n
+ λB2.

D.8. Proof of Theorem 5.2

Proof. From Lemma 5.1, we know that with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·

√
d+ log(1/δ)

γ2n
+ λB2.

Let J ′(π) = J(π)−H⟨θ⋆, v⟩. We have

SubOpt(π̂PE) = J(π⋆)− J(π̂PE)

= J ′(π⋆)− J ′(π̂PE)

= (J ′(π⋆)− Ĵ(π⋆)) + (Ĵ(π⋆)− Ĵ(π̂PE)) + (Ĵ(π̂PE)− J ′(π̂PE)).
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Since π̂PE is the optimal policy under expected value Ĵ(π), we know that the second difference satisfies Ĵ(π⋆)− Ĵ(π̂PE) ≤ 0.
For the third difference, we have

Ĵ(π̂PE)− J ′(π̂PE) = Es∼dπ̂PE [r̂(s, π̂PE(s))− r(s, π̂PE(s))].

From Lemma 5.1 we know that θ⋆ ∈ Θ(θ̂MLE, λ) with probability at least 1− δ. Thus we know that with probability at least
1− δ, Ĵ(π̂PE)− J ′(π̂PE) ≤ 0. Now combining everything together, we have

SubOpt(π̂PE) ≤ J ′(π⋆)− Ĵ(π⋆)

= sup
θ∈Θ(θ̂MLE,λ)

Es∼dπ⋆ [(θ⋆ − θ)⊤(ϕ(s, π⋆(s))− v)]

= sup
θ∈Θ(θ̂MLE,λ)

Es∼dπ⋆ [(θ⋆ − θ̂MLE + θ̂MLE − θ)⊤(ϕ(s, π⋆(s))− v)]

= Es∼dπ⋆ [(θ⋆ − θ̂MLE)
⊤(ϕ(s, π⋆(s))− v)] + sup

θ∈Θ(θ̂MLE,λ)

Es∼dπ⋆ [(θ̂MLE − θ)⊤(ϕ(s, π⋆(s))− v)].

By the definition of Θ(θ̂MLE, λ), we know that for any θ ∈ Θ(θ̂MLE, λ), one has Es∼dπ⋆ [(θ̂MLE − θ)⊤(ϕ(s, π⋆(s))− v)] ≤
C ·
√

d+log(1/δ)
γ2n + λB2 · ∥(ΣD + λI)−1/2Es∼dπ⋆ [ϕ(s, π⋆(s))− v]∥2. Furthermore, we know that θ̂⋆ ∈ Θ(θ̂MLE, λ) from

Lemma 5.1. Altogether we have with probability 1− 2δ

SubOpt(π̂PE) ≤ 2C ·

√
d+ log(1/δ)

γ2n
+ λB2 · ∥(ΣD + λI)−1/2Es∼dπ⋆ [ϕ(s, π⋆(s))− v]∥2.

D.9. Proof of Theorem C.2

Proof. Here We mainly prove Lemma C.1, since Theorem C.2 is a direct corollary when combined with the proof in
Theorem 5.2.

Our goal is to bound the estimation error of the MLE in the squared semi-norm ∥v∥2ΣD+λI = vT (ΣD + λI)v.

Strong convexity of ℓ. We first show that ℓD is strongly convex at θ⋆ with respect to the semi-norm ∥ · ∥ΣD , meaning that
there is some constant γ > 0 such that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ∥∆∥2ΣD

(9)

for all perturbations ∆ ∈ Rd such that θ⋆ +∆ ∈ ΘB .

The gradient of the negative log likelihood is

∇ℓD(θ) = − 1

n

n∑
i=1

∑
τ ′∈T (si0)

exp(
∑H

h=0⟨θ, ϕ(s′h, a′h)⟩)∑
τ ′′∈T (si0)

exp(
∑H

h=0⟨θ, ϕ(s′′h, a′′h)⟩)
·

(
H∑

h=0

(ϕ(sih, a
i
h)− ϕ(s′h, a

′
h))

)
.

Let xi
τ,τ ′ =

∑H
h=0(ϕ(sh, ah)−ϕ(s′h, a

′
h)), where τ = {(sh, ah)}h∈[H], τ ′ = {(s′h, a′h)}h∈[H]. The Hessian of the negative

log likelihood can be written as

∇2ℓD(θ)

=
1

n

n∑
i=1

∑
τ∈T (si0)

∑
τ ′∈T (si0)

exp(
∑H

h=0⟨θ, ϕ(sh, ah) + ϕ(s′h, a
′
h)⟩)

2(
∑

τ ′′∈T (si0)
exp(

∑H
h=0⟨θ, ϕ(s′′h, a′′h)⟩))2

· xi
τ,τ ′xi⊤

τ,τ ′ .

Since exp(⟨θ, ϕ⟩) ∈ [exp(−LB), exp(LB)], we know that the coefficients satisfy

exp(
∑H

h=0⟨θ, ϕ(sh, ah) + ϕ(s′h, a
′
h)⟩)

2(
∑

τ ′′∈T (si0)
exp(

∑H
h=0⟨θ, ϕ(s′′h, a′′h)⟩))2

≥ exp(−4LB)

2 sups |T (s)|2
.
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Set γ = exp(−4LB)/2. We can verify that for any vector v ∈ RK , one has

v⊤∇2ℓD(θ)v ≥ γv⊤ΣDv = γ∥v∥2ΣD
.

Thus we know that ℓ is γ-strongly convex with respect to the semi-norm ∥ · ∥ΣD .

Bounding the estimation error. Now we aim at bounding the estimation error ∥θ̂MLE − θ⋆∥ΣD+λI
.

Since θ̂MLE is optimal for ℓD, we have ℓD(θ̂MLE) ≤ ℓD(θ
⋆). Defining the error vector ∆ = θ̂MLE−θ⋆, adding and subtracting

the quantity ⟨∇ℓD(θ
⋆), ∆⟩ yields the bound

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≤ −⟨∇ℓD(θ

⋆), ∆⟩.

By the γ-convexity condition, the left-hand side is lower bounded by γ∥∆∥2ΣD
. As for the right-hand side, note that

|⟨∇ℓD(θ
⋆), ∆⟩| ≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI for any λ > 0. Altogether we have

γ∥∆∥2ΣD
≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI .

Now we further bound the term ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 . Observe that the gradient takes the form

∇ℓD(θ
⋆) = − 1

n

n∑
i=1

∑
τ ′∈T (si0)

exp(
∑H

h=0⟨θ⋆, ϕ(s′h, a′h)⟩)∑
τ ′′∈T (si0)

exp(
∑H

h=0⟨θ⋆, ϕ(s′′h, a′′h)⟩)
·

(
H∑

h=0

(ϕ(sih, a
i
h)− ϕ(s′h, a

′
h))

)
. (10)

We set X as the concatenated differencing vector xi
τ,τ ′ where τ, τ ′ are distinct and ordered. We also define V i

τ,τ ′ be the
random variable of the coefficient of xi

τ,τ ′ in Equation (10), i.e.

V i
τ,τ ′ =


exp(

∑H
h=0⟨θ

⋆, ϕ(s′h,a
′
h)⟩)∑

τ′′∈T (si0)
exp(

∑H
h=0⟨θ⋆, ϕ(s′′h ,a

′′
h)⟩)

, if τ = {(sih, aih)}h∈[H],

− exp(
∑H

h=0⟨θ
⋆, ϕ(sh,ah)⟩)∑

τ′′∈T (si0)
exp(

∑H
h=0⟨θ⋆, ϕ(s′′h ,a

′′
h)⟩)

, if τ ′ = {(sih, aih)}h∈[H],

0 otherwise.

Let Ṽi be the concatenated random vector of {V i
τ,τ ′}, V be the concatenated random vector of {Ṽi}ni=1. We know that Ṽi

and Ṽj are independent for each i ̸= j due to the independent sampling procedure. We can also verify that the mean of Ṽi is
0. We know that Ṽi has almost sups |T (s)| non-zero elements. And the sum of their absolute value is bounded by 1. we
know Ṽi is 1-sub-Gaussian. Now we know that the term ∥∇ℓD(θ

⋆)∥2(ΣD+λI)−1 can be written as

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 =

1

n2
V ⊤X(ΣD + λI)−1X⊤V.

Let M = sups |T (s)|2
n I . One can verify that M ⪰ 1

n2X(ΣD + λI)−1X⊤ almost surely since λmax(X(ΣD +
λI)−1X⊤/n2) ≤ sups |T (s)|2/n. Thus we can upper bound the original term as

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 ≤ sups |T (s)|2

n
∥V ∥22.

By Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem 2.1)), we
know that with probability at least 1− δ,

∥V ∥22 ≤ C · (d+ log(1/δ)).

Thus altogether, we have

γ∥∆∥2ΣD
≤
√

C sups |T (s)|2 · (d+ log(1/δ))

n
∥∆∥ΣD+λI .

Similar to the pairwise comparison analysis in Appendix D.1, we can derive that with probability at least 1− δ,

∥θ̂MLE − θ⋆∥ΣD+λI ≤ C ·
√

sups |T (s)|2(d+ log(1/δ))

n
+ λB2.

The rest of the proof on the sub-optimality upper bound follows the same argument as Theorem 5.2.
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D.10. Proof of Theorem B.2

To simplify the notation, we let f i
θ = rθ(s

i, ai1)− rθ(s
i, ai0). We can see that the gradient of ℓ takes the form

∇ℓD(θ) =
−1

n

n∑
i=1

[
1[yi = 1]

exp(−f i
θ)

1 + exp(−f i
θ))

− 1[yi = 0]
1

1 + exp(−f i
θ))

]
∇f i

θ.

And the Hessian of ℓ is

∇2ℓD(θ) =
1

n

n∑
i=1

(
exp(f i

θ)

(exp(f i
θ) + 1)2

· ∇f i
θ∇f i⊤

θ − 1(yi = 1) · exp(−f i
θ)

1 + exp(−f i
θ)

· ∇2f i
θ +

1(yi = 0) · exp(f i
θ)

1 + exp(f i
θ)

· ∇2f i
θ

)
.

Now from Assumption B.1, we have

∇2ℓD(θ) ⪰
1

n

n∑
i=1

γ∇f i
θ∇f i⊤

θ − 2α2I.

where γ = 1
2+exp(−2LB)+exp(2LB) . Now from the Lipschitz gradient assumption we also know that ∥∇f i

θ − ∇f i
θ⋆∥ ≤

2α2∥θ⋆ − θ∥. Let u = ∇f i
θ −∇f i

θ⋆ , we have

∇2ℓD(θ) ⪰
1

n

n∑
i=1

γ(∇f i
θ⋆ + u)(∇f i

θ⋆ + u)⊤ − 2α2I

⪰ 1

n

n∑
i=1

γ∇f i
θ⋆∇f i⊤

θ⋆ + γ(∇f i
θ⋆u⊤ + u∇f i⊤

θ⋆ )− 2α2I.

Since u⊤v ≤ ∥u∥2∥v∥2 ≤ 2α2B∥v∥2, v⊤∇f i
θ⋆ ≤ α1∥v∥2, this gives that

vT∇2ℓD(θ)v ≥ γ

n
∥Xv∥22 − 2α2(1 + 2γα1B)∥v∥22 for all v,

where X ∈ Rn×d has the vector ∇f i
θ⋆ ∈ Rd as its ith row. Thus, if we introduce the error vector ∆ := θ̂MLE − θ⋆, then we

may conclude that

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≥ γ

n
∥X∆∥22 − 2α2(1 + 2γα1B)∥∆∥22 = γ∥∆∥2ΣD

− 2α2(1 + 2γα1B)∥∆∥22.

Bounding the estimation error. Now we aim at bounding the estimation error ∥θ̂MLE − θ⋆∥ΣD . Since θ̂MLE is optimal
for ℓD, we have ℓD(θ̂MLE) ≤ ℓD(θ

⋆). (When θ̂MLE is approximately optimal, i.e. ℓD(θ̂MLE) ≤ minθ ℓD(θ) + ϵ, the same
argument also holds up to an extra additive term ϵ.) Defining the error vector ∆ = θ̂MLE − θ⋆, adding and subtracting the
quantity ⟨∇ℓD(θ

⋆), ∆⟩ yields the bound

ℓD(θ
⋆ +∆)− ℓD(θ

⋆)− ⟨∇ℓD(θ
⋆), ∆⟩ ≤ −⟨∇ℓD(θ

⋆), ∆⟩.

We know the left-hand side is lower bounded by γ∥∆∥2ΣD
− 2α2(1 + 2γα1B)∥∆∥22. As for the right-hand side, note that

|⟨∇ℓD(θ
⋆), ∆⟩| ≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI for any λ > 0. Altogether we have

γ∥∆∥2ΣD
≤ ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI + β∥∆∥22,

where β = 2α2(1 + 2γα1B). Now we further bound the term ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 . Observe that the gradient takes the

form

∇ℓD(θ
⋆) =

−1

n

n∑
i=1

[
1[yi = 1]

exp(−f i
θ⋆)

1 + exp(−f i
θ⋆))

− 1[yi = 0]
1

1 + exp(−f i
θ⋆))

]
∇f i

θ⋆ .
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Define a random vector V ∈ Rn with independent components as

Vi =


exp(−fi

θ⋆ )

1+exp(−fi
θ⋆

))
w.p. 1

1+exp(−fi
θ⋆

))

−1
1+exp(−fi

θ⋆
))

w.p. exp(−fi
θ⋆ )

1+exp(−fi
θ⋆

))
.

With this notation, we have ∇ℓD(θ
⋆) = − 1

n XTV . One can verify that E[V ] = 0 and |Vi| ≤ 1.

Defining the n-dimensional square matrix M := 1
n2X(ΣD + λI)−1XT , we have ∥∇ℓD(θ

⋆)∥(ΣD+λI)−1 = V TMV . Let
the eigenvalue decomposition of X⊤X be X⊤X = UΛU⊤. We can bound the trace and operator norm of M as

Tr(M) =
1

n2
Tr(U(Λ/n+ λI)−1U⊤UΛU⊤) ≤ d

n

Tr(M2) =
1

n4
Tr(U(Λ/n+ λI)−1U⊤UΛU⊤U(Λ/n+ λI)−1U⊤UΛU⊤) ≤ d

n2

∥M∥op = λmax(M) ≤ 1

n
,

Moreover, since the components of V are independent and of zero mean, and |Vi| ≤ 1, the variables are 1-sub-Gaussian, and
hence the Bernstein’s inequality for sub-Gaussian random variables in quadratic form (see e.g. Hsu et al. (2012, Theorem
2.1)) implies that with probability at least 1− δ,

∥∇ℓD(θ
⋆)∥2(ΣD+λI)−1 = V ⊤MV ≤ C1 ·

d+ log(1/δ)

n
.

Here C1 is some universal constant. This gives us

γ∥∆∥2ΣD+λI ≤ ∥∇ℓD(θ
⋆)∥(ΣD+λI)−1 ∥∆∥ΣD+λI + 4(λγ + 2α2(1 + 2γα1B))B2

≤
√

C1 ·
d+ log(1/δ)

n
∥∆∥ΣD+λI + 4(λγ + 2α2(1 + 2γα1B))B2.

Solving the above inequality gives us that for some constant C2,

∥∆∥ΣD+λI ≤ C2 ·

√
d+ log(1/δ)

γ2n
+ (λ+ α2/γ + α1α2B)B2.

31


