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ABSTRACT

Radiology report generation using artificial intelligence has shown promise in en-
hancing clinical workflows. However, due to limitations of language modeling loss,
existing approaches struggle with quantitative accuracy (e.g., measuring the size of
nodules), and lack the ability to produce confidence scores for medical findings,
which is crucial for quantitative metrics required by regulatory approval. This paper
introduces QuantRad, a novel approach utilizing cascaded decoders to address
these challenges in radiology report generation. QuantRad pairs a vision encoder
with three decoders that operate sequentially: the first conducts sentence-level
topic planning by generating a series of questions, the second recognizes abnormal
targets and their quantitative and categorical attributes, and the third generates the
final report by answering each question based on the recognized targets. With the
dedicated target recognition step, our method integrates the quantitative strength of
a perception model to text generation. Specifically, QuantRad recognizes abnormal
targets without being biased by language priors, and produces probability scores
along with each finding, allowing adjustments of sensitivity for clinical adoption
and producing ROC curves for regulatory compliance. Besides, the disentangled
topic planning captures the uncertainties in the omission of medical findings and
their presentation order, allowing the report generation decoder to be trained with
less ambiguity. Our method advances the accuracy and reliability of radiology
report generation, offering a promising path for clinical applications and regulatory
validation.

1 INTRODUCTION

Medical imaging is crucial in healthcare, but a worldwide shortage of radiologists, exacerbated by
high burnout rates, poses significant risks to patient care Ganeshan et al. (2020); Parikh et al. (2020);
Cao et al. (2023). AI models that generate radiology reports automatically have been attracting
growing interest. While it takes thirteen to fifteen years to train a radiologist, these AI models could
alleviate the shortage problem at scale.

Radiology Report Generation is typically framed as an image captioning task, with notable progress
in recent years. However, the inherent limitations of language modeling loss hinder clinical accuracy,
particularly in quantitative aspects. A radiology report should correctly identify abnormalities
with accurate attributes. These attributes include quantitative measurements such as nodule sizes
(e.g., “2cm”) and categorical descriptors such as severity (e.g., “mild”). However, the language
modeling loss treats all mismatches equally, failing to prioritize critical factual correctness. Moreover,
quantitative measurements are often biased by language patterns in the training data rather than
being grounded in the input image. These constraints significantly compromise the clinical reliability
of existing models. Compared to text generation models, perception models such as classification
and detection models demonstrate superiority in quantitative accuracy. Therefore, this paper aims
to integrate the strengths of perception models into radiology report generation, addressing the
quantitative limitations of current encoder-decoder text generation models.

By using a modified ViT-DET Li et al. (2022) model for recognizing abnormal targets as a set
prediction task, we directly supervise the prediction of quantitative and categorical attributes rather
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Input ImageInput Image

X

[Q1] “Describe the heart condition?”
[Q2] “Any support devices?”
[Q3] “Check on consolidation?”
...

[T1] [cardiomegaly, moderate, 0.92]
[T2] [pacemaker, left lung, 0.95], ...
[T3] []
...

No focal consolidation is seen.

The heart size is moderately enlarged.

...

A dual-lead pacemaker implanted ...
[Q1]
[Q2]
[Q3]

[T1]
[T2]
[T3]

Question Generation Decoder

Report Generation Decoder

Target Recognizer Decoder

Figure 1: QuantRad pipeline with cascaded decoders. Paired with an image encoder, the first decoder
generates a sequence of questions based on the image features. The second decoder recognizes
abnormal targets, including their names, attributes, and confidence scores. The third decoder answers
each question given the image and recognized targets. The final report is constructed by concatenating
all answers. The ground-truth question-answer pairs and abnormal targets are extracted from the
report with a private deployment of ChatGPT.

than generating them through the next-word prediction process of the report. This method enables
the production of confidence scores for each medical finding, facilitating sensitivity level adjustments
in clinical applications. Crucially, it allows for the generation of quantitative metrics such as
Receiver Operating Characteristic (ROC) curves, which are essential for regulatory processes. In
contrast, existing methods that generate text-only outputs are constrained to binary predictions
(positive or negative). The numerical confidence scores produced by our model provide a more
nuanced evaluation of the reliability in clinical scenarios, potentially accelerating the path to clinical
deployment. This approach bridges the gap between the quantitative requirements of regulatory
bodies and the qualitative nature of radiology reports, addressing a significant challenge in the field
of medical report generation.

Furthermore, we identify that the ambiguities in the textual training data is a key reason affecting
the model’s reliability. A radiology report comprises multiple sentences, each focusing on a medical
topic like heart conditions, lung effusion, or opacities. The order of presenting these topics varies,
reflecting the diverse writing styles of radiologists. For instance, some prefer starting with salient
findings, whereas others favor checking visual details upfront to avoid overlooking them. Furthermore,
negative findings (i.e. absence of a disease) are sometimes omitted in the report. Such variabilities do
not affect the correctness of a report, but they introduce a degree of randomness that is ambiguous
for a model to fit. As the image captioning loss is based on categorical cross entropy, it requires a
word-by-word exact match with the ground truth. Consequently, a model could be unfairly penalized
for accurate, albeit differently paraphrased, predictions. Image captioning datasets like COCO Lin
et al. (2014) address such ambiguity by providing multiple ground-truth captions per image. However,
this feature is not available in medical report datasets, which hinders the robustness of both training
and evaluation.

To overcome the ambiguity in sentence topics, we propose a novel approach by converting report
generation into a multi-round visual question answering (VQA) task. In this approach, each sentence
in the report is generated with a given topic defined by a question. We utilize ChatGPT Wang
et al. (2023) 1 to convert each radiology report into a multi-round VQA format. Then, we train two
decoders with the first one generates questions given the image, and another answers each question
based on the image and recognized abnormal targets. The question-generation decoder captures
the uncertainties of topic omission and ordering, enabling us to train the report generation decoder
with less ambiguity for improved test-time reliability. While the question generation decoder may
not fit the training data perfectly due to inherent uncertainties, its under-fitting has limited impact
on perceivable performance during testing. This pipeline also offers the flexibility to answer new
questions that may not be included in the default output.

1We utilize a private, in-house deployment of ChatGPT on Azure to satisfy data usage agreements. The
converted datasets will be made available upon acceptance.
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Figure 2: Overview of C2C pipeline. Given a radiology report, the Generative Proxy Model (GPM,
??) gives each sentence a discrete label c of its concept class. For example, in this figure, the empirical
meaning of c2 for the second sentence is “aortic nodule”. The GPM is used to generate pseudo-
labels C to train the Concept Proposal Module (CPM, Section 3.3), which generates a sequence of
concepts [c0, . . . , cm] based on an image. Finally, the Content Generation Module (CGM, Section 3.4)
generates the report based on the image feature X and concept classes C. C behave like special
begin-of-sentence ([BOS]) tokens. The output of an end-of-sentence ([EOS]) token signals the
completion of a sentence. At this time, we append the next concept token ci+1 to the input to trigger
the next sentence, and repeat this autoregressive process until the final [EOS] token is produced.

Concretely, we propose QuantRad, a novel approach that generates medical report with three decoders
that operate in a cascaded manner. As illustrated in Figure 1, the first step, Question Generation,
decides the topic per sentence in terms of questions. The second step, Target Recognition, conducts a
set prediction of abnormalities as triplets of <name, attribute, confidence score>. Both qualitative
and categorical attributes are predicted with a DETR-style Carion et al. (2020) ViT-DET model Li
et al. (2022). The final step, Report Generation, answers each question based on the image feature
and recognized targets. We extract question-answer pairs and abnormal targets in a structured format
from existing report generation datasets Johnson et al. (2023) to supervise these three modules.
Mathematically, we refactor medical report generation from P (Y | X) into Equation (1):

P (y | X) = Pa(y | X, t, q) · Pt(t | X, q) · Pq(q | X), (1)

where X, y denote the image and one sentence in the text output Y , respectively. q and t are the
interim outputs of questions and abnormal targets in text, respectively. Pq, Pt, Pa represents three
decoder modules. Equation (1) shows the generation process of one sentence, and it is repeated
autoregressively until all sentences are generated.

As radiology reports are open-vocabulary, it is not feasible to define a closed set of classes and train a
conventional object detector to recognize abnormal targets. Furthermore, substantial measurements
are not convertible to simple numerical values, e.g., ”millimetric”, ”2 to 3 cm”, ”multiple”. Therefore,
we modify the ViT-DET implementation of DETR and replace the classification and regression heads
with phrase generation. As each output phrase (the name of the target, the name of the attribute and the
value) is short, generating the textual phrase still enjoys the benefit of avoiding major language prior
biases from the full report. In the common case that the phrase contains only one token (e.g., ”2”),
phrase generation is essentially a classification over the tokens. The vocabulary of the measurements
is much smaller than the vocabulary of radiology reports, making this task easier to train. The output
probability is produced based on the logits of the whole phrase.

To summarize, we propose QuantRad, a novel radiology report generation approach which improves
quantitative reliability by using three decoders operating in a cascaded fashion. QuantRad combines
the strengths of perception and generation models, addressing the limitations of using the plain
language modeling loss. Our method achieves state-of-the-art (SOTA) performance on MIMIC-
CXR Johnson et al. (2019b), the largest radiology report generation dataset, with a smaller model
size. Our study contributes to the broader field of image-to-text generation. Besides healthcare, the
proposed methods are applicable in accuracy-critical scenarios, such as legal and finance, where
similar challenges could also exist.
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2 RELATED WORK

2.1 IMAGE CAPTIONING

Image captioning is to generate a sentence which describes a given image. The latest work benefit
from large scale vision-language pre-training Chen et al. (2020a); Dou et al. (2021); Wang et al.
(2021); Kim et al. (2021). Encoder-decoder architectures Li et al. (2023); Wang et al. (2022a);
Nguyen et al. (2022) provide a unified implementation for various vision-language tasks.

While many radiology report generation methods are based on image captioning Cornia et al. (2020);
Vinyals et al. (2015); Xu et al. (2015); You et al. (2016), there are key differences in the tasks including
(1) radiology reports are much longer than generic image captions e.g. as in COCO Captions Lin et al.
(2014), and have multiple sentences covering a different medical concepts; (2) radiology reports are
highly templated for individual sentences, while are diverse in paraphrasing a paragraph of multiple
sentences.

2.2 RADIOLOGY REPORT GENERATION

Chest X-ray radiology reports lack a standardized order for presenting medical findings Burbridge
(2017). For instance, the inside-out order Smithuis & Otto (2022) and the ABCDE order (each
letter represents an anatomical region) Lopez-Cardona (2023) are two approaches from clinical
guidelines. Additionally, medical conditions can be omitted from the report Irvin et al. (2019). These
inconsistencies lead to loss-evaluation mismatch problems, creating challenges for both training and
evaluation Gu et al. (2018b); Yi et al. (2020); Gu et al. (2018a). Previous studies have demonstrated
the value of generating reports using a two-step approach Nooralahzadeh et al. (2021); Liu et al.
(2019), which are conceptually similar to ours. However, due to the lack of sentence-level concept
labels (which clarifies the ambiguity) in existing work, they motivate their approaches from different
perspectives.

Specifically, Liu et al. (2019) adopts a hierarchical framework which predicts sentence-level topics
as the first step. However, their topic generation module is not supervised with any labels, leaving
uncertainty in their actual meaning. Another similar work is Nooralahzadeh et al. (2021), which first
generates high-level context sentences and then refine them to the reports. The first step is trained
to generate medical keywords per sentence extracted with a text processing model. We differ from
them on the supervision of the first step. Our method specifically tackles the label ambiguity problem
(uncertainties of topic omission and ordering). The significance of the label ambiguity issue has been
primarily discussed in the context of image recognition Rajeswar et al. (2022); Chung et al. (2023);
Ridnik et al. (2021), but has not been adequately addressed in the medical imaging domain due to a
lack of solutions. Our method converts multi-sentence report generation into a sequence of visual
question answering tasks, which not only reduces the ambiguity during training, but also facilitates
responding to new questions asked by the user when a particular aspect is omitted from the output.

2.3 VISION-LARGE LANGUAGE MODELS

Latest advancements in large language models (LLMs) OpenAI (2023); Touvron et al. (2023);
Chowdhery et al. (2022) provide a unified interface for a wide range of tasks.

Researchers built multi-modal large models by adding a vision head to the language model. As the
LLMs are mostly decoder-only, they can add visual tokens as additional input if the feature space
of image and text modalities are aligned. Among these work, LLaVA Liu et al. (2023a) proposes
generating visual question-answering training data by prompting GPT-4, and then use it to train a
model based on the open source language model, LLaMA Touvron et al. (2023). LLaVA-Rad Chaves
et al. (2024) and MAIRA Hyland et al. (2023) models leverage large text decoders to improve report
generation performance.
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3 METHOD

3.1 CASCADED DECODERS PIPELINE FOR RADIOLOGY REPORT GENERATION

We compose radiology reports by separated sentence-level topic planning, clinical abnormality target
recognition, and report generation steps. The sentence-level topic planning is disentangled from
report generation to isolate the uncertainties of the omission and ordering of the topics, a form of
label ambiguity. The target recognition is separated from text generation to leverage the quantitative
reliability of perception models, which predict targets without the shortcut of referencing language
priors. Three decoders were trained progressively: first, the question generation decoder is trained
with the image encoder. Then, we train the question generation decoder and the target recognition
decoder. Finally, we train the full model with three decoders jointly. This section introduces the three
decoder modules in detail.

3.2 GENERATING VQA DATASET

[
{

"q": "Are there any support devices visible?",
"a": "Sternotomy wires are intact. Right Swan-Ganz catheter is close to pulmonic valve. 

Mitral valve replacement is in correct position."
},
{

"q": "Are there any signs of atelectasis or pleural effusion?",
"a": "Mild interval increase in retrocardiac opacity from moderate atelectasis and left pleural effusion."

},
{

"q": "Is there any evidence of pneumothorax?",
"a": "No pneumothorax and right lung is clear."

},
{

"q": "What is the condition of the heart size and mediastinum?",
"a": "Heart is mildly enlarged and there is a post op appearance to mediastinam."

},
{

"q": "Are the hila normal?",
"a": "Hila are normal."

},
{

"q": "Are there any bony abnormalities?",
"a": "No bony abnormality."

}
],

Figure 3: Question-answer dataset converted from radiology reports.

We use ChatGPT to convert all radiology reports to question-answer pairs as is shown in Figure 3

3.3 QUESTION GENERATION DECODER

Given an input image, the decoder generates a sequence of questions, which essentially serves as
soft prompts for generating corresponding sentences. We implement it with a six-layer transformer
decoder, and train it with questions generated by ChatGPT based on the original report. The question
generation decoder conducts sequence generation autoregressively with reference to the previously
generated questions. Concretely, it generates m sentences Z = (c1, c2, . . . , cm) by modeling
Equation (2):

P (C | X) =

m+1∏
i=0

P (ci | X, c0, c1, . . . , ci−1), (2)

where c0 is a [BOS] token denoting the beginning of a sequence, and cm+1 is [EOS] appended
after the sequence to signal the end of token generation. With the ground truth being the concatenated
questions, we train decoder with the language modeling loss:
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Figure 4: Question Generation Decoder. The model is a multi-modal decoder of N transformer
layers. Each output token ci is predicted with X and its prefixes [c0, . . . , ci−1] as the input. Questions
are separated by a special [EOQ] token and the generation process ends when a [EOS] token is
produced.

L =
1

m+ 1

m+1∑
i=1

CE(ci, p(ci | X, c0, c1, . . . , ci−1)), (3)

where CE is the categorical cross-entropy loss with label smoothing of 0.1.

3.4 REPORT GENERATION DECODER

The report generation decoder is also a multi-modal text generation decoder. It learns to generate a
sentence of n tokens Yi = (yi1 , yi2 , . . . , yin) conditioned on the image, one topic question ci and
corresponding targets t. Mathematically, CGM models the following:

P (Yi | X, ci, t) =

m+1∏
j=0

P (yij | X, ci, t, yi0 , yi1 , . . . , yij−1), (4)

where Yi denotes the ith sentence from the radiology report. Similar to Equation (2), yi0 and yin+1
are

special [BOS] and [EOS] tokens, respectively. By iterating ci from (c1, c2, . . . , cm), the Question
Generator generates m sentences Y = (Y1, Y2, . . . , Ym) and composes the whole radiology report.

3.5 IMPLEMENTATION

Module Architectures. For the image encoder, we use a ViT-B/16 Dosovitskiy et al. (2020) pre-
trained with MAE He et al. (2022); Xiao et al. (2023) on medical images. For decoders, we use a
six-layer, randomly initialized text decoder from GIT Wang et al. (2022a). A linear projection layer
is added between the image encoder and decoders for feature space alignment.

Three-Stage Training. The model is trained in three stages. In Stage 1, we train the Question
Generation decoder to generates sentence topics. In Stage 2, we add Target Recognition decoder to
the training and pair with the same image encoder. Ground truth questions are used to train the Target

6
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Pred. B-4 METEOR ROUGE-L CIDEr Human GPT-4

#1 0.508 0.312 0.667 3.756 wrong wrong
#2 0.000 0.185 0.167 0.239 correct correct

Reference: “The heart size is top normal.”
Prediction #1: “The heart size is mildly enlarged.”
Prediction #2: “Borderline size of the cardiac silhouette.”

Table 1: Limitations of n-gram metrics for medical texts. Both the reference and predictions are
extracted from real radiology reports. The reference (ground truth) makes a negative diagnose of
cardiomegaly (enlarged heart). Prediction #2 restates the same meaning with different words. Predic-
tion #1 is contradictory to the reference, although they have more overlapping words. While existing
metrics based on n-grams fail in this scenario, GPT-4 can be prompted to make consistent judgements
with human. We provide the details in the supplementary material. The issue demonstrated here is
common in medical texts.

Recognizer. Finally, we add Report Generation decoder to the training, supervised by ground truth
questions and targets.

4 PERFORMANCE EVALUATION

4.1 FROM N-GRAM TO LLM-BASED METRICS

As radiology report generation is treated as an image captioning task, natural language generation
(NLG) metrics are commonly used in existing studies as the major evaluation protocol. In this section,
we first show that these metrics are not reliable for evaluating medical text. We then propose a new
evaluation method based on large language models (LLMs) like GPT-4 OpenAI (2023). Working
with radiologists, we show that the LLM-based metric is considerably more consistent with human
judgements.

4.1.1 EXISTING METRICS

Existing NLG metrics include BLEU Papineni et al. (2002), METEOR Banerjee & Lavie (2005),
ROUGE Lin (2004) and CIDEr Vedantam et al. (2015), all based on n-grams. The statistics of
overlapping words is important to achieve better scores. When applied on medical reports, they
are less reliable due the increased length, synonyms and paraphrasing in medical texts. Please find
Table 1 for an example.

4.1.2 GPT-4 FOR MEDICAL REPORT EVALUATION

Latest studies from Natural Language Processing show that GPT-4 achieves state-of-the-art correlation
with human judgments in most NLG tasks Liu et al. (2023b); Wang et al. (2023); Chiang & Lee (2023).
However, the applicability on the medical domain is not yet explored. Working with radiologists, we
fill this gap by implementing a GPT-4-based evaluation metric for radiology report generation, and
rigorously validating its robustness on medical texts. We hope our work can serve as an effective
benchmark for future studies.

Implementation. We iterate on the prompt to facilitate robust evaluation with GPT-4. In the prompt,
we instruct GPT-4 to give a 0-10 star rating for the predicted radiology report with the ground truth as
the reference. We defined the criterion for the rating of 0 and 10, including the factors to be considered
and to be ignored based on the characteristics of existing datasets. Our final prompt template is
provided in Figure 5, which is validated against human judges. Alternative implementations include
asking GPT-4 to give a 0-100 score rating, or selecting a better prediction from the output of two
models. Their correlations with human judgements are compared in the ablation studies.

Human Alignment. We assess the reliability of GPT-4 and existing metrics by comparing their
alignment with human judgements. For this purpose, we form a group of three radiologists, with
each one having at least five years experience in Chest X-ray interpretation. We randomly sample 50
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System: You are a human evaluator who can assess the quality of a natural language generation model.
User: Score the following generated chest x-ray radiology report given the human written report as
reference with one to ten stars, where one star means “totally wrong” and ten stars means “perfect”.
Note that perfect measures the factual correctness of the diagnose, relevance of two reports, and fluency
(well-written and grammatically correct). Ignore sentences about comparisons with previous studies in
both the reference and the generated report.
Human Reference:
[Ground Truth]

Generated Report:
[Model Prediction]

Stars:

Figure 5: Prompting GPT-4 for robust radiology report evaluation.

radiology studies, and for each study, we prepare the ground truth report and two machine-generated
reports using XPRONET Wang et al. (2022b) and our method. Totally, 100 machine-generated reports
are rated by radiologists, each report is rated by two radiologists. When rating a report, we present
to the radiologist the Chest X-ray image, the ground truth report and the machine generated reports.
The radiologists are asked to give a 1-10 rating based on the image and the ground truth. When the
machine generated report diverges from the ground truth, the radiologists are asked to make their
professional judgement on the points to deduct. Results in Table 2 show that the GPT-4-based metric
outperforms all existing metric in terms of both Spearman Zar (2005) and Kandell’s Tau Kendall
(1938) correlations.

BLEU-4 METEOR ROUGE-L CIDEr GPT-4

Spear. 0.158 0.311 0.191 0.154 0.455
Kand. 0.113 0.214 0.133 0.105 0.346

Table 2: Spearman and Kendall-Tau correlations of different metrics with human judgements for
radiology report. GPT-4 evaluation outperforms existing n-gram metrics on human alignment by a
clear margin. Please find Appendix E for additional analysis.

4.2 EXPERIMENTAL RESULTS

Addressing label ambiguity results in a more effective learning process and therefore, improve the
overall evaluation metrics. To quantify the gain from alleviating label ambiguity, we conduct ablation
studies by comparing the performance of our proposed method with and without the sentence-level
concepts as conditions.

We evaluate our method on two public datasets, MIMIC-CXR Johnson et al. (2019b;a). Following
existing works, we use the findings section from the report as the ground truth.

MIMIC-CXR is the largest datasets for Chest X-ray (CXR) report generation. The dataset contains
227,835 radiographic studies, where each study is a pair of a radiology report and corresponding
CXR images. We use the official training/validation/testing split.

4.2.1 RESULTS

Automatic Metrics. Section 4.2.1 shows the comparison of existing methods. Our method, QuantRad
outperforms the existing state of the art by a clear margin of 8.5%.

Human Evaluation. We conduct human evaluation with 50 randomly selected reports from the
MIMIC test set. The predictions of two methods, including an existing SOTA Wang et al. (2022b)
and QuantRad (ours) are provided per study (totally 100 reports), and each report is rated by two
radiologists (totally 200 data points). To remove bias, the reports are presented randomly with the
names of methods blind to the radiologists. Results in Table 3 shows that reports generated by our
method is better than or equal to XPRONET on 71.0% of the studies.
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Method Mean Std. Comparative

XProNet 7.12 2.17 29.0% better, 8.0% tie
QuantRad (ours) 8.16 1.65 63.0% better, 8.0% tie

Table 3: Human evaluation of two methods. The rating follows a 0-10 star scale. Mean and Std. are
the mean and standard deviation of all ratings per method, and Comparative measures the percentage
of one method being rated better (or tie) than the other method. Our QuantRad method outperforms
XPRONET, an existing SOTA, by a clear margin.

Table 4: Report Generation Performance on MIMIC-CXR

Model

CheXbert
RGER BLEU ROUGE

(“uncertain” as negative) (“uncertain” as positive)

Micro-avg Macro-avg Micro-avg Macro-avg
F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 F1-14 F1-5 (1) (4) (L)

Model size >7B
LLaVA-Rad Chaves et al. (2024) 57.3 57.4 39.5 47.7 57.3 60.2 44.0 53.3 29.4 38.1 15.4 30.6
Med-PaLM M Tu et al. (2024) 53.6 57.9 39.8 51.6 - - - - - 32.3 11.3 27.3
MAIRA Hyland et al. (2023) 55.7 56.0 38.6 47.7 55.3 58.8 42.3 51.7 29.6 39.2 14.2 28.9
CheXagent Chen et al. (2024) 39.3 41.2 24.7 34.5 39.4 42.1 27.3 35.8 20.5 16.9 4.7 21.5
LLaVA-Med Li et al. (2024) 27.2 22.0 15.5 16.6 27.3 24.4 18.7 20.5 6.5 22.2 1.0 13.3
LLaVA Liu et al. (2024) 22.9 23.4 15.4 17.5 23.7 26.9 17.0 20.3 4.5 21.0 1.3 13.8

Model size <1B
Flamingo-CXR Alayrac et al. (2022) - - - - 51.9 56.5 - - - - 10.1 29.7
CvT2Dist. Nicolson et al. (2023) 44.2 - 30.7 - - - - - - 39.3 12.7 28.6
M2 trans Miura et al. (2020) - - - - - 56.7 - - - - 11.4 -
RGRG Tanida et al. (2023) - - - - - 54.7 - - - 37.3 12.6 26.4
R2Gen Chen et al. (2020b) - - - - 22.8 34.6 - - - 35.3 8.6 27.7
TieNet Wang et al. (2018) - - - - - 27.1 - - - - 8.1 -

Ours – Model size 0.8B
QuantRad 58.6 58.8 39.9 48.6 57.3 59.5 43.4 52.5 30.1 39.6 15.9 31.9
Ablative Baseline 49.1 53.9 31.0 43.9 49.7 56.2 35.2 49.2 27.1 33.5 13.4 29.9

5 ABLATION STUDIES

5.1 MEDICAL CONCEPTS AS CONDITIONS

This ablative study validates our assumption that our Concept-to-Content method improves the
learning by reducing label ambiguities. Results in Table 5 shows that there is a clear performance
degradation when removing the medical concept which was introduced to alleviate the ambiguity.

Method BLEU-4 METEOR ROUGE-L GPT-4

Baseline 0.103 0.144 0.276 0.538
Clustering 0.111 0.154 0.282 0.546
GPM 0.113 0.164 0.287 0.564

Table 5: Ablation study of latent prompts. Baseline: remove the latent prompts. Clustering: cluster
sentences by the text embeddings, and use the cluster ID as the pseudo-label. GPM: our learnable
approach of training a generative proxy model.
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5.2 SIZE OF CODEBOOK

The size of the codebook K in the GPM is a hyper-parameter, which represents the granularity
of the medical concepts. We searched K in [32, 128], a range informed by medical knowledge on
the number of medical concepts as well as anatomical regions in radiology reports. We searched
K in Table 6 and validate the choice by both the quantitative model performance and qualitative
visualizations as shown in Appendix D.

K BLEU-4 METEOR ROUGE-L GPT-4

32 0.106 0.154 0.281 0.552
64 0.113 0.164 0.287 0.564
128 0.109 0.158 0.285 0.561

Table 6: Ablation of codebook size K. We train three proxy models with codebook sizes of 32, 64
and 128 and generate three sets of pseudo labels. Results are evaluated on the final radiology report on
the MIMIC dataset. k = 64 achieves the best result, which aligns with our empirical understanding
of radiology reports.

6 LIMITATIONS

The evaluation results may not represent real-world performance because the images are mostly
collected from the intensive care unit (ICU) of hospitals. It creates a bias in terms of the category and
severity of the diseases our model was exposed to.

7 CONCLUSION

In this paper, we introduce two methods to enhance the learning of long paragraph generation when
factual correctness is crucial. We identify the label ambiguity issue and address it by a Concept-
to-Content (QuantRad) approach. To facilitate QuantRad, we propose Generative Proxy Modeling
to learn sentence concept classification without labels. Furthermore, we validate the use of GPT-4
as a state-of-the-art metric for evaluating radiology reports. We hope our proposed modeling and
evaluation methods will advance future research in image-to-text generation for correctness-sensitive
scenarios.

8 BROADER IMPACT

Our study contributes to the broader field of image-to-text generation. When applied in the medical
domain, the proposed approach has the potential to reduce radiologists’ workload and improve patient
care by providing efficient diagnostic reports. However, it is essential to establish clear guidelines
and safeguards to ensure the responsible use of AI in healthcare settings, as the reliability and safety
of such systems have not been sufficiently tested in clinical environments. Specifically, AI-generated
content should not be used to replace expert judgments but rather as a supplement to ensure safety.
Furthermore, providing AI-generated medical reports directly to patients who have limited medical
knowledge may lead to misunderstandings and cause risky situations.

The proposed machine learning methods, including Generative Proxy Modeling and the Concept-
to-Content approach for long text generation, are generic and can be applied beyond the medical
domain. These methods can be employed in other accuracy-critical scenarios, such as legal and
finance, where label ambiguity exists due to insufficient training data not covering the full variations
of correct outputs. The successful application of these methods in various domains could lead to
increased efficiency and improved decision-making processes. Meanwhile, the risks discussed in this
section also apply to these other domains. As with any AI system, it is crucial to thoroughly validate
and monitor the performance of these methods in real-world settings to mitigate risks and ensure their
safe and responsible use.
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A ETHICAL CONSIDERATIONS

Medical datasets often contain sensitive patient information. To ensure the ethical use of such data,
this study adheres to strict guidelines. All participants who accessed the MIMIC-CXR dataset,
including the authors and radiologists involved in this research, completed the required onboarding
process through PhysioNet2. For the IU X-ray dataset, we complied with the license3.

To maintain compliance with PhysioNet’s policy on the use of large language model APIs during the
automatic evaluation, we utilized a secure, private, in-house deployment of GPT-4. This approach
guarantees that no sensitive information is shared with external parties.

Furthermore, to protect patient privacy, X-ray images presented in this paper were carefully selected
from open, compliance-free sources, ensuring that no identifiable patient information is disclosed.

B QUALITATIVE RESULT OF CPM AND CGM

We present a qualitative result of our method in Figure 6. We show the process that medical concept
classes ci are generated by CPM, and are then converted to sentences in CGM, ensuring clinical
accuracy compared with the ground truth. In the illustrated case, our method adheres to a clinically
accurate structure for medical reporting.

Existing WorkC2C (ours)Human Annotation
As compared to the previous radiograph 
the patient has undergone right 
thoracocentesis. The extent of the right 
pleural effusion has substantially 
decreased. There is no evidence of 
pneumothorax. The right lung is 
unremarkable. Unchanged appearance 
of the cardiac silhouette.

[𝑐!", 𝑐#, 𝑐$, 𝑐%&, 𝑐!', 𝑐(), 𝑐"%]

A single portable frontal upright view of 
the chest was obtained. There is a large 
opacity in the right mid-to-lower 
hemithorax with air bronchograms. The 
left lung is relatively clear. The left heart 
border is partially obscured and there is 
a right basilar opacity. The left lung is 
clear. There is a possible small right 
pleural effusion. There is no 
pneumothorax.

Single AP upright portable view of the 
chest was obtained. The patient is 
rotated to the right. The patent 
esophageal stent has migrated in 
position with the superior portion now 
projecting over the right lung apex. Also, 
since the prior study, there has been 
development of significant opacity 
projecting over the right hemithorax
which may be due to a combination of 
pleural effusion and consolidation. The 
left lung is clear. The cardiac silhouette 
is not enlarged. ED aware at the time of 
the dictation.

!P#$

!"#$

Figure 6: Qualitative results from our method, C2C. CPM generates discrete medical concept classes.
Texts highlighted in the same color indicate matching meanings. Red-colored text in the existing
work shows a factually incorrect prediction, despite using the same words with the ground truth, e.g.,
“pleural effusion”.

C QUALITATIVE EXAMPLES OF LABEL AMBIGUITY AS A SIGNIFICANT ISSUE

Take the human annotation in Figure 6 as an example, the radiology report is still correct when the
order of some sentences are shuffled. For example, pleural effusion (highlighted in yellow) and left
lung (highlighted in green) have no correct orders. Besides, diagnosis of healthy findings, such as the
left lung (highlighted in green) are sometimes omitted in other ground truth annotations. As the loss
function demands an exact match with the ground truth, the learning process become less efficient in
leveraging the training data.

Our approach first produce a sequence of the medical concepts with CPM and then generate each
sentence based on CPM’s outputs as a condition. In the example, CPM’s output doesn’t perfectly fit
the ground truth, but the final output from CGM is still considered correct in real applications. CPM
captures the ambiguity making the training of CGM ambiguity-free.

D EXAMINATION OF LEARNED MEDICAL CONCEPTS

We compared with the Generative Proxy Model (GPM), which leverages text generation as a proxy
task for learning medical concept classification per sentence. Rather than manually curating a list

2MIMIC-CXR on PhysioNet: https://physionet.org/content/mimic-cxr/2.0.0/
3IU X-ray dataset license: https://creativecommons.org/licenses/by-nc-nd/4.0/
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(a) Concept class 6.
Empirical meaning: “medical devices, tubes”

c = 6
• "There is an enteric tube which extends to the
distal esophagus and must be advanced."

• "A nasogastric tube courses into the stomach,
with the last side port at the GE junction."

• "A right-side PICC line appears to terminate in
the mid SVC."

• "The left PICC line ends in the mid SVC,
unchanged."

• "An NG tube ends in the stomach and its last
side port is near the EG junction."

• "A nasoenteric tube enters the stomach."

• "Tip of feeding tube continues to terminate in
the proximal stomach."

(b) Concept class 15.
Empirical meaning: “views of the x-ray”

c = 15
• "PA and lateral views of the chest provided."

• "Frontal and lateral views of the chest."

• "AP and lateral views of the chest."

• "Semi-erect AP and lateral images of the chest
were obtained."

• "Frontal and lateral views of the chest with
dedicated views of the ribs were obtained for a
total of 7 images."

(c) Concept class 28.
Empirical meaning: “heart conditions”

c = 28
• "The heart is normal in size."

• "The heart size is within normal limits."

• "The heart size is normal."

• "The heart size is top normal."

• "Cardiac silhouette is top normal for
technique."

• "Cardiac silhouette is not enlarged."

• "Cardiac silhouette size is normal."

Figure 7: Qualitative results of the Generative Proxy Model for sentence medical concept classifica-
tion. We select three classes as examples to illustrate that the codebook indices c can roughly cluster
sentences of the same medical concept. c is sent to the text decoder (CGM) to generate a sentence for
the corresponding medical concept. Details (e.g. position, severity) of the medical condition will be
determined in CGM by attending to the image features, instead of provided by c.

of medical concepts, a task that can be challenging in achieving comprehensive coverage, we allow
the Codebook to identify soft concept classes in a learnable manner. This enables us to set a hyper-
parameter K for the codebook size to determine the granularity of the classes. Following empirical
examination after training, we observe that the discrete classes, determined by the codebook indices
c, can approximately cluster sentences by their meaning. We present qualitative results in Figure 7.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E ADDITIONAL ANALYSIS OF HUMAN EVALUATION

We provide human evaluation in Table 2 and Table 3 to validate the GPT-4 based metric and the
performance of our method. In this section, we offer a detailed analysis.

E.1 VARIANCE AMONG RADIOLOGISTS AND MODELS

While the GPT-4 based metric statistically outperforms n-gram metrics by a significant margin, we
find it varies for different models.

As shown in Table 7, n-gram metrics tend to be more robust on XPRONET Wang et al. (2022b) than
our method, C2C. This variation is likely attributable to each model’s methodology. XPRONET,
with its prototype-driven approach, generally yields more word overlap with the ground truth.
Conversely, for C2C, we occasionally observe a negative correlation between n-gram metrics and
human evaluation. These instances could indicate overfitting: the output might have more overlapping
words, which favors n-gram metrics, but the meaning is incorrect.

In connection to Section 1, where we discussed the diverse styles of radiologists, we observe further
variations in the evaluation styles of radiologists. For instance, Radiologist R3 demonstrates more
extreme ratings.

(a) Spearman Correlation

BLEU-4 METEOR ROUGE-L CIDEr GPT-4
R1/XPro 0.192 0.280 0.265 0.292 0.544
R1/C2C -0.210 -0.130 -0.123 -0.003 0.184
R2/XPro 0.071 0.256 0.113 0.019 0.434
R2/C2C 0.023 0.082 -0.008 0.019 0.377
R3/XPro 0.454 0.427 0.389 0.362 0.413
R3/C2C 0.247 0.427 0.288 0.132 0.832

(b) Kendall-Tau Correlation

BLEU-4 METEOR ROUGE-L CIDEr GPT-4
R1/XPro 0.155 0.209 0.217 0.217 0.417
R1/C2C -0.158 -0.102 -0.093 -0.007 0.151
R2/XPro 0.048 0.212 0.084 0.022 0.348
R2/C2C 0.017 0.068 -0.004 0.017 0.305
R3/XPro 0.334 0.313 0.287 0.253 0.312
R3/C2C 0.191 0.324 0.207 0.082 0.718

Table 7: Spearman and Kendall-Tau correlations between metrics and human evaluation. Each row
shows the correlation analysis for the data provided by one radiologist for one method. R1, R2,
R3 represent three radiologists. XPro and C2C are the two methods being evaluated. These results
demonstrate variability with both radiologists and the method being evaluated.

F ADDITIONAL ANALYSIS OF GPT-4 EVALUATION

F.1 INTERPOLATION OF MEDICAL TEXT

Given two sentences in medical texts, the statistics of overlapping words do not reliably evaluate the
alignment of their meaning. In Table 1, we present two test cases that challenge the n-gram metrics,
but GPT-4 can be effectively prompted to make the correct judgement. We include the prompt and
GPT’s output in Figure 8.
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Below are two sentences from a Chest X-ray radiology report. Reply “cor-
rect” if you think the reference and the prediction sentences have the same
meaning. Reply ”incorrect” if the reference and the prediction have different
meaning. Reply “NAN” if the two sentences are not related. Make sure you
apply medical knowledge and try to be as correct as possible, and explain
why.

Reference:
[Reference]

Prediction:
[Prediction]

Reference:
The heart size is top normal.

Prediction:
The heart size is mildly enlarged.

GPT-4 Response:
incorrect

Explanation:
The phrase “top normal” suggests that the heart size is at the upper limit of
what is considered normal but not exceeding it. On the other hand, “mildly
enlarged” indicates that the heart size is slightly beyond the normal range.
These are two different clinical observations where ”top normal” represents
the highest size within the normal range, and “mildly enlarged” represents a
size just outside the upper limit of the normal range, signifying a possible
abnormal enlargement. Therefore, the meanings of the two sentences are
different in a clinical context.

Reference:
The heart size is top normal.

Prediction:
Borderline size of the cardiac silhouette.

GPT-4 Response:
correct

Explanation:
In radiological terms, “top normal” implies that the heart size is at the upper
limit of the normal range, while “borderline” suggests that the size is at the
boundary between normal and potentially abnormal. Both phrases indicate
that the heart is neither clearly within normal size parameters nor clearly
enlarged but is at the high end of what would be considered normal. Thus,
in the context of a radiology report, the two sentences can be interpreted to
have the same meaning, signaling that the heart size is at the upper threshold
of normal.

Figure 8: GPT-4 understands medical text. The three blocks of text show the prompt used to ask
GPT-4 whether two sentences align in their meanings, and two test cases from Table 1, where the
n-gram metrics fail but GPT-4 is correct.
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F.2 RANDOMNESS IN GPT-4’S RESPONSE

There exists a degree of randomness in the evaluation result from GPT-4. For the same input, the
output rating from GPT-4 may vary when we call the API multiple times. Existing work in natural
language processing Liu et al. (2023b) suggests requiring GPT-4 to return 20 candidate responses
and take the average. We find that the average rating on a test set is statistically stable for medical
reports. We think the reason is due to the extra length in the medical texts.
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