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ABSTRACT

Recent deep-learning-based approaches to single-image reflection removal have
shown promising advances, primarily for two reasons: 1) the utilization of
recognition-pretrained features as inputs, and 2) the design of dual-stream in-
teraction networks. However, according to the Information Bottleneck principle,
high-level semantic clues tend to be compressed or discarded during layer-by-layer
propagation. Additionally, interactions in dual-stream networks follow a fixed
pattern across different layers, limiting overall performance. To address these
limitations, we propose a novel architecture called Reversible Decoupling Network
(RDNet), which employs a reversible encoder to secure valuable information while
flexibly decoupling transmission- and reflection-relevant features during the for-
ward pass. Furthermore, we customize a transmission-rate-aware prompt generator
to dynamically calibrate features, further boosting performance. Extensive experi-
ments demonstrate the superiority of RDNet over existing SOTA methods on five
widely-adopted benchmark datasets. Our code will be made publicly available.

1 INTRODUCTION

Figure 1: Quantitative comparison in
PSNR between ours and previous SOTA
methods, where we achieve new records
on all 5 datasets. Note that the scale of
each axis is normalized by its second-
best value. The best and second-best
PSNR are displayed for reference.

Reflection is a common superimposition factor when pho-
tographing through transparent medium, such as glass.
Under the circumstances, the captured image I typically
contains a mixture of transmission T (the scene behind
medium) and reflection R (the reflected scene) (Nayar
et al., 1997), which can be simply expressed as I = T +R.
The presence of reflections often hinders vital information
in the transmission layer, impeding the performance of
downstream computer vision tasks, such as stereo match-
ing, optical flow, and depth estimation (Tsin et al., 2003;
Yang et al., 2016; Costanzino et al., 2023). Thus, single im-
age reflection removal/separation (SIRR) is desired to dis-
entangle the transmission and reflection components from
a single input image. However, this problem is severely
ill-posed as infinitely many possible decompositions of
T̂ and R̂ satisfy I = T̂ + R̂. In other words, it is highly
challenging to determine which combination is optimal if
without effective priors or guidance on decomposition.

In recent years, learning-based approaches have made
tremendous strides in this field (Zhang et al., 2018; Wei
et al., 2019; Li et al., 2023; Hu & Guo, 2023; Zhong et al.,
2024). A key consensus among these methods is to exploit hierarchical semantic representations
through large-scale recognition-pretrained models, which serve as priors or regularizers during the de-
composition. One pioneering deep-learning work (Zhang et al., 2018) leverages intermediate features
from a pre-trained VGGNet (Simonyan & Zisserman, 2015) through the concept of hypercolumns
to help differentiate between the transmission and reflection layers from mixtures. Originally from
neuroscience, the term “hypercolumn” refers to a functional unit in the visual cortex that processes
visual stimuli at multiple receptive-field sizes (Hubel & Wiesel, 1974). This concept was first
applied to object segmentation and localization by interpolating and stacking features extracted from
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different layers of a network (Hariharan et al., 2015b). However, simply mapping stacked high-
dimensional hierarchies into a group of much lower-dimensional features–as input for subsequent
processes–inevitably leads to considerable semantic information loss.

Previous works with SOTA performance (Hu & Guo, 2021; 2023) suggest that, all information from
the source image is valuable for the task. The two components can be optimized by exchanging
information between them. For any feasible decomposition (T̂ , R̂), the following relationship holds:

T̂ := T −Q, R̂ := R+Q s.t. I = T̂ + R̂, (1)

where Q represents the information to exchange. Concretely, YTMT (Hu & Guo, 2021) and DSR-
Net (Hu & Guo, 2023) select Q via activation functions and channel splitting, respectively. Though
being effective, the information preservation is not fully guaranteed in their interaction designs, i.e.,
the information bottleneck induced by linear layers in YTMT and the multiplicative reductions in the
gating mechanism of DSRNet.

To avoid the above risk, reversible units (Gomez et al., 2017b), which are designed to preserve
information, may offer a viable solution. In particular, building coupled reversible units naturally fits
the situation as follows:

forward process

{
T̂2 := T̂1 + F(R̂1)

R̂2 := R̂1 + G(T̂2)
; reverse process

{
T̂1 := T̂2 −F(R̂1)

R̂1 := R̂2 − G(T̂2)
, (2)

where F(·) and G(·) can be any network modules, and the subscripts stand for the different versions
of layer estimations before and after the reversible units, respectively. For simplicity, we also use T̂

and R̂ to represent the corresponding deep features, which is based on the understanding that if the
features are sufficiently disentangled, mapping them back to the image space becomes an easy task.

Although the use of reversible modules can address the issue of information loss in feature interactions
at the same scale, preserving multi-scale information during the feedforward process remains a
challenge. Beyond the hypercolumn (Zhang et al., 2018) and the progressive hierarchy fusion (Hu &
Guo, 2023), one intuitive scheme is to stack reversible modules at each scale to facilitate forward
propagation while incorporating cross-scale connections to ensure effective multi-scale interaction
and fusion. A straightforward approach aligning with this idea is MAXIM (Tu et al., 2022) (without
consideration of information loss), which employs a fully connected mechanism across multi-scale
hierarchies. Similar ideas can also be found in HRNet (Sun et al., 2019). However, operating on
high-dimensional features is computationally expensive and memory-intensive.

Inspired by GLOM (Hinton, 2023), which employs a part-whole hierarchy to represent an image with
multiple columns, and embodies both bottom-up and top-down interactions to mitigate the compu-
tational burden associated with fully connected layers,we integrate multi-scale feature processors
into a single sub-network, referred to as a “column”. Further, we ensemble the columns in parallel
and build interactions in both bottom-up and top-down manners. It is worth noting that, the scaled
residual connections used in GLOM for same level interactions between adjacent columns can still
cause information loss. To remedy this problem, we extend the residual connections by incorporating
multi-level reversible connections, which upgrades the vanilla reversible unit (Gomez et al., 2017a).

Compared with structural designs guided by information bottleneck principle (Tishby & Zaslavsky,
2015; Hu & Guo, 2021), our proposed framework learns disentangled representations (Desjardins
et al., 2012; Bengio et al., 2013) by categorizing and recombining the original information, instead
of merely selecting and discarding elements, based upon a solid foundation for its information-
preserving module (reversible unit). Additionally, it retains multi-scale information and facilitates
cross-scale interaction. Besides, in real-world scenarios, the reflection pattern varies along with
multiple factors, such as the refractive index of the transparent surface, color granularity, and viewing
angle (Schechner et al., 1999). To enhance the robustness against variations in reflection strength, we
further endow the model with an adaptive transmission-rate-aware prompt generator.

In light of these considerations, this paper proposes a network, called Reversible Decoupling Network
(RDNet for short). The major technical contributions of this work are twofold:

• We revisit the preservation and cross-level interaction problems of hierarchical semantic
information during the single image reflection removal/separation. To address the chal-
lenges, we introduce a multi-column reversible encoder based on the part-whole hierarchy,
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complemented by a tailored hierarchy decoder. This design ensures a better retention of rich
semantics, effectively mitigating the ill-posed nature of the SIRR task.

• To tackle the varied reflection parameters in real-world scenarios, we introduce an adaptive
transmission-rate-aware prompt generator, which learns channel scaling factors from the
dataset during training and leverages this knowledge as a prior when testing. It guides the de-
composition network in selecting more accurate transmission-reflection ratios, significantly
enhancing the model’s generalization capabilities.

Extensive experiments are conducted to verify the efficacy of our design, and reveal its superiority
over other SOTA alternatives both qualitatively and quantitatively (see Fig. 1 for a brief summary).
Notably, our approach also achieves robust generalization on in-the-wild cases, underscoring its
practical value in real-world applications (shown by Fig. 4).

2 RELATED WORK

2.1 SINGLE IMAGE REFLECTION REMOVAL

Physical formulation. In prevalent reflection removal frameworks (Levin & Weiss, 2007), an image
I is typically decomposed into transmission T and reflection R components, so as to I = T + R.
However, in real-world scenarios, these two layers may be attenuated by factors such as diffusion
and other environmental influences during superposition (Wan et al., 2020). To account for such
complexities, an augmented modeling has been proposed: I = αT+βR, where the coefficients α and
β provide adaptability to varying conditions (Wan et al., 2018b; Yang et al., 2018). Nonetheless, the
assumption of linear superimposition often breaks down, particularly in cases of overexposure (Wen
et al., 2019). To address this concern, the concept of an alpha-matting map W is incorporated, leading
to a reformulation of the model as I = W ◦ T +W ◦ R with W = 1−W . While the adjustment
improves the model’s flexibility, it also increases the complexity of the already ill-posed problem.

The above model struggles to encapsulate the diverse reflection phenomena, highlighting the challenge
of developing a universal solution. Hu and Guo (Hu & Guo, 2023) offered a more comprehensive
depiction of the superimposition process by introducing a residual term: I = T̃ +R̃+ϕ(T,R), where
T̃ and R̃ signify the altered transmission and reflection information within I after superimposition and
degradation, as captured by camera sensors. The term ϕ(T,R) denotes the residual information in the
reconstruction, arising from factors such as attenuation and overexposure. However, current methods
primarily use the above modelings to synthesize training data, expecting the generalizability to
real-world data. But, they lack explicit estimation of the physical parameters involved. Furthermore,
distance-based loss functions such as mean absolute error (MAE) and mean squared error (MSE)
fail to account for global color and intensity shifts. Explicitly estimating the degradation rate of the
projected image could improve performance. A more detailed explanation is provided in Sec. 3.2.

Deep-learning-based modeling. Considering that reflection layers are typically out of focus and
appear more blurred than transmission layers, Li and Brown (Li & Brown, 2014) introduced a relative
smoothness prior to distinguish the gradients of the two layers, which follow different probability
distributions. Multi-scale depth-of-field (DoF) analysis-based methods were also developed to
separate reflections from transmissions by detecting reflection-dominated regions (Wan et al., 2018a).
While these approaches achieved promising results in well-controlled environments, their performance
significantly drops in real-world conditions. CEILNet (Fan et al., 2017) imposes a relative smoothness
prior on synthesizing reflection layers, and combines them with transmission layers through addition.
It introduces an edge-aware network designed to capture transmission components, but it neglects
high-level semantics, which could further enhance the SIRR task. These methods with hand-crafted
priors highly likely fail in challenging real-world cases.

Zhang et al. (Zhang et al., 2018) enhanced semantic awareness by leveraging hypercolumn features
extracted from a pre-trained VGG-19 network (Hariharan et al., 2015a), together with perceptual and
adversarial losses. ERRNet (Wei et al., 2019) uses misaligned pairs as training data to take a step
further. But it overlooks the reflection layer, potentially increasing ambiguity in transmission recovery.
Li et al. (Li et al., 2023) proposed RAGNet, a two-stage network that initially estimates the reflection
component and then uses it to guide transmission prediction. Recently, the YTMT strategy proposed
in (Hu & Guo, 2021) treats both components equally through a dual-stream interactive network that
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restores both layers simultaneously. Yet, noticing the problem hidden in the physical formulation,
their interaction module relies on a linear assumption, which may upper-bound its performance. Other
methods, such as BDN (Yang et al., 2018) and IBCLN (Li et al., 2020) employ reflection models
with scalar weights to iteratively estimate both components, ensuring that the reflection is not too
faint. However, the interaction between the two components is ignored, sometimes leading to heavy
ghosting effect in transmission and reflection. Dong et al. (Dong et al., 2021) developed an iterative
network that estimates a probabilistic reflection confidence map at each step. DSRNet (Hu & Guo,
2023) introduces a mutually gated interaction mechanism within a two-stage structural design. In the
first stage, the network progressively fuses extracted hierarchical features, while the second stage
focuses on further decomposing these features. However, the issue of information loss persists due
to the multiplicative reductions in the gating mechanism. Additionally, the progressive hierarchical
fusion, isolated in the first stage, does not fully ensure that the hierarchical information is preserved
during the subsequent decomposition processes. Zhu et al. (Zhu et al., 2024) proposed a maximum
reflection filter for estimating reflection locations and introduce a large dataset, but they similarly
overlook interaction between the two layers. Our proposed RDNet addresses the drawbacks of
existing approaches by incorporating reversible connections and a multi-column design.

2.2 REVERSIBLE NETWORK

Reversible neural networks are designed to prevent information loss by enabling the recovery of
original inputs from outputs, thereby maintaining data integrity. Deco and Brauer (Deco & Brauer,
1994) introduced a reversible architecture that guarantees data preservation through a residual design,
which generates a lower triangular Jacobian matrix with unity diagonal elements. Building upon
this concept, Dinh et al. (Dinh et al., 2015) developed the NICE framework, employing a non-linear
bijective transformation between the data and a latent space. However, this design only allows
volume-preserving mappings. Dinh et al. (Dinh et al., 2017) extended extended this idea by proposing
a reversible transformation that does not require volume preservation. While Gomez et al. (Gomez
et al., 2017a) combined the concept of invertible networks with the ResNet architecture, ensuring that
each layer’s activations can be derived from the subsequent layer’s activations. This manner enables
backpropagation without storing the activations in memory, except for a few non-reversible layers.

Reversible Networks for Low-level Vision. Reversible CNNs have been effectively applied to
various low-level tasks, including compression (Liu et al., 2021), enhancement (Zhu et al., 2022;
Wang et al., 2022; Li et al., 2022) and restoration (Huang & Dragotti, 2022; Zhu et al., 2023; Yao
et al., 2023). These solutions typically employ reversible networks as a shared encoder-decoder
in a generative manner, where new textures are generated to supplement ost information during
degradation. However, in the task of reflection removal, the target result (the transmission image) is
mixed with the reflection rather than lost. This task requires precise decoupling of the input image
components instead of generating new textures. To the best of our knowledge, our work is the first to
design a reversible architecture specifically for reflection removal.

3 METHODOLOGY

In this section, we present the key components of the proposed RDNet, the overall structure of
which is schematically depicted in Fig. 2. Specifically, it is composed of three primary modules: the
multi-column reversible encoder (MCRE), transmission-rate-aware prompt generator (TAPG) and
the hierarchy decoder (HDec). The Pretrained Hierarchy Extractor (PHE) captures semantically rich
hierarchical representations from the input image and transmits them to each level of the first column
in MCRE. Meanwhile, TAPG learns channel-level transmission-reflection ratio priors from the data,
mapping these learned fundamental parameters into prompts that guide the MCRE network. Finally,
each column in MCRE employs an HDec to encode the hierarchical information, providing effective
side guidance (Qin et al., 2020). The decoded hierarchies from the last column yield the final results.

3.1 MULTI-SCALE REVERSIBLE COLUMN ENCODER

As shown in Fig. 2, our proposed Multi-Column Reversible Encoder (MCRE) employs an architecture
that differs from end-to-end models (Zhang et al., 2018; Wei et al., 2019) by incorporating multiple
sub-networks, each receiving column embeddings modulated by the Transmission-rate-Aware Prompt
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Figure 2: Overall structure of our RDNet, the input is fed in the transmission-rate-aware prompt
generator, pretrained hierarchy extractor, and the column embedding. The output of the prompt
generator will be transferred into the column network. After interactions between the columns, each
column uses a separate decoder to obtain a pair of image layers.

Generator (TAPG). The model is composed of a Column Embedding Layer and multiple columns
that encode multi-scale information.

In MCRE, information propagation between columns is handled through two primary mechanisms:
intra-level reversible connections (denoted by blue solid lines in the figure) that facilitate information
preservation between columns at the same level, and inter-level connections (illustrated as red dashed
lines) paired with Bidirectional Interaction Levels, enabling interactions across adjacent levels. This
approach effectively decouples multi-scale features up to Level-3. As an exception, Level-4 lacks
corresponding cross-level connections, conforming to the structure of the End Level. The initial
column within MCRE accepts the hierarchical information extracted by the PHE, ensuring a semantic-
rich representation. The subsequent multi-column reversible design ensures the lossless propagation
of hierarchical information throughout the decomposition network.

Specifically, our column embedding layer employs a 7 × 7 convolution layer with a stride of 2,
producing 2 × 2 overlapping patches F−1 for subsequent processes. For the i-th column (i ∈
{1, 2, ..., N}), each level feature F i

j , j ∈ {0, 1, 2} receives information F i
j−1 from the lower level

of the current column and F i−1
j+1 from a higher level of the previous one. The collected features are

further fused with the signal F i−1
j of the current level. The operation described above for the level j

is expressed as:
F i
j = ω(θ(F i

j−1) + δ(F i−1
j+1)) + γF i−1

j . (3)

where ω denotes the network operation, while θ and δ represent downsampling and upsampling
operations, respectively. The γ term is a simple reversible operation. In our implementation, we
utilize a learnable reversible channel-wise scaling as the reversible operation γ. This connection is
information lossless, as one can retrieve F i−1

j through the reverse operation:

F i−1
j = γ−1

[
F i
j − ω(θ(F i

j−1) + δ(F i−1
j+1))

]
. (4)

Notably, for the first level of each column, we define F i
−1 := F−1. Moreover, since the last level

does not receive any higher-level features, the δ(F i−1
j+1) term is hence discarded.

Hierarchy Decoder. Our hierarchy decoder integrates hierarchical codes from all scales to generate
the final output. We leverage several Level Decoders (LD) to interpret the higher-dimensional
hierarchies with smaller resolution into lower-dimensional ones at larger resolution. The up-sampling
operator in an LD is implemented by pixel-shuffle (Shi et al., 2016), an information-consistent
operator before and after the scaling. The up-sampled features are then fused with the information
from the previous scale with multiplication modulation. Ultimately, the final LD produces the layer
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residuals (T̂res and R̂res) through another pixel-shuffle up-sampling operation and are connected
with the original input to obtain the layer decomposition T̂ and R̂.

3.2 TRANSMISSION-RATE-AWARE PROMPT GENERATOR

Previous methods for SIRR often exhibit limited generalization capabilities due to the inherent
complexity and variability of optical factors in real-world reflective scenarios, compounded by the
constraint of limited training data. This limitation can be observed in the real-world test samples we
collected, as shown in Fig. 4. Meanwhile, in both real-world and synthesized data, color/intensity is
often compromised due to the reflection overlaying the transmission, with the transmission T itself
being degraded by a transmission rate a. In image restoration tasks, the ground truths are typically
clean images. But, linearly deviated input/result often occurs because of color/illumination shifts in
the real-world scenarios. The phenomenon is further detailed in the appendix A.

To solve the aforementioned problems, we develop a transmission-rate estimator using a simplified
version of the ConvNext model (Liu et al., 2022) pre-trained on ImageNet-1k (Deng et al., 2009).
Given an input image I ∈ R3×H×W , our transmission-rate estimator predicts six parameters:
α{R,G,B}, β{R,G,B} such that ∥αiT + βi − I∥2 is minimized for each i ∈ {R,G,B}. When testing
the input image using the six parameters generated by the prompt generator, we can obtain an average
PSNR of 24.34dB across four benchmark datasets (Real20, Objects, Postcard, and Wild), surpassing
the previous state-of-the-art method by Dong et al. (Dong et al., 2021). This result confirms the
effectiveness of our estimated transmission rate.

Once the transmission rate factor α{R,G,B}, β{R,G,B} is estimated, a three-layer MLP is used to
generate prompts that guide the MRCE, resulting in a prompt P ∈ RC×H×W , where C represents
the output dimension of the patch embedding layer, set to 64 in our work. Subsequently, the prompt
is used to modulate the intermediate features from the column embedding layer F into P ◦ F , which
allows the network to dynamically adapt to the specific characteristics of each input image, thereby
enhancing the accuracy of reflection removal.

3.3 TRAINING OBJECTIVE

Our model undergoes two training stages. In the first stage, we train the estimator for the transmission
rate. Once this is complete, we fix the classifier and proceed to train the main model along with
the prompt generator. This training scheme ensures that both the transmission-rate-aware prompt
generator and the main model work harmoniously towards the task, resulting in a robust solution.

We employ content loss and perceptual loss for the task, evaluating each pair of images produced by
each column using the following loss functions before aggregating them into the final outcome.

Content Loss. The content loss ensures consistency between the output images and the ground
truth training data. In the image domain, we adopt the Mean Squared Error (MSE) loss. Following
previous works (Hu & Guo, 2023; 2021), we further regularize the model by encouraging consistency
between the output and ground truth in the gradient domain, which writes:

Lcont := c0∥T̂ − T∥22 + c1∥R̂−R∥22 + c2∥∇T̂ −∇T∥1, (5)

where ∥ · ∥1 and ∥ · ∥2 stand for the ℓ1 and ℓ2 norms, respectively. During the first stage of training,
we set c0 = 1, c1 = 0, c2 = 0. In the second stage, these values are adjusted to c0 = 0.3, c1 = 0.9,
c3 = 0.6.

Perceptual Loss. To enhance the perceptual quality of images produced by our model, we minimize,
we minimize the ℓ1 discrepancy between the features of predicted elements and the ground-truth
references. This comparison is made at the ‘conv2 2’, ‘conv3 2’, ‘conv4 2’, and ‘conv5 2’ layers
of a pre-trained VGG-19 network on the ImageNet dataset. Denoting the features at the ith layer as
ϕi(·), the perceptual loss is computed as:

Lper :=
∑
j

ωj∥ϕj(T̂ )− ϕj(T )∥1, (6)

where ωj are weighting coefficients for each layer. The total loss turns out to be:
L := Lcont + wLper, (7)

where w = 0.01 is empirically set.
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Table 1: Quantitative results of various methods on four real-world benchmark datasets. The best
results are highlighted in bold, and the second-best results are underlined.

Methods Real20 (20) Objects (200) Postcard (199) Wild (55) Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
w

/o
N

at
.

ERRNet 22.89 0.803 24.87 0.896 22.04 0.876 24.25 0.853 23.53 0.879
IBCLN 21.86 0.762 24.87 0.893 23.39 0.875 24.71 0.886 24.10 0.879

RAGNet 22.95 0.793 26.15 0.903 23.67 0.879 25.53 0.880 24.90 0.886
YTMT 23.26 0.806 24.87 0.896 22.91 0.884 25.48 0.890 24.05 0.886

DSRNet 24.23 0.820 26.28 0.914 24.56 0.908 25.68 0.896 25.40 0.905
Ours 24.43 0.835 25.76 0.905 25.95 0.920 27.20 0.910 25.95 0.908

w
N

at
. Dong et al. 23.34 0.812 24.36 0.898 23.72 0.903 25.73 0.902 24.21 0.897

DSRNet 23.91 0.818 26.74 0.920 24.83 0.911 26.11 0.906 25.75 0.910
Zhu et al. 21.83 0.801 26.67 0.931 24.04 0.903 26.49 0.915 25.34 0.912

Ours 25.58 0.846 26.78 0.921 26.33 0.922 27.70 0.915 26.65 0.917

Table 2: Quantitative results on the Nature dataset. The competitors are all trained with the additional
data from the Nature dataset

ERRNet IBCLN YTMT DSRNet Zhu et al. Ours

PSNR 22.18 23.57 23.85 25.22 26.04 26.21
SSIM 0.756 0.783 0.810 0.832 0.846 0.842

4 EXPERIMENTAL VALIDATION

4.1 IMPLEMENTATION DETAILS

Our model is implemented in PyTorch (Paszke et al., 2019) and optimized with Adam opti-
mizer (Kingma & Ba, 2015) on an RTX 3090 GPU for 20 epochs. The learning rate is initialized at
10−4, and remains fixed throughout the training phase, with a batch size of 2. The training dataset
comprises both real and synthetic images. To align with previous works, we evaluate the performance
of our model under two commonly used data settings: a) The setting from (Hu & Guo, 2021; Wei
et al., 2019) and (Li et al., 2023), which consists of 90 real image pairs from (Zhang et al., 2018)
and 7,643 synthesized pairs from the PASCAL VOC dataset (Everingham et al., 2010); and b) The
setting from (Hu & Guo, 2023) and (Dong et al., 2021), which includes 200 additional real image
pairs provided by (Li et al., 2020). For data synthesizing, we follow the pipeline and physical model
from DSRNet (Hu & Guo, 2023), represented by I = αT + βR− T ◦R. Slightly, we modify this
approach by sampling individual α and β for R, G, and B channels. This adjustment aims to prevent
the transmission rate estimator from converging to a trivial solution. The parameters the PHE are
initialized by a pretrained FocalNet (Yang et al., 2022).

4.2 PERFORMANCE EVALUATION

For the comparison, we evaluate seven state-of-the-art methods: ERRNet (Wei et al., 2019), IB-
CLN (Li et al., 2020), RAGNet (Li et al., 2023), Dong et al. (Dong et al., 2021), YTMT (Hu &
Guo, 2021), DSRNet (Hu & Guo, 2023), Zhu et al. (Zhu et al., 2024), on four real-world datasets,
including Real20 (Zhang et al., 2018) and three subsets of the SIR2 Datasets (Wan et al., 2017), for
the Nature Dong et al. (2021) dataset, we compare IBCLN, ERRNet, YTMT, DSRNet and Zhu et al..

Quantitative comparisons. The quantitative result is shown in Tab. 1. We directly employ the code
and pre-trained weights publicly provided by their authors to obtain all the quantitative results. To
make a fair comparison, the methods with and without additional data from the Nature dataset are
compared separately. Apparently, our methods show their superiority over other competitors on all
testing datasets, only falling short on SSIM compared to Zhu et al. on the Objects dataset. Our
methods achieved a promising boost, especially on the Real20 dataset, which contains hard cases
collected in real-world conditions, meaning our method can better fit real-world conditions. The other
three datasets contain a variety of scenes, illumination conditions, and glass thickness, meaning our
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(a) Input (b) ERRNet (c) IBCLN (d) RAGNet (e) Dong et al.

(f) YTMT (g) DSRNet (h) Zhu et al. (i) Ours (j) GT

Figure 3: Qualitative comparisons on samples from the Wild dataset. Please zoom in for more details.
More visual results can be found in the appendix.

method performs better in most conditions. The experimental result demonstrates that our proposed
SIRS method can adapt to complicated situations and has a stronger generalization ability.

For a comprehensive comparison, we present the results obtained on the Nature dataset in Tab.
2, which comprises 20 real-world samples. Our method achieved the best PSNR and the second-
best SSIM, with a marginal decrease of only 0.004 in SSIM. These results further underscore the
superiority of our approach in real-world scenarios.

Qualitative comparisons. The qualitative comparison is shown in Fig. 3 and Fig. 4, with additional
visual examples provided in the appendix. The first case in Fig. 3 illustrates a highly reflective
object, which presents a significant challenge for reflection removal techniques due to its intensity.
Our method successfully eliminates the reflective object, accurately revealing the underlying texture
and color information. This performance is superior to other methods, highlighting our approach’s
effectiveness in handling complex real-world reflections. In contrast, ERRNet, RAGNet, Dong et
al., YTMT, DSRNet and Zhu et al. struggle to remove the object, leaving it almost entirely intact.
Although IBCLN partially removes the reflection, it fails to recover the underlying color information,
resulting in an incomplete outcome. This example clearly demonstrates our method’s advanced
capability in accurately identifying and removing even strong and complex reflections, further proving
its robustness in real-world scenarios.

The second example further showcases our method’s proficiency in handling reflections spread across
an image. Here, the reflection is complex and covers a large area, which other methods fail to remove
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(a) Input (b) ERRNet (c) IBCLN (d) Dong et al.

(e) YTMT (f) DSRNet (g) Zhu et al. (h) Ours

Figure 4: Qualitative comparisons on real-world cases. Please zoom in for more details.

effectively. In contrast, our approach accurately targets and eliminates the majority of the reflection,
preserving the integrity of the non-reflective elements.

Figure 4 illustrates the robustness of our method in real-world scenarios. These two cases were
captured in real-life conditions by us. In the first example, a dense reflection covers the car window,
a challenge that competing methods largely fail to address, with only Zhu et al. managing partial
removal. However, our approach almost entirely separates the reflections, producing more visually
appealing results. A similar outcome is observed in the second example, where our method success-
fully removes nearly all reflections. In contrast, all other methods struggle to handle this scenario
effectively. These examples demonstrate the robustness of our decoupling paradigm, confirming its
effectiveness in real-world scenarios.

These results demonstrate the effectiveness of our decoupling routine, offering several key advantages:
1) accurate identification and separation of reflection components from underlying content, 2) robust
performance in removing dense reflections common in real-world scenarios, and 3) strong generaliz-
ability across diverse conditions. Collectively, these findings validate the theoretical soundness and
practical efficacy of our proposed method.

4.3 ABLATION STUDIES

To better verify the effect of our prompt generator and reversible network structure, we bring a series
of ablation studies, including different settings of network structure and prompt generator. The results
are gathered in Tab. 3. We present the results of our prompt generator on the left side and the results
of our network structure on the right side.

Discussion on transmission-rate-aware prompt generator. To inform the model with the trans-
mission rate, a straightforward approach is to adjust the input image to enhance it globally using
the estimated transmission rate. Specifically, for I := aT + bR+ ϕ(T,R), we adjust the input I to
1
aI := T + b

aR+ 1
aϕ(T,R). This operation is denoted as Pre. in Tab. 3. As shown in Tab. 3, if we

remove all transmission-rate-aware techniques (setting A), the average performance drops by 1.13

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Ablation studies on the prompt generator and different network configurations.

Setting Prompt Pre.
Average

Setting Dual-stream Ref. Loss Invertibility
Average

PSNR SSIM PSNR SSIM

A × × 25.52 0.909 D ✓ ✓ ✓ 26.37 0.917

B × ✓ 25.99 0.910 E × × ✓ 25.99 0.914

C ✓ ✓ 26.03 0.913 F × ✓ × 24.05 0.884

Ours ✓ × 26.65 0.917 Ours × ✓ ✓ 26.65 0.917

dB. If we adopt the straightforward method described above (setting B), the performance recovers by
0.47 dB. This confirms the importance of informing the model with the transmission rate.

However, as we analyzed in Section 3.2, directly adjusting the input image is far from optimal. Due to
potential inaccuracies in the estimation in some scenarios, directly adjusting the model can introduce
an additional shift that is difficult to correct during second-stage training. A more subtle and flexible
approach is to reweight the feature channels with our transmission-rate-aware prompt.

To verify this, we both adjust the input and add a transmission-rate-aware prompt to the feature
(setting C). The performance remains nearly the same as in Setting B, indicating that adjusting the
input makes it challenging for the model to recover from incorrect estimations. Finally, our model
with the proposed transmission-rate-aware prompt outperforms all variants, demonstrating its efficacy.

Discussion on model design. To verify the rationality of our design of the decoupling model, we
created three new variants of our model. We modify our RDNet to a DSRNet-style one, where two
streams estimate transmission and reflection separately in a single column, and interact with each
other. This variant is denoted as Dual-stream (Setting D). As shown in Tab. 3, even with double
computation, the performance still drops by 0.28 dB. This confirms the superiority of our decoupling
design compared to the dual-stream design. Secondly, we removed the reflection part (c1∥R̂−R∥22) in
the content loss function (Eq. (5)), leaving only the transmission part (c0∥T̂ −T∥22+c2∥∇T̂ −∇T∥1)
in the training process. This variant is denoted as Ref. Loss. (Setting E). A performance drop of
0.66dB can be observed. This confirms the necessity of the reflection loss function. Without
regularization predicting the other component, the network weakens its ability to clearly identify both
components in single-stream feature maps.

To verify the necessity of the invertibility of the network in the reflection removal task, we replace
the reversible connection with the U-Net connection (Ronneberger et al., 2015) (Setting F). Although
it requires slightly more parameters and much more memory, a massive performance drop of 2.6 dB
can be discovered, indicating the importance of invertibility design.

5 CONCLUSION

In this paper, we proposed RDNet, a novel model for addressing key challenges in the task of single
image reflection removal. Specifically, RDNet tackles the limitations of insufficient utilization of
multi-scale, pretrained hierarchical information and information loss during feature decoupling.
The multi-column reversible structure enables the preservation of rich semantic features, which are
then effectively leveraged in the multi-scale processing of each column. Furthermore, the proposed
Transmission-rate-Aware Prompt Generator alleviates the inherent conflict between complex reflection
parameters and limited training data. Through these innovations, RDNet demonstrates an enhanced
capability for robust reflection removal. Our method demonstrates superior performance compared to
state-of-the-art techniques across a range of real-world benchmark datasets, highlighting its robustness
and adaptability in diverse reflective scenarios. Ablation studies further validate the effectiveness of
our key contributions, confirming the advantages of our design choices. It is positive that our work
opens up new avenues for research in reflection removal, and has the potential to impact various
applications in computer vision and image processing significantly.
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APPENDIX

A FURTHER DISCUSSION ABOUT THE TAPG

Figure 5: Visualization of the drawback of Mean Squared
Error (MSE). Both color shifts and noise degradation exhibit
the same MSE relative to the ground truth.

As illustrated in Fig. 5 with a toy visu-
alization of a pure white image, even
though the color bias and noise ex-
hibit the same Mean Squared Error
(MSE) relative to the ground truth, a
linear estimation can instantly correct
the image’s color shift, whereas noise
requires more complex operations to
address. Metrics like MSE and Mean
Absolute Error (MAE) struggle to
compel the network to effectively rec-
ognize and rectify the linear degrada-
tion in the physical formulations. In
this context, by pre-calibrating the fea-
tures with a transmission-rate-aware prompt, we can significantly mitigate the effects of linear
degradation, such as color and intensity inconsistencies.
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(a) Input (b) ERRNet (c) IBCLN (d) Dong et al.

(e) YTMT (f) DSRNet (g) Zhu et al. (h) Ours

Figure 6: Visual comparison of estimated transmission layers between state-of-the-arts and ours on
real-world samples.

B QUALITATIVE COMPARISONS

More visual cases. We exhibit a total of nine additional cases: two cases from the Real20 dataset
in Fig. 7, three cases from the Solid dataset in Fig.8, two cases from the Postcard dataset in Fig. 9
and two real-world cases captured by us in Fig. 6. As illustrated, our method excels at revealing the
information obscured by reflections and is highly effective in removing the majority of the reflections.

C ADDITIONAL EXPERIMENTS

Table 4: The experiment of changing numbers of
columns. The best results are indicated in bold.

Num Col Average
PSNR SSIM

2 26.25 0.914
4 26.65 0.917
6 26.19 0.910

The ablation study for the number of
columns. In this study, we investigate the ef-
fect of varying the number of columns on the
overall performance in Tab. 4. Specifically, we
adjusted the number of columns after the first
PHE column, experimenting with configurations
of 2, 4, and 6 columns. Our findings indicate
that a configuration with 4 columns yields the
highest performance. In contrast, configurations
with 2 and 6 columns resulted in performance
drops of 0.4dB and 0.46dB in PSNR, respec-
tively. This suggests that an optimal balance
exists, where too few or too many columns can detract from the model’s performance.
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(a) Input (b) ERRNet (c) IBCLN (d) RAGNet (e) Dong et al.

(f) YTMT (g) DSRNet (h) Zhu et al. (i) Ours (j) GT

Figure 7: Visual comparison of estimated transmission layers between state-of-the-arts and ours on
real-world samples (Real 20).
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(a) Input (b) ERRNet (c) IBCLN (d) RAGNet (e) Dong et al.

(f) YTMT (g) DSRNet (h) Zhu et al. (i) Ours (j) GT

Figure 8: Visual comparison of estimated transmission layers between state-of-the-arts and ours on
Objects dataset.
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(a) Input (b) ERRNet (c) IBCLN (d) RAGNet (e) Dong et al.

(f) YTMT (g) DSRNet (h) Zhu et al. (i) Ours

(j) GT

Figure 9: Visual comparison of estimated transmission layers between state-of-the-arts and ours on
Postcard dataset.
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