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Abstract

Current deep networks are very data-hungry and benefit from training on large-
scale datasets, which are often time-consuming to collect and annotate. By contrast,
synthetic data can be generated infinitely using generative models such as DALL-E
and diffusion models, with minimal effort and cost. In this paper, we present
DatasetDM, a generic dataset generation model that can produce diverse synthetic
images and the corresponding high-quality perception annotations (e.g., segmenta-
tion masks, and depth). Our method builds upon the pre-trained diffusion model
and extends text-guided image synthesis to perception data generation. We show
that the rich latent code of the diffusion model can be effectively decoded as ac-
curate perception annotations using a decoder module. Training the decoder only
needs less than 1% (around 100 images) manually labeled images, enabling the
generation of an infinitely large annotated dataset. Then these synthetic data can
be used for training various perception models for downstream tasks.

To showcase the power of the proposed approach, we generate datasets with rich
dense pixel-wise labels for a wide range of downstream tasks, including semantic
segmentation, instance segmentation, and depth estimation. Notably, it achieves
(1) state-of-the-art results on semantic segmentation and instance segmentation; (2)
significantly more robust on domain generalization than using the real data alone;
and state-of-the-art results in zero-shot segmentation setting; and (3) flexibility for
efficient application and novel task composition (e.g., image editing).

The project website is at: weijiawu.github.io/DatasetDM.

1 Introduction

Modern deep-learning models for perception tasks often require a large amount of labeled data to
achieve good performance. Unfortunately, collecting large-scale data and labeling the corresponding
pixel-level annotations is a time-consuming and expensive process. For example, collecting images of
urban driving scenes requires physical car infrastructure, and labeling a segmentation annotation for
a single urban image in Cityscapes [10] can take up to 60 minutes. Moreover, in certain specialized
domains, such as medical or human facial data, collecting relevant information can be challenging or
even impossible, owing to privacy concerns or other factors. The above challenges can be a barrier to
advancing artificial intelligence in computer vision.

To reduce costs, many previous researchers have primarily focused on weakly supervised [57] and
unsupervised solutions [51] to address the problem. For instance, certain segmentation priors [1, 2} [32]]
use weak or inexpensive labels to train robust segmentation models. With the advancement of
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Figure 1: Synthetic Data from DatasetDM. The high-quality and infinitely numerous synthetic
images with perception annotation can yield significant improvements for various downstream tasks.

generative models, such as DALL-E [40]], Stable Diffusion [41]], some researchers have begun to
explore the potential of synthetic data, attempting to use it to assist in training models, or even
replace real data for perception task. Most works focus on classification, face recognition [34} 49} 22],
salient object detection and segmentation tasks [53] [58]], with only a minority trying to
address problems such as human pose estimation [[18] or medical image analysis [21]]. In the era of
GANs, DatasetGAN [58] and BigDatasetGAN [29] are recognized as pioneering works that utilize
the feature space of pre-trained GANs and design a shallow decoder for generating pixel-level labels
in the context of segmentation tasks. Following the two works, Hands-off [55]] extends this approach
to multitasking scenarios, such as depth estimation. However, these methods still suffer from three
major drawbacks: 1) Due to the limitations of the representation ability of early (up to 2020) GAN
models, the quality of the synthesized data is often dissatisfactory, leading to an inferior performance
on downstream tasks. 2) These methods primarily focus on independent downstream tasks and no
one tries to explore a unified data synthesis paradigm with a generalized decoding framework. 3) The
training cost is still relatively high, while these methods do not make full use of the visual knowledge
contained within the latent codes of powerful text-to-image models.

By leveraging large-scale datasets of image-text pairs (e.g., LAIONSB [43])), recent text-to-image
diffusion models (e.g., Stable Diffusion [41]]) present phenomenal power in generating diverse and
high-fidelity images with rich texture, diverse content, and reasonable structures. The phenomenon
suggests that large text-to-image diffusion models can implicitly learn valuable, and rich high-level
and low-level visual representations from massive image-text pairs. It is natural ask: Can we leverage
the knowledge learned by these models to generate perception annotations and extend the paradigm
of text-to-image generation to text-to-data generation?

In this paper, built upon the powerful text-to-image diffusion model, we present DatasetDM, a
generalized dataset generation model that can produce an unlimited number of synthetic images
and the corresponding perception annotations, as shown in Fig. [I] The key to our approach is a
unified perception decoder, namely P-Decoder, that decodes the latent code of the diffusion model
to perception annotations. Inspired by align/instruct tuning from LLM [50], a method for inducing
output following capability with minimal human-labeled, we only use less than 1% manually labeled
images to train the decoder, enabling infinite annotated data generation. The generated data can
subsequently be utilized to train any perception models for various downstream tasks, including but
not limited to segmentation, depth estimation, and pose estimation. To maintain the robust image
generation capabilities of the diffusion model, we freeze the model weights and use image inversion
to extract the latent code, i.e., multi-scale features, which are then fed into the unified P-Decoder.
The P-Decoder accommodates various downstream tasks within a unified transformer framework,
with only minor variations as depicted in Fig. [3]

To summarize, our contributions are four-fold:

* We introduce DatasetDM: a versatile dataset generation model featuring a perception decoder
capable of producing an unlimited quantity of high-fidelity synthetic images, along with
various perception annotations, including depth, segmentation, and human pose estimation.

* Visual align/instruct tuning, a method for inducing output following capability with minimal
human-labeled data. With less than 1% of the original dataset, i.e., around 100 images,



DatasetDM pushes the limits of text-to-image generation, pioneering a novel paradigm:
text-to-data generation. This breakthrough is made possible by leveraging the rich latent
code of the pre-trained diffusion model.

» Experiments demonstrate that the existing perception models trained on synthetic data
generated by DatasetDM exhibit outstanding performance on six datasets across five different
downstream tasks. For instance, the synthetic data delivers remarkable gains of 13.3% mloU
and 12.1% AP for semantic segmentation on VOC 2012 and instance segmentation on
COCO 2017, respectively.

» Text-guided data generation allows for the generation of a diverse range of data, which has
been shown to provide a more robust solution for domain generalization and long-tail data
distribution. Moreover, DatasetDM offers a flexible approach for novel task composition, as
exemplified by its ability to facilitate image editing (see Fig. ).

2 Related Work

Text-to-Image Generation. Several mainstream methods exist for the task, including Generative
Adversarial Networks (GANSs)[I19], Variational Autoencoders (VAEs)[28|], flow-based models [[12],
and Diffusion Probabilistic Models (DPMs) [47, 411, 125} 20]. Recently, as a likelihood-based method,
diffusion models have gained significant attention with promising generation abilities. They match
the underlying data distribution by learning to reverse a noising process. Thanks to the high-quality
image synthesis and the stability of training, diffusion models are quickly emerging as a new
frontier [41} 140} 26, 43] in the field of image synthesis.

Text-guided diffusion models are used for text-conditional image generation, where a text prompt
P guides the generation of content-related images J from a random Gaussian noise z. Visual and
textual embeddings are typically fused using cross-attention. Recent large text-to-image diffusion
models, such as Stable Diffusion [41] of Stability AI, DALL-E2 [40] of OpenAl, and Imagen [43]] of
Google, have shown powerful performance in generating diverse and high-fidelity images with rich
textures and reasonable structures. Their impressive synthesis capabilities suggest that these models
can implicitly learn valuable representations with the different semantic granularity from large-scale
image-text pairs. In this paper, we leverage these learned representations (latent codes), to extend the
paradigm of text-to-image generation to text-to-data generation.

Synthetic Datasets for Perception Task. Previous studies in dataset synthesis, such as Virtual
KITTI [1'7] and Virtual KITTI 2 [[7], primarily rely on 3D computer simulations to address standard
2D computer vision problems, such as object detection [38]], scene understanding [44]], and optical
flow estimation [6]]. However, these methods are limited by the domain of 3D models and cannot be
generalized to arbitrary scenes and open-set categories. For instance, Virtual KITTI is exclusively
focused on autonomous driving scenes and supports only 20 commonly occurring categories, which
cannot be extended to open-scene domains like the COCO benchmark [33]].

In contrast, synthetic data generated using generation models (i.e., GAN [19,[35}55]] and Diffusion
Model [47]) are more flexible and can support a wider range of tasks and open-world scenes for
various downstream tasks, such as classification task [22], face recognition [22]], salient object
detection [54], semantic segmentation [29} 58} 3} 160], and human pose [[18]]. Inspired by the success
of large-scale generative models, such as Stable Diffusion [41], trained on massive datasets like
LAIONSB [45]], recent studies have begun to explore the potential of powerful pre-trained diffusion
generative models. Based on DDPM [235]], DatasetDDPM [3]] design several CNN layers as the
annotation decoder to generate semantic segmentation data by performing a multi-class task. Li
et al. [31] utilized Stable Diffusion and Mask R-CNN pre-trained on the COCO dataset [33] to
design and train a grounding module for generating images and semantic segmentation masks.
DiffuMask [53]] produces synthetic image and semantic mask annotation by exploiting the potential of
the cross-attention map between text and image from the text-supervised pre-trained Stable Diffusion
model. The above methods focus on semantic segmentation, which cannot handle tasks such as
instance segmentation. In this paper, we take a further step by utilizing a generalized perception
decoder to parse the rich latent space of the pre-trained diffusion model, enabling the generation of
perception for a variety of downstream tasks, including depth, segmentation, and human pose.

Diffusion Model for Perception Task. Some recent works [59} 156} 52] has also attempted to directly
employ diffusion models for perceptual tasks. VPD [S9] explores the direct application of pre-trained



Stable Diffusion to design perception models. ODISE [56] unify pre-trained text-image diffusion
and discriminative models to perform open-vocabulary panoptic segmentation. Different from these
approaches, our focus lies in synthetic data augmentation for perception tasks, and design a unified
transformer-based decoder to enhance more perception tasks from data aspect.

3 Methodology

3.1 Formulation

Given a language prompt 8, text-guided diffusion models generate content-related images J €
RHXWX3 from a random Gaussian noise z ~ N(0,I). The standard text-guided image denoising
processing can be formulated as: J = ®1y1(z, §), where P1op(-) refers to a pre-trained text-to-image
diffusion model. In this paper, we adopt Stable Diffusion [41] as the base for the diffusion model,
which consists of three components: a text encoder 7¢(-) for embedding prompt 8; a pre-trained
variational autoencoder (VAE) [14] that encodes £(+) and decodes D(-) latent code of images; and
a time-conditional UNet (eg(-)) [42]] that gradually denoises the latent vectors. To fuse visual and
textual embeddings, cross-attention layers are typically used in the UNet for each denoising step. The
denoising process is modeled as a Markov chain: @;_; = f(x+, €g), where x; denote latent code at
timestep ¢, and ¢ € [1, T']. The latent noise at the final timestep 7", denoted as @, is equivalent to the
random Gaussian noise z. f(-) is the denoising function [23].

In this paper, we design a perception decoder that can effectively parse the latent space of the UNet
eg(xt,t,79(8)). By doing so, we extend the fext-fo-image generation approach to a fext-to-data
paradigm:

{jvﬂ)l:k} = (I)T2D(Z78)7 (D

where P1.; denotes the corresponding perception annotations, and k is the number of the supported
downstream tasks. In fact, the paradigm can support any image-level perception task, such as semantic
segmentation, instance segmentation, pose estimation, and depth estimation.

3.2 Method Overview

This paper introduces a novel paradigm called text-tfo-data generation, which extends text-guided
diffusion models trained on large-scale image-text pairs. Our key insight is that using a small amount
of real data (using less than 1% existing labeled dataset) and a generic perception decoder to interpret
the diffusion latent spaces, results in the generation of infinite and diverse annotated data. Then the
synthetic data can be used to train any existing perception methods and apply them to real images.

The proposed DatasetDM framework, presented in Fig. 2l comprises two stages. 1) The first stage—
Training—involves using diffusion inversion (§3.3) to obtain the latent code of the real image
and extract the text-image representations (§3.3). These representations and their corresponding
annotations are then used to train the perception decoder (§3.4). 2) The second stage—Inference
(§3.3)—uses GPT-4 to enhance the diversity of data and generates abundant images, while the
P-Decoder produces corresponding perception annotations such as masks and depth maps.

3.3 Hypercolumn Representation Extraction

The first step in the training stage of DatasetDM is to extract the hypercolumn representation of
real images from the latent space of the diffusion model, as shown in Fig. 2a). To achieve this, we
employ the diffusion inversion technique, which involves adding a certain level of Gaussian noise to
the real image and then extracting the features from the UNet during the denoising process.

Image Inversion for Diffusion Model. Give a real image X € R>W>3 from the training set,
the diffusion inversion (diffusion forward process) is a process that approximates the posterior
distribution ¢(x1.7|xo), where £y = €(X). This process is not trainable and is based on a fixed
Markov chain that gradually adds Gaussian noise to the image, following a pre-defined noise schedule
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Figure 2: The overall framework of DatasetDM. DatasetDM consists of two main steps: 1) Training.
Using diffusion inversion to extract the latent code from a small amount of data and then train the
perception decoder. 2) Text-guided data generation. A large language model such as GPT-4 is utilized
to prompt infinite and diverse data generation for various downstream tasks.

where t represents the ¢-th time step, and we set it to 1 for a single forward pass in our paper. A
single forward pass for visual representation extraction usually provides two advantages, i.e., faster
convergence and better performance [56]].

Text-Image Representation Fusion. With the latent code x; of the real image and the corresponding
language prompt 8, we extract the multi-scale feature maps and cross attention maps from the UNet
€p as follows:

{3:’ 'A} = Gg(mt,t,Tg(S)), 3

where $ for training set is simply defined using a template “a photo of a [CLS];, [CLS],,

.”. During the data generation phase, GPT-4 is used to provide diverse prompt languages. The
variable F denotes the multi-scale feature maps from four layers of the U-Net, corresponding to four
different resolutions, i.e., 8 X 8, 16 x 16, 32 x 32, and 64 x 64, as illustrated in Fig. |Zl Additionally,
A represents the cross-attention maps of text-to-image from the 16 cross-attention layers in the U-Net,
which implement the function A = softmax (Q—j{;), where d is the latent projection dimension. We
group the 16 cross-attention maps into 4 groups with the same resolutions, and compute their average

within each group, which results in the average cross-attention maps A.

Prior works [53], [59] 24 have proved the effectiveness of class-discriminative and localization
of cross-attention map between the visual embedding and the conditioning text features. Thus we
concatenate the cross-attention maps A and the multi-scale feature maps J to obtain the final extracted
hyper-column representation, and further use a 1 x 1 convolution to fuse them: F = Conv ([, A]).

3.4 Perception Decoder

The P-Decoder is utilized to translate the representation F into perception annotations, which are
not limited to a specific type for each downstream task. To achieve this goal, inspired by previous
works [8,61]], we devised a generalized architecture. This architecture is depicted in Fig. [3} with only
minor variations (i.e., whether to startup some layers) for each downstream task. For example, the
pixel decoder and transformer decoder are required for generic segmentation, while only the pixel
decoder is necessary for depth and pose estimation.

Generic Image Segmentation. In Fig. [3}(a), we present the adaptation for semantic and instance
segmentation tasks, which includes two components: the pixel decoder and the transformer decoder.
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Figure 3: Various types of tasks with our proposed P-Decoder. The proposed decoder is a
generalized architecture for the six supported tasks, with only minor variations required for different
downstream applications, i.e., determining whether to activate certain layers.

Similar to Mask2former [8]], the transformer decoder comprises a stack of transformer layers with
cross-attention and self-attention. This component refines the queries and renders the outputs. The
pixel decoder is made up of multiple upsampling CNN layers, and it is used to obtain per-pixel

embeddings. Given the representation F and N learnable queues {Qo, Q1...Q1} as input, the decoder
outputs N binary masks O = o1, -- ,on € {0, 1}V*H>*W ‘along with the corresponding category.
This is achieved through simple matrix multiplication between the outputs of the transformer decoder
and the pixel decoder. Following Mask2former [8], one query is responsible for a class or instance
for semantic and instance segmentation, respectively. To optimize the mask prediction, we use the
binary cross-entropy loss [9] and dice loss [37]]. On the other hand, the cross-entropy loss is used for
classification prediction.

Open-Vocabulary Segmentation. Based on the architecture of generic segmentation, a semantics-
related query concept is proposed to support the open-vocabulary segmentation task, as shown in
Fig (b). During the training stage, given the category name {Cy, C;...Ck } (e.g., dog, cat)on
an image from the training set, we use the text encoder 74(-), e.g., CLIP [39] to encode them into
the embedding space. Then concatenating them with the queries to equip the semantics of class
vocabulary to the query as follows:

Qi = MLP([Q;,79(C})]), 4)

where (); and Cj is the i-th query embedding and j-th class. MLP refers to a learned MLP, used
to fuse the class embedding and learnable query embedding. Thus DatasetDM can generate an
open-vocabulary mask by incorporating a new class name, as illustrated in Fig. [5] (b).

Depth and Pose Estimation. For depth and pose estimation, the output format is predetermined,
eliminating the need to differentiate between classes or instances. In this context, the pixel decoder is
only required to predict a fixed number of maps O € RM*H*W The value of M is set to either 1 or
17 (corresponding to 17 human key points), depending on whether the task is depth or human pose
estimation. For human pose estimation, we use the mean squared error as the loss function, and the
ground truth heatmaps are generated by applying a 2D Gaussian with a standard deviation of 1 pixel
centered on each key point. As for depth estimation, we update the loss function from the classic
scale-invariant error [30, [13]].

3.5 Prompting Text-Guided Data Generation

In Fig. (b), we present the inference pipeline for text-guided data generation. There are
two main differences compared to the training phase: firstly, the prompts come from a large
language model instead of a fixed template, and secondly, the denoising process is extended
to T steps to obtain the synthetic images. Large language model, i.e., GPT-4, is adopted to
enhance the diversity of generative data, while recent works [[16} 23| |4]] have proven their powerful
understanding and adaptability for the real world. As shown in Fig. [] instead of the template-based
prompts from humans, we guide GPT-4 to produce diverse, and infinite prompts. For different
downstream tasks and datasets, we give different guided prompts for GPT-4. For example, as
for the urban scene of Cityscapes [10], the simple guided prompt is like ‘Please provide 100
language descriptions of urban driving scenes for the Cityscapes benchmark,

containing a minimum of 15 words each. These descriptions will serve as a

guide for Stable Diffusion in generating images.’ In this approach, we collected L



Collaboration between the creative thinker, the painter, the annotator and editor N

Human: Please provide multiple descriptions for the appearance of one person with a focus on their clothing, pants, and shoes. These descriptions will serve as a guide
for Stable Diffusion in generating corresponding images.
GPT-4 (creative thinker): Here are 1000 examples for you:

1. A man in a sharp grey suit, crisp whife shirt, and black polished shoes
strides confidently down a city street

| 2. A college student walks down the street wearing a casual outfit, !

| consisting of a cozy hoodie, slim-fit jeans, and a pair of trendy sneakers. 1 —> &i

| 3. A young man in a casual outfit strolls down the sidewalk, wearing a i

denim jacket over a graphic tee, paired with black jeans.
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Figure 4. Collaboration between GPT-4 and Diffusion Model. Large language models, e.g.,
GPT-4, can provide diverse and unrestricted prompts, enhancing the diversity of generated images.

Zero-Shot Segmentation Long-Tail Segmentation
Seen Class Unseen Class Head Class Tail Class

aeroplane (0), bicycle (1), bird (2), boat (3), potted plant (15), sheep | aeroplane (0), bicycle (1), bird diningtable (10), dog (11), horse
bottle (4), bus (5), car (6), cat (7), chair (8), (16), sofa (17), train (18), | (2), boat (3), bottle (4), bus (5), (12), motorbike (13), person (14),
cow (9) , diningtable (10), dog (11), horse  tvmonitor (19) car (6), cat (7), chair (8), cow (9) potted plant (15), sheep (16), sofa
(12), motorbike (13), person (14) (17), train (18), tvmonitor (19)

Table 1: Details for Zero-Shot and Long-tail Segmentation on VOC 2012 [15].

text prompts, which average around 100 prompts for each dataset. For each inference, a random
prompt is sampled from this set.

4 Experiments

4.1 Implementation details

Architecture and Training Details. Stable diffusion V1 [41] model pre-trained on the
LAIONSB [43] dataset is used as our text-to-image diffusion model. The decoder architecture
of Mask2Former [8]] was selected as the base architecture for our P-Decoder. And we use 100 queries
for the segmentation task. For all tasks, we train DatasetDM for around 50k iterations with images
of size 512 x 512, which only need one Tesla V100 GPU, and lasted for approximately 20 hours.
Optimizer [36] with a learning rate of 0.0001 is used.

Downstream Tasks Evaluation. To comprehensively evaluate the generative image of DatasetDM,
we conduct seven groups of experiments for the supported six downstream tasks. Semantic Segmenta-
tion. Pascal-VOC 2012 (20 classes) and Cityscapes [11]] (19 classes), as two classical benchmark
are used to evaluate. We synthesized 2k images for each class in both datasets, resulting in a total
of 40k and 38k synthetic images for Pascal-VOC 2012 and Cityscapes, respectively. The synthetic
data is subsequently utilized to train Mask2former [8] and compared to its real data counterpart
on a limited dataset setting (around 100 images). Instance Segmentation. For the COCO2017 [33]]
benchmark, we synthesized 1k images for each class, resulting in a total of 80k synthetic images.
Similarly, Mask2former [8]], as the baseline, is used to evaluate the synthetic data. We evaluate
only the class-agnostic performance, where all the 80 classes are assigned the same class ID. Depth
Estimation. We synthesized a total of 80k synthetic images for NYU Depth V2 [46]. And using
Depthformer [@éto evaluate our synthetic data. Pose Estimation. We generated a set of 30k syn-
thetic images for COCO2017 Pose dataset [33]] and employed HRNet [48]] as the baseline model to
assess the effectiveness of our approach. Zero-Shot Semantic Segmentation. Following Li et al. [31]],
Pascal-VOC 2012 [13]] (20 classes) is used to evaluate. We train DatasetDM with only 15 seen
categories, where each category including 30 real images, and synthesized a total of 40k synthetic
images for 20 categories. Long-tail Semantic Segmentation. The categories of VOC 2012 are divided
into head (20 images each class) and tail classes (2 images each class). Then we train DatasetDM
with these data and generate synthetic data. Human Semantic Segmentation. We synthesized a total

https://github.com/zhyever/Monocular-Depth-Estimation-Toolbox



GPT-4: A nighttime cityscape
with a blue luxury car and a
yellow sports car driving on a
brightly lit street.

seed: 619177

GPT-4: A white car and
a gray car drive along
a busy street.

seed: 200098

GPT-4: A man with a
crew cut in a white polo
shirt, light wash jeans,
and white low-top
sneakers confidently
down a city street.

seed: 107474

L S ) -
(¢) Human-Centric Domain

Figure 5: Examples of generated data for DatasetDM. Our method can produce semantic/instance
segmentation, depth, and human pose annotation across various domains.

VOC (Semantic Seg.)/% | COCO2017 (Instance Seg.)/% | NYU Depth V2 (Depth Est.) | COCO2017 (Pose Est.)/%
method #real # synth. ‘ mloU | #real # synth. ‘ AP #real # synth. ‘ REL | | #real #synth. ‘ AP
Baseline 100 65.2 400 14.4 50 0.31 800 424
DatasetDM | 100 40k 78.5 400 80k ‘ 26.5 ‘ 50 35k ‘ 0.21 ‘ 800 80k ‘ 475

Table 2: Downstream Tasks. ‘real’ and ‘synth.” denote real and synthetic images, respectively. The
backbones of baselines for four tasks are ‘Swin-B’, ‘Swin-B’, ‘Swin-L’, and ‘HR-W32’, respectively.

of 20k synthetic images for DeepFashion-MM (24 classes). Mask2former [8]] is used to evaluate
the synthetic data. We split DeepFashion-MM into a set of 100 training images, and 12,500 testing
images. Further details, such as prompts, can be found in the supplementary material.

Class Split for Zero-Shot and Long-Tail Segmentation. Table[T|provides a comprehensive overview
of the class distribution for both zero-shot and long-tail scenarios. The division for zero-shot classes
is consistent with previous studies [5} 53| 31]]. The configuration for long-tail data distribution is
firstly established in this paper.

4.2 Main Results

Table [2] provides a basic comparison of the selected four downstream tasks. More additional exper-
iments can be found in Table [3|and Table [ as well as in the Supplementary Material (i.e., Pose
Estimation, Depth Estimation, Zero-Shot Segmentation, Fashion Segmentation, and others).

Semantic Segmentation. Table [ displays the performance on VOC 2012. Using only 100 real
images (5 images per class), training with purely synthetic data from DatasetDM achieves a 73.7%
mloU, an 8.5% improvement compared to using real data alone. Moreover, when jointly training with
the 100 real images, further improvement is observed, resulting in a mIoU of 78.5%. Tabledisplays
the performance on Cityscapes [11]]. To compare with previous methods [53], we also conducted
experiments with a 9-classes division. DatasetDM demonstrates consistent advancements over the
baseline or prior SOTA, achieving up to a 10% improvement in mIoU under each experimental setup.

Instance Segmentation. Table 3| presents three distinct training settings, encompassing variations
in the backbone and the number of training images. Regardless of the chosen setting, DatasetDM
consistently achieves an improvement of approximately 10%. Employing 800 training images (10
images per class) and the Swin-B backbone, DatasetDM yields a 12.1% increase in Average Precision
(AP), resulting in a final AP of 26.5%.

Depth Estimation. Table [2| presents a concise comparison between synthetic and real data on the
NYU Depth V2 dataset . Detailed information (e.g., backbone, other metrics) can be found in the
supplementary material. When trained with 50 images, DatasetDM can achieve a 10% improvement
compared to training solely with real images.



method backbone | # real image # synthetic image | AP AP AP APS  APM APt
Baseline R50 400 - 4.4 9.5 3.5 1.1 33 12.1
DatasetDM | R50 - 80k (R:400) 122 243 10.9 1.6 11.3 30.9
DatasetDM | R50 400 80k (R:400) 148 297 13.0 2.3 15.1 36.0
Baseline Swin-B 400 - 11.3 23.0 9.6 32 10.1 27.1
DatasetDM | Swin-B - 80k (R:400) 176 341 15.8 3.4 17.8 39.5
DatasetDM | Swin-B 400 80k (R:400) 233 430 222 7.7 26.1 48.7
Baseline Swin-B 800 - 144 288 127 5.6 157 292
DatasetDM | Swin-B 800 80k (R:800) 265 469 258 7.7 298 533

Table 3: Instance segmentation on COCO val2017. ‘R: ’ denotes the real data used to train.

Sampled Classes for Comparison/%
method backbone | # real image # synthetic image bird cat bus car dog mloU
Baseline R50 100 - 54.8 533 69.3 66.8 242 43.4
DatasetDM (ours) | R50 - 40k (R:100) 84.7 74.4 86.0 79.2 63.7 60.3
DatasetDM (ours) | R50 100 40k (R:100) 81.7 823 87.7 77.9 69.3 66.1
Baseline Swin-B 100 - 54.4 68.3 86.5 71.8 49.1 65.2
DatasetDM (ours) | Swin-B - 40k (R:100) 93.4 94.5 93.8 78.8 79.6 73.7
DatasetDM (ours) | Swin-B 100 100 (R:100) 83.9 71.0 82.9 78.0 395 67.9
DatasetDM (ours) | Swin-B 100 400 (R:100) 86.9 92.0 90.8 82.6 86.7 76.1
DatasetDM (ours) | Swin-B 100 40k (R:100) 86.7 93.8 923 88.3 87.1 78.5
Baseline Swin-B 10.6k (full) - 93.7 96.5 90.6 88.6 95.7 84.3
DatasetDM (ours) | Swin-B 10.6k (full) 40k (R:100) 93.9 97.6 91.9 89.4 96.1 85.4

Table 4: Semantic segmentation on VOC 2012. ‘R: ’ refers to the number of real data used to train.

Human Pose Estimation. For the human pose estimation task on the COCO2017 dataset, DatasetDM
demonstrates significant improvements compared to the baseline trained on 800 real images, achieving
a 5.1% increase, as illustrated in Table[2| Similar to depth estimation, additional information can be
found in the supplementary material.

Zero Shot and Long-tail Segmentation. Table[/|displays the results of experiments related to zero-
shot and long-tail segmentation. Our model, DatasetDM, notably alleviates the effects of long-tail
distribution by synthesizing a substantial amount of data for rare classes, leading to an improvement
of up to 20% in mIoU. Details for both tasks can be found in the supplementary material.

4.3 Ablation studies

Zero-Shot Setting Long-tail Setting
Method seen  unseen | harm. | head  tail | mloU 95
Baseline(no Syn) | 613 107 183 | 612 441 | 526 /\Hﬂ
Lietal BI | 628 500 | 557 | - - - 904 g
DiffuMask [53] 71.4 65.0 68.1 - - - D85 |- .
DatasetDM 788 605 684 | 731 664 | 700 = ;
g 80[: —F— Bird
Table 7: Zero Shot and Long-tail Segmentation on VOC sl —A— Ca
2012. Zero Shot: following priors [31} [53], we train ‘ ‘ Person
DatasetDM with only 15 seen categories, and tested for ST 0 15 20 25 a0
ZQ cat.egories. Long-tail Setting: the 20 categories are dj— Word Number of Prompt
vided into head (10 classes, 20 images each class) and tail
classes (10 classes, 2 images each class). Figure 6: Ablation of Prompt Length.

Diffusion Time Steps. Table [6a]depicts the influence of visual features derived from various diffusion
time steps, and the maximum sampling step is 1000. We observe that a large step results in adverse
outcomes, whereas the performance with a smaller step tends to remain relatively stable.

Cross-Attention Fusion. Fig. [6b|demonstrates that the cross attention maps, F in step 1 can yield a
modest improvement, roughly 1%. Interestingly, it appears that as the step size increases, the benefit
becomes less pronounced. Indeed, when the step size surpasses 500, it may even result in detrimental
effects. From this perspective, the utility of the cross-attention map is limited.

Training Set Size. Additional training data for DatasetDM can further improve synthetic data, as
shown in Table The increase of the training data from 60 to 400 images precipitates the most
conspicuous improvement, subsequently reaching a saturation point. With 1k training images, the



8 Classes/% 19 Classes/%

method backbone | #real image # synthetic image | vehicle | mloU car bus bicycle | mloU
Baseline R50 9 100k+ (R:16) 84.3 71.5 82.8 223 42.4 36.8
HandsOff [55] R101 16 100k+ (R:16) - 55.1 - - - -
HandsOff [55] R101 50 100k+ (R:16) - 60.4 - - - -
DatasetDM (ours) | R50 - 38k (R:9) 86.9 69.5 833 83 535 342
DatasetDM (ours) | RS0 9 38k (R:9) 88.6 76.7 85.6 28.9 56.5 42.1
DatasetDM (ours) | R101 9 38k (R:9) 88.9 71.5 85.9 27.9 60.4 43.7
Baseline Swin-B 9 - 84.1 74.5 833 27.7 42.0 41.1
DatasetDM (ours) | Swin-B - 38k (R:9) 85.7 73.3 84.3 20.3 29.1 373
DatasetDM (ours) | Swin-B 9 38k (R:9) 89.4 80.0 87.2 30.2 66.5 47.4

Table 5: Semantic segmentation on Cityscapes for two different split settings: 8 and 19 categories.
‘vehicle’, ‘car’, ‘bus’, and ‘bicycle’ are sampled classes for presentation.

step | car dog step | car dog # train im. ‘ syn. joint prompt (# num.)‘ car dog | mloU

1 78.5 77.6 60 71.4 77.1 Human (100) | 84.9 84.5| 76.6
100 78.5 1 78.5 100 |73.7 785 GPT-4 (100) 852 86.1| 77.1
200 783 200 78.0 200 |74.4 794 GPT-4 (200) 88.0 86.2| 77.3
500 76.8 500 71.5 400 |76.4 804 GPT-4 (500) 88.1 87.1| 78.5
800 76.1 800 77.1 1,000 |784 81.1 GPT-4 (1k) 88.3 87.1| 78.5

(a) Visual Features F. (b) Cross Attention A. (c) Size of Train Set.  (d) Prompt Candidates.

Table 6: DatasetDM Ablation on Pascal-VOC 2012 for semantic segmentation. Swin-B is used as
the backbone. 100 real images are used for (a), (b), and (d). ‘Syn.” and ‘Joint’ denote training with
only synthetic data and joint training with real data, respectively.

performance escalates to an impressive 81%, demonstrating competitive prowess for the application.
Notably, 1k training images representing roughly 10% of the original data, is still relatively diminutive.

Prompt from Language Model. Candidate Number. We also investigated the impact of the number
of prompt candidates, as depicted in Table [6dl With the current configurations, an increase in the
number of prompts can potentially lead to a performance improvement of 2%. Word Number of Each
Prompt. We simply study the effect of the length of prompt in Fig. [} An increase in text length from
5 to 10 yields approximately 4% enhancement. When the text length surpasses 10, the performance
appears to plateau. We argue that the upper limit is due to the current capacity of generative models.

5 Conclusion

In this study, we investigate using a perception decoder to parse the latent space of an advanced
diffusion model, extending the text-to-image task to a new paradigm: text-guided data generation.
Training the decoder requires less than 1% of existing labeled images, enabling infinite annotated
data generation. Experimental results show that the existing perception models trained on synthetic
data generated by DatasetDM exhibit exceptional performance across six datasets and five distinct
downstream tasks. Specifically, the synthetic data yields significant improvements of 13.3% mIoU
for semantic segmentation on VOC 2012 and 12.1% AP for instance segmentation on COCO 2017.
Furthermore, text-guided data generation offers additional advantages, such as a more robust solution
for domain generalization and enhanced image editing capabilities. We hope that this research
contributes new insights and fosters the development of synthetic perception data.
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