
Regularized Latent Dynamics Prediction is a Strong Baseline for Behavioral Foundation Models

Regularized Latent Dynamics Prediction is a Strong
Baseline For Behavioral Foundation Models

Anonymous authors
Paper under double-blind review

Abstract

Behavioral Foundation Models (BFMs) have seen some success recently in producing1
agents with the capabilities to adapt to any unknown reward or task. In reality, these2
methods are only able to produce near-optimal policies for the reward functions that are3
in the span of some pre-existing state features. Naturally, their efficiency relies heav-4
ily on the choice of state features used by them. As a result, these BFMs have used5
a wide variety of potentially complex objectives to train task spanning features with6
different inductive properties. With this work, our aim is to examine the question: are7
these complex representation learning objectives necessary for zero-shot RL? Specifi-8
cally, we revisit the objective of self-supervised next-state prediction for state feature9
learning, but observe that such an objective is prone to increasing state-feature similar-10
ity, and subsequently reducing span of reward functions that we can represent optimal11
policies for. We show that by simply maintaining feature diversity using orthonormal12
regularization along with next-state prediction, we can match or surpass state-of-the-art13
complex representation learning methods for zero-shot RL.14

1 Introduction15

The reward hypothesis states that all goals and purposes can be understood as maximization of scalar16
reward signals. This principle has motivated development of RL algorithms that learn efficiently17
given a reward function. However, a large part of prior developments in RL focus on dealing with18
single reward function or a small subset of reward functions. But with the recent focus on generalist19
agents, the generalization capabilities of RL to new tasks are being tested. Still, when compared to20
the supervised ML counterparts, RL lags behind in showing zero-shot generalization to new tasks in21
an environment.22

Zero shot learning has been adapted in RL (Touati et al., 2023) to learn agents that can solve any task23
in the environment without any additional training or planning, after an initial pretraining. Zero-shot24
RL has significant practical potential in developing generalist agents with wide applicability. For25
instance, robotics applications, like robotic manipulation or drone navigation, often require agents26
to solve a wide variety of unknown tasks. A general-purpose household robot needs to possess the27
capability to flexibly adapt to various household chores without explicit training for each new task.28

Behavioral foundation models based on the idea of leveraging successor representations (Touati29
et al., 2023; Agarwal et al., 2024) have shown promising progress towards developing algorithms30
that output near-optimal policies for a wide class of reward functions without additional learning31
or training during test-time by pretraining on a dataset of reward-free interactions, i.e, zero-shot32
RL. Such BFMs work by a) learning a state representation ϕ : s → Rd and b) learning a space33
of policies parameterized by a latent vector z ∈ Rd trained to be optimal for reward defined as34
r(s) = ϕ(s)⊤.z. At test time given any reward function rtest(s), the near-optimal policy πzrtest35
is obtained by projecting reward functions into the space of state-representations, and solving for36
zrtest such that rtest(s) ≈ ϕ(s)⊤.zrtest . The near-optimal policy is then given by πzrtest .37
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The success of modern zero-shot RL methods is often attributed to learning generalizable state-38
representations. State-of-the-art methods usually learn state representations that retain information39
suitable to represent successor measures under a wide class of policies. Successor measures are40
information rich objects that capture a policy’s state visitation in the environment given any starting41
state. Successor measures are usually learned for an explicitly defined class of policies (Agarwal42
et al., 2024) or implicitly by first defining a class of reward functions (Ramesh et al., 2021; Park43
et al., 2024) and considering optimal policies for those reward functions as the set of policies. The44
main insight behind predicting successor measure as a target for state representation learning is45
that representations sufficient to explain future state-visitation for a wide range of policies captures46
features that are relevant for sequential decision making under various reward functions.47

Unfortunately, state representation learning by estimating successor measures requires iteratively48
applying Bellman evaluation backups or Bellman optimality backups, both of which are known to49
result in optimization difficulties or feature collapse due to the instability inherent in bootstrapping50
(Kumar et al., 2021). On the other hand, the dynamics learning objective is an optimization-friendly51
objective for state representation learning that bypasses bootstrapping. However, using the learned52
dynamics model to obtain a policy at test time would require a policy training phase with model53
based RL algorithm going against our objective of zero-shot RL. This work aims to investigate the54
following question:55

Is next-state prediction enough to learn state features that enable performant zero-shot RL?56

Our investigation is inspired by the work of Fujimoto et al. (2025), which underscored the impor-57
tance of auxiliary objective of state representation learning through dynamics prediction losses in58
boosting performance of single-task model-free RL. Our work differs by tackling a different setting59
– we present an empirical investigation of the simple dynamics prediction objective for learning60
representations suitable for zero-shot RL. Unlike the single task RL setting examined by Fujimoto61
et al. (2025), we find that in its naive form, this objective leads to a mild form of feature collapse62
where representation of different states increase in similarity over training steps and result in poor63
zero-shot RL performance when evaluated on a number of downstream tasks. With a simple reg-64
ularization to prevent collapse, we show that model-based representations learned via supervised65
learning are competitive and present a scalable alternative to representations learned via complex66
successor measure estimation methods for zero-shot RL.67

2 Related Work68

Unsupervised RL: Unsupervised RL encompasses the class of algorithms that enable learning69
general-purpose skills and representations without relying on reward signal in the data. In this work,70
we focus on techniques that learn representations capable of producing optimal value functions for71
any arbitrary function reward specification.72

Recent pre-training approaches (e.g., Ma et al. (2023); Nair et al.) borrow self-supervised tech-73
niques from computer vision—such as masked auto-encoding—to extract embeddings from large-74
scale datasets (Grauman et al. (2022)) that can be fine-tuned for downstream control. However,75
these representations are inherently tied to the behavior policies used during data collection. These76
policies are limited in their ability to capture the full spectrum of possible behaviors or to approxi-77
mate Q-functions for any reward functions. HILP (Park et al. (2024)) goes beyond standard masked78
autoencoding approaches by using Hilbert-space representations to preserve temporal dynamics.79
Auxiliary objectives, which involve complementary predictive tasks to get richer semantic or tem-80
poral structures, have also been explored in previous works (Agarwal et al. (2021), Schwarzer et al.81
(2020)). Although representations from auxiliary objectives can accelerate policy learning, a new82
policy still needs to be learned from scratch for each new reward function.83

Several works have also focused on intent or skill discovery through diversity-driven objectives.84
These methods consider state-visitation distribution that are defined by latents or skills. Thus, max-85
imizing mutual information (Warde-Farley et al. (2018), Eysenbach et al. (2018), Achiam et al.86
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(2018), Eysenbach et al. (2022)) or minimizing the Wasserstein distance (Park et al. (2023)) be-87
tween latents and state-visitation distribution is used to ensure diversity.88

Behavioral Foundation Models: Behavioral Foundation Models deals with the class of approaches89
that can be used to train an RL agent in an unsupervised manner using task-agnostic reward-free90
offline transitions. During inference, BFMs can approximate the optimal policy for a wide class of91
unseen reward functions without any further training.92

Forward-Backward representations (Touati & Ollivier (2021)) and PSM (Agarwal et al. (2024))93
provide a robust framework for BFMs based on stationary distribution, on which several succes-94
sive works are based. Fast Imitation with BFMs (Pirotta et al. (2023)) demonstrates the ability of95
successor-measure–based BFMs to imitate new behaviors from just a few demonstrations, while Fast96
Adaptation with BFMs (Sikchi et al. (2025)) builds upon this by fine-tuning BFMs’ latent embed-97
ding space, yielding 10-40% improvement over their zero-shot performance in a few of episodes.98
Recent progress in imitation learning has led to the development of BFMs tailored for humanoid99
control tasks (Peng et al. (2022), Won et al. (2022), Luo et al. (2023), Tirinzoni et al. (2025)) which100
can produce diverse behaviors trained using human demonstration data.101

3 Preliminaries102

We consider a reward-free Markov Decision Process (MDP) (Puterman, 2014) which is defined as103
a tuple M = (S,A, P, d0, γ), where S and A respectively denote the state and action spaces, P104
denotes the transition dynamics with P (s′|s, a) indicating the probability of transitioning from s to105
s′ by taking action a, d0 denotes the initial state distribution and γ ∈ (0, 1) specifies the discount106
factor. A policy π is a function π : S → ∆(A) mapping a state s to probabilities of action in A.107
We denote by Pr(· | s, a, π) and E[· | s, a, π] the probability and expectation operators under state-108
action sequences (st, at)t≥0 starting at (s, a) and following policy π with st ∼ P (· | st−1, at−1)109
and at ∼ π(· | st). Given any reward function r : S → R, the Q-function of π for r is Qπr (s, a) :=110 ∑
t≥0 γ

tE[r(st+1) | s, a, π].111

Successor measures based Behavioral Foundation Models: The successor measure (Dayan,112
1993; Blier et al., 2021) of state-action (s, a) under a policy π is the (discounted) distribution of113
future states obtained by taking action a in state s and following policy π thereafter:114

Mπ(s, a,X) :=
∑
t≥0

γtPr(st+1 ∈ X | s, a, π) ∀X ⊂ S. (1)

Q functions can be represented using successor measures as, Qπ(s, a) =
∑
s+ M

π(s, a, s+)r(s+).115
This simple linear relationship between Q functions and Successor Measures have been exploited116
by a number of works (Touati & Ollivier, 2021; Agarwal et al., 2024) to create Behavioral Foun-117
dation Models(BFMs). The BFMs parameterize their policies (and correspondingly successor mea-118
sures) using a latent z ∈ Z to pre-compute πz = argmaxzM

⊤
z r. BFMs based on successor119

features (Touati & Ollivier, 2021; Zheng et al., 2024) parameterize the reward functions linearly120
using these latents as spans of the state features, ϕ : S → Z , r = ϕz. Hence, the inference for any121
reward function reduces to finding this latent z from reward samples using linear regression. We122
will be following a similar setup as these successor feature methods, where we will be representing123
rewards as a span of the state features and learn to represent successor measures using these state124
features, leading to efficient computation of M⊤

z r.125

4 Method126

This method can be broadly divided into two parts - representation learning and zero-shot RL. The127
state representation encoder is trained using dynamics prediction and orthonormality loss, enabling128
the encoder to learn representations that will be generalizable across tasks. Leveraging these ro-129
bust state embeddings, we then pretrain a Behavioral Foundation Model (BFM) to predict successor130
measures, enabling zero-shot inference of near-optimal policies for unseen reward functions. We re-131
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fer to this method as RLDP (Regularized Latent Dynamics Prediction based Behavioral Foundation132
Policies)133

4.1 Learning Representations with Regularized Latent Dynamics Prediction134

Zero-shot RL based on successor measures rely on learning a state representation denoted by ϕ(s).135
This state representation will define the span of reward functions that the zero-shot RL method is136
guaranteed to output optimal policies for. Our primary representation learning objective is simple137
— unrolled latent dynamics prediction. We learn a state representation encoder ϕ : S → Rd, (Z =138
Rd) and a latent state-action representation encoder g : Rd × A → Rd such that latent dynamics139
representation remains linear in these representations ϕ(s′) = g(ϕ(s), a)⊤w with some constant140
weights w informing our loss function for representation learning. A sub-sequence of horizon H141
is sampled from the offline interaction dataset given by τ i = {si0, ai0, si1, ai1, ..., siH−1, a

i
H−1, s

i
H}.142

A sequence of future latent states h1:H are obtained by encoding the initial state h0 = ϕ(s0) and143
unrolling using the defined dynamics model ht+1 = g(ht, at)

⊤.w. Then the objective is to predict144
the encoded future latent states:145

Ld = min
ϕ,g

Eτ∼dO

( H∑
t=1

g(ht, at)
⊤w− ht+1

)2
 (2)

The idea of learning low-rank representations for dynamics prediction is inspired by prior works in146
linear MDP and MDP homomorphisms (Parr et al., 2008; Ravindran, 2004; Van der Pol et al.,147
2020) and has been shown to be successful in recent work of Fujimoto et al. (2025) where148
it is observed that model-free methods can be made competitive to model-based methods in149
sample efficiency and final performance with representations learned from dynamics prediction.150

Figure 1: Average Cosine similarity between
state-representations sampled uniformly from
the training dataset: Feature similarity increases
over the course of training. Shaded region shows
standard deviation over 4 seeds

151

However, solely learning from the latent dynam-152
ics objective can lead to convergence to a col-153
lapsed solution. This is unsurprising as trivial154
solutions of predicting a constant zero vector155
achieves a perfect loss in Equation 2. To combat156
this, prior works (Grill et al., 2020) have pro-157
posed the use of a semi-gradient update where158
a stop-gradient is used for target ht+1 in Equa-159
tion 2 along with a slowly updating target. Do160
these techniques mitigate solution collapse? We161
answer this question by plotting the cosine sim-162
ilarity of state representations trained via the163
above objective on an offline dataset collected164
by an exploration algorithm RND (Burda et al.,165
2019). Figure 1 shows that while the solutions166
do not collapse, there is an increase in feature similarity over the course of learning which we refer167
to as a mild form of collapse. As the space of reward functions is spanned by state features, such168
an increase in feature similarity can directly reduce the class of reward functions for which we can169
learn optimal policies.170

Preventing collapse in unsupervised RL: In the setting of unsupervised RL, the dataset contains171
purely reward-free transitions. To prevent collapse, we consider diversity regularization. Orthornor-172
mality regularizations have been widely studied in self-supervised learning (He et al., 2024b; Bansal173
et al., 2018b). Since we are looking to span reward functions using these state features, it makes174
sense to have these features orthogonal to each other. We project all state representations in a hy-175
persphere: Sd−1 = {x ∈ Rd : ∥x∥2 = 1} and regularize by minimizing cosine similarity between176
any two states. This technique is also referred to as orthogonal regularization and has been used in177
self-supervised techniques for representation learning in vision and natural language (Bansal et al.,178
2018a; He et al., 2024a). Some prior unsupervised RL methods (Touati et al., 2023) use this regu-179
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larization as an implementation trick to stabilize training; in the case of latent dynamics prediction180
this step becomes crucial to mitigate the increase in representation similarity. The orthogonal regu-181
larization loss looks like:182

Lr = Es,s′∼dO [ϕ(s)⊤ϕ(s′)] (3)
Our final loss is a weighted combination of dynamics prediction combined with orthogonal diversity183
regularization :184

L = Ld + λLr (4)
where λ controls the regularization strength.185

4.2 Zero-shot RL with Regularized Latent Dynamics Predictive Representations186

We construct a Behavioral Foundation Model using the state-encoder ϕ trained by minimizing L187
(Equation 4). We define the class of reward functions as: T = {rz|rz = (ϕ⊤ϕ)−1ϕ⊤z for some z ∈188
Sd−1} and define πz to be the optimal policy for rz . Successor Measures, Mπz , are parameterized189
as Mπz (s, a, s+) = ψπz (s, a)ϕ(s+) with ψπz (s, a) (or ψ(s, a, z)) being the successor features190
for the state feature ϕ i.e. ψπz (s, a) = Eπz

[
∑∞
t=0 γ

tϕ(s)]. Since ϕ is already obtained using191
Equation 4, learningMπz would mean optimizing for ψ. Following Touati & Ollivier (2021); Touati192
et al. (2023); Agarwal et al. (2024), we use a contrastive objective to train Mπz , parameterized as193
Mπz (s, a, s+) = ψ(s, a, z)ϕ(s+),194

LBFM = −Es,a,s′∼dO [Mπ
z (s, a, s

′)]

+
1

2
Es,a,s′∼dO,s+∼dO [(M

π
z (s, a, s

+)− γM̄π
z (s

′, πz(s
′), s+))2]. (5)

Equation 5 requires samples from πz . Hence the policy is optimized to maximize Qπz ,195
πz(s) = max

a
Qπz (s, a) = max

a
ψ(s, a, z).z (6)

During inference, given a reward function r, we obtain the near-optimal policy by finding the corre-196
sponding z via linear regression,197

zR = min
z

EdO [(r(s)− (ϕ⊤ϕ)−1ϕ(s) · z)]2 =⇒ zR = EdO [ϕ(s) · r(s)] (7)

5 Experiments198

The goal of our experiments is to perform an empirical study of suitability of state representations199
learned by latent next-state prediction objective when compared to other methods that employ more200
complex strategies. We perform several empirical ablations to understand our design choices. In par-201
ticular, we aim to answer the following questions: a) Under an apples-to-apples setting of keeping202
all other learning factors similar, how does our method compare to baselines in enabling generaliza-203
tion to unseen reward functions? b) How does our method fare in the setting of large observation204
space of pixels? c) What design decisions are crucial to the success of our method?205

Setup: We consider continuous control tasks from DeepMind control suite - Pointmass, Cheetah,206
Walker, Quadruped under a similar setup considered by prior works in zero-shot RL. A dataset is207
collected in these experiments using an exploration algorithm RND (Burda et al., 2019) without208
specifying any reward functions. With such data, we pretrain a BFM using the method outlined in209
our method section 4. Each algorithm is given the same budget of gradient steps during pretraining,210
controlling the state representation dimension and the final performance is obtained by taking the211
model obtained at the end of learning and querying it for different task-rewards for 50 episodes. All212
of our results are aggregated across 4 seeds.213

Baselines: We compare this method against commonly used state-of-the-art baselines in reward-214
function spanning/representation such as: FB, HILP, PSM, and Laplacian. The Laplacian ap-215
proach (Wu et al., 2018) learns state representation using eigenvectors of graph-Laplacian induced216
by a random-walk operator. FB (Touati et al., 2023) intertwines learning of state-representation with217
policy learning step where state-representations are learned such that they can represent successor218
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Task Laplace FB HILP PSM RLDP

W
al

ke
r Stand 243.70 ± 151.40 902.63 ± 38.94 607.07 ± 165.28 872.61 ± 38.81 890.40 ± 27.33

Run 63.65 ± 31.02 392.76 ± 31.29 107.84 ± 34.24 351.50 ± 19.46 334.26 ± 49.69
Walk 190.53 ± 168.45 877.10 ± 81.05 399.67 ± 39.31 891.44 ± 46.81 779.768 ± 137.156
Flip 48.73 ± 17.66 206.22 ± 162.27 277.95 ± 59.63 640.75 ± 31.88 492.94 ± 22.79

Average(*) 136.65 594.67 348.13 689.07 624.34
C

he
et

ah Run 96.32 ± 35.69 257.59 ± 58.51 68.22 ± 47.08 244.38 ± 80.00 157.12 ± 29.92
Run Backward 106.38 ± 29.40 307.07 ± 14.91 37.99 ± 25.16 296.44 ± 20.14 170.52 ± 15.30

Walk 409.15 ± 56.08 799.83 ± 67.51 318.30 ± 168.42 984.21 ± 0.49 592.92 ± 104.66
Walk Backward 654.29 ± 219.81 980.76 ± 2.32 349.61 ± 236.29 979.01 ± 7.73 821.51 ± 50.62

Average(*) 316.53 586.31 193.53 626.01 435.52

Q
ua

dr
up

ed Stand 854.50 ± 41.47 740.05 ± 107.15 409.54 ± 97.59 842.86 ± 82.18 794.94 ± 43.25
Run 412.98 ± 54.03 386.67 ± 32.53 205.44 ± 47.89 431.77 ± 44.69 457.41 ± 74.70
Walk 494.56 ± 62.49 566.57 ± 53.22 218.54 ± 86.67 603.97 ± 73.67 465.40 ± 185.29
Jump 642.84 ± 114.15 581.28 ± 107.38 325.51 ± 93.06 596.37 ± 94.23 733.322 ± 55.304

Average(*) 601.22 568.64 289.75 618.74 612.77

Po
in

tm
as

s Top Left 713.46 ± 58.90 897.83 ± 35.79 944.46 ± 12.94 831.43 ± 69.51 890.406 ± 60.791
Top Right 581.14 ± 214.79 274.95 ± 197.90 96.04 ± 166.34 730.27 ± 58.10 795.469 ± 21.103

Bottom Left 689.05 ± 37.08 517.23 ± 302.63 192.34 ± 177.48 451.38 ± 73.46 805.172 ± 20.443
Bottom Right 21.29 ± 42.54 19.37 ± 33.54 0.17 ± 0.29 43.29 ± 38.40 193.381 ± 167.633

Average(*) 501.23 427.34 308.25 514.09 671.10

Table 1: Comparison (over 4 seeds) of zero-shot RL performance between different methods. RLDP
demonstrates a marked improvement over prior methods.

measures for a class of reward-optimal policies. HILP (Park et al., 2024) learns state representation219
using a goal reaching objective which is subsequently used for zero-shot RL. PSM (Agarwal et al.,220
2024) learns state representation to represent the successor measures for a class of policies defined221
with a discrete codebook. These baselines represent a set of diverse and strong approaches in the222
area of zero-shot RL.223

Implementation and Evaluation: To evaluate the different zero-shot RL methods we take the224
pretrained policies and query them on a variety of tasks. For each environment, we consider 4 tasks225
similar to prior works (Touati et al., 2023; Park et al., 2024; Agarwal et al., 2024).226

5.1 Benchmarking Zero-Shot RL for Continuous Control227

We conduct our experiments across two axis - a) Table 1 compares against representation dimensions228
suggested by authors for different methods with the same number of gradient updates for pretraining229
each BFM. b) Table 2 pretrains all the BFMs on same number of representation dimensions (512)230
and gradient steps (3 million). We also conducted experiments for pixel-based inputs, the results for231
which are in Table 3. We consider four environments – Walker, Cheetah, Quadruped, and Pointmass232
and use the ExoRL suite (Yarats et al. (2022)) for obtaining exploratory datasets using RND (Burda233
et al. (2019)).234

Overall, RLDP fares competitively to baselines across the environments despite its simplicity. Abla-235
tions studying the effects of the orthogonality loss and encoding horizon in representation learning236
are presented in the next section.237

5.2 What matters for supervising representation suitable for control?238

In this section, we aim to ablate components of our method and understand which factors have a239
strong effect on final performance. To that end, we consider ablating diversity regularization as well240
as encoding horizon - the two design choices we make in our method. We begin by keeping the241
encoding horizon constant (H = 5) while we change the orthogonality regularization coefficient.242
For the second study, we keep the orthogonality regularizer constant (λ = 1.0) while changing the243
encoding horizon. The results for these ablations are in Figure 2.244

We observe that for zero regularization, the performance takes a steep dip compared to λ > 0. This245
shows that orthogonality regularizer is critical to the representation learning part of our algorithm.246
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Figure 2: Evaluating the impact of Encoding Horizon and Orthogonality Regularization

For fixed encoding horizon, we see that orthogonality regularizer λ = 1 performs best. To further247
understand the role of the orthogonality regularizer in representation learning and how it helps pre-248
vent feature collapse, we refer to Section 4.1 and Section 6.2, where we look at the cosine similarity249
between representations. For the second part of our ablations where we see how different encoding250
horizons can affect the average reward obtained by the agent under constant orthonormality regular-251
ization (λ = 1), we observe that encoding horizons 5 and 20 perform better than the others, with252
5 performing best on average across all environments. For the purpose of our experiments, we use253
encoding horizon 5.254

6 Conclusion255

Task FB PSM RLDP

W
al

ke
r Stand 918.29 ± 28.83 899.54 ± 30.73 890.40 ± 27.33

Run 381.31 ± 17.32 450.57 ± 28.95 334.26 ± 49.69
Walk 779.29 ± 63.60 875.61 ± 33.44 779.768 ± 137.16
Flip 977.08 ± 2.76 621.36 ± 75.62 492.94 ± 22.79

Average(*) 763.99 711.77 624.34

C
he

et
ah Run 129.39 ± 37.63 181.85 ± 54.17 157.12 ± 29.92

Run Backward 142.41 ± 36.77 158.64 ± 18.56 170.52 ± 15.30
Walk 604.54 ± 80.51 576.98 ± 209.45 592.92 ± 104.66

Walk Backward 630.40 ± 144.23 817.92 ± 98.86 821.51 ± 50.62

Average(*) 376.69 433.85 435.52

Q
ua

dr
up

ed Stand 732.59 ± 101.33 708.03 ± 34.99 794.94 ± 43.25
Run 425.15 ± 52.02 404.32 ± 23.26 457.41 ± 74.70
Walk 492.91 ± 17.55 523.94 ± 52.13 465.40 ± 185.29
Jump 567.27 ± 48.90 549.57 ± 15.86 733.322 ± 55.30

Average(*) 554.48 546.46 612.77

Po
in

tm
as

s Top Left 943.85 ± 17.31 924.20 ± 10.64 890.41 ± 60.79
Top Right 550.84 ± 282.41 666.00 ± 133.15 795.47 ± 21.10

Bottom Left 672.28 ± 153.06 800.93 ± 15.62 805.17 ± 20.44
Bottom Right 272.97 ± 274.99 123.44 ± 138.82 193.38 ± 167.63

Average(*) 461.77 488.05 671.11

Table 2: Comparison (over 4 seeds) of zero-shot RL performance
between FB, PSM, and RLDP with representation size of d = 512.
RLDP results are unchanged.

This paper introduces256
RLDP, a method to de-257
couple representation258
learning and reinforcement259
learning, which allows260
for learning generalizable261
representations. Our ob-262
jective takes the simple263
form of regularized latent-264
dynamics prediction, an265
objective that does not266
require any reconstruc-267
tion, making it able to268
handle high-dimensional269
observation space and270
does not require Bellman271
backups, making it more272
amenable to optimization.273
We show that simply using274
latent-dynamics prediction275
leads to a mild form of276
feature collapse where277
the state-representation278
similarity increases over time. To combat this issue, we propose using orthogonal regularization, a279
well-known technique to prevent feature collapse. Using our method enables learning generalizable,280
stable, and robust representations that can achieve competitive performance compared to established281
successor measure-based techniques without relying on reinforcement-driven signals. In this work,282
we present initial investigation results. Future research directions include qualitatively examining283
the learned representations, alternative regularization strategies, further scaling these methods to284
complex pixel-based observations, and extending the applicability to real-world robotics and control285
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tasks. This work, thus, paves the way for simpler yet effective approaches to developing behavioral286
foundation models.287
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Appendix394

6.1 Pseudocode for the update395

Algorithm 1 UPDATE RLDP (PRETRAINING)

Require: Replay buffer D; encoder ϕ with target ϕ̄; forward model ψ with target ψ̄; actor π
Require: Pretraining steps Trepr, Polyak factor τ

for num_train_steps do
if step ≤ representation_steps then

Representation Learning (Section 4.1):
Sample segment batch {s0:H , a0:H} ∼ D
Lrepr ← λLorth + Ldyn (Equation 2, 3, 4)
if step%250 == 0 then
ϕ̄ ← ϕ

end if
else

Sample transitions {(s, a, s′, done)} ∼ D
γ ← γ0 (1− done)
Sample z ∼ MixUniform ∪ ϕ(s′) {mix random prior + goal-encoded}
Value update (Section 4.2):
a′ ∼ π(s′, z)
F ⋆ ← ψ̄(s′, z, a′), B⋆ ← ϕ̄(s′)
M⋆
ij = F ⋆i ·B⋆j

F ← ψ(s, z, a), B ← ϕ(s′)
Mij = Fi ·Bj
LFB = 1

2 E[∥(M − γM
⋆) ◦ 1i ̸=j∥2]

Update ψ ← ψ − η∇ψLFB
Policy update (Section 4.2):
a = π(s, z)
Q = ψ(s, z, a) · z
Lπ = −E[Q]
Update π ← π − η∇πLπ
Target-network sync:
ψ̄ ← τψ + (1− τ) ψ̄

end if
end for

6.2 Additional Results396

Learning Zero-shot Policies for Continuous Control Table 3 shows the performance of RLDP on397
pixel inputs.398

Understanding the role of orthogonality regularization Figure 3 shows the impact of changing399
orthogonality regularization while keeping a constant encoding horizon (H = 5). Specifically,400
we look at how the cosine similarity between representations changes during training for different401
regularization coefficients.402

We observe that for a regularization coefficient of 0, the cosine similarity increases, indicating that403
all states are getting mapped to similar representations, i.e., representation collapse. For any regu-404
larization coefficient greater than 0 (λ > 0), we observe that the cosine similarity drops below 0.1,405
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Dataset Environment Task FDM FB HILP RLDP

RND

Walker

Flip 282± 52 62± 57 232± 41 242.6± 33.5
Run 146± 60 42± 25 126± 8 106.6± 12.3
Stand 557± 97 172± 111 496± 73 464.1± 67.7
Walk 452± 52 104± 82 376± 52 229.8± 55.4

Average(*) 359.25 95.0 307.5 149.0

Cheetah

Run 178± 41 221± 15 276± 46 101.1± 30.3
Run Backward 126± 9 171± 123 297± 46 31.4± 5.5
Walk 470± 182 535± 251 895± 33 439.7± 133.7
Walk Backward 441± 107 535± 440 927± 35 137.1± 27.2

Average(*) 303.8 365.5 598.8 177.3

Quadruped

Jump 273± 66 224± 149 244± 122 430.5± 94.9
Run 192± 29 158± 82 148± 19 323.4± 37.1
Stand 374± 85 347± 191 327± 126 507.6± 76.8
Walk 199± 63 162± 92 163± 45 285.7± 29.9

Average(*) 259.5 222.8 220.5 386.8

Table 3: Performance comparison on the pixel-based ExORL benchmark across different environ-
ments and tasks.

close to 0.0, indicating that the states are being mapped to different representations. This highlights406
the importance of the regularization coefficient in preventing representation collapse.

Figure 3: Evaluating the impact of Orthogonality Regularization on representations learned across
four environments: Cheetah (top left), Pointmass (top right), Quadruped (bottom left), and Walker
(bottom right).

407
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