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Abstract

Behavioral Foundation Models (BFMs) have seen some success recently in producing
agents with the capabilities to adapt to any unknown reward or task. In reality, these
methods are only able to produce near-optimal policies for the reward functions that are
in the span of some pre-existing state features. Naturally, their efficiency relies heav-
ily on the choice of state features used by them. As a result, these BFMs have used
a wide variety of potentially complex objectives to train task spanning features with
different inductive properties. With this work, our aim is to examine the question: are
these complex representation learning objectives necessary for zero-shot RL? Specifi-
cally, we revisit the objective of self-supervised next-state prediction for state feature
learning, but observe that such an objective is prone to increasing state-feature similar-
ity, and subsequently reducing span of reward functions that we can represent optimal
policies for. We show that by simply maintaining feature diversity using orthonormal
regularization along with next-state prediction, we can match or surpass state-of-the-art
complex representation learning methods for zero-shot RL.

1 Introduction

The reward hypothesis states that all goals and purposes can be understood as maximization of scalar
reward signals. This principle has motivated development of RL algorithms that learn efficiently
given a reward function. However, a large part of prior developments in RL focus on dealing with
single reward function or a small subset of reward functions. But with the recent focus on generalist
agents, the generalization capabilities of RL to new tasks are being tested. Still, when compared to
the supervised ML counterparts, RL lags behind in showing zero-shot generalization to new tasks in
an environment.

Zero shot learning has been adapted in RL (Touati et al., 2023) to learn agents that can solve any task
in the environment without any additional training or planning, after an initial pretraining. Zero-shot
RL has significant practical potential in developing generalist agents with wide applicability. For
instance, robotics applications, like robotic manipulation or drone navigation, often require agents
to solve a wide variety of unknown tasks. A general-purpose household robot needs to possess the
capability to flexibly adapt to various household chores without explicit training for each new task.
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Behavioral foundation models based on the idea of leveraging successor representations (Touati
et al., 2023; Agarwal et al., 2024) have shown promising progress towards developing algorithms
that output near-optimal policies for a wide class of reward functions without additional learning
or training during test-time by pretraining on a dataset of reward-free interactions, i.e, zero-shot
RL. Such BFMs work by a) learning a state representation ϕ : s → Rd and b) learning a space
of policies parameterized by a latent vector z ∈ Rd trained to be optimal for reward defined as
r(s) = ϕ(s)⊤.z. At test time given any reward function rtest(s), the near-optimal policy πzrtest
is obtained by projecting reward functions into the space of state-representations, and solving for
zrtest such that rtest(s) ≈ ϕ(s)⊤.zrtest . The near-optimal policy is then given by πzrtest .

The success of modern zero-shot RL methods is often attributed to learning generalizable state-
representations. State-of-the-art methods usually learn state representations that retain information
suitable to represent successor measures under a wide class of policies. Successor measures are
information rich objects that capture a policy’s state visitation in the environment given any starting
state. Successor measures are usually learned for an explicitly defined class of policies (Agarwal
et al., 2024) or implicitly by first defining a class of reward functions (Ramesh et al., 2021; Park
et al., 2024) and considering optimal policies for those reward functions as the set of policies. The
main insight behind predicting successor measure as a target for state representation learning is
that representations sufficient to explain future state-visitation for a wide range of policies captures
features that are relevant for sequential decision making under various reward functions.

Unfortunately, state representation learning by estimating successor measures requires iteratively
applying Bellman evaluation backups or Bellman optimality backups, both of which are known to
result in optimization difficulties or feature collapse due to the instability inherent in bootstrapping
(Kumar et al., 2021). On the other hand, the dynamics learning objective is an optimization-friendly
objective for state representation learning that bypasses bootstrapping. However, using the learned
dynamics model to obtain a policy at test time would require a policy training phase with model
based RL algorithm going against our objective of zero-shot RL. This work aims to investigate the
following question:

Is next-state prediction enough to learn state features that enable performant zero-shot RL?

Our investigation is inspired by the work of Fujimoto et al. (2025), which underscored the impor-
tance of auxiliary objective of state representation learning through dynamics prediction losses in
boosting performance of single-task model-free RL. Our work differs by tackling a different setting
– we present an empirical investigation of the simple dynamics prediction objective for learning
representations suitable for zero-shot RL. Unlike the single task RL setting examined by Fujimoto
et al. (2025), we find that in its naive form, this objective leads to a mild form of feature collapse
where representation of different states increase in similarity over training steps and result in poor
zero-shot RL performance when evaluated on a number of downstream tasks. With a simple reg-
ularization to prevent collapse, we show that model-based representations learned via supervised
learning are competitive and present a scalable alternative to representations learned via complex
successor measure estimation methods for zero-shot RL.

2 Related Work

Unsupervised RL: Unsupervised RL encompasses the class of algorithms that enable learning
general-purpose skills and representations without relying on reward signal in the data. In this work,
we focus on techniques that learn representations capable of producing optimal value functions for
any arbitrary function reward specification.

Recent pre-training approaches (e.g., Ma et al. (2023); Nair et al.) borrow self-supervised tech-
niques from computer vision—such as masked auto-encoding—to extract embeddings from large-
scale datasets (Grauman et al. (2022)) that can be fine-tuned for downstream control. However,
these representations are inherently tied to the behavior policies used during data collection. These
policies are limited in their ability to capture the full spectrum of possible behaviors or to approxi-
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mate Q-functions for any reward functions. HILP (Park et al. (2024)) goes beyond standard masked
autoencoding approaches by using Hilbert-space representations to preserve temporal dynamics.
Auxiliary objectives, which involve complementary predictive tasks to get richer semantic or tem-
poral structures, have also been explored in previous works (Agarwal et al. (2021), Schwarzer et al.
(2020)). Although representations from auxiliary objectives can accelerate policy learning, a new
policy still needs to be learned from scratch for each new reward function.

Several works have also focused on intent or skill discovery through diversity-driven objectives.
These methods consider state-visitation distribution that are defined by latents or skills. Thus, max-
imizing mutual information (Warde-Farley et al. (2018), Eysenbach et al. (2018), Achiam et al.
(2018), Eysenbach et al. (2022)) or minimizing the Wasserstein distance (Park et al. (2023)) be-
tween latents and state-visitation distribution is used to ensure diversity.

Behavioral Foundation Models: Behavioral Foundation Models deals with the class of approaches
that can be used to train an RL agent in an unsupervised manner using task-agnostic reward-free
offline transitions. During inference, BFMs can approximate the optimal policy for a wide class of
unseen reward functions without any further training.

Forward-Backward representations (Touati & Ollivier (2021)) and PSM (Agarwal et al. (2024))
provide a robust framework for BFMs based on stationary distribution, on which several succes-
sive works are based. Fast Imitation with BFMs (Pirotta et al. (2023)) demonstrates the ability of
successor-measure–based BFMs to imitate new behaviors from just a few demonstrations, while Fast
Adaptation with BFMs (Sikchi et al. (2025)) builds upon this by fine-tuning BFMs’ latent embed-
ding space, yielding 10-40% improvement over their zero-shot performance in a few of episodes.
Recent progress in imitation learning has led to the development of BFMs tailored for humanoid
control tasks (Peng et al. (2022), Won et al. (2022), Luo et al. (2023), Tirinzoni et al. (2025)) which
can produce diverse behaviors trained using human demonstration data.

3 Preliminaries

We consider a reward-free Markov Decision Process (MDP) (Puterman, 2014) which is defined as
a tuple M = (S,A, P, d0, γ), where S and A respectively denote the state and action spaces, P
denotes the transition dynamics with P (s′|s, a) indicating the probability of transitioning from s to
s′ by taking action a, d0 denotes the initial state distribution and γ ∈ (0, 1) specifies the discount
factor. A policy π is a function π : S → ∆(A) mapping a state s to probabilities of action in A.
We denote by Pr(· | s, a, π) and E[· | s, a, π] the probability and expectation operators under state-
action sequences (st, at)t≥0 starting at (s, a) and following policy π with st ∼ P (· | st−1, at−1)
and at ∼ π(· | st). Given any reward function r : S → R, the Q-function of π for r is Qπr (s, a) :=∑
t≥0 γ

tE[r(st+1) | s, a, π].

Successor measures based Behavioral Foundation Models: The successor measure (Dayan,
1993; Blier et al., 2021) of state-action (s, a) under a policy π is the (discounted) distribution of
future states obtained by taking action a in state s and following policy π thereafter:

Mπ(s, a,X) :=
∑
t≥0

γtPr(st+1 ∈ X | s, a, π) ∀X ⊂ S. (1)

Q functions can be represented using successor measures as, Qπ(s, a) =
∑
s+ M

π(s, a, s+)r(s+).
This simple linear relationship between Q functions and Successor Measures have been exploited
by a number of works (Touati & Ollivier, 2021; Agarwal et al., 2024) to create Behavioral Foun-
dation Models(BFMs). The BFMs parameterize their policies (and correspondingly successor mea-
sures) using a latent z ∈ Z to pre-compute πz = argmaxzM

⊤
z r. BFMs based on successor

features (Touati & Ollivier, 2021; Zheng et al., 2024) parameterize the reward functions linearly
using these latents as spans of the state features, ϕ : S → Z , r = ϕz. Hence, the inference for any
reward function reduces to finding this latent z from reward samples using linear regression. We
will be following a similar setup as these successor feature methods, where we will be representing
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rewards as a span of the state features and learn to represent successor measures using these state
features, leading to efficient computation of M⊤

z r.

4 Method

This method can be broadly divided into two parts - representation learning and zero-shot RL. The
state representation encoder is trained using dynamics prediction and orthonormality loss, enabling
the encoder to learn representations that will be generalizable across tasks. Leveraging these ro-
bust state embeddings, we then pretrain a Behavioral Foundation Model (BFM) to predict successor
measures, enabling zero-shot inference of near-optimal policies for unseen reward functions. We re-
fer to this method as RLDP (Regularized Latent Dynamics Prediction based Behavioral Foundation
Policies)

4.1 Learning Representations with Regularized Latent Dynamics Prediction

Zero-shot RL based on successor measures rely on learning a state representation denoted by ϕ(s).
This state representation will define the span of reward functions that the zero-shot RL method is
guaranteed to output optimal policies for. Our primary representation learning objective is simple
— unrolled latent dynamics prediction. We learn a state representation encoder ϕ : S → Rd, (Z =
Rd) and a latent state-action representation encoder g : Rd × A → Rd such that latent dynamics
representation remains linear in these representations ϕ(s′) = g(ϕ(s), a)⊤w with some constant
weights w informing our loss function for representation learning. A sub-sequence of horizon H
is sampled from the offline interaction dataset given by τ i = {si0, ai0, si1, ai1, ..., siH−1, a

i
H−1, s

i
H}.

A sequence of future latent states hi1:H are obtained by encoding the initial state hi0 = ϕ(si0) and
unrolling using the defined dynamics model hit+1 = g(hit, at)

⊤.w. Then the objective is to predict
the encoded future latent states:

Ld = Eτ i∼dO

∥∥∥∥∥
H∑
t=1

hit − ϕ̄(sit)

∥∥∥∥∥
2
 (2)

where ϕ̄ is slowly moving encoder target. The idea of learning low-rank representations for
dynamics prediction is inspired by prior works in linear MDP, MDP homomorphisms and
BYOL (Parr et al., 2008; Ravindran, 2004; Van der Pol et al., 2020; Grill et al., 2020) and
has been shown to be successful in recent work of Fujimoto et al. (2025) where it is ob-
served that model-free methods can be made competitive to model-based methods in sam-
ple efficiency and final performance with representations learned from dynamics prediction.

Figure 1: Average Cosine similarity between
state-representations sampled uniformly from
the training dataset: Feature similarity increases
over the course of training. Shaded region shows
standard deviation over 4 seeds

However, solely learning from the latent dynam-
ics objective can lead to convergence to a col-
lapsed solution. This is unsurprising as trivial
solutions of predicting a constant zero vector
achieves a perfect loss in Equation 2. To combat
this, prior works (Grill et al., 2020) have pro-
posed the use of a semi-gradient update where
a stop-gradient is used for target ht+1 in Equa-
tion 2 along with a slowly updating target. Do
these techniques mitigate solution collapse? We
answer this question by plotting the cosine sim-
ilarity of state representations trained via the
above objective on an offline dataset collected
by an exploration algorithm RND (Burda et al.,
2019). Figure 1 shows that while the solutions
do not collapse, there is an increase in feature similarity over the course of learning which we refer
to as a mild form of collapse. As the space of reward functions is spanned by state features, such
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an increase in feature similarity can directly reduce the class of reward functions for which we can
learn optimal policies.

Preventing collapse in unsupervised RL: In the setting of unsupervised RL, the dataset contains
purely reward-free transitions. To prevent collapse, we consider diversity regularization. Orthornor-
mality regularizations have been widely studied in self-supervised learning (He et al., 2024b; Bansal
et al., 2018b). Since we are looking to span reward functions using these state features, it makes
sense to have these features orthogonal to each other. We project all state representations in a hy-
persphere: Sd−1 = {x ∈ Rd : ∥x∥2 = 1} and regularize by minimizing cosine similarity between
any two states. This technique is also referred to as orthogonal regularization and has been used in
self-supervised techniques for representation learning in vision and natural language (Bansal et al.,
2018a; He et al., 2024a). Some prior unsupervised RL methods (Touati et al., 2023) use this regu-
larization as an implementation trick to stabilize training; in the case of latent dynamics prediction
this step becomes crucial to mitigate the increase in representation similarity. The orthogonal regu-
larization loss looks like:

Lr = Es,s′∼dO [ϕ(s)⊤ϕ(s′)] (3)
Our final loss is a weighted combination of dynamics prediction combined with orthogonal diversity
regularization :

L = Ld + λLr (4)
where λ controls the regularization strength.

4.2 Zero-shot RL with Regularized Latent Dynamics Predictive Representations

We construct a Behavioral Foundation Model using the state-encoder ϕ trained by minimizing L
(Equation 4). We define the class of reward functions as: T = {rz|rz = (ϕ⊤ϕ)−1ϕ⊤z for some z ∈
Sd−1} and define πz to be the optimal policy for rz . Successor Measures, Mπz , are parameterized
as Mπz (s, a, s+) = ψπz (s, a)ϕ(s+) with ψπz (s, a) (or ψ(s, a, z)) being the successor features
for the state feature ϕ i.e. ψπz (s, a) = Eπz [

∑∞
t=0 γ

tϕ(s)]. Since ϕ is already obtained using
Equation 4, learningMπz would mean optimizing for ψ. Following Touati & Ollivier (2021); Touati
et al. (2023); Agarwal et al. (2024), we use a contrastive objective to train Mπz , parameterized as
Mπz (s, a, s+) = ψ(s, a, z)ϕ(s+),

LBFM = −Es,a,s′∼dO [Mπ
z (s, a, s

′)]

+
1

2
Es,a,s′∼dO,s+∼dO [(M

π
z (s, a, s

+)− γM̄π
z (s

′, πz(s
′), s+))2]. (5)

Equation 5 requires samples from πz . Hence the policy is optimized to maximize Qπz ,
πz(s) = max

a
Qπz (s, a) = max

a
ψ(s, a, z).z (6)

During inference, given a reward function r, we obtain the near-optimal policy by finding the corre-
sponding z via linear regression,

zR = min
z

EdO [(r(s)− (ϕ⊤ϕ)−1ϕ(s) · z)]2 =⇒ zR = EdO [ϕ(s) · r(s)] (7)

5 Experiments

The goal of our experiments is to perform an empirical study of suitability of state representations
learned by latent next-state prediction objective when compared to other methods that employ more
complex strategies. We perform several empirical ablations to understand our design choices. In par-
ticular, we aim to answer the following questions: a) Under an apples-to-apples setting of keeping
all other learning factors similar, how does our method compare to baselines in enabling generaliza-
tion to unseen reward functions? b) How does our method fare in the setting of large observation
space of pixels? c) What design decisions are crucial to the success of our method?

Setup: We consider continuous control tasks from DeepMind control suite - Pointmass, Cheetah,
Walker, Quadruped under a similar setup considered by prior works in zero-shot RL. A dataset is
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Task Laplace FB HILP PSM RLDP

W
al

ke
r Stand 243.70 ± 151.40 902.63 ± 38.94 607.07 ± 165.28 872.61 ± 38.81 890.40 ± 27.33

Run 63.65 ± 31.02 392.76 ± 31.29 107.84 ± 34.24 351.50 ± 19.46 334.26 ± 49.69
Walk 190.53 ± 168.45 877.10 ± 81.05 399.67 ± 39.31 891.44 ± 46.81 779.768 ± 137.156
Flip 48.73 ± 17.66 206.22 ± 162.27 277.95 ± 59.63 640.75 ± 31.88 492.94 ± 22.79

Average(*) 136.65 594.67 348.13 689.07 624.34
C

he
et

ah Run 96.32 ± 35.69 257.59 ± 58.51 68.22 ± 47.08 244.38 ± 80.00 157.12 ± 29.92
Run Backward 106.38 ± 29.40 307.07 ± 14.91 37.99 ± 25.16 296.44 ± 20.14 170.52 ± 15.30

Walk 409.15 ± 56.08 799.83 ± 67.51 318.30 ± 168.42 984.21 ± 0.49 592.92 ± 104.66
Walk Backward 654.29 ± 219.81 980.76 ± 2.32 349.61 ± 236.29 979.01 ± 7.73 821.51 ± 50.62

Average(*) 316.53 586.31 193.53 626.01 435.52

Q
ua

dr
up

ed Stand 854.50 ± 41.47 740.05 ± 107.15 409.54 ± 97.59 842.86 ± 82.18 794.94 ± 43.25
Run 412.98 ± 54.03 386.67 ± 32.53 205.44 ± 47.89 431.77 ± 44.69 457.41 ± 74.70
Walk 494.56 ± 62.49 566.57 ± 53.22 218.54 ± 86.67 603.97 ± 73.67 465.40 ± 185.29
Jump 642.84 ± 114.15 581.28 ± 107.38 325.51 ± 93.06 596.37 ± 94.23 733.322 ± 55.304

Average(*) 601.22 568.64 289.75 618.74 612.77

Po
in

tm
as

s Top Left 713.46 ± 58.90 897.83 ± 35.79 944.46 ± 12.94 831.43 ± 69.51 890.406 ± 60.791
Top Right 581.14 ± 214.79 274.95 ± 197.90 96.04 ± 166.34 730.27 ± 58.10 795.469 ± 21.103

Bottom Left 689.05 ± 37.08 517.23 ± 302.63 192.34 ± 177.48 451.38 ± 73.46 805.172 ± 20.443
Bottom Right 21.29 ± 42.54 19.37 ± 33.54 0.17 ± 0.29 43.29 ± 38.40 193.381 ± 167.633

Average(*) 501.23 427.34 308.25 514.09 671.10

Table 1: Comparison (over 4 seeds) of zero-shot RL performance between different methods. RLDP
demonstrates a marked improvement over prior methods.

collected in these experiments using an exploration algorithm RND (Burda et al., 2019) without
specifying any reward functions. With such data, we pretrain a BFM using the method outlined in
our method section 4. Each algorithm is given the same budget of gradient steps during pretraining,
controlling the state representation dimension and the final performance is obtained by taking the
model obtained at the end of learning and querying it for different task-rewards for 50 episodes. All
of our results are aggregated across 4 seeds.

Baselines: We compare this method against commonly used state-of-the-art baselines in reward-
function spanning/representation such as: FB, HILP, PSM, and Laplacian. The Laplacian ap-
proach (Wu et al., 2018) learns state representation using eigenvectors of graph-Laplacian induced
by a random-walk operator. FB (Touati et al., 2023) intertwines learning of state-representation with
policy learning step where state-representations are learned such that they can represent successor
measures for a class of reward-optimal policies. HILP (Park et al., 2024) learns state representation
using a goal reaching objective which is subsequently used for zero-shot RL. PSM (Agarwal et al.,
2024) learns state representation to represent the successor measures for a class of policies defined
with a discrete codebook. These baselines represent a set of diverse and strong approaches in the
area of zero-shot RL.

Implementation and Evaluation: To evaluate the different zero-shot RL methods we take the
pretrained policies and query them on a variety of tasks. For each environment, we consider 4 tasks
similar to prior works (Touati et al., 2023; Park et al., 2024; Agarwal et al., 2024).

5.1 Benchmarking Zero-Shot RL for Continuous Control

We conduct our experiments across two axis - a) Table 1 compares against representation dimensions
suggested by authors for different methods with the same number of gradient updates for pretraining
each BFM. b) Table 2 pretrains all the BFMs on same number of representation dimensions (512)
and gradient steps (2 million). We also conducted experiments for pixel-based inputs, the results for
which are in Table 3. We consider four environments – Walker, Cheetah, Quadruped, and Pointmass
and use the ExoRL suite (Yarats et al. (2022)) for obtaining exploratory datasets using RND (Burda
et al. (2019)).

Overall, RLDP fares competitively to baselines across the environments despite its simplicity. Abla-
tions studying the effects of the orthogonality loss and encoding horizon in representation learning
are presented in the next section.
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Figure 2: Evaluating the impact of Encoding Horizon and Orthogonality Regularization

5.2 What matters for supervising representation suitable for control?

Task FB PSM RLDP

W
al

ke
r Stand 918.29 ± 28.83 899.54 ± 30.73 890.40 ± 27.33

Run 381.31 ± 17.32 450.57 ± 28.95 334.26 ± 49.69
Walk 779.29 ± 63.60 875.61 ± 33.44 779.768 ± 137.16
Flip 977.08 ± 2.76 621.36 ± 75.62 492.94 ± 22.79

Average(*) 763.99 711.77 624.34

C
he

et
ah Run 129.39 ± 37.63 181.85 ± 54.17 157.12 ± 29.92

Run Backward 142.41 ± 36.77 158.64 ± 18.56 170.52 ± 15.30
Walk 604.54 ± 80.51 576.98 ± 209.45 592.92 ± 104.66

Walk Backward 630.40 ± 144.23 817.92 ± 98.86 821.51 ± 50.62

Average(*) 376.69 433.85 435.52

Q
ua

dr
up

ed Stand 732.59 ± 101.33 708.03 ± 34.99 794.94 ± 43.25
Run 425.15 ± 52.02 404.32 ± 23.26 457.41 ± 74.70
Walk 492.91 ± 17.55 523.94 ± 52.13 465.40 ± 185.29
Jump 567.27 ± 48.90 549.57 ± 15.86 733.322 ± 55.30

Average(*) 554.48 546.46 612.77

Po
in

tm
as

s Top Left 943.85 ± 17.31 924.20 ± 10.64 890.41 ± 60.79
Top Right 550.84 ± 282.41 666.00 ± 133.15 795.47 ± 21.10

Bottom Left 672.28 ± 153.06 800.93 ± 15.62 805.17 ± 20.44
Bottom Right 272.97 ± 274.99 123.44 ± 138.82 193.38 ± 167.63

Average(*) 461.77 488.05 671.11

Table 2: Comparison (over 4 seeds) of zero-shot RL performance
between FB, PSM, and RLDP with representation size of d = 512.
RLDP results are unchanged.

In this section, we aim
to ablate components of
our method and understand
which factors have a strong
effect on final performance.
To that end, we consider
ablating diversity regular-
ization as well as encoding
horizon - the two design
choices we make in our
method. We begin by keep-
ing the encoding horizon
constant (H = 5) while
we change the orthogo-
nality regularization coeffi-
cient. For the second study,
we keep the orthogonality
regularizer constant (λ =
1.0) while changing the en-
coding horizon. The results
for these ablations are in
Figure 2.

We observe that for zero
regularization, the performance takes a steep dip compared to λ > 0. This shows that orthogo-
nality regularizer is critical to the representation learning part of our algorithm. For fixed encoding
horizon, we see that orthogonality regularizer λ = 1 performs best. To further understand the role
of the orthogonality regularizer in representation learning and how it helps prevent feature collapse,
we refer to Section 4.1 and Section 7.2, where we look at the cosine similarity between representa-
tions. For the second part of our ablations where we see how different encoding horizons can affect
the average reward obtained by the agent under constant orthonormality regularization (λ = 1), we
observe that encoding horizons 5 and 20 perform better than the others, with 5 performing best on
average across all environments. For the purpose of our experiments, we use encoding horizon 5.

6 Conclusion

This paper introduces RLDP, a method to decouple representation learning and reinforcement learn-
ing, which allows for learning generalizable representations. Our objective takes the simple form of
regularized latent-dynamics prediction, an objective that does not require any reconstruction, mak-
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ing it able to handle high-dimensional observation space and does not require Bellman backups,
making it more amenable to optimization. We show that simply using latent-dynamics prediction
leads to a mild form of feature collapse where the state-representation similarity increases over time.
To combat this issue, we propose using orthogonal regularization, a well-known technique to prevent
feature collapse. Using our method enables learning generalizable, stable, and robust representations
that can achieve competitive performance compared to established successor measure-based tech-
niques without relying on reinforcement-driven signals. In this work, we present initial investigation
results. Future research directions include qualitatively examining the learned representations, alter-
native regularization strategies, further scaling these methods to complex pixel-based observations,
and extending the applicability to real-world robotics and control tasks. This work, thus, paves the
way for simpler yet effective approaches to developing behavioral foundation models.
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Appendix

7.1 Pseudocode for the update

Algorithm 1 UPDATE RLDP (PRETRAINING)

Require: Replay buffer D; encoder ϕ with target ϕ̄; forward model ψ with target ψ̄; actor π
Require: Pretraining steps Trepr, Polyak factor τ

for num_train_steps do
if step ≤ representation_steps then

Representation Learning (Section 4.1):
Sample segment batch {s0:H , a0:H} ∼ D
Lrepr ← λLorth + Ldyn (Equation 2, 3, 4)
if step%250 == 0 then
ϕ̄ ← ϕ

end if
else

Sample transitions {(s, a, s′, done)} ∼ D
γ ← γ0 (1− done)
Sample z ∼ MixUniform ∪ ϕ(s′) {mix random prior + goal-encoded}
Value update (Section 4.2):
a′ ∼ π(s′, z)
F ⋆ ← ψ̄(s′, z, a′), B⋆ ← ϕ̄(s′)
M⋆
ij = F ⋆i ·B⋆j

F ← ψ(s, z, a), B ← ϕ(s′)
Mij = Fi ·Bj
LFB = 1

2 E[∥(M − γM
⋆) ◦ 1i ̸=j∥2]

Update ψ ← ψ − η∇ψLFB
Policy update (Section 4.2):
a = π(s, z)
Q = ψ(s, z, a) · z
Lπ = −E[Q]
Update π ← π − η∇πLπ
Target-network sync:
ψ̄ ← τψ + (1− τ) ψ̄

end if
end for

7.2 Additional Results

Learning Zero-shot Policies for Continuous Control Table 3 shows the performance of RLDP on
pixel inputs.

Understanding the role of orthogonality regularization Figure 3 shows the impact of changing
orthogonality regularization while keeping a constant encoding horizon (H = 5). Specifically,
we look at how the cosine similarity between representations changes during training for different
regularization coefficients.

We observe that for a regularization coefficient of 0, the cosine similarity increases, indicating that
all states are getting mapped to similar representations, i.e., representation collapse. For any regu-
larization coefficient greater than 0 (λ > 0), we observe that the cosine similarity drops below 0.1,
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Dataset Environment Task FDM FB HILP RLDP

RND

Walker

Flip 282± 52 62± 57 232± 41 242.6± 33.5
Run 146± 60 42± 25 126± 8 106.6± 12.3
Stand 557± 97 172± 111 496± 73 464.1± 67.7
Walk 452± 52 104± 82 376± 52 229.8± 55.4

Average(*) 359.25 95.0 307.5 149.0

Cheetah

Run 178± 41 221± 15 276± 46 101.1± 30.3
Run Backward 126± 9 171± 123 297± 46 31.4± 5.5
Walk 470± 182 535± 251 895± 33 439.7± 133.7
Walk Backward 441± 107 535± 440 927± 35 137.1± 27.2

Average(*) 303.8 365.5 598.8 177.3

Quadruped

Jump 273± 66 224± 149 244± 122 430.5± 94.9
Run 192± 29 158± 82 148± 19 323.4± 37.1
Stand 374± 85 347± 191 327± 126 507.6± 76.8
Walk 199± 63 162± 92 163± 45 285.7± 29.9

Average(*) 259.5 222.8 220.5 386.8

Table 3: Performance comparison on the pixel-based ExORL benchmark across different environ-
ments and tasks.

close to 0.0, indicating that the states are being mapped to different representations. This highlights
the importance of the regularization coefficient in preventing representation collapse.

Figure 3: Evaluating the impact of Orthogonality Regularization on representations learned across
four environments: Cheetah (top left), Pointmass (top right), Quadruped (bottom left), and Walker
(bottom right).


