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ABSTRACT

While normalization techniques are widely used in deep learning, their theoretical
understanding remains relatively limited. In this work, we establish the benefits
of (generalized) weight normalization (WN) applied to the overparameterized ma-
trix sensing problem. We prove that WN with Riemannian optimization achieves
linear convergence, yielding an exponential speedup over standard methods that
do not use WN. Our analysis further demonstrates that both iteration and sample
complexity improve polynomially as the level of overparameterization increases.
To the best of our knowledge, this work provides the first characterization of how
WN leverages overparameterization for faster convergence in matrix sensing.

1 INTRODUCTION

Normalization schemes, such as layer, batch, and weight normalization, are essential in modern deep
networks and have proven highly effective for stabilizing training in both vision and language models
(Ioffe & Szegedy, 2015; Ba et al., 2016; Salimans & Kingma, 2016). Despite their practical success,
theoretical explanations of why they work remain elusive, even for relatively simple problems.

This work focuses on weight normalization (WN), which decouples parameters (i.e., variables) into
directions and magnitudes, and then optimizes them separately. It has recently regained consider-
able attention because of the seamless integration with LoRA (Hu et al., 2022), leading to several
powerful strategies for parameter-efficient fine-tuning of large language models; see e.g., (Liu et al.,
2024; Lion et al., 2025). Yet, theoretical support for WN remains relatively limited. Prior results in
(Wu et al., 2020) show that WN applied to overparameterized least squares induces implicit regu-
larization towards the minimum ¢5-norm solution. The implicit regularization of WN on diagonal
linear neural networks is studied in (Chou et al., 2024). WN is also observed to reduce Hessian
spectral norm and improve generalization in deep networks (Cisneros-Velarde et al., 2025).

Our work broadens the understanding of WN by establishing its merits for the overparameterized
matrix sensing problem. The goal is to recover a low-rank positive semi-definite (PSD) matrix
A ¢ Sﬁf from linear measurements. In the vanilla formulation without WN, one can exploit the
low-rankness of ground-truth matrix, i.e., 74 := rank(A) < m for efficient parameterization.
Specifically, we can optimize for Y € R™*" such that YY " ~ A (Burer & Monteiro, 2005). The
overparameterized regime r > r4 is of interest due to the need of exact recovery without knowing
r 4 a priori. This problem has wide applications in machine learning and signal processing (Candes
et al., 2013), and serves as a popular testbed for theoretical deep learning given its non-convexity
and rich loss landscape; see e.g., (Li et al., 2018; Jin et al., 2023; Arora et al., 2019).

Without WN, prior work (Xiong et al., 2024) establishes a sublinear lower bound on the convergence
rate when the above sensing problem is optimized via gradient descent (GD), even with infinite data
samples. We circumvent this lower bound by i) extending WN for coping with matrix variables;
and, ii) proving that applying this generalized WN with Riemannian gradient descent (RGD) en-
ables a linear convergence rate in the finite sample regime, leading to an exponential improvement.
Remarkably, WN leverages higher level of overparameterization to achieve both faster convergence
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Table 1: Comparison with existing algorithms for overparameterized matrix sensing. WN gives ex-
act convergence with linear rate. “E.C.” is the abbreviation of “exact convergence”, that is, whether
the reconstruction error bound will go to zero when the iteration number ¢ — oo. UB and LB are
short for upper and lower bound, respectively. OP stands for overparameterization.

Algorithm WN E.C. Initialization Convergence Rate Faster with OP
GD (UB) (Stoger & Soltanolkotabi, 2021) X X Small & random N/A
GD (LB) (Xiong et al., 2024) X v/ Small & random Q (%) X
log(mr2 )t
)t
RGD (Theorem 3.2) v v Random exp ( -0 (%t) ) v

and lower sample complexity. To the best of our knowledge, this is the first theoretical result demon-
strating that normalization benefits from overparameterization.

More concretely, our contributions are summarized as follows:

+« Exponentially faster rate. For overparameterized matrix sensing problems, we prove that ran-

4
domly initialized WN achieves a linear convergence rate of exp(—(’)(%ﬂ), where & is the

condition number of the ground-truth matrix A. This linear rate is exponentially faster than the

sublinear lower bound Q( obtained without WN. Moreover, additional overparameteriza-

Ii2
log(mr?)t )
tion in WN provides quantifiable benefits: the iteration complexity scales down polynomially as the

overparameterization level r increases; see Table 1 for a summary.

+ Two-phase convergence behavior. We further investigate the optimization trajectory and reveal
a two-phase behavior in WN. The iterates first move from a random initialization to a neighborhood
around global optimum, potentially traversing and escaping from several saddle points in polynomial
time. Our results demonstrate that this phase ends faster with additional overparameterization. Once
iterates approach the global optimum, a local phase begins. With the benign loss landscape shaped
by WN, we prove that a linear convergence rate can be obtained.

+« Empirical validation. We conduct experiments on overparameterized matrix sensing using both
synthetic and real-world datasets. The numerical results corroborate our theoretical findings.

1.1 RELATED WORK

Overparameterized matrix sensing. Overparameterized matrix sensing arises from many ma-
chine learning and signal processing applications such as collaborative filtering and phase retrieval
(Schafer et al., 2007; Srebro & Salakhutdinov, 2010; Candes et al., 2013; Duchi et al., 2020). The
problem is now a canonical benchmark in theoretical deep learning, mainly because the loss land-
scape is riddled with saddle points and lacks global smoothness or a global PL condition. Conver-
gence analyses for various algorithms on its population loss, i.e., matrix factorization, can be found
in (Ward & Kolda, 2023; Li et al., 2025; Kawakami & Sugiyama, 2021). Small random initialization
in overparameterized matrix sensing has been studied in (Stoger & Soltanolkotabi, 2021; Jin et al.,
2023; Xiong et al., 2024; Xu et al., 2023), while (Ma et al., 2023; Zhuo et al., 2024; Cheng & Zhao,
2024) are based on spectral initialization. Besides saddle escaping under small initialization, an-
other intriguing phenomenon is that overparameterization can exponentially slow the convergence
of GD compared to the exactly parameterized case (Zhuo et al., 2024; Xiong et al., 2024). Our
work proves that WN avoids this slowdown and achieves an improved rate. Moreover, additional
overparameterization leads to faster convergence and lower sample complexity.

Riemannian optimization. Riemannian optimization is naturally connected to WN for learning the
direction variables, which are constrained on a smooth manifold, e.g., a sphere. Existing literature
has extended gradient-based methods to problems with smooth manifold constraints; see e.g., (Absil
et al., 2008; Smith, 2014; Mishra et al., 2012; Boumal, 2023). This work follows standard notions of
Riemannian gradient descent (RGD). In its simplest form, RGD iteratively moves along the negative
direction of the Riemannian gradient, obtained by projecting the Euclidean gradient onto the tangent
space, and then maps the iterate back to the manifold via a retraction.
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Notational conventions. Bold capital (lowercase) letters denote matrices (column vectors); ()T
and || - || refer to transpose and Frobenius norm of a matrix; || - || denotes the spectral (¢2) norm for
matrices (vectors); (A, B) = Tr(A T B) represents the standard matrix inner product; and, o;(A)
denotes the i-th largest singular value of matrix A. Moreover, S™ and S denote symmetric and
positive semi-definite (PSD) matrices of size m x m, respectively.

2 PROBLEM FORMULATION

We focus on applying WN to the symmetric low-rank matrix sensing problem. The objective is to
recover a low-rank and positive semi-definite (PSD) matrix A € S from a collection of n data
{(M;, y;)}—, where each feature matrix M; € S™ is symmetric and the corresponding label is
Y = Tr(M;-'—A). For notational conciseness, we lety = [y1,...,%,]" € R™ and define a linear
mapping M : S™+— R"™ with [M(A)]; = Tr(M, A). Given that 74 = rank(A) < m, a parameter
economical formulation is based on the Burer-Monteiro factorization (Burer & Monteiro, 2005) that
introduces a matrix Y € R™*" such that YY T approximates A accurately. This leads to

N T 2
min ZMYYT) -yl 1)
Despite its seemingly simple formulation, the loss landscape contains saddle points, hence achieving
a global optimum from a random initialization is nontrivial. Moreover, overparameterization, i.e.,
T > 14, is often considered in practice to ensure exact recovery of A without prior knowledge of its
rank. It is established in (Xiong et al., 2024) that such overparameterization induces optimization
challenges even in the population setting (n — o0). In particular, a lower bound of GD shows
that [|[Y; Y, — A||r converges no faster than £(1/t), where ¢ is the iteration number. This rate is
exponentially slower than the linear one when 7 4 is known to employ r» = 74 (Ye & Du, 2021).

Applying WN to problem (1). For a vector variable, WN decouples it into direction and magnitude,
and optimizes them separately. Extending this idea to matrix variables in (1), we leverage polar
decomposition to write Y = X©, where X € St(m,r) lies in a Stiefel manifold and © € ST
Here, the Stiefel manifold St(m, r) is defined as {X € R™*"|X "X = I,.}. One can geometrically
interpret X as orthonormal bases for an r-dimensional subspace, thus representing “directions”, and
C) captures the “magnitude” of a matrix. Substituting Y in (1), we arrive at

1 . -
mip1||M(X®®TXT) —yl? st XeSt(m,r), © €S’
X,®

The above problem can be further simplified by i) merging @® T into a single matrix © € S, ; and
ii) relaxing the PSD constraint on © to only symmetry, i.e., @ € S". This relaxation achieves the
same global objective in the overparameterized regime, yet significantly improves computational
efficiency by avoiding SVDs or matrix exponentials needed for optimizing over PSD cones (Van-
denberghe & Boyd, 1996; Todd, 2001). In sum, applying WN gives the objective

1
I)I(li(glf(X,@) = 1||M(X®XT) —y|? st XeSt(m,r), @ €S, (2)

For convenience, we continue to refer to this generalized variant as WN, since it aligns with
the direction-magnitude decomposition paradigm. Similar reformulations of (1) have appeared in
(Mishra et al., 2014; Levin et al., 2025). The former empirically studies the faster convergence on
matrix completion problems, while the latter tackles local geometry around stationary points. Our
work, on the other hand, characterizes the behaviors of WN along the entire trajectory and clarifies
its interaction with overparameterization.

2.1 SOLVING WN VIA RIEMANNIAN OPTIMIZATION

Generalizing the vector WN! on matrix problems, Riemannian optimization is adopted for coping
with the manifold constraint X € St(m,r). We simply treat the manifold as an embedded one

"While the practical update rule of WN (Salimans & Kingma, 2016, eq. (4)) lies between Riemannian and
Euclidean optimization, (Wu et al., 2020, Lemma 2.2) shows that the limiting flow is Riemannian flow.
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Algorithm 1 Riemannian gradient descent (RGD) for solving WN (2)

: Input: Initial point X € St(m,r),0¢ € S", stepsizes 7, i1
:fort=0,1,...,7 do
Calculate G, the Riemannian gradient of X, via (3)
Update X1 via (4) // The direction variable
Calculate K; := Ve (X1, ©;) via (9)
Update ©;,1 via (5) // The magnitude variable
end for
: Output: X7.1,07,1

PRI AR

in Euclidean space. Extensions to other geometry are straightforward. To optimize the direction
variable Xy, let G; := Vx f(X;, ©;) denote the Euclidean gradient on X; (a detailed expression is
given in (8) of Appendix C). The Riemannian gradient for X; can be written as

- X - -
G, =1, - X, X/ )G, + {(XIGt —- G X,). (3)

Further applying the polar retraction” to ensure feasibility, the update for X, is given by
Xep1 = (Xe = 1Ge) (L + 1° G Gy) 717 @)

where 17 > 0 is the stepsize. Detailed derivations of (3) and (4) are deferred to Appendix C. Note that
polar retraction is used here for theoretical simplicity. Shown later sections, other popular retractions
for Stiefel manifolds such as QR and Cayley® share almost identical performance numerically.

An alternative update method is adopted for the magnitude variable ®;. Denote its gradient as
K; := Ve f(Xt+1,©;), whose expression can be found from (9) in Appendix C. We use GD with
a stepsize p > 0 to optimize @y, i.e.,

®t+l = ®t - ‘LLKt (5)

This update ensures feasibility of the symmetric constraint on ®,, V¢ > 0, whenever initialized with
®y € S"; see a proof in Lemma F.9. The step-by-step procedure for solving (2) is summarized in
Algorithm 1, and it is termed as RGD for future reference.

3 ON THE BENEFITS OF WN

This section demonstrates that WN delivers exact convergence at a linear rate for overparameterized
matrix sensing (2) and leverages additional overparameterization to yield faster optimization and
lower sample complexity. Recall that the rank of A is denoted by r 4. Let the compact SVD of A be
A =UXU",where U e R™*"4 and ¥ € S:_“. Without loss of generality, we assume 01 (3) = 1
and 0, (X) = 1/k with k > 1 denoting the condition number. We will use the restricted isometry
property (RIP) (Recht et al., 2010), a standard assumption in matrix sensing, in our proofs; see more
in, e.g., (Zhang et al., 2021; Stoger & Soltanolkotabi, 2021; Xu et al., 2023; Xiong et al., 2024).

Definition 3.1 (Restricted Isometry Property (RIP)) The linear mapping M(-) is (r,d)-RIP, with
§ €10,1), if for all matrices A € S™ of rank at most r, it satisfies

(1= )AJZ < [MA)]? < 1+ )] Al

RIP ensures that the linear measurement approximately preserves the Frobenius norm of low-rank
matrices. This property has been shown to hold for a wide range of measurement operators. For ex-
ample, when M is symmetric Gaussian, a sample size of n = O(mr/§?) suffices to guarantee that
(r, 6)-RIP holds with high probability. A detailed discussion with illustrative examples is provided
in Appendix A.3. With these preparations, we are ready to uncover the merits of WN.

’Let X € St(m,r) and a point in its tangent space G € TxSt(m, ). The polar retraction for X + G is
given by Rx(G) = (X + G)(I, + G'G)~ /2
3See e.g., (Absil et al., 2008), for more detailed discussions on retractions.
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3.1 MAIN RESULTS

We consider WN under random initialization, meaning that X is chosen uniformly at random from
the manifold St(m, ). One possible approach is to set Xo = Zo(ZJ Zo)~ /2, where the entries of
Zy € R™*" are i.i.d. Gaussian random variables N'(0, 1) (Chikuse, 2012).

Theorem 3.2 Consider solving the WN-aided sensing problem (2) initialized with random X,y €

St(m,r) and © € S" satisfying ||©¢|| < 2. Assume that ro < 3 and M(-) is (r+74+1,9)-RIP

with § = O(%) Algorithm 1 using stepsizes n = O(%) and ;. = 2 generates a

sequence {Xy, ©:}22 . With high probability over the initialization, this sequence proceeds in two
4.4 4 2

distinct phases, separated by a burn-in time ty with an upper bound O(%) .

i) Saddle phase. For some universal constant ¢ € (0,1), it follows that

_ St
alr—ra)®

T
||Xt®tXt - AHF S 2\/’/“A - /{4m47'41"A

ii) Linearly convergent phase. For some universal constant c3 € (0, 1), it is guaranteed that

B c3(r—ra)t
KimZ2r2ry

t—to
1X,©, X, — Al|f §3(1 ) . Vit>tg+ 1.

This theorem showcases the two regimes of convergence behavior using randomly initialized RGD.
In the first phase, the upper bound of reconstruction error ||X;®;X,” — A||f is proved to monoton-
ically decrease over iterations. This seemingly slow convergence arises from the potential saddle
escape that will be discussed in the next section. Eventually, RGD achieves a linear rate until exact
convergence, i.e., lim;_, || X;@:X] — A|[f = 0. Next, we break down Theorem 3.2 to demon-
strate the benefits of WN for the overparameterized matrix sensing from two different perspectives.

Optimization benefits of WN include i) faster convergence rate, and ii) less stringent initialization
requirements. Theorem 3.2 shows that WN achieves exact convergence to the ground-truth matrix
A with a linear rate. In contrast, without WN, the convergence behavior of randomly initialized
GD on (1) is weaker. Specifically, (Stoger & Soltanolkotabi, 2021) shows that GD can only attain a
constant reconstruction error with early stopping, but not guarantee last-iteration convergence. On
the other hand, (Xiong et al., 2024) establishes a lower bound for exact recovery of GD, giving a
sublinear dependence on ¢; see a detailed comparison in Table 1. In addition, our guarantee of this
linear rate is obtained without strict requirements on initialization, which stands in stark contrast
to the non-WN setting, where the magnitude of random initialization must be carefully controlled,
often inversely proportional to x (Stoger & Soltanolkotabi, 2021; Jin et al., 2023; Xu et al., 2023).

WN makes overparameterization a friend. Because the additional parameters induce computation
and memory overheads, it is natural to expect more gains from overparameterization. It can be seen
from Table 1 that GD does not benefit from overparameterization, while the benefits of overparame-
terization for WN are twofold. Setting r = pr 4 for some p > 1, one can rewrite the upper bound of

44 4
the burn-in time ¢o as O ( (” oD

W) , which decreases polynomially with p. In the linearly convergent
Ta

phase, WN achieves a convergence rate of exp (— O (%t) ), which is also faster with a larger

p. In terms of iteration complexity, this translates into a polynomial improvement with the level of
overparameterization. To quantitatively understand the merits of overparameterization, we consider
two cases. In the mildly overparameterized regime, where r = r 4 + ¢ for some constant ¢ = O(1),
the convergence rate reads exp ( - O(W)) When the level of overparameterization increases

rat

to 7 = cra, the rate improves to exp ( — O(725 )) Through comparison, it is readily seen that
additional overparameterization yields up to a factor of O(r% ) improvement in the exponent. On the
statistical side, the sample complexity of WN is determined by the RIP assumption on M (-). Under

7,.9,.2
the Gaussian design, as detailed in Appendix A.3, the RIP holds w.h.p. when n = (’)(

K,4m s T‘A)

(r—ra)t2 /-
Notably, the sample complexity n reduces polynomially as r increases. In particular, following the
same analysis as for the convergence rate, this reduction can reach up to a factor of O(r'?).
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Figure 1: The saddle-to-saddle (i.e., sequential learning) behaviors in WN. The x-axis corresponds to
the iteration number, and the y-axis follows the subfigure title. (a) Each plateau signifies a saddle; (b)
gradient norm at saddles drops by orders; (c) saddles strongly relate to the best rank-p approximation
of A; (d) sequential learning in the alignment between X; and U; (e) sequential learning in the
alignment between X, and U ; and, (f) sequential pattern in the magnitude variable ©,.

3.2 A GEOMETRY PROOF SKETCH

The proof of Theorem 3.2, while involved, admits a clear geometrical interpretation originated from
the direction-magnitude decoupling of WN. Here, we only focus on the “direction” X to gain more
intuition. Given that both X; and U are bases of a linear subspace, it is desirable that span(U) C
span(X;) at convergence. Equivalently, the principle angles between span(U) and span(X,) at
optimal should all be 0. This can be depicted via the alignment matrix ®; := UTX,, whose
singular values coincide with the cosine of these principle angles (Bjorck & Golub, 1973). Our
proof builds upon this and shows that Tr(®;®," ) — 74, i.e., the two subspaces align.

The convergence unfolds in two phases. In the first phase, Tr(®;®, ) grows from near 0 (due to
random initialization) to near optimal r4 — 0.5. Through consecutive lemmas, it can be shown

that Tr(®,11 @/, ;) — Tr(®:®/)) > O(%) This monotonic increase in alignment en-
sures a polynomial time to escape (potential) saddles, and also translates to the decreasing bound of
|[X:©;X, — A||r in Theorem 3.2. The second phase starts after Tr(®;®, ) > 74 — 0.5, where the

alignment error 74 — Tr(®;®, ) = Tr(I,, — ®,®,) decreases linearly to 0.

4 DIVING DEEPER INTO THE SADDLE PHASE

Next, we take a closer look at the convergence of RGD on WN in the saddle phase, that is ¢t < ¢,
or equivalently Tr(®;®, ) < r4 — 0.5. Our numerical experiments in Figure 1 indicate that RGD
traverse a sequence of saddles. The saddle-to-saddle behavior is known for GD on (1) (Li et al.,
2021; Jin et al., 2023). This section shows that this behavior persists for (2), yet can be faster with
a higher level of overparameterization. To bypass the randomness associated with M;, we begin by
pinpointing the saddles for the population loss, i.e., problem (2) in the infinite data limit n — oc.

More precisely, the objective is given by foo (X, ©) = 1 HX@X—r — AHE
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Figure 2: Convergence comparison of RGD on WN and GD on (1) under varying problem conditions
(squared reconstruction error vs. iteration). (a): WN enables RGD to converge linearly regardless
of x; (b): with WN, larger r leads to a shorter saddle phase and a faster convergence rate; (c): WN
converges remarkably fast in the full rank case r = m.

Lemma 4.1 Fora givenp € {0,1,...,74 — 1}, let A, be the best rank-p approximation of A, i.e.,
A, =argmin_ a)<, |A — A|2. In particular, we let Ag = 0. A point (X, ©) is a saddle of the
population loss fo if XOXT = A, and Tr(XTUUTX) = p.

Lemma 4.1 indicates that the saddles of f., are closely related to the best rank-p approximation
of A. It further suggests that a saddle-to-saddle dynamic is aligned with incremental learning*: the
algorithm successively learns A , for increasing p until the ground-truth matrix is recovered. Lemma
4.2 below shows that in the finite-sample regime, the saddles of f., also have small gradient norm

(r=ra)®

on f,i.e., no larger than O(m) under the parameter choices of Theorem 3.2.

Lemma 4.2 Assume that M(-) is (r + 14 + 1,9)-RIP, and ||®|| < 2, the finite sample loss in (2)
satisfies | VR foo (X, ©) = VE f(X,0)|[r < 12mé and [|[Ve fx(X,0) — Ve f(X, 0)|F < 2mé.

Here, V§ denotes the Riemannian gradient with respect to X.

Having characterized the saddles, we now turn to the saddle-to-saddle trajectory in Figure 1. This
figure traces the optimization trajectory of Algorithm I on WN with m = 300, r4 = 5, » = 10,
and x = 3, with more details shown in Appendix G.1. Figure la plots the squared reconstruction
error across iterations. Each plateau marks escape from a saddle, as confirmed by the small gradient
norm shown in Figure 1b. Figure 1c further shows that these saddles are exactly those characterized
in Lemma 4.1, where | X;©, X, — A, |2 for p € {0,1,...,74 — 1} stays close to 0 sequentially.
In other words, each saddle escape corresponds to leaving the neighborhood of A ,.

In addition, the optimization variables, geometrically interpretable as direction and magnitude, also
exhibit a sequential learning behavior. For the direction variable X, the singular values of ®;®/
(which characterize the squared cosine of the principle angles between X; and U) are visualized in
Figure 1d. Further, let U e R”*("="4) be an orthonormal basis for the orthogonal complement
of span(U). The alignment of X; and U is plotted in Figure le, with the alignment matrix defined
as ¥, := U] X,. The singular values of the magnitude variable ®, are plotted in Figure 1f. A clear
sequential learning pattern is observed among all these figures.

Lastly, we highlight that polynomial time is needed to escape all saddles: Theorem 3.2 bounds the
4, 4.4 2
duration of this phase to be at most O(%

indicating that overparameterization facilitates saddle escape under WN.

) iterations. This bound decreases with larger r,

5 NUMERICAL EXPERIMENTS

Numerical experiments using both synthetic and real-world data are conducted in this section to
validate our theoretical findings for WN on overparameterized matrix sensing problems. In the ex-
periments with synthetic data, the target matrix is generated as A = UXUT € R™*™  where

* Also known as deflation; see e.g., (Ge et al., 2021; Anandkumar et al., 2014; Seddik et al., 2023)
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Figure 3: Additional numerical results of WN (squared reconstruction error vs. iteration).

U € R™*"4 is a random matrix with orthonormal columns, and 3 € S’ is a diagonal matrix with
condition number x. In the image reconstruction experiments, the target matrix A is directly con-
structed from the underlying image. For the measurements, we use n independent random Gaussian
feature matrices {IM; }?_; to ensure RIP. More details on setups are deferred to Appendix G.2.

5.1 FASTER CONVERGENCE OF WN

Under various choices of the condition number , we compare the convergence behavior of RGD on
problem (2) with random initialization, against that of GD on (1) with small random initialization.

In this experiment, we consider target matrices with large condition numbers, i.e., k € {50, 75,100}.
We setm = 10,7 = 5,74 = 3, and n = 60000. The squared reconstruction error versus the number
of iterations is plotted in Figure 2a. We observe that WN enables RGD to converge linearly to zero
after a saddle phase, regardless of the condition number . This is consistent with our theoretical
result in Theorem 3.2. In contrast, GD slows down to a sublinear rate after its initial phase, yielding
substantially larger errors at the same iteration count.

5.2 ON THE BENEFIT OF OVERPARAMETERIZATION

Next, we demonstrate that WN leverages overparameterization for faster convergence. To this end,
we consider randomly initialized problem instances of (1) and (2) under different r.

In this experiment, we focus on a setting with m = 300, r4 = 5, and x = 10. The level of
overparameterization is chosen from r € {50, 75,100}, and the number of measurements is set to
n = 50000. RGD is run with random initialization and GD is run with small random initialization.
The squared reconstruction error versus the number of iterations is plotted in Figure 2b.

The results show that under WN, RGD converges faster as r increases. This behavior is consistent
with our analysis in Theorem 3.2. In comparison, although the theoretical convergence rate given by
(Xiong et al., 2024) is independent of 7, our empirical results indicate that a larger r leads to slightly
slower convergence of GD. Moreover, Figure 2b clearly shows that saddle escape becomes faster
with larger r, as reflected in shorter plateaus or earlier onset of linear convergence. Figure 2b also
shows that a larger r in WN leads to a steeper slope in the linearly convergent phase, demonstrating
that additional overparameterization prompts a faster rate. This aligns well with our theoretical
observations and discussions in Sections 3.1 and 4.

We also demonstrate that WN is remarkably effective in the full rank setting with » = m in Figure
2¢, where the convergence on three instances with m = r € {50,75,100},74 € {10,15,20},x €
{1,15,50}, and n = 30000 is plotted. The faster convergence arises from the fact that at initializa-
tion, X € St(m, m) already aligns with the target subspace spanned by U, i.e., Tr(I, —®o®] ) =
0. Equivalently, this is the case where only the magnitude ® is optimized. This faster convergence
implies that learning the correct direction (i.e., U) is more challenging than magnitude.
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Figure 4: The advantages of WN on image reconstruction.

5.3 ADDITIONAL EXPERIMENTS

Moreover, additional experiments reveal other interesting behaviors of WN.

Alternative manners of retraction. Although our algorithm for WN tackles only the polar retrac-
tion, other popular retractions share similar performance. In Figure 3a, we plot the performance of
Algorithm | with different manners for retraction, such as Cayley and QR, on an instance of (2) with
m = 10,7 = 5,74 = 3,k = 2,n = 1000. The three curves of squared reconstruction errors nearly
coincide. For better visualization, we scale the errors of Cayley and QR by 3 and 1/3, respectively.

Noisy measurements. To examine the robustness of WN, we consider a setting with corrupted
labels, ie., y; = Tr(M] A) + b; for i.i.d. Gaussian noise b; ~ N(0,&2). Figure 3b compares
WN with the vanilla problem (1) under the choices of ¢ = 1071, & = 1073, and ¢ = 107°. It
can be seen that RGD holds a linear rate under all choices of £, and the final squared reconstruction
error stabilizes around O(£2). On the other hand, the error of GD is mainly confined by its slow
convergence rate. This demonstrates that the power of WN carries to noisy settings as well.

5.4 IMAGE RECONSTRUCTION EXPERIMENTS

Lastly, we evaluate the advantages of WN on two image reconstruction problems.

The first experiment follows (Duchi et al., 2020) to consider a generalized phase retrieval problem
on a 32 x 32 horse image from the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). The image is
converted to grayscale and vectorized as a € R4, Standard lifting reformulation converts this
problem to a sensing problem on a rank-one ground-truth matrix A = aa' € S19%4; see (Candes &
Li, 2014). The second considers direct matrix sensing of a structured image given by A € st with
r4 = 2. In both cases, we set the overparameterization level to » = 100 and use n = 50000 feature
matrices. RGD and GD are randomly initialized and run for tggp = 100, tgp = 200 iterations in
both experiments to make the overall runtime comparable; see Appendix G.2.2 for details.

The reconstructions from the two experiments are presented in Figure 4. As shown, WN enables
RGD to achieve more accurate recovery of the ground truth compared to GD. These results demon-
strate that WN provides a significant improvement for image reconstruction problems.
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6 CONCLUSION

This work provides new theoretical insights into the role of weight normalization (WN) in over-
parameterized matrix sensing. We prove that randomly initialized WN with proper Riemannian
optimization guarantees a linear rate, yielding an exponential improvement on overparameterized
sensing problems without WN. Moreover, we show that overparameterization can be exploited un-
der WN to achieve faster optimization and lower sample complexity. Our analysis also reveals
a two-phase convergence behavior, with detailed characterizations of faster convergence in both
phases. Numerical experiments on both synthetic and real-world data further validate our findings.
Future work includes extending these results to broader non-convex learning settings, such as tensor
problems (Tong et al., 2022), and developing new algorithms that build on WN.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. For the theoretical results,
we provide complete proofs of all theorems and lemmas in Appendices E and F. For the empirical
results, Section 5 contains detailed descriptions of the numerical experiments, and the experimental
setups are presented in Appendix G.
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USAGE OF LLMS

The authors conducted all aspects of the research, including conception, theoretical proofs, experi-
mentation, analysis, and writing of the manuscripts. Large language models (LLMs) were employed
exclusively for the purpose of language refinement.

A MORE ON BACKGROUNDS

A.1 POLAR DECOMPOSITION

The definition of the polar decomposition is provided below; see (Golub & Van Loan, 2013, Section
9.4.3) for a detailed discussion and theoretical background.

Definition A.1 The polar decomposition of a matrix X € R™*" with m > r is defined as
X =UP,

where U € R™*" has orthonormal columns and P € S', is a positive semi-definite matrix.

This decomposition can be interpreted as expressing X as the product of directions (U) and a mag-
nitude part (P). It is unique when X has full column rank.

A.2 RIEMANNIAN OPTIMIZATION

Riemannian optimization provides a principled framework for optimization problems whose vari-
ables are constrained on a smooth manifold, such as spheres, Stiefel and Grassmann manifolds.

Let M be a smooth manifold and f : M — R be a differentiable objective function. At any point
X € M, the feasible directions form the tangent space 7xM. The Riemannian gradient, denoted
VEf(X), is defined as the orthogonal projection of the Euclidean gradient V f(X) onto 7Tx M.
Intuitively, it is the direction of steepest descent that remains compatible with the manifold geometry.

A basic Riemannian gradient descent (RGD) iteration consists of two steps:
G, =Vif(Xy) eTxM, X1 =Rx, (G,

where Rx, : Tx,M — M is retraction, namely a smooth mapping satisfying Rx, (0) = X; and
whose curve ¢(s) = Rx, (sG¢) has initial velocity ¢/(0) = G¢. Such a mapping brings a tangent
step back to the manifold while approximating the true geodesic. Retractions admit simple closed
forms on many manifolds, such as normalization on the sphere.

This framework generalizes standard gradient methods to curved spaces while preserving their in-
tuitive interpretation. As a result, Riemannian optimization has become a popular tool for problems
with geometric constraints, and is supported by a rich theoretical foundation and efficient algorithms;
see, e.g., (Absil et al., 2008; Smith, 2014; Mishra et al., 2012; Boumal, 2023).

A.3 RESTRICTED ISOMETRY PROPERTY (RIP)

The RIP condition (Recht et al., 2010) in Definition 3.1 is a standard assumption in matrix sensing,
ensuring that the linear measurement operator approximately preserves the Frobenius norm of low-
rank matrices. This property has been verified to hold with high probability for a wide variety of
measurement operators. The following lemma establishes RIP for Gaussian design measurements.

Lemma A.2 (Candés & Plan, 2011) If M(-) is a Gaussian random measurement ensemble, i.e.,
the entries of {M;}_; C S™ are independent up to symmetry with diagonal elements sampled
from N(0,1/n) and off-diagonal elements from N(0,1/2n), then with high probability, M(-) is
(r,0,)-RIP, as long as n > C'mr /52 for some sufficiently large universal constant C' > 0.

A.4 OVERPARAMETERIZATION IN OTHER NONCONVEX ESTIMATION PROBLEMS

Beyond matrix sensing, the role of overparameterization has also been examined in a range of non-
convex estimation problems. For matrix completion, (Ma & Fattahi, 2024) proves that the vanilla
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gradient descent with small initialization converges to the ground truth matrix without requiring any
explicit regularization, even in the overparameterized scenario. In Gaussian mixture learning, (Zhou
et al., 2025) establishes that Gradient EM achieves global convergence at a polynomial rate with
polynomial samples, when the model is mildly overparameterized. For neural network training, (Xu
& Du, 2023) shows that in the problem of learning a single neuron with ReL U activation, randomly
initialized gradient descent can suffer from an exponential slowdown when the model is overparam-
eterized. These studies illustrate that overparameterization appears across diverse problem settings,
while its precise influence on the convergence behavior is problem-dependent.

A.5 PRECONDITIONED ALGORITHMS

Preconditioning is a popular tool for BM-based matrix sensing to improve the convergence rate. For
example, considering the problem

1
i Y) = [MYYT) —y|?
Jin g(Y) = 2 M( )=yl
preconditioned gradient descent (PrecGD) (Zhang et al.,, 2021) and scaled gradient descent
(ScaledGD) (Tong et al., 2021) adopt the following updates:

PrecGD: Y11 =Y — V(YY) (Y] Y, + D)7,
ScaledGD: Y11 =Y, —nVg(Y) (Y, Y,

Since (Y, Y;) may be singular in the overparameterized regime, ScaledGD cannot be directly ap-
plied. The variant ScaledGD()\) proposed in (Xu et al., 2023) addresses this by using a similar
update to PrecGD with a particular choice of A. Next, we provide a detailed comparison of pro-
posed approach with these preconditioned methods.

Comparison with PrecGD. PrecGD establishes only a local convergence guarantee, requiring
initialization sufficiently close to the ground truth. Although (Zhang et al., 2021) also dis-
cusses globally convergent variants of PrecGD, they rely on gradient perturbations of the form
Y = Y —n[Vg(Y) (Y] Y + M)~ + ¢;] with some random noise (; to escape potential
saddles. In addition, they require a multi-stage switching mechanism that monitors several quanti-
ties, including |V £(Y4)|lF> Amin(V2f(Y})) and Apin (Y, Y¢). Notably, V2 f(Y;) € Rm>rxmxr
is a fourth-order tensor, which is memory-intensive. In fact, one key motivation for adopting
the Burer—-Monteiro factorization is to reduce the parameter dimension to mr by exploiting the
low-rank structure, whereas forming such a tensor negates this advantage. Moreover, computing
Amin(V2f(Y})) is especially expensive in large-scale matrix sensing problems. In contrast, our
algorithm has a global convergence guarantee from random initialization without requiring pertur-
bations or multi-stage switching rules.

Comparison with ScaledGD (). ScaledGD(\) requires a carefully controlled small initialization
with magnitude a. To reach accuracy &, the method must satisfy o < O(e%), implying that exact
convergence (¢ = 0) can not be guaranteed. Moreover, ScaledGD()\) requires an (r4 + 1,6)-
RIP condition with § < O(x~%%) for a sufficiently large constant Cs. In contrast, we just need
§ < O(k72). As a result, our sample complexity is significantly smaller, especially when the
condition number & is large, i.e., in ill-conditioned settings.

Comparison of the benefits of overparameterization. A major advantage of our approach is that
a higher level of overparameterization can not only improve the convergence rate, but also reduce
the required sample complexity. In contrast, ScaledGD(\) does not show explicit benefits from
increasing r. PrecGD’s local convergence improves only with a square-root dependence on 7, which
is much weaker than the polynomial improvement achieved by our algorithm. In addition, PrecGD
does not gain reduction in sample complexity from additional overparameterization.

Comparison of potential extensions. A further benefit is the generality of our weight normalization
formulation. This way of factorization can be directly applied to arbitrary low-rank PSD optimiza-
tion problems. In contrast, PrecGD and ScaledGD(\) rely on second-order information of the loss
function g, restricting their applicability beyond matrix sensing.

Comparison of iteration complexity. For the iteration complexity, PrecGD and ScaledGD(\)
achieve better k-dependence than our algorithm. However, the faster rates partially arise from the
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quasi-newton nature of their update, where (Y, Y; + AI) is an estimation to Hessian. On the other
hand, our algorithm is a purely first-order method, and we believe that incorporating second-order
information can improve the convergence of our algorithm as well. To further validate this point, we
initialize a preconditioned version of proposed approach as follows.

WN with preconditioner. Motivated by the designs of PrecGD and ScaledGD(\), we also explore
incorporating second-order information to improve convergence empirically. To this end, we first
derive a preconditioner for RGD.

For any direction H € R™*", the Hessian with respect to X takes the form
V% f(H,0) = M*MHOX'" + XOH )|XO + [M*M(XOX' - A)JHO
= M*MHOX X0 + M*M(XOH)XO + M*M(XOX' — A)HO.
When the RIP constant § < 1, we can approximate M* M ~ Z, which yields
V% f(H,0) ~ HO? + XOH'XO + (X0X'™ — A)HO.

Near the optimum, the residual term satisfies (X@®XT — A)H® =~ 0. If we further ignore
the term X@H " X @, the Hessian is well approximated by H®?2. Vectorizing both sides gives
Vec(V% f(H,0))~I @ ©2)-vec(H), which implies the approximated Hessian structure Vg( [ =~
I ® ©2. Motivated by this approximation, we design a preconditioner (®2 + \I)~! for RGD, i.e.,
replacing the Euclidean gradient of X; by Vx f(X;, ©;)(©7 + A)~!, where X is a regulariza-
tion parameter that may be changed from iteration to iteration. We call this variant preconditioned
Riemannian gradient descent (PrecRGD).

We conduct experiments on an instance of m =

50,7 = 40,74 = 3,k = 10, with n = 8000 107
sensing matrices as well as a second instance 102
with a larger overparameterization level r = 45
while keeping all other parameters fixed; see
Appendix G.3 for more details on setups. As 10°
shown in Figure 5, PrecRGD exhibits a higher
convergence rate than RGD, demonstrating that X N\
our preconditioner design is highly effective for 1079 1000 2000 3000 2000
faster convergence under the WN formulation.

Moreover, PrecRGD outperforms PrecGD and Figure 5: Comparison with preconditioned algorithms
achieves a convergence behavior that is compa- (squared reconstruction error vs. iteration).
rable to ScaledGD(\). This suggests that WN

is fully compatible with preconditioning tech-

niques, and we believe that this is a promising direction for further improving the convergence rate.
Furthermore, when the level of overparameterization r increases, PrecRGD converges even faster,
while PrecGD and ScaledGD(\) do not show explicit improvements when r increases. This again
highlights the benefits of overparameterization for WN.

==PrecGD
==ScaledGD())
==PrecRGD

“® PrecGD(larger r)

“» ScaledGD())(larger r)
@ PrecRGD(larger r) i

10712

B OTHER EXTENSIONS

B.1 EXTENSION TO ASYMMETRIC PROBLEMS

We have shown the high effectiveness of WN in overparameterized matrix sensing problems,
and its underlying parameterization reveals that it is broadly applicable to a wide range of low-
rank optimization tasks, even when the target matrix is asymmetric. Consider a general matrix
A € R™*™ with Burer-Monteiro factorization YlYér , where Y; € R™*" and Yo, € R"*",
We can apply the Polar decomposition to each factor, ie., Y; = X10:,Y: = X50,, with
X; € St(m,r),Xy € St(n,r) and ©1,0; € S',. By combining the two magnitude matrices
into ® = O, @; € R"*", we obtain the representation A = X ®X2T .

This generality suggests that WN has substantial potential in a variety of applications, including
collaborative filtering (Schafer et al., 2007), compressed sensing (Candes et al., 2013), matrix com-
pletion (Recht, 2011), and other related problems.
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Figure 6: Comparison of RGD with WN and GD on the challenging matrix completion problems
(% successful convergence vs. perturbation size).

B.2 EXTENSION TO NON-BENIGN LOSS LANDSCAPE

We further evaluate WN on the challenging matrix completion tasks proposed in (Yal¢in et al., 2022),
where the loss is constructed to have exponentially many spurious local minima, leading to the
failure of most gradient-based methods. Using Burer-Monteiro factorization, the matrix completion
objective can be written as
1
min  — (YY" — M;)ql? 6
min Dalk ©®
where M is a low-rank ground truth matrix and the measurement operator (-)q is constructed from
specially designed combinatorial structures.

Applying WN, the problem becomes
1
min Z||(X@XT —~MHall3, st X €St(m,r),®cS". (7

We use an update rule similar to Algorithm (1), with the operator M (-) replaced by (-)¢. Follow-
ing the experimental setup in (Yalcin et al., 2022) (see details in Appendix G.4), we evaluate the
success rate across a range of ranks r = 1,2, 3, maximum independent set sizes |S| = 2,4, 6 and
perturbation levels € € [0.05,0.5]. Our findings are summarized as follows:

* Rank 7 = 1: Our algorithm performs particularly well. For |S| = 2 and |S| = 4, the
success rates are over 90% under almost all the perturbation levels, substantially higher
than that of GD. Even for the more difficult case |S| = 6, our method still achieves a
successful rate around 40%, again significantly outperforming GD.

* Rank r = 2, 3: In these regimes, both our algorithm and GD exhibit similarly low success
rates, consistent with the intrinsic difficulty of the problem reported in (Yal¢in et al., 2022).

These experiments on this challenging setting show that our approach has clear advantages over GD.
The results indicate that WN remains effective even when the objective involves specially designed
combinatorial structures or exhibits highly nontrivial optimization landscapes. This further high-
lights the potential of WN as a broadly applicable framework for low-rank optimization problems.

C ALGORITHM | DERIVATION

We consider the overparameterized setting » > r4 and apply a joint update on both X; and ®;
in an alternating manner. Let M* : R™ +— S denote the adjoint of M with explicit form
M*(y) = Y, v;M;. The Stiefel manifold St(m, r) is embedded in the Euclidean space, then we
first compute the Euclidean gradient of X, as

G, = [M*"M(X,0,X] — A)| X0, (8)
= (X410, X,] — A)X;0; + [(M*M - I)(X;0;X; — A)]X;O,.
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Projecting it onto the tangent space of St(m, r) yields the Riemannian gradient

G, = (I, — X, X/ )G, + %(X:Gt -G/ X,).
Using polar retraction, the update of X, along the direction G, with stepsize 7 is given by

Xip1 = (Xe = nG) (I +n*G/ Gy) /2.

For the magnitude variable ®,, the Euclidean gradient is

K, %X:H (M M(X; 10X, — A)| X1 ©)
Denoting the identity mapping by Z, the update of ®; with stepsize u becomes

Q1 =0, — ngﬂ M MK 310X, — A)] X1 (10)

= X, AX - X[ [(MPM - gz)(xmetx;l — A)] X1

Note that we do not impose diagonal or nonneg-

==QOriginal

ative constraints on @ during the updates. In 10° ~Diagonalized
fact, forcing © to be diagonal and nonnegative

often worsen the loss landscape and may lead 1078

to non-convergence Levin et al. (2025). We il-

lustrate this phenomenon with a simple experi- 10

ment in Figure 7, where we constrain © to be

diagonal and nonnegative via SVD followed by

hard-thresholding; see Appendix G.5 for details 0% 200 400 600 800
of the experimental setup. As shown by the

curve labeled “Diagonalized”, such constraints Figure 7: Lack of convergence with diagonal ®
indeed hinder the algorithm from converging to (squared reconstruction error vs. iteration).

the ground truth.

D PROOF STRATEGIES AND SUPPORTING LEMMAS

D.1 PROOF STRATEGIES

To establish convergence of Theorem 3.2, we analyze the evolution of the principle angles between
span(U) and span(X;). Specifically, we track the quantity Tr(I,, — ®;®/). This term reflects
the subspace alignment error between span(U) and span(X;). For notational convenience, we set
1 = 2, which is consistent with our choice in Theorem 3.2.

Our proof is structured into two phases:
* Phase I (Saddle phase): When the alignment error is large, i.e., Tr(I,, —'I>t'I>tT) > 0.5, we

rely on the fact that o2 . (®;) remains bounded away from zero. This property guarantees
that the alignment error decreases by at least a constant amount at each iteration.

* Phase II (Linearly convergent phase): Once Tr(I,, —®,®,) < 0.5, we enter a contraction
regime. In this regime, we establish that the reconstruction error and the alignment error
decrease jointly, governed by a coupled inequality system.

Throughout both phases, two error terms caused by the limited number of measurements must be
carefully controlled. Formally, we introduce the following definitions:

A= (MM - 1) (X410, X/ — A),
= (M'M - I)(X,0,X, — A).

30.5 is chosen for simplicity, any constant ¢ € (0, 1) is valid; see proof E.8 for a detailed analysis.

18
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Incorporating these two error terms, we can rewrite G, and ®; 1 as follows:
G, = (X,0,X/ - A)X,0, + E,X,0,,
Ori1 = X/ AX 1 — X[ AX .
These two terms will be used repeatedly throughout the proofs in the following sections.

D.2 SUPPORTING LEMMAS

Since Theorem 3.2 considers random initialization, it is conditioned on the following high-
probability event F', which gives a lower bound on the smallest singular value of &, = U X:

F— {02 (UTXy) > U7

- cymr
where ¢; > max{1,36C?} is a universal constant, with C; given in Lemma F.7.

Lemma D.1 With respect to the randomness in X, event F' occurs with probability at least
1 —exp(—m/2) — C3 " —exp(—Car),

where Cy > 0 and C5 = % € (0,1) are universal constants.

This lemma ensures that the smallest singular value of the initial alignment between U and X is
bounded away from zero with high probability, which is critical to initialize Phase I. g

Lemma D.2 Suppose that at iteration t, the alignment error satisfies that
T
Tr(L, — ®:®;) <p,
then the reconstruction error at iteration t satisfies that
T
1Xe©: X, — Allp <2/p+ [[A—1]lr.

The lemma above connects the reconstruction error ||X;®;X,; — A||r with the alignment error
Tr(I,, — ®;®,) and the measurement error |[A;_1||r. It means that the reconstruction error is
small once X; and U are sufficiently aligned and the measurement error is small.

Lemma D.3 Assuming n < ==t5—, M(-) is (r + 74 + 1,8)-RIP with § = % ¢£€[0,1), and

300K274° mr?
|®¢|| < 2. Then, the measurement errors satisfy that

[AlF < €IXeO: X, — Allr,
1Ze]F < €1X:©: X, — Allr.

This provides upper bounds on the norm of the measurement error terms A, Z; by the reconstruc-
tion error || X;©;X, — A||g, which is guaranteed by the RIP property of M(-).

Lemma D4 Let x; = ([[Ai_1 || + [|1E]))? + VTr(L, — 2.2 )(|A_1] + [|E:
B = Ul(ITA - (I)tq):)’
H, = (I, - X, X)) (AX, X/ A, 1 X, + E,X,0,)

).

1
+ 5(thtT =,X,0, - X,0,X/=,X,)

1
+ 5(thtT AX, XA X, - X XA X X]AX,).
Assuming | A_1]lF, |Bellr < 1L n < ﬁ, and ||@¢|| < 2, then the following inequality holds:

Tr(L., — @1 P ) — Tr(I,, — ,®)) (11)

2n(1 — 2By — 16n°x)o?, (P
< (8 + 163 Tr(@ @] ) - 21 ke £)07, (®t)

+ 20/ Tr(L, — 2@ )([|As-1]lF +2[Z¢]lF)

+ 22 TH(L,, — 2, ) [H .

(@, — 2.2 )2, P, )
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This lemma quantifies how the alignment error Tr(I,, — ®;®,) evolves between iterations. This
is the key lemma that drives the reduction of the alignment error.

Lemma D.5 Assuming M(-) is (r + ra + 1,0)-RIP with § < ﬁ If |®]| < 2 then it is
guaranteed that
@411 < 2.

As shown in Lemmas D.3 and Lemma D .4, the analyses require that ||©]| is upper bounded by 2.
This condition has already been guaranteed at initialization. Moreover, based on the update rule of
©; given in (10), we observe that ||©,|| remains close to || X, AX,|| in each iteration.

Lemma D.6 Assumingn < 1, M(-)is (r +74 + 1,6)-RIP, and ||®;_1]|, ||®:|| < 2, we have that

O] < (L46n(y/ra+2v)8) ]+ (4n(y/Ta+20r)0+280(Via+27) 207 Ly

Moreover, it is also guaranteed that
v < (1+2n+2n(,FA+2\/77)5)2\1:0\11§+(1277(,@+2\/?)5+8n2(,ﬁrA+2ﬁ)252)1m_,.A.

This lemma establishes an upper bound on the growth of ¥, ¥ . Together with Lemma F.2, we can
ensure that o2 (@) remains adequately large throughout Phase I.

M) is (r+ra+1,8)-RIP with § < —=, and |©,| < 2.

Lemma D.7 Assuming 1 < g5, T

Then for any t > 0, the alignment error satisfies that

Tr(L, — & @) ) < Tr(I., — &,®])+0.1.

This guarantees that the alignment error Tr(L,., — ®,;®,) does not increase too much in one step
when we choose suitable stepsize 7, which is crucial for bridging Phase I and Phase II.

E PROOFS
E.1 PROOF OF LEMMA D.]1

Proof. Since the initialization X satisfies the conditions stated in Lemma F.8, we can apply the
lemma directly. In particular, substituting 7 = \/% yields the desired result.

E.2 PROOF OF LEMMA D.2

Proof. Directly substituting the expression of ®; into the Frobenius norm term, we have that
[X:0: X, — Allr = | X: X[ AX: X, — A - X X[ A, 1 XX/ |f
< XX AXX) — Allr + XX A XX I
< XX AXX] = AXX] [F + [AXGX] = Alle + XX, A XX e
(@)
< 2| Z[|(Tn — XX Ul|F + | Ar 1 ]lr
= 2|2/ Tr(L, — 2:®]) + [|Asalr

< 2SI+ A1 e
=2p+ | Aiza]lF,

where (a) is by the inequality ||AB||r < ||A||||B]|r that is valid for any conformable matrices. [J
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E.3 PROOF OF LEMMA D.3

Proof. We first prove that |G| < 2||G¢||r. Indeed,

- X - -
IGellF = [T = XeX[) G+ TH (X[ Gy = G X r

<L = XX Gelle + XX Gl
< 2[|Gtlr-

We now proceed to estimate the update distance || X;11 — X¢||g.

1Xis1 — Xelle = [(Xe = nGo) (I + n° G Gy) ™2 = Xy|f
< X(@ +7°G{ G) 72 = L) [f + [nGe(X + G/ Gy) 72|l
< IX(@ + 1’ G G2 = Llle +nll(Tr + n*G{ Go) 2| [|Gyr
< V@ +? G Gy) T2 — L + 0G|l
<V +7°G G) T2 = 1| + 29[| Gy e
< V(1= (L+7%01(G] G)) ') + 20| Gy |f
(a) 1
<V G
< V|Gl + 2n0)|Ge |,

)+ 20||Gellr

where (a) is by v/1+ 2 < 1+ /x for any x > 0. Since ||G¢||r < 2||(~}t\|p, we arrive at

X1 — Xelle < 20(Vr + 1)[|Gelr
=(vr+ 1| (X0, X — A)X,0; + E,X,0,||r

(b)
< 2n(Vr 4+ )]0 ][1Xe[[[[(X:©: X, — A) + By lr

(c)
< dn(vr+ 1) (|IBe]lr + [|Xe©: X — Allf)
<An(vr+1)(Vm|(M*M - T)(X:0; X — A)| + [ X:©: X, — Allf)

(d)
< dn(vr +1)(Vimé +1)[X:©, X, — Allr,

where (b) is from ||AB||g < [|A]llIB||r; (¢) is due to ||©]] < 2, || X¢|| < 1; and (d) follows from
Lemma F.11 and rank(X;0; X, — A) < rank(X;0;X/ ) + rank(A) <7+ ra.
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Finally, we turn to estimating | A;||r and || Z¢||¢.
1A = (MM = I)(Xit1©: X/ 1 — Al
S Vm[(MM = I)(X441©:X [, — A)|
(e)
< Vmd|| X 11©:X [ — Alle
< Vms([X:©:X{ — Alle + [1Xe410:(X 1 = X)F + |(Xes1 = X0)©: X/ [|F)

f)
< Vmd(|Xe©:X{ — Allr + 4] X1 — XillF)
< V/md (1 +16n(v/r +1)(vVmé + 1)) [ X0, X] — Al

@ &/m . 64 .
< 1+ — X;9:X, — A
€L g VRIXOX] - Al

< X0, X/ — Allr,
IEelle = [(M*M = T)(X,©0,X] — A)|l¢
< Vml|(MM —I)(X,©0.X{ — A)|
& ms|x,0,X] — Alr
(9) T
< {X:0:X, — Allr,

where (e) is by Lemma F.11 and rank(X;410,X/,; — A) < rank(X; 410X/ ;) + rank(A) <

7745 (f) is from [ Xy || < Tand @] < 2; (g) is due to ) < g5 and § < \/%, and (h)
follows from Lemma F.11 and rank(X;©®; X, — A) < rank(X;0;X,) +rank(A) <7 +7r4. O

E.4 PROOF OF LEMMA D.4

Proof. Noting that || X|| < 1, [|A| < 1,[|©¢]| < 2, ||I,,, — XX/ || < 1, we obtain
Helle < |(Tn — XX )AX X A1 X[|F + [[(Ln — XX )E X0
S XTEXO e + [X,0,%] 23X )
S UXXTAXXT A X+ [XXT A X X AX, )
< 2[[ A1 |lF + 4]|1Ee|lF. (12)

In the same way, it follows that [|[H,|| < 2||A,_1| + 4]|Z.]|.

From the update of X;, we have X;+1X/ | = (X; — nG) (I, + 1°G/ Gy) (X — nGy) T
Premultiplying by U and postmultiplying by U, it follows that

@19/,
= (®, — UG, +7°G/G,) (& —nG]U)

@ ([Im 4, — B8] )DB,B] 5] B, — nUTHt) (I, + 2G] G,)~ !

.
(L +0@, - 2@))22:@/ =] — yUTH,)
(b)
> ([ITA + (I, — 8,32, 5|®, - nUTHt) (I, — *G/ G,)
.
(L +9@, - 2:2))52.@/T]@; —UH,) .

where (a) is from directly expanding G; and (b) is by Lemma F.1.
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We next derive an upper bound for G, G. Substituting the expression of G, we obtain

G/ G, =X/ AX; X A1, - X;:X])AX,; X/ AX; + H, H,
- X[ AX,X{ AL, - X, X/ )H,
-H/ (1, - X, X )AX, X/ AX,

= 01(Ly — @@ )L + ([ Hel* + 2/ (T, — XX, U He )T,

< o1, — @@ )1, + 16x.1,,

where (c) follows from Lemma F.12,|X;|| < 1 and ||A| < 1; and (d) is due to ||(I,, —
X X)U| < (T = X X)) Ullp =/ Tr(Lr, — @@, ), and [Hy|| < 2[|A [ + 4] & < 6.
Combining the lower bound on ®;,,®, 1, the upper bound on G/ G derived above, and the

inequality 1 — 7?8, — 16n*x; > 1 — 155(1+ 96) > 0, we derive

1
L=n?B — 16n*x,
= ([T + 01, — ®®] ) 2,2 )@, — U H, ) (13)

.
P 11P,,

.
([Im +(I,, — &8 )5, 5| ®, — T]UTHt>

Let the compact SVD of ®, be QtAtPtT, where Q; € R™*"4 A, € R™*"4 and P; € R"*"4,
Denote S; := Q, Q. It is a positive definite matrix. This gives that

Tr([ITA 4, — &8 )58, 5,8, L., + (I, @t@j)zét@jzf)
= Tr(Qu[L, + (L, — ADS:AISAZ[L, + 1S ATS (L, — AD)]Q/ )

(e
> Tf(Qt [A? + (L, — AD)S(ATSA] + nA7SA7S (T, — Af)}Q:)
=Tr(Q:AIQ, ) + nTr((I., — A7)S:A7Si AT + A7SiA7S, (I, — A}))
) 2o, , (A2

L rQiaiq)) + 27 B mi (1, - a2)A3)

2noy, (Ag)

= Tr(®,;®,) + 2 Tr((,, — 2,9 )2, @, ),

where (e) follows from the fact that n?Q, (L., — A?)S;A?S;A?S,A?S, (1, ,, — Ag)QtT is PSD; and
(f) is by Lemma F.3 and Lemma F.4. More precisely, we use o, (S¢A7S;) > 02 (Si)or, (A7) =
v (A7)/K.
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Taking trace on both sides of (13), we arrive at
1
e
2noy, (A?)
2

_ 277Tr([ITA +(I,, - 88 ) S8, 5| &, H/ U)

Tr(®i 119/ (14)

> Tr(®,®]) + (@, — 2.2 )®:®,)

+7?Tr(U'H,H/ U)

2noy, (A?)

> Tr(®,®]) + 2 (@, — 2.2 )@, ®,)

- 277Tr('I>thTU +,, — @tvbj)z@t@qu»tHjU)

2o, , (A?
%Tr((lm - &%) ®/)

—2Tr(UT (L, — XX, )AX X[ A1 X D))

—Tr(UT (I, — X, X )E,X,0,®])

—nTr(®,X, 2:X,0,®, — ,0,X,E,X;®,)

—nTr(® X, AX, X A1 X8 — &, X A1 XX AX; B/ )
—2°Tr((L,, — &:®, )2®,®, =&, H/ U)

2noy , (A?)
K}Q

9 Tr(@,]) +

W 1r@,@]) +

Tr((L, — 2@ )®,®/)
—2Tr(UT (I, - X, X ) USUTX; X/ A, 1 X B/ )
— 2 Tr(UT (L, - X, X/ )E,X,0,®/)

—2*Tr((L,, — ., @) )X®, @, 2®,H/ U)

where (g) is by substituting H; in; and (h) arises from Tr(M) = Tr(M ") for any M € R"4x"4,
By the Cauchy—Schwarz inequality, we can upper bound the three trace terms as follows.

For the first term, we have that
Tr(UT (L, - XX/ ) USU X, X A, X, ®/) (15)
< U@, - XX USUT 6| XX, A1 X @
()
< (T = XX U Ar-a [F
=\/Tr(L, — 2:®] )| A1

For the second term, we can obtain that
Tr(U' (I, - X, X/ )E,X,0,®,) (16)
< U (I = X X)) IFIIE X O] I
(O]
<2 UT (I, — XX [lIZ I
=2¢/Tr(I,., — ®:®])||Z:]|r-
For the third term, it holds that
(1, - 2.2 )X®,® ©®,H/ U) (17)
<L, — 2@/ || = ©®,H Ul|r
= [UT (@, - X, X )U[r|z®,® =@ H/ Ul|
(1)
< (@ — X XUl He [l

= Tr(L, - ®,®])|H||.
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Here () is from [|[U|| < 1, |Z]| < 1, || X¢|| < 1, ||®¢]| < 1, and ||©;|| < 2. Combining inequalities
(14), (15), (16), and (17), it follows that

1
1—n2B; — 160%x;

2noy, (A?)
52

Tr( @1 P/ ) >Tr(®,®/) + Tr (I, — 2.2 )2, ®/)

=2\ Tr(L, — 202 ) ([ Ar1lF + 2[1Ze]lF)

=2\ Tr(L, — @@ )| Helr

Reorganizing the terms, we arrive at

Tr(L., — @1 ®), ) — Tr(L,, — &,®))
2n(1 — n?B — 160°x1) 0, (A7)
ﬁ2

+ (20— 208 = 320°xa)\ Tr(Lr, — @) ([|Asi[[F + 21IZe]lF)

<P (B + 16x:) Tr(2: @[ ) —

(@, — 2] )@, ®,)

+(20° = 20 B — 320 xe )/ Tr(L, — 4@ ) || Hy ¢

2n(1 — n?B — 16n°x1) 0, (A7)
I€2

<P (Be + 16x) Tr(@: @] ) — Tr((1,, — 28 )®:®))
+20\/Tr(L, — 2.0 ) ([ A1l + 2[Zelr)
+ 20/ Tr(L, — @@/ )| Hy|F-

Together with o, (A?) = 0, (Q/ ®,®/ Q;) = 02, (®;), we conclude the proof. O

E.5 PROOF OF LEMMA D.5

Proof. From the update formula of ®;, we obtain

1©e1ll = X1 AX 1 — X[ AX g
<X AX ||+ X A X |

(@
< L4 (1A

=1+ [|[(MM = I)(X410: X/ — A
®) 1 .
<1+ m”xt+1®txt+l —Allr

N ,
<1+ m“xt+l®txt+l —A|

1
<1+ (18] + [[Al)

<2,

where (a) is by || X¢|[, | A < 1; and (b) follows from Lemma F.11 and rank(X;410; X/ ; — A) <
rank(X; 110, X/, ;) + rank(A) <7+ 7a. O

E.6 PROOF OF LEMMA D.6

Proof. Let Lt = X:AXtX;rAt,]_Xt + XTEtXt(-)t + %(@tX;FEtXt - X;'—EtXt@t)
(XA X X AX, - XTAX X A1 Xy).
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Applying the triangular inequality, we obtain
1
L] < X7 AX X A Xy + [ XTE X0, + §(||®tX;rEiXt” + X 2 X, 0))
1
+ §(||X:At—1XtX:AXtH + X AX X A1 X)) (18)

(a)
<20 A 1 +4El,

where (a) is from || X|| < 1,||A] < 1 and ||©;]] < 2. Multiplying the update formula (4) on the
left by U |, we have that

Wiy =U[ (X —1G) (I +7°G{ Gy)~/2

b —_— _
(Z) (‘I’t - U‘I’tX:AXtX;rAXt +n¥, L — UUIEtXt@t) (I + UQG:Gt) 1/2
= (w0 (1 = nX] AXXT AX, + L) — nUTE X0, ) (I, + 172G/ G) 7172,

where () is by expanding G; directly. Consequently, we have the following upper bound for
Wip1 Wy

R (\Ilt (I, — X7 AX X[ AX, + 7L;) — nUIEtXt(at) (I + 112Gl G,) !

.
(qlt (I, — X7 AX X[ AX, +nL;) — nUIEtXth)

—

c)
= (@0 (1, — X AX,X] AX, +1L0) — 7ULE,X,0),)

(\Ilt (I — nX] AX,X] AX, +1jLy) — nUIEtXth) !
=0, (I, - nX, AX, X[ AX; + nL;)
(I, — X[ AX,X] AX, +1L;) @/
—UEX,0, (I, — nX] AX,X] AX, + L) ¥/ (19)
— ¥, (I, - nX] AX; X AX; + L) ©,X; 2, U,
+7?U[5,X,02X/E,U,,

where (c) is from that (I + n>G/ G;)~! is PSD and all of its eigenvalues are smaller than 1. Since
YYT =< |Y||?L. holds for any symmetric matrix Y € R"*" and by Lemma F.12, we can upper
bound the three terms as follows.

For the first term, we can obtain that
W, (I, — nX,] AX, X[ AX, + 7L,

(I, — X7 AX X AX, + L) @] (20)
<L = X AX X AX, + L |20,

For the second term, it holds that
UTEX,0; (I, - nX] AX, X[ AX, +7L;) @]

+ ¥, (I, - X AX, X, AX; + L) ©,X, 2, U, 1)
=2/, (I, — X, AX, X AX; + L) [|[|©:X/ E U LT,

For the third term, we have that

U EX,0’X/5,U, < |U[EX,0X/EU, |1, ,,. (22)
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Combining inequalities (19), (20), (21) and (22), it follows that
TP <L — X AX X AX, + L |22, 8/
+ 2|, (L, — nX] AX, X[ AX, +1Ly) [[1©:X] EU LTy
+7?|UEX,0°X2,U, |1,

(d)

=< (1L — nX{ AX X AX || + n||Ly[)* @, %
+ 20| |(||T, — nX] AX X[ AXy|| + ]| Le])|©: X[ ZU L | Tin—ry
P UTE XX B, T,

(e)
= (Ll L) B+ dn(L 4 9| Lol DI Ti—rs + 4571 Ee L

where (d) is by triangular inequality; and (e) is from that all the eigenvalues of the PSD matrix
X, AX; X, AX; are smaller than 1, along with || ¥,|| < 1, || Xl < 1,[|U_|| < 1 and ||©¢] < 2.

From (18), we obtain ||L|| < 2||A;_1]|| + 4||Z¢]|. Then, we can further simplify the inequality as
= 2
U Ol < (L 20| Aa |+ 20 ]) w2,
+ (40l + 4 G121 + 20 Ari 1B 1) L (23)

From Lemma F.11 and our assumption of the RIP property of M(-), we obtain upper bounds for the
two error terms.

A 1] = [(M*M = T)(X,0,1X,; — A)|
< 6)IX:0;1 X, — Allf
< 0(||X4©—1 X, [IF + |A]lF)

¢ (2Vr + /ra)d,

I1Ze]| = [(M*M - T)(X,©, X, — A
< 5||Xt®tX;r —Allr
< O([1X O X |[F + [|AflF)
(f)
< (2ﬁ+ \/TA)(Sa

where (f) s from [Xi|| < L [©1]lr < V7@ 1]l < 2y O]l < VIO, < 2y/F, and
|Alle < /TallA|l < /ra. Plugging these two upper bounds into (23), we arrive at

O, W]y 2 (L6 +2v7)0) Rl + (4n(y/TaA+2v/7)8 4280 (VA +2v7)20%) Ly,

We now consider the relationship between 1111\111r and \IIO\IIS— .

Let Lo := 1(Xg AX0©0 + ©9X] AXg) — 1(X] EoX0Op + OpXE0Xo).

Multiplying the update formula (4) at ¢ = 0 on the left by U |, we have that
T, = U] (Xo — nGo)(I, +17°Gg Go) /2.

Consequently, we derive the following upper bound on ¥, ¥ :

U W] = U] (Xo—1Go)I, +17°Gy Go) ' (Xo —nGo) UL
(9)
= U (Xo—1Go)(Xo —1Go) U,

—
N2

= = = - T
= (‘I’O(IT — ’I7L0) — UUIEOXOGO) (‘I’O(Ir — ’I7L0) — UUIEOXOQO)

= Wo(I, — nLo)(I, — nLo) " ¥ — n®o(I, — nLo)Oe X EU . (24)
— U [EoXoOo(I, — 1Lo) ' ¥J + n*UE;X,03X, ZoU .,
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where (g) is from that (I. + 712G G)~! is PSD and all of its eigenvalues are smaller than 1; and
(h) is by expanding the expression of G directly. Since YY ' =< || YL, holds for any symmetric
matrix Y € R"*" and by Lemma F.12, we can upper bound the three terms as follows.

For the first term, it holds that
o (I, — nLo)(I. — nLo) " ¥g < [T, — nLo|* ¥ ¥, . (25)
For the second term, we have that
Wo (I, —1Lo)©0Xg EoUL + UJEX¢O0(I, —nLo) &g

< 2||To (I, — nLo) ||| ©0X (] EoUL|Tn—r, - (26)
For the third term, we can obtain that
U|EiX,0@2X,E U, < |[U[EeXeO®2X EoU [Ty, 27)

Combining inequalities (24), (25), (26) and (27), it follows that
T W] <1 — nLol|* o ®g + 2| Wo (L, — 7o) [[[|©0Xg EoU L [T
+ 72| U] EeX002X EoU L [T,

20l %o+ An(1 o)) ol ey + 4210l s C8)
where (i) is by [|Xo|| < 1,||UL|l <1, and ||®¢| < 2.
From Lemma F.11 and our assumption of the RIP property of M(-), we have that
[Zoll = [[(M*M ~ I)(Xo©0Xg — A)|

< 0[X0®0X, — Al

< 6(|X0©0Xq [IF + [|AllF)

< (27 +/ra)o.
Then, we can bound || Lo || as follows:

o]l = 51X AXo©0 + ©X AXy — (X] ZoXo®p + ©yXyZoXo)|
<24 2[|Bo|

<24 2(2yr +/Ta)d.

Plugging theses two upper bounds into inequality (28), we finally arrive at
T W < (1+20+20(vra+2vr)8) 2 ®o ¥ + (120(\/Ta+2y/7)5+87% (Vra+2v/7)26%) Ly -

]

E.7 PROOF OF LEMMA D.7

Proof. We first estimate |G, || and ||G;||. From the expression of G, we have that

Gl = || [M*M(Xt(atxj - A)|X:0,]

(a)
< 2MFM(X O, X[ — Al

<2([[(M*M - T)(X:©, X[ — A)| + [ X:0: X, — Al))
®) 2
< ﬁuxt@xj —Alr+2|X,.©, X — A
< 4X:0:X;] — Al

<4(IX:0:X/ || + [|A])

(a)
< 12,
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where (a) is due to [|Xy|| < 1, ||O¢|| < 2,and ||A|| < 1; and (b) is from Lemma F.11. Analogously,
we can upper bound ||G:|| as follows:

X ~
|Gl = |(Tn — X X)Gy + J(XTGt G X,)l|

< T = XX Gl + Xl G Xl

©
< 2[Gq||
< 24,

where (c) follows from || X;|| < 1 and the fact that all the eigenvalues of the PSD matrix I,, — X, X,
are less than 1. Multiplying the update formula (4) on the left by U, we obtain

@19, =U'X,1X/,,U

= (®; — UGy (I, +*°G/ Gy (@] — 1G] U)

d)
= (2, — U Gy, — n°G[ Gy)(®] —nG/U)

=&,® —®,G/G® —n®,G/U+U'G®/)
+ 773(<I>thTGthTU + UTGthTGt@tT)
-7'U"G,G/G,G/U+7*UTG,G/U

(e)

= @] — (1*(|®:.G] G ®/ | + 21| ®: G/ U||
+21°|®,G} G;G/ U| +774HUTGthTGthTU||)IM

(H 1

- &P — mlm,

where (d) is from LemmaF.1; (¢) isby LemmaF.12; and (f) isdue to || @] < 1,[|U|| < 1, ||G¢]| <
24 and n < 500 . By subtracting the inequality from I, ,, it follows that

I, %%, <1, - &% + I,.

1
1074
Taking trace on both sides yields

Tr(L, — &1 @) ) < Tr(I., — &,®])+0.1.

E.8 PROOF OF THEOREM 3.2

Proof. For the proof, we take n = (:QA and § = C“Z(Ti“) where ¢4 = (9(6%) From

975¢3Kk2m2r2r 4 K2m3rir
Lemma D.5, we have that |@;|| < 2 holds for all £ > 0 by mathematical induction. For later use,
we define the following three terms in the same way as in Lemma D.4:

Bi:=o1(1,, —®®]) <1,

er= (Al + 18D + T, — 202 ) (1A + [Ee),

H, := (I, - X.X])(AX, XA, X, + E,X,0,)
(tht 2,X,0, - X,0,XE,X,)

+ (XX AX XA X - X XA X X AX,).

l\D\H

Lemma D.3 with the RIP property of M(-) implies that ||A;_1 ||, ||Z¢]|r < 1 forall ¢ > 1. Thus,
the assumptions of Lemma D.4 are met, guaranteeing that inequality (11) holds for all iterations.
Building on inequality (11), we divide the convergence analysis into two phases.
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Phase I (Saddle phase). Tr(I,, — ®;®) > 0.5.

We assume for now that o2 (®¢) > (r—r4)?/(2cymr) holds in Phase I, which will be proved later.
Let the compact SVD of ®, be Q; AP/, where Q; € R"4*"4 A, € R"4*"4 and P, € R"¥"4,
We can simplify (11) as follows:

T, — @1 ®) ) - Tr(1,, — &,9))

2n(1 —n= — 16 i
< P(1 4 16y Tr(@,®] ) — n(l —n° ,{217 xt)or, (®1)

+2nvra(l| A e + 2|Zelle) + 207 /ral| Helle

(1 —n% — 16 ®
21+ 1630 )ra — n(1—n? Kﬂn xt)or, (®¢)

+20y/ra(|Ac-tlle + 2l[EellF) + 20 V/ral He e

®) n(1—n* — 16n%x:)(r —ra)*
< n*(1+16 — Tr (I, — &, B, 29
< (14 16x4)ra 3 Rim?? r(Ir, +®; ) (29)

+20v/Ta(lAcillr + 201 ]F) + 207 VT al He e,

T (@, — 2.2 )@, ®,)

Tr(I,., — ®:®/)

where (a) is by Lemma F.3 and Tr((I,, — ®,®/)®,®,) = Tr((I,, — A?)A}); and (b) is from
our assumption that 2, (®;) > (r —r4)?/(2c1mr).

Using Lemma F.11 and the RIP property of M(-), we can control the quantities of the two er-
ror terms. In particular, following inequalities imply that both ||A;_1 || and ||Z;||¢ are uniformly
bounded by a constant that depends only on m, r and r 4 but is independent of ¢.

Expanding the expression of A;_; and applying Lemma F.11, we have that

1AallF < Vm|(MM = I)(X© 1 X — A

ca(r —ra)°
< Wﬂxt@t 1 X, — Al
ca(r —ra)°
S iy VT V)
3cq(r —ra)l
= 2ms 2,
(¢) (r—ra)t 1
< mi . 30
- mm{480%/£2m2r2734’ 48/ 4 (30)
Applying the same reasoning to =, it follows that
1E:llF < Vmll(MM - T)(X, 00X —A)
ca(r —ra)°
< WHXt@tXT Allr
ca(r —ra)°
< m2m5/2r4 2V +/ra)
3eq(r — TA)6
= 2ms T2,
(c) — 4 1
2 min{— T4 1. 31)

48c2Kk2m2r2r " 48,/r 4
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Here, (c) is from ¢4 = O(Z%),c1 > Land r —r4 <7 < m. Since Tr(I,, — ®;®, ) < ra, together
-1
with (30) and (31), we can upper bound x; as follows:

Xe = (181l + 1Bl + /Tr(Tr, — 2@ 1) (Al + [1Eell)

< (1A 1\|F+||Et|| )2+x/7“A(HAt—1IIF+I\EtHF)
1 1

< (55 +7 >+m<4SF w5
<Ll
— 16

From inequalities (12), (30), and (31), we obtain the following upper bound on || H,||F.
Hellr < 2[|A—1]lr +4[|1E¢ ]

<2 X

1 1
+4 x
481/7“,4 481/7“,4

< ! .
SN
With these upper bounds, inequality (29) can be simplified as follows:
Tr(L., — @1 @), ,) — Tr(L,, — 2,®))

2 n(1—2n°)(r —ra)* T n(r—ra)t 9
<20°rps — 2P Tr(I,., — ®:®, ) + W +1
(d) n(r—ra)*  nir—ra) P (r —ra) .
< (- 9mnee T e O o e ) Tl — i)
— n(r —ra) P (r—ra)? -
= (= G + 07T+ T ) T, — 22
(e) 1 n(r—ra)? P —ra)t
< (195355 +60 Tr—ra)
- 2( 43 K2m2r? TOorTa RZm2r? )

where (d) is by Tr(I,, — ®,®,) > 0.5; and (e) holds if the expression in bracket is less than zero.
Recall that = %. The summation of the terms in bracket is negative, which implies
1

that at each step, Tr(I., — ®;®, ) decreases at least by A := %. Consequently, after

7000ct kimirira

atmost (r4 — 0.5)/A < % iterations, RGD leaves Phase 1.

Let co := W € (0,1). Denote ty > 1 as the last iteration in this phase. The analysis above
1

implies that Tr(L,, — ®;®,) <7 — M foralll <t < tyandty <

kiAmirir

70006‘1L n4m4r4ri
(r—ra)®

From Lemma D.2 and inequality (30), we obtain the following bound for 1 < ¢ < ¢p:

1X,©, X, — Allf < 2¢/Tr(L, — 2@ ) +[|As1llF

co(r —ra)8t
< 2\/7‘A _ calr—ra)% + [[A—1lF

KAmArir 4
co(r —ra)dt
<2 - +1.
- \/TA KAmArir 4 *
We now prove that 02, (®;) > (r—74)?/(2c1mr) holds in Phase I. By Lemma D.1, it holds w.h.p.,
2
Tr—TA
2, (@0) = 2, (UTxy) > T
cmr
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Moreover, by Lemma F.2 and the assumption r4 < 7, it follows that

2

2 2 (r—ra)
Vo) =102 (®;) <1 L")

7ra (o) 774 (®0) = cymr

4
Since n = %gﬂ% and § = (";4(7;3772{‘) we can deduce that
1
ca(r —ra)t0

) v =rA)
n(v/ra+2vr)d < 3253 kAmS oy

From Lemma D.6 and the upper bound on 7(,/74 + 21/7)d, we obtain the following inequality

4(r —ra)t dey(r —ra)t0
OO < (1+—— e+ =2 1 .
1P (1 9753 k2m2r2r 4 )" Woo + 65¢3 AmOrory B
Using Weyl’s inequality and c; = O( 1 ) we have the following upper bound on o2, (¥1)
4(r—7“A) deg(r —ra)to
2 (W) <14+ ——=21 )22 (¥ —
7 (¥1) < (14 975c%n2m2r2r,4) 7ra(Wo) + 65¢2 K4AmOrory
1+ 4(r —ra)t 21— (r—ra)? dey(r—ra)t0
- 975¢2Kk2m2r2r 5 cimr 65¢2 K4mOrory
€)) 16(r —74)* (r—ra)?
<1 220020200
195cik*m=rsr 4 cyomr
(f) — 2
D 2(r—ra)
3eymr

where (f)isbyr —r4 <r <mandc,k,74 > 1. Applying Lemma D.6 with the upper bound on

(/T4 + 24/r)d, we obtain

T )1
‘Ilt+1‘I’t+1 =< (1 =+

10
ca(r —ra) w4 ca(r —ra
o a1 rE £ o t o a1 r E o —
402 KAmProry 402 KAmPror 124 merar

Using Weyl’s inequality, we have the following relationship between o2, (¥¢41) and 2, (¥;)

t>1.

ca(r —ra)'® Ty, calr—ra)t?
v = v, ¥ 1+ ——4— L (U —
( 1) = ra(Ten t‘H) ( +40c 2kAmbror? A) ora (P t)+400%li4m5r57“,24
ca(lr—ra)t0 2, ca(r —ra)t0
:( 2 5.5 2) 2 (W) + 2 5.5.2
40ciKAmdror3 40cik*mbSrory
Denote ¢ := % By iterating the recursive inequality, the following upper bound holds
2(t-1) — 2
t—
o7, (@) < (140" Va2 (#1) +¢Y- (14)
i=0
) t—1
t
< (14002, (T)+¢Y (1+¢)°
=0

= (1+9)"o2, (@) +¢[(1+0)" 1] /[0 +¢)* -1
< (14¢) 02, (T + (140" -

forall1 <t < % Invoking Lemma F.13 and noting that { < 2 -, Which is ensured by
cy = (%) e obtain
ol (¥,) < (1+6t¢)or, (¥1) + 6t¢

(9) —7r4)?
252 (w)) + 2100c2cy(r —74)
mr

C2(r - r4)? n 2100c2cy(r —14)?

<1

- 3ceymr mr
(h) — 2
dy_rora)”

- 2cymr
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where (g) is by t{ < W and 02, (¥1) < 1; and (h) holds by ¢; = O(%). By Lemma
1

F.2 and the assumption r4 < 2, it can be seen that o2, (®;) = 1 — 02, (¥;) > (;:1%1)2 holds for

all £ < #q < 70000%&47n47'47'124
>0 > (r—ra)®

, i.e., throughout Phase I.

Phase II (Linearly convergent phase). Tr(I., — ®:®,) < 0.5.

This corresponds to a near-optimal regime. An immediate implication of this phase is that
TF((I)tq);r) >rqg— 0.5 > ry —0.6. Recall that 5 > 1 is the last iteration in the first phase.
We assume that Tr(®,;®) > r4 — 0.6 forall t > ¢o + 1, and we will prove this later.

Given that the singular values of ®,®; lie in [0, 1], we have
0.4 <02, (®y) = 0., (21®]) < 07 (Py) < 1.
Moreover, since 3; = o1 (I, — ®,®]) < Tr(I,, — ®;®, ) and 3; < 1, it follows that
BT (@ ®[) <raTr(L, — @, ®/)), X Tr(®®)) <raxs.

In addition, it can be derived that

4
2—5Tr(ITA - &,®/) <ol (®)Tr(X,, — 2,2 )2, B))

< o2(®) Tr(I,, — &,®,)
<Tr(I,, — ®.®)).

With the inequalities above, we can simplify (11) as follows:

omP 32
tnPr 7772 + ;27 ) Tr(L,, — ®:®)) (32)

n
Tr(IT'A - (I)t+1(I’tT+1) <(1- o512

+ 160" raxe + 200/ Tr(L, — 8@ )(|A-1[lr + 2/IZe]|r + nl[Hellr).

Recall that x; = (|A 1]l + IE)? + VT, — B® (1A 1| + [Ed]) and [Hy e <
2| A1l + 4]|Z¢||. Since ||A;—1]] < 1and ||E;| <1, (32) can be written as

8 19413
25K2 K2

+ 1607 ra( Al + 12)

+ o/ Tr(L, — @@ ) - (16777 a(| A1l + [1E:]))

A/ Tr(Te, = 2@ ) - (407 + 20) (| A1 [lF + 2[|Ze]|F).-

Tr(L,, — ®19],,) < (1 A+ TR, — ®,8))

(r—ra)*
975C§H2WLQTZTA

Substituting n = into the inequality above, it follows that

1 _
T, — @1 ®/),) < qTr(1, — 2,2 ) + m(HAtﬂH + [|Ze]))?

1
+/Tr(L, — @@ ) - —— ([ A1l + [[Ee]]) (33)
KT A
1 1
T - =
YT = @) (G + )18l + 21Edle),

(r—r )4 . . 1
~3.7, isaconstantin (g,1).

where q:=1- 8125c2kim?2r2r

33



Published as a conference paper at ICLR 2026

From Lemma D.3 and the RIP property of M(-) with § = calr—ra)® 4 guarantees that

K2Zm3rirs

ca(r —1ra)8
”Atle < ||At71||F < m||xt,1®t,1xttl — A”F
ca(r —ra)t
< W”thletfﬂ(;r,l —Allg,
04( ) T
H t” < ||'—'t||F < ant tX AHF
calr =)l o,XT — Al

H2m2r2
Together with ¢4 = (’)(C%), we can rewrite inequality (33) as
1
Tr(L,, — q)t+1<1’tT+1)
1
<qTr(L,, — 2,®] ) + —L (X, 101 X[, — Al + |X,0,X] - A1

180
+2||X210;, 1 X | — Al X0, X — Allr (34)

Y THE, = @) (IXi-1©0 X[, = Alls + [Xi©.X] — Ale) ).

Denote by := Tr(I,, — ®;®/), a; := || X;0:X,] — Al|r. Inequality (34) can be expressed as

1-—
bt+1 < qbt + — CL§71 + a? + 2045,1045 + \/E(at,l + at)). (35)

180 (
Combining Lemma D.2, Lemma D.3 and the RIP property of M () with § = calr—r4)° '\we obtain

K2ZmB3rirs

1
ar < 2v/by+ carr. (36)
Since to + 1 is the first iteration in Phase II, we have Tr(I,, — ®;,+1 <I>tT0+1) < 0.5. From Lemma
D.7, it follows that Tr(L., — ®4,4+2®, ) < 0.6. Hence, byy41, by, 12 € [0,0.6].

From Lemma F.14, to establish the linear convergence rate of ay, it suffices to analyze the following
equality system of {b;}72, ., and {a;}2; 4 1:

bos = gh + =L (@2 + 82 + 2001 + \/i(atfl +ay)),

180 (
;= 2ﬁ+ i1, t=tot+ 200 +3,...
Qg1 = Qggt1s Deg1 = 0.6, by, 42 = 0.6.
By Lemma D.2 and the RIP property of M(-) with § = ealr—ra)° e derive

Nm347’ )

AN
48\/7 t0+1,m to+2>

where (7) is from inequality (30). From the update of a, at t = ¢y + 2, it follows that

Ato1+1 = Qrgr1 < 24/bpy 1 + HAtOHF < 2¢/btg 11+ o=

drgq2 = 21/ brgr2 + at0+1 < 24/byy42 + b1+ 5ee—— TA 34/bio 2.

Therefore, applying Lemma F.14 and Lemma F.15, we arrive at

. - 1+q¢\"? 1—q\""™ es(r—ra )\
Qg1+t < Gtgr14e < 34/ bgt1 <2q) <3 I—Tq =3 1—u ,

forall t > 0, with c3 := 0, 1). This establishes the linear convergence rate of ay.

1
32500c7 < (
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We now prove that Tr(®,®,) > ra — 0.6 for all t > ¢, + 1. This amounts to proving that
Tr(I., — ®,®]) =b; <0.6forallt >ty + 1.

Since by, +2 < 0.6, inequality (35) holds for ¢t = ¢y + 2. Hence,
l—q
bto+s < gbto+2 + o (a7, 11 + a7 4o + 20191101012 + Vg 12(atg 11 + A1y 12))
() 1—g¢q
< 0.6q+ﬁ(9 x0.64+9x0.6+18x0.6+6x0.6)

< 1+q><0.6

< 0.6,

where (j) is from the fact that as, 11 < 31/bry41 = 3V0.6, aryr2 < g 42 < 31/bryr2 = 33/0.6.
Therefore, inequality (35) holds for ¢ = o + 3. From inequality (36), we have a;,+3 < 24/bty43 +
%atﬁg < 31/0.6. By recursion, it follows that Tr(I,, — ®;®,) = b; < 0.6 forall t > ¢, + 1.

To conclude, by choosing stepsizes 77 = 9756(;:2% and y = 2, we have that || X;0; X, —A||f <
t—to
3(1— &bl ) forall ¢ > to + 1, with high probability over the initialization. O

E.9 PROOF OF LEMMA 4.1

Proof. Let UXU' be the compact SVD of A, where U = [uj,uy,...,u,,] and ¥ =
diag(A1, A2y .oy Ay ), With Ay > X9 > -+ > A, > 0. Here, diag(A\1, Ao, ..., A, ) denotes
the diagonal matrix whose diagonal entries are A1, Aa, ..., A

y A\ g
We first consider p > 1. From the Eckart—Young—Mirsky theorem, we have that the best rank — p
approximation of A under the Frobenius norm is A, = U; 2 U/, where Uy = [uj, uo,...,u,)]
and 3 = diag(\1, Ag, . .., A,), without considering the ordering of the eigenvalues.

We begin by analyzing the form of X and ©. Since rank(A,) = rank(U;) = p and
range(A,) C range(U,), it follows that range(A,) = range(U;). Together with range(A,) =
range(X®X ") C range(X), we can obtain range(U;) C range(X). Therefore, there exsits a
matrix Q € R"*?, such that U; = XQ. By the definition of Uy, we derive that
UjU;=Q'X'XQ=Q'Q=1L,

which implies that Q is a column-orthonormal matrix.

We extend Q to an 7 x r orthogonal matrix Q = [Q,P]. Let V, = XP, then [U;,V,] =
[XQ,XP] = XQ. Since Q" X'XQ = Q" Q = I,, then [Uy, V] is also a column-orthonormal
matrix, which means that

Vi = [V17V2, Ce 7V7A_p], withvy,vay,. .. y Vie—p € Uf‘, V1TV1 = Ir—p~
Let Uy = [u,41, Upy2, ..., U], and then U = [Uy, Uy]. By substituting U and X, we obtain

~ T
X'U=Q [gﬂ (U, Usg)

where (a) is from vy, va, ..., V,_, € Ui
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Since Tr(X TUUTX) = p, it follows that
p=Tr(XTUUTX)

1 0 I 0 |-
=Tr (Q{éj VlTUJ {6) UQTVJ QT)

L, 0
=T ([0 VIUQUQTVlD

=p+Tr(V] U U] V).
After cancelling the term p on both sides, we obtain Tr(V] UsU, V) = |[UJ V|2 = 0.
Hence, we have that U2T V, = 0, which implies that vq,va,...,V,_, € Uj‘. Moreover, since
Vi,Va,...,V,_, € Ui as well, we conclude that v1,va,...,v,_, € UL

Substituting X = [U;, V;]Q " into X®X T = A, we can obtain
U1, V1]QTeQ[Uy, V] = A,
= Udiag(A1, A2, .., A,) U
= [Ul,Vl]diag()\l, /\27 ey /\p,O, . ,O)[Ul,Vl]T.

Expanding both sides of the equation, together with vy, vy,...,v,_, € U™, we can obtain
Q'OQ = diag(A\1, M2, ., A,,0,...,0).
This implies that 3 R
© = Qdiag(\1, A2, ..., A, 0,...,0)Q".
To proceed, we first verify that (X, @) := ([Uy, V], diag(A1, Ao, ..., Xp,0,...,0)) is indeed a
saddle point and then prove (X, ®) is also a saddle point.
We compute the Euclidean gradients of f,, with respect to X and © as follows:
Vxfo(X,0) = (XOXT — A)XO — XO? — AXO,
- PO -1 - - -
Vofs(X,0) = §XT(X®XT ~A)X =(O- XTAX).
By plugging the expression of (X, ©) in, we obtain
Vxf(X,0)=X0? - AXO
= [Nuy, Mug, ..., )\iup, 0,...,0] — [\uy, \uo, ..., )\iup,(), ..., 0]
= ()7
- 1 -~ - -
Vo fx(X,0) = 5(9 - XTAX)

1
= 5 (diag(A1 Az, 0, 0,0, 0) = diag(Ar, Az, .o, Ay, 0, 0))
=0.

Then, the Riemannian gradient is

(L~ XX ) x [ (X, ) + 3 (X Vx [ (X, ) ~ V(K. ©)TX) = 0.

Therefore, (X, é)) is a stationary point in the Riemannian sense.
‘We now show that (X, (:)) is neither a local minimum nor a local maximum of the objective function.

For any 0 < v < \,,, we will construct a pair (X, © ), such that fo.(X|,0,) > f- (X, 0),
1((X:,0,).(X,0)) = \/IX; ~X|f + 0. - O] <vand X[X, =T,.
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LetX, = X = [Uy, V] and @ = diag(A; —, A2, ..., A, 0,...,0). By construction, X ] X =
I,andd ((X+, 0,), (X, é)) = V12 < v hold. The value of the objective function is

- 1 - ~ =
foo(X4,04) = i||X+@+XT — Al
1
= 1||()\1 v)uju, Z)\ u;u Z/\ wu; ||

Flvmim] + £3 A 2

i=p+1
1 o
20wl + |XOXT - AlR)
> (X, 0),
where (b) is by the orthogonality of {u;,ug,...,u,,}.

We now try to construct a pair (X_,@_), such that f(X_,0_) < fuo(X,0),
d ((X—v é—)7 (Xa é)) = \/HX— - X”E + ||é— - (:)”E sv, and Xix— = IT"

Since v; € Ut forany i € {1,2,...,7 — p}, it follows that v; € span{u, , 11, U, 12,..., Uy}
Accordingly, we consider

X = [Uy, kvi 4 su,i1,va, ..., Vo),

©_ = diag(\1, N2, ..., Ay, 10,0,...,0),

where k, s,19 > 0, k2 + s2 = 1 and k, s, v will be given later. We can easily verify that X' X_ =
I, holds. The distance is

1((X-,6.),(X,0)) = \/|X- - X[z + |6 - O}

= Ik = 1wy + su, |2 + 17
:\/(k—1)2—|—32+1/§

:\/272k+1/§.

Letk=1—-%,s=+v1—-k?andyy < %,thend((X,,(:),),(X7(:))) <% +% <. The

value of the ob]ectwe function is

foo(X_,00)
1 - -
= ZHXJiXT — Al

1
1 |vo (K2 V1V1 + ksup+1v1 + ksvlupﬂ) + (vos® — )\p)upHu;H — Z )\iuiu?HE
1=p+2

() 1 -~ 1
92 (A0 + kzwwﬂvn#+HZWm%HH>(wfgw»%+ﬁaxx»fzﬁ
1 -
= 1% o (k' 4 2k%s® + %) — 5uoxps%rfm(x, o),
where ( ) is from the orthogonality of {u17 uy,...,u.,,v1}. Letyy > 0 be sufficiently small.

Then 113 (k* + 2k2s% + s?) — LvoA 8% < 0. This ensures that the perturbed pair leads to a strictly
smaller objective value, i.e., foo (X_, O_) < foo (X, ©).

Therefore, we have verified that (X, @) is a saddle point. Building upon this result, we now proceed
to show that (X, ®) = (XQT,QOQ") is also a saddle point.

37



Published as a conference paper at ICLR 2026

Plugging in the expression of (X, ®), we obtain the Euclidean gradients as follows:
Vxfo(X,0) = (XOX' — A)XO
XQ'QOQ'QX'T - A)XQ'QeQ"

Then, the Riemannian gradient is

(I, — XX ) Vx foo (X, ©) + %(XTvaoo(x, 0O) — Vxfx(X,0)'X) = 0.

Therefore, (X, ®) is a stationary point in the Riemannian sense.

Let (X,,0,)=(X,Q7,Q0,Q"),(X_,0_)=(X_Q",QO_Q"). The distance is

1((X4.©,),(X,0) = \/|X; ~X|2 +]/©, - O]
— JIX: = X)QTI2 + QO - ©)QT|I2
— IX: X[+ 6, - O2

=d (()L,@),(X, é)).

In the same manner, we can obtain that d (X_,0_), (X,0)) =d ((X_, e_), (X, @)) By the
orthogonality of Q, the following three identities hold:
XOX' = XQ'QOQ QX" = XX,
X.0,X[ =X,Q'Q0,Q'QX] =X, 0,X],
X 0.X'=X_Q'Qe_Q'Qx'=x_6_Xx".

Then, we have f(X,©) = f(X,0), f(X,0,) = f(X{,0,)and f(X_,0_) = f(X_,0
Thus, we obtain the strict inequality f(X_,0_) < f(X, ) <f (X+,®+) Therefore, (X, ©
also a saddle point.

We now turn to the case p = 0, i.e., XOXT =Ay=0. Consequently, ® = XTA)X =0.Let X
be expressed as X = [x1, X, . .., X,], where each x; is a column vector. Since Tr(XTUUX) =
[UTX]]2 =0, it follows that U X = 0. Hence, each x; lies in U+ fori € {1,2,...,7}.

).
) is

We compute the Euclidean gradient of the objective function f., with respect to X and @
Vxfoo(X,0) = (XOX' — A)XO = XO? - AXO =0,
1 1
Vofwo(X,0) = 5XT(X@XT ~A)X = (0~ XTAX) =o0.

Then, the Riemannian gradient is

%(XTVXfOO(X, 0O) — Vxf(X,0)'X) = 0.

(L, — XX )Vx foo(X,0) +
Therefore, (X, ®) is a stationary point in the Riemannian sense.
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For any 0 < v < A, ,, we construct the pair (X, ® ) as follows:

Xt = [kx1 + sup, Xa,. .., Xy,
O, = diag(—v1,0,...,0),

where k = 1 — "72, s=+v1—-Ek%2and0 <1y < % We can easily verify that XJTFXJr = I, and the
distance is

1((X1.©,),(X,0) = \/|X; ~X|2 + ]|, - O]

= Ik = Lcr + swi |2 + 27

1)2 + 52 +vf

SN

[v2 2
</
- 2 + 4

1%

IN

The value of the objective function is

1
fo(Xy,©4) = 1||X+@+XI — A}

1 -
— 1|| — v (Kx1x{ + s’ujuy ) — Z Ay, |2
i=1

1 2
= Z||V1k2x1x1r + visPuju] + Z Awgu, |2
i=1

) 1
@ 1 iR st F 20 +IXOXT — Af])
> [ (X, ©),
where (d) is due to the orthogonality of {uy,us,...,u,,,x1}. Now consider the pair (X_,0_)
defined as:
X_ = [kx1 + suy, Xa, ..., X,

O_ = diag(1»,0,...,0),

where k = 1 — "7273 =+v1—-k2,and 0 < vy < % It can be verified that XX _ = I, and the
distance is

d((X_.0_),(X.0)) = \/|X_ - X[} + |O_ - ©|2

= Ik = Dx + s |2 4 23

:\/(k:—l)2+s2+V§

2

v 2

V2

v
4

A

+

IN
X
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The value of the objective function is

1
fo(X-,0) = 1|X-©_XT - A
1 2
= 1||1/2 (K*x1x{ + s*wu) ) — Z Awgu, |2
i=1

1

W~ |

TA
|vok?x1x] + vos?uju! — Z a2
i=1

—
@
~

(Vak* + v3s* — 2va0187 + | XOX T — A||})

(1/22(1434 + 54) — 2V2)\152) + [ (X, ©),

LY IS

where (e) is by the orthogonality of {u;, uz,...,u,,,x1}. Let o > 0 be sufficiently small. Then
1 (V3(k* + s*) — 2vpA1s?) < 0. This guarantees that foo(X_,0_) < fo(X,©). Therefore,
(X, ©) is also a saddle point when p = 0. O

E.10 PROOF OF LEMMA 4.2

Proof. We begin by computing the Euclidean gradients of f., and f with respect to X and ©:

Vx foo(X,0) = (XOXT — A)XO,

Voflwo(X,0)= %XT(XQXT - A)X,
Vxf(X,0) = M*M(XOX' - A)XO,
Vof(X,0) = 1XTM*/\/t(X@XT —A)X.

2

Then, we can obtain that the gap between population gradient and sensing gradient is

[Vxfo(X,0) = Vx f(X,0)]F = [ M*M - I)(XOX — A)XO||
< MM —ZT)(XOXT — A)[[e|X[| O]

(f)
< 2 (MM - T)(XOXT — A)s
< 2y/m[(M"M - T)(XOXT - A)|

(9)

< 2¢/md||XOX" - A
<2md||XeX" — A

< 2md(||X[[[O[[X]| + [|A[])

)
< 6méd,
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V6 (X, ©) - Vo (X, 0)[F = 1 X (MM~ T)(XOX' ~ A)X]r

IN

1 *

SIXIM M= D) (XOXT — A)e X
< LIM M- T)(XOXT — A)r

< %\/%H(M*M —-I)(XOX' - A

(9) 1
< SVmoXexXT - Al

IN

1
5méHXG)XT —A|

1
< omo([IX[HOIX[] + [l All)

(53
< §m5,

where (f) is by [|X]| < 1,(|®]| < 2,]|A|| < 1; and (g) is from Lemma F.11. Then, the difference
between the two Riemannian gradients can be bounded as

+ %XXT(VXfOO(X, 0) - Vxf(X,09))

~ SX(Txfal(X,©)7 - Tx (X, ©))X]e
< (T = XXT)(Vx foo (X, ©) = Vx (X, ©)) |

1
+ SIXXT (Vx foo (X, ©) = VX F(X, ©))[F
1
+ §HX(vaoo(Xa ©)" — Vxf(X,0)")X|
1 1
< 6mo(||L, — XX || + S IXNIXA -+ S IXAIXD
(h)
< 12mé,

where (h) is due to ||L,, — XX ||, | X]| < 1. O

F OTHER USEFUL LEMMAS

Lemma F.1 Given a PSD matrix A, we have that (I + A)~1 =T — A.

Proof. Diagonalizing both sides and using 1/(1 + A) > 1 — X,V > 0 yields the result.
(]

Lemma F.2 Let X € St(m,r) and U € St(m,r4). Let U, € R™*("="4) be an orthonormal
basis for the orthogonal complement of span(U). Denote ® = UTX € R"™4*" and ¥ = UIX €
R™=74)X" [t is guaranteed that o2(®) + o?(¥) = 1 holds fori € {1,2,...,r}.

Proof. Since X lies in the Stiefel manifold, we have that
T T T U’
I, =X'X=X'L,X=X"[U,U,] {UI]X 37
—®'®d+0'W.
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Equation (37) shows that ¥ " ¥ and & " & commute, i.e.,
(@) T V)= (2P, - D)= P> PP P
=1, - ®)(®'®) = (T U)(D D).

The commutativity shows that the eigenspaces of &' ® and ¥ " ¥ coincide. As a result, we have
again from (37) that 02(®) + 02(¥) = 1 fori € {1,2,...,r}. O

Lemma F.3 Suppose that P and Q are m x m diagonal matrices, with non-negative diagonal
entries. Let S € S be a positive definite matrix with smallest eigenvalue iy, then we have that

TF(PSQ) > /\minTr(PQ) .

Proof. Let p; and ¢; be the (i, ¢)-th entry of P and Q, respectively. Then we have that
Tr(PSQ) = Z PiSiiti > Amin szqz = Anin TH(PQ),

where the last inequality comes from S being positive definite, i.e., S; ; = e; T'Se; > \uin. O

Lemma F.4 Ler A € R™*" be a matrix with full column rank and B € R"*P be a non-zero
matrix. Let owmin(+) denote the smallest non-zero singular value. Then it holds that o, (AB) >

Omin (A)Umin (B)

Proof. Using the min-max principle for singular values,

Omin(AB) = min |ABx]|
||x||=1,x&€ColSpan(B)

- |\x|\:1,x12£15pan(13 H ||Bx|| H

(a) .

= min [Ay]l - [|Bx]|
Ix[|=1,|ly||=1,xEColSpan(B),y €ColSpan(B)

> min 1Ay - min IBx]||
HYH_L}’ECOISPaH(B) |Ix||=1,x€ColSpan(B)

> min [[Ay[|- ~~ min IBx||
lly H 1 ||x]|=1,x€ColSpan(B)

= Umin(A)Umin(B)v

where (a) is by changing of variables, i.e., y = Bx/||Bx]|. O

Lemma F.5 (Theorem 2.2.1 of (Chikuse, 2012)) If Z € R™*" has entries drawn i.i.d. from Gaus-
sian distribution N'(0,1), then X = Z(Z"Z)~'/? is a random matrix uniformly distributed on
St(m, 7).

Lemma F.6 (Vershynin, 2010) If Z € R™*" is a matrix whose entries are independently drawn
from N'(0,1). Then for every T > 0, with probability at least 1 — exp(—72/2), we have

o1(Z) < Vm+r+T.
Lemma F.7 (Rudelson & Vershynin, 2009) If Z € R™*" is a matrix whose entries are indepen-

dently drawn from N (0,1). Suppose that m > r. Then for every T > 0, we have for two universal
constants C1 > 0 and Cy > 0 that

P(0,(Z) < 7(vm — V= 1)) < (Crr)™ "+ + exp(~Cam).

Lemma F.8 If U € St(m,r4) is a fixed matrix, X € St(m, r) is uniformly sampled from St(m, r)
using methods described in Lemma F.5, and r > r 4, then we have that with probability at least
1 —exp(—m/2) — (C17)" "4+l — exp(—Cyr),
T(r—ra+1)
L (UTX)y > ——2 7~/
(U X) 2 ==
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Proof. Since X € St(m, ) is uniformly sampled from St(m, r) using methods described in Lemma

ES5, we can write X = Z(Z"Z)~'/2, where Z € R™*" has entries i.i.d. sampled from N/(0,1).
We thus have

0, (UTX) =0,,(UTZ(Z"Z)7/?).
We now consider UTZ € R™4*" It is clear that the entries of U Z are also i.i.d A'(0, 1) random

variables. As a consequence of Lemma F.7, we have that with probability at least 1 —(Cy7)"~ 41 —
exp(—Car),

0ry(UTZ) > 7(v/r — V14 — 1).
We also have from Lemma F.6 that with probability at least 1 — exp(—m/2),
01(27Z) = 0}(Z) < 2V/m + V)%
Taking union bound, we have with probability at least 1 —exp(—m/2)—(Cy7) "~ "4t —exp(—Car),

o0 (UTX) (;) 0r,(UTZ)  7(yr—ra—1) - T(r—ra+1) 7(r—ra+1)

- o(Z)  2ym+r T 3Yme2yr  6ymr

where (a) comes from Lemma F.4. O

Lemma F.9 Suppose ®, € S". Then the update rule (10) guarantees that ®1 also belongs to S".

Proof. From the update rule, we have that

Orp1 =X AX 1 — X[ [(MM — )(Xt+19tXtT+1 —A)| X1

Since ®; € S” and A € S™, it follows that X110, X/ ; — A € S and X/ ;AX;1; €S".
By definition of M and M?*, the composition M* M defines a self-adjoint operator in S*. Hence,

X1 (MM — gz)(xw@txgl — A)]X;4 €S
Thus, ®;41 € S", which completes the proof. O

Lemma F.10 Let M(-) : S™ — R™ be a linear mapping that is (r + 1/, 8)-RIP with § € [0,1).
Then for any symmetric matrix Z of rank at most v and any symmetric matrix Y of rank at most r’,
we have that

(MM = T)(Z), Y)| < 3| Z[lr[[ Y[

Proof. Denote A(Z,Y) = (M*M — I)(Z), ) (M(Z), M(Y)) — (Z,Y). The above
inequality trivially holds when || Z[|r = 0 or HYH F=0 1thout loss of generality, we assume that

|Z||F # 0 and ||Y||r # 0. Define Z := dY = v H . It then follows that

A(Z,Y) = AZ,Y) - | ZIIel[Ylr-

HZHF

Using the polarization identity, we obtain

. 1
(

. 1 - . .
(2,Y) =7 (I|z +Y[E-1Z-Y[B).

MEZ+Y)|? ~ IM(Z-Y)|?),

43



Published as a conference paper at ICLR 2026

Substituting the two equalities into the expression of A(Z,Y), we have that
|A(Z,Y)| = (M(Z), M(Y)) = (Z,Y)]

1 . . . .

=4 (IM(Z +Y)?P = [MZ-Y)*) = (IZ+ Y|} - Z - Y|}
1 . . . .

< Z(\HM(Z +Y) P = IZ+ Y[R+ [[IM(Z - Y)|” - |IZ - Y]]F])

@6 = 2 5 <2

22+ YN + 12~ Y1)
5 - 3

= §(||Z||§ +YI3)

where (a) is from the facts that M(-) is (r 47, 6)-RIP with constant d, rank(Z +Y) < rank(Z) +

rank(Y) <7+, and rank(Z — Y) < rank(Z) + rank(Y) < r + r’. Therefore, we have that
(MM =TI)(2),Y)| = |AZ,Y)| = |AZ,Y) - |Z|eY e < SlIZ[r] Y ]r,

which completes the proof.

O

Lemma F.11 (Lemma 7.3 of (Stoger & Soltanolkotabi, 2021)) Let M(-) : S™ — R" be a linear
mapping that is (r + 14 + 1,0)-RIP with § € [0,1), then |[(M*M — I)(A)| < §||A||r for all
matrices A € S™ of rank at most r + 1 4.

Proof. By Lemma F.10, if A € S has rank at most » +r4 and Y € S™ has rank at most 1, then it
holds that

(MM =T)(A), Y)| < Sl A[[el[YlF-

Hence, it suffices to prove that there exists a matrix Y of rank 1, such that [(( M* M —TI)(A),Y)| =
|[(M*M —T)(A)| and | Y||r < 1. Since (M*M — I)(A) is a symmetric matrix, it follows that

(MM =T)(A)] = max u' (MM ~TI)(A)u

[[ul|=1

= max Tr((M*M —I)(A)uu')

[lufl=1

= HrlleHa:Xl«M*M —I)(A),uu’).

Let Y = i, where @ € argmax((M*M — T)(A),uu’). We then have that rank(Y) = 1,
[[uf|=1

Y €S [((MM=TI)(A),Y)| = [[MM=T)(A)], and [ Y[lr < 1. O

Lemma F.12 Let A € R"*™, B € R™*" be two real matrices, then the following inequality holds
AB+B'AT <2|A||B|I..

Proof. For any unit vector & € R™ with ||| = 1, we can obtain that

z (AB+B'AT)x=2"ABxz+2z B'A'z @ 22" ABuz,
where (a) is from the fact that T BT ATz is a scalar. By the Cauchy—Schwarz inequality and the
definition of the spectral norm, we have that

l@" ABz| < |ABa| - ||z < |A]l - [B]|- | = || A[|B].
Hence, we obtain the following inequality:
z (AB+B Az <2|A||B].
Since this holds for any unit vector , it follows that
AB+BTAT <2/A||B|L..
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Lemma F.13 Lett > 1 be a positive integer. For all real numbers x, satisfying 0 < x < % the
following inequality holds:
(1+2)" <1+ 3ta.
Proof. Let f(z) :=1+ 3tz — (1+2)’, « € [0, 1]. Then, for all z € [0, }], we obtain
fl(x) =3t —t(1+2)"t >3t —t(1+ g)t—l > (3—e)t>0.

Therefore, for all z € [0, 1], f(x) > f(0) = 0, which means (1 + )" < 1 + 3t forall z € [0, 1].
O

LemmaF.14 Letk € R>4, g € (l 1). Suppose that sequences {a; };2, {b: }52o C R>o satisfy

biy1 < gby + ——= 18%2 (a2, + a? + 240 100 + V(a1 +ay)), (38)
atSQkﬁ+6at_1, t=1,2..., (39)

and another pair of sequences {dt}t"io, {l;t}toio C Ry satisfy
biy1 = qby + ——= 180k2 (a2, + a2+ 2a,_ a0 + \/Za:(at_l +a)), (40)
dt=2k\/g+6at,l, t=1,2.... (41)

If the initial conditions satisfy ~ }
ag < ag,bo < bo, b1 < by,
then a; < a, and by < b, hold for all t > 0.

Proof. We proceed by mathematical induction. From inequality (38), we obtain

1
a1 < 2k+/b; + 6(10
(a) /- 1._
< 2kA/ b1 + gao

®) -
= ay,

where (a) is by initial conditions; and (b) is from equality (40). Analogously, inequality (39) implies
by < gb1 + ——=
© s o o \/* -
< gby + —— 18Ok2 (ao + a3y + 2apa; + 4/ b1(ap + al))
(i) BZ)
where (c) is due to initial conditions and a1 < @;; and (d) is by equality (41). By induction, we
conclude that a; < a; and b, < by for all ¢ > 0, which completes the proof. O

180k2 (a% + a? + 2apa1 + \/a(ao + al))

LemmaF.15 Letk € R>q, q € (% 1). Suppose that sequences {a; Y%, {b: }52 C R satisfy:

bis1 = gy + —— 180k2 (0571 + a7 4 2a;,-1a; + \/a(dH + ), 42)
at:2k\/i+6&t—ly t=1,2.... (43)

If the initial conditions satisfy

oo . % |- .
ao, a1, bo, b1 € R>g,a0 < 31@\/; < j{qu br, a1 < 3ky\/ by,

then we have that a; < 3k+/ 50 (%)t/2 forallt > 0.
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Proof. We proceed by mathematical induction. We first consider the following auxiliary system:

. . ~ . 144q;
bt+1 = max{qbt + = 180k2 (af_l + @ + 2ap—10s + \/;(at—l + ay)), Tqbt}’ (44)

ay = max{Zk\/b:+ édt—l’ Sk\/;}, t=1,2,.... (45)
Let ag = ag, Z;O = l;o, and 51 = by. It holds that ag < 3/@\/5 < f’/@\/ 51, and thus we have

2k\/7+ a0<2k\/7+ \/7<3k\/7

From equality (45) at ¢ = 1, we obtain G; = 3k\/ 1. Since ag < f’/‘l/%\/ 1and a; = 3k\/l§ , it
follows that

A 1-—
qby + 180%2 (ao + al + 24001 + \/ (4o + a1))

1—q ,18k? 5 18V2k%. 32k . .
_qb1+180k2( b1+9k b1+\/1+qb1+ﬂ+ by + 3kby)
1—
< abi+ g7 (18k2+9k2+18fk2+3fk2+3k2)b
~ 1—gqg-
<gbi + qbl
< 1+ql;1.

From equality (44) att = 1, we have by = %qi)l. Using the same reasoning for ¢ = 2 yields
- 1 A k /s N k 2 A -
2kA\/ by + =a1 = 2k\/ba + —\/ b1 = 2k\/ by + =/ ——\/ b2 < 3k\/ ba.
2+6&1 2+2 1 2+2 1+g 2 < 2
Equality (45) at ¢ = 1 implies that o = 3k\/bs. Since d1 = 3k\/by and @y = 3k+\/ba, we obtain

1 . SN » ~ A
gbs + —— 180k2 (a% + a3 + 2a142 + \/;(al +a2))

= gby + 18%2 9 (9kby + 9kby + 18k2\/ byby + 3k(\/biba + bo))
N e’ <18k2 ) 18\/§k2 3V2k T 3k)bs
2 180k2 itd Vita

< gy + 3 18%2 T (18K + 9k% + 18V/2K? + 3v2k + 3k2) by
~ 1—g-

< by + — by
1 -

<14,

Applying equality (44) at t = 2, by = %52 is derived. Therefore, we have that d1 = 3k+/by, Gy =
3k+/bo, and 133 = %52. Assume that a;_1 = 3k l;t_l,dt = 3k:\/l§i and 3t+1 = %f)t, we

claim that ;41 = 3k4/ lA?t+1 and l;t+2 = #Bt_i'_l. From equality (45), we obtain
N 1 ~
Q41 = maX{Zk bt+1 + gdt, 3k bt+1}

~ 1 ~ ~
= max{?k bt+1 + 5]4} bt7 3k bt—‘,—l}

— ki —
= max{Qk bt+1 + B bt+1, 3k bt+1}

= 3]€ l;tJrl.
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Analogously, equality (44) implies that

1-— ]_—|—qA
180k2 b1}

== maX{qu)t+1 + W_M(gkzi)t + 9k28t+1 + 18k2 \/ i)ti)t+1 + \/ Bt+1(3k’\/i)>t + 3k \/ I;t+1))7

biyo = max{ghi 11 + —— (a? + a7+ 208041 + bep1 (@ + der)),

1+
qbt+1}
—aq, 2 e, L2 vp L I+gq;

- b < . (= Vb, 24

— max{gbuss + 5" 20 (14+ R (1—%q) 3k(1#—q) + gl 5 b

1—|—q
- b

) t+1-

Therefore, we have that {i)t}gzgo decreases in a linear rate and that a; = 3k\/a in the system (44)
and (45), which means that a; < 3k+v/bg (%)t/2 = 3k\/by (%q)t/2 forall ¢t > 0.

We now prove that a; < dt,l;t < Et for all ¢ > 0. Obviously, ag < ag,a; < dl,l;o < 130, and
b1 < by hold. Applying equality (42) at ¢ = 1 and equality (43) at ¢ = 2, we obtain

T f*
by = gby + 180k2 (ao + al + 2apay + 1(ag + al))

1- N o a [ . R
< qb1 + — (ag + a% + 2apa1 + 4/ b1 (a0 + a1))

180k2
~ 1 — N
Snmﬂ@y+Em%@%+ﬁ+2%@+ﬂ%ﬂ%+dﬂ%

- A2a
. =1
ag = 2]17\/;4* 6@1
~ 1.
S 2]€\/;+*a1
<m X{2k’\/>+ CL1,3/{3\/>}

Hence, &2 < as, 52 < 132 and recursively, we can obtain a; < ay, I~)t < 13,5 for all £ > 0. Consequently,
{at}t achieves at least a linear convergence rate in the system (42) and (43), which means that

a; < 31{:\6 (%) forall ¢t > 0.
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G EXPERIMENTAL SETUPS
In this section, we provide experimental setups in detail.

G.1 SETUP FOR FIGURE 1

We apply Algorithm 1 to problem (2) and study the trajectory generated by the algorithm.

In this experiment, we set m = 300, = 10,r4 = 5, and k = 3. The ground-truth matrix
A € R™*™ ig constructed as A = UXUT, where U € R™*"4 is a random orthonormal matrix
and X € S’ is diagonal with entries generated by a power spacing scheme. Specifically, the j-th

i—1
entry of X is given by 0; = p(Fam)’ forj=1,...,r4, where we set p = 0.6.

We generate n = 50000 independent feature matrices {M;}? ; C S™ in the following manner.
For each i € {1,. n}, we sample R; € R™*™ with i.i.d. standard Gaussian entries and define
M; = 3 W(R + R ), which ensures the symmetry of M.
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We initialize Xo = Zo(ZJ Zo)~'/? and ®¢ = 0.5I,, where Zy € R™*" has i.i.d. standard
Gaussian entries. This initialization ensures that X lies on the manifold St(m,r) and ®y € S".
For this experiment, we set the stepsizes to = 0.2 and p = 2.

G.2 SETUP FOR SECTION 5
G.2.1 SETUP FOR THE EXPERIMENTS WITH SYNTHETIC DATA

We apply Algorithm 1 to problem (2) and compare its convergence with standard GD applied to (1).

In the noisy measurement experiment, we set m = 10,7 = 5,74 = 3, and n = 1000, while for
other experiments, the corresponding values are given in the main text. In these settings, the ground
truth matrix A € R™*™ is formed as A = UX U, where U € R™*"4 is a random orthonormal
matrix and ¥ € S'* is a diagonal matrix with entries evenly distributed on a logarithmic scale in
the interval [1/x, 1]. Feature matrices {M; }?_; are generated as described in G.1.

For other experiments, we initialize Xo = Zo(Zq Zo)~/? and ®, = I, for Algorithm 1, where
Zo € R™" consists of i.i.d. standard Gaussian entries, and X§P = 0.1Z for GD.

Throughout the experiments, we use stepsizes = 0.1 and p = 2 for RGD and n = 0.1 for GD,
except for the first experiment in Subsection 5.2. In that case, we setn = 0.1,0.12,0.14 and p = 2
for RGD, and n = 0.1,0.12, 0.14 for GD, corresponding to = 50, 75, 100, respectively.

G.2.2 SETUP FOR IMAGE RECONSTRUCTION EXPERIMENTS

For the image reconstruction experiments, we conduct two setups: one based on recovering a CIFAR-
10 image from linear measurements and the other on direct matrix sensing of a structured image.

For the CIFAR-10 experiment, we take the first horse image from CIFAR-10 dataset, convert it to
grayscale, and vectorize it as a € R'%?1. The ground-truth matrix is setas A = aa' € S1°2*. The
overparameterization level is set to 7 = 100, with n = 50000 feature matrices generated as in G.1.
RGD is initialized with X = Z(Z] Zo)~'/? and ®( = I, where Zo € R™*" has i.i.d. standard
Gaussian entries. GD uses small random initialization: XgD = 0.17Z¢. We run RGD for tggp = 100
and GD for tgp = 200 iterations. For RGD, we adopt stepsizes of = 0.01 for updating X and
w1 = 2 for updating ®. For GD, we apply stepsize n = 0.01 to update X.

After optimization, following the approach of (Duchi et al., 2020, Section 4.1), we perform a rank-
one truncated SVD on the recovered matrix A, and the estimate of the original signal is constructed
as the leading singular vector multiplied by the square root of its corresponding singular value. The
resulting vector is then reshaped into a 32 x 32 reconstruction image.

For the structured image experiment, we generate a grayscale matrix A € ng of rank r 4 = 2 using
block-wave basis functions. Specifically, we construct r 4 one-dimensional signals of length 128,
where each signal is a normalized block wave taking values in +1 with a random period. Stacking
these signals forms a matrix U € R!28%74, The ground-truth image is defined as A = UAU,
where A is a 2 x 2 diagonal matrix with diagonal entries 1 and 0.9. This diagonal matrix assigns
geometrically decaying weights to different block-wave modes.

We again fix » = 100 and use n = 50000 feature matrices generated as in G.1. Both RGD and GD
are randomly initialized as above. We run RGD for tggp = 100 and GD for tgp = 200 iterations.
We adopt stepsizes of n = 0.03 and ;» = 2 in RGD and a stepsize of n = 0.03 in GD.

The per-iteration computational complexity of both RGD and GD is O(nm?r), which is dominated
by the operation of sensing. Since each RGD iteration requires performing two sensing operations
while GD requires only one, we set the number of iterations as tgp = 2trgp to make the overall
runtime roughly comparable between the two methods.

G.3 SETUP FOR THE EXPERIMENTS OF PRECONDITIONED ALGORITHMS

We apply Algorithm 1 and PrecRGD to problem (2) and compare their convergence behavior with
GD, PrecGD and ScaledGD()\) applied to problem (1).
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In this experiment, we set m = 50,7 = 40,74 = 3, kx = 10, and n = 8000 for the first instance and
increase 7 to 45 in the second instance while keeping all other parameters fixed. The ground-truth
matrix A € R™*™ is constructed as A = UXU ', where U € R™*"4 is a random orthonormal
matrix and 3 € S'* is a diagonal matrix with entries evenly distributed on a logarithmic scale in
the interval [1/k, 1]. Feature matrices {M; }"_; are generated as described in G.1.

The regularization parameter A used in PrecRGD is chosen adaptively as A = | M* M (X;©;X, —
A)||so, where || - ||oo denotes the matrix infinity norm. For PrecGD and ScaledGD(\), we set the
regularization parameters as A = || M* M (Y, Y; — A)||o and X = 0.1, respectively.

We initialize Xo = Zo(ZJ Zo)~'/? and ®y = I, for RGD and PrecRGD, where Z; € R™*"
consists of i.i.d. standard Gaussian entries. For GD and PrecGD, we use initialization XgD = Zy.
For ScaledGD()), we set X5¢d = 1076 . Z;. For RGD and PrecRGD, we adopt stepsizes of
1 = 0.02 for updating X and p = 2 for updating ®. For GD, PrecGD and ScaledGD(\), we apply
stepsize n = 0.02.

G.4 SETUP FOR THE MATRIX COMPLETION PROBLEMS

We apply RGD to problem (7) and compare its convergence behavior with that of GD applied to (6).

We directly use the code provided in the supplementary material of (Yalcin et al., 2022), replacing
only the objective function with our WN-based formulation (7). The update of X, follows the same
step-size strategy as that of Y, in their implementation, and ®; is updated using a fixed step size of
= 2. Except for these modifications, other settings are kept identical to the original code.

G.5 SETUP FOR THE EXPERIMENT OF DIAGONAL AND NONNEGATIVE ©

We apply algorithm (1) to WN and compare its convergence behavior with that of constraining ® to
be diagonal and nonnegative.

In this experiment, we set m = 10,r = 5,74 = 3,k = 3, and n = 1000. The ground-truth
matrix A € R™*™ ig constructed as A = UXU, where U € R™*"4 is a random orthonormal
matrix and ¥ € §'* is a diagonal matrix with entries evenly distributed on a logarithmic scale in
the interval [1/x, 1]. Feature matrices {M; }7_; are generated as described in G.1.

We initialize Xo = Zo(Zg Zo)~'/? and ® = I, for both settings, where Zq € R™*" consists
of i.i.d. standard Gaussian entries. We adopt stepsizes of 7 = 0.1 for updating X and p = 2 for
updating ©. To enforce © to be diagonal and nonnegative in the “Diagonalized” setting, we perform
an SVD on O, after each update, extract the diagonal matrix, and apply hard thresholding to ensure
that all the diagonal entries are nonnegative.
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