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ABSTRACT

While normalization techniques are widely used in deep learning, their theoretical
understanding remains relatively limited. In this work, we establish the benefits
of (generalized) weight normalization (WN) applied to the overparameterized ma-
trix sensing problem. We prove that WN with Riemannian optimization achieves
linear convergence, yielding an exponential speedup over standard methods that
do not use WN. Our analysis further demonstrates that both iteration and sample
complexity improve polynomially as the level of overparameterization increases.
To the best of our knowledge, this work provides the first characterization of how
WN leverages overparameterization for faster convergence in matrix sensing.

1 INTRODUCTION

Normalization schemes, such as layer, batch, and weight normalization, are essential in modern deep
networks and have proven highly effective for stabilizing training in both vision and language models
(Ioffe & Szegedy, 2015; Ba et al., 2016; Salimans & Kingma, 2016). Despite their practical success,
theoretical explanations of why they work remain elusive, even for relatively simple problems.

This work focuses on weight normalization (WN), which decouples parameters (i.e., variables) into
directions and magnitudes, and then optimizes them separately. It has recently regained consider-
able attention because of the seamless integration with LoRA (Hu et al., 2022), leading to several
powerful strategies for parameter-efficient fine-tuning of large language models; see e.g., (Liu et al.,
2024; Lion et al., 2025). Yet, theoretical support for WN remains relatively limited. Prior results in
(Wu et al., 2020) show that WN applied to overparameterized least squares induces implicit regu-
larization towards the minimum ℓ2-norm solution. The implicit regularization of WN on diagonal
linear neural networks is studied in (Chou et al., 2024). WN is also observed to reduce Hessian
spectral norm and improve generalization in deep networks (Cisneros-Velarde et al., 2025).

Our work broadens the understanding of WN by establishing its merits for the overparameterized
matrix sensing problem. The goal is to recover a low-rank positive semi-definite (PSD) matrix
A ∈ Sm+ from linear measurements. In the vanilla formulation without WN, one can exploit the
low-rankness of ground-truth matrix, i.e., rA := rank(A) ≪ m for efficient parameterization.
Specifically, we can optimize for Y ∈ Rm×r such that YY⊤ ≈ A (Burer & Monteiro, 2005). The
overparameterized regime r > rA is of interest due to the need of exact recovery without knowing
rA a priori. This problem has wide applications in machine learning and signal processing (Candès
et al., 2013), and serves as a popular testbed for theoretical deep learning given its non-convexity
and rich loss landscape; see e.g., (Li et al., 2018; Jin et al., 2023; Arora et al., 2019).

Without WN, prior work (Xiong et al., 2024) establishes a sublinear lower bound on the convergence
rate when the above sensing problem is optimized via gradient descent (GD), even with infinite data
samples. We circumvent this lower bound by i) extending WN for coping with matrix variables;
and, ii) proving that applying this generalized WN with Riemannian gradient descent (RGD) en-
ables a linear convergence rate in the finite sample regime, leading to an exponential improvement.
Remarkably, WN leverages higher level of overparameterization to achieve both faster convergence
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Table 1: Comparison with existing algorithms for overparameterized matrix sensing. WN gives ex-
act convergence with linear rate. “E.C.” is the abbreviation of “exact convergence”, that is, whether
the reconstruction error bound will go to zero when the iteration number t → ∞. UB and LB are
short for upper and lower bound, respectively. OP stands for overparameterization.

Algorithm WN E.C. Initialization Convergence Rate Faster with OP

GD (UB) (Stöger & Soltanolkotabi, 2021) ✗ ✗ Small & random N/A -

GD (LB) (Xiong et al., 2024) ✗ ✓ Small & random Ω

(
κ2

log(mr2
A

)t

)
✗

RGD (Theorem 3.2) ✓ ✓ Random exp

(
− O

(
(r−rA)4

κ4m2r2rA
t

))
✓

and lower sample complexity. To the best of our knowledge, this is the first theoretical result demon-
strating that normalization benefits from overparameterization.

More concretely, our contributions are summarized as follows:

❖ Exponentially faster rate. For overparameterized matrix sensing problems, we prove that ran-
domly initialized WN achieves a linear convergence rate of exp(−O( (r−rA)4

κ4m2r2rA
t)), where κ is the

condition number of the ground-truth matrix A. This linear rate is exponentially faster than the
sublinear lower bound Ω

(
κ2

log(mr2A)t

)
obtained without WN. Moreover, additional overparameteriza-

tion in WN provides quantifiable benefits: the iteration complexity scales down polynomially as the
overparameterization level r increases; see Table 1 for a summary.

❖ Two-phase convergence behavior. We further investigate the optimization trajectory and reveal
a two-phase behavior in WN. The iterates first move from a random initialization to a neighborhood
around global optimum, potentially traversing and escaping from several saddle points in polynomial
time. Our results demonstrate that this phase ends faster with additional overparameterization. Once
iterates approach the global optimum, a local phase begins. With the benign loss landscape shaped
by WN, we prove that a linear convergence rate can be obtained.

❖ Empirical validation. We conduct experiments on overparameterized matrix sensing using both
synthetic and real-world datasets. The numerical results corroborate our theoretical findings.

1.1 RELATED WORK

Overparameterized matrix sensing. Overparameterized matrix sensing arises from many ma-
chine learning and signal processing applications such as collaborative filtering and phase retrieval
(Schafer et al., 2007; Srebro & Salakhutdinov, 2010; Candès et al., 2013; Duchi et al., 2020). The
problem is now a canonical benchmark in theoretical deep learning, mainly because the loss land-
scape is riddled with saddle points and lacks global smoothness or a global PL condition. Conver-
gence analyses for various algorithms on its population loss, i.e., matrix factorization, can be found
in (Ward & Kolda, 2023; Li et al., 2025; Kawakami & Sugiyama, 2021). Small random initialization
in overparameterized matrix sensing has been studied in (Stöger & Soltanolkotabi, 2021; Jin et al.,
2023; Xiong et al., 2024; Xu et al., 2023), while (Ma et al., 2023; Zhuo et al., 2024; Cheng & Zhao,
2024) are based on spectral initialization. Besides saddle escaping under small initialization, an-
other intriguing phenomenon is that overparameterization can exponentially slow the convergence
of GD compared to the exactly parameterized case (Zhuo et al., 2024; Xiong et al., 2024). Our
work proves that WN avoids this slowdown and achieves an improved rate. Moreover, additional
overparameterization leads to faster convergence and lower sample complexity.

Riemannian optimization. Riemannian optimization is naturally connected to WN for learning the
direction variables, which are constrained on a smooth manifold, e.g., a sphere. Existing literature
has extended gradient-based methods to problems with smooth manifold constraints; see e.g., (Absil
et al., 2008; Smith, 2014; Mishra et al., 2012; Boumal, 2023). This work follows standard notions of
Riemannian gradient descent (RGD). In its simplest form, RGD iteratively moves along the negative
direction of the Riemannian gradient, obtained by projecting the Euclidean gradient onto the tangent
space, and then maps the iterate back to the manifold via a retraction.
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Notational conventions. Bold capital (lowercase) letters denote matrices (column vectors); (·)⊤
and ∥ · ∥F refer to transpose and Frobenius norm of a matrix; ∥ · ∥ denotes the spectral (ℓ2) norm for
matrices (vectors); ⟨A,B⟩ = Tr(A⊤B) represents the standard matrix inner product; and, σi(A)
denotes the i-th largest singular value of matrix A. Moreover, Sm and Sm+ denote symmetric and
positive semi-definite (PSD) matrices of size m×m, respectively.

2 PROBLEM FORMULATION

We focus on applying WN to the symmetric low-rank matrix sensing problem. The objective is to
recover a low-rank and positive semi-definite (PSD) matrix A ∈ Sm+ from a collection of n data
{(Mi, yi)}ni=1, where each feature matrix Mi ∈ Sm is symmetric and the corresponding label is
yi = Tr(M⊤

i A). For notational conciseness, we let y = [y1, . . . , yn]
⊤ ∈ Rn and define a linear

mapping M : Sm 7→Rn with [M(A)]i = Tr(M⊤
i A). Given that rA = rank(A) ≪ m, a parameter

economical formulation is based on the Burer-Monteiro factorization (Burer & Monteiro, 2005) that
introduces a matrix Y∈Rm×r such that YY⊤ approximates A accurately. This leads to

min
Y∈Rm×r

1

4
∥M(YY⊤)− y∥2. (1)

Despite its seemingly simple formulation, the loss landscape contains saddle points, hence achieving
a global optimum from a random initialization is nontrivial. Moreover, overparameterization, i.e.,
r > rA, is often considered in practice to ensure exact recovery of A without prior knowledge of its
rank. It is established in (Xiong et al., 2024) that such overparameterization induces optimization
challenges even in the population setting (n → ∞). In particular, a lower bound of GD shows
that ∥YtY

⊤
t − A∥F converges no faster than Ω(1/t), where t is the iteration number. This rate is

exponentially slower than the linear one when rA is known to employ r = rA (Ye & Du, 2021).

Applying WN to problem (1). For a vector variable, WN decouples it into direction and magnitude,
and optimizes them separately. Extending this idea to matrix variables in (1), we leverage polar
decomposition to write Y = XΘ̃, where X ∈ St(m, r) lies in a Stiefel manifold and Θ̃ ∈ Sr+.
Here, the Stiefel manifold St(m, r) is defined as {X ∈ Rm×r|X⊤X = Ir}. One can geometrically
interpret X as orthonormal bases for an r-dimensional subspace, thus representing “directions”, and
Θ̃ captures the “magnitude” of a matrix. Substituting Y in (1), we arrive at

min
X,Θ̃

1

4
∥M(XΘ̃Θ̃⊤X⊤)− y∥2 s.t. X ∈ St(m, r), Θ̃ ∈ Sr+.

The above problem can be further simplified by i) merging Θ̃Θ̃⊤ into a single matrix Θ ∈ Sr+; and
ii) relaxing the PSD constraint on Θ to only symmetry, i.e., Θ ∈ Sr. This relaxation achieves the
same global objective in the overparameterized regime, yet significantly improves computational
efficiency by avoiding SVDs or matrix exponentials needed for optimizing over PSD cones (Van-
denberghe & Boyd, 1996; Todd, 2001). In sum, applying WN gives the objective

min
X,Θ

f(X,Θ) :=
1

4
∥M(XΘX⊤)− y∥2 s.t. X ∈ St(m, r), Θ ∈ Sr. (2)

For convenience, we continue to refer to this generalized variant as WN, since it aligns with
the direction-magnitude decomposition paradigm. Similar reformulations of (1) have appeared in
(Mishra et al., 2014; Levin et al., 2025). The former empirically studies the faster convergence on
matrix completion problems, while the latter tackles local geometry around stationary points. Our
work, on the other hand, characterizes the behaviors of WN along the entire trajectory and clarifies
its interaction with overparameterization.

2.1 SOLVING WN VIA RIEMANNIAN OPTIMIZATION

Generalizing the vector WN1 on matrix problems, Riemannian optimization is adopted for coping
with the manifold constraint X ∈ St(m, r). We simply treat the manifold as an embedded one

1While the practical update rule of WN (Salimans & Kingma, 2016, eq. (4)) lies between Riemannian and
Euclidean optimization, (Wu et al., 2020, Lemma 2.2) shows that the limiting flow is Riemannian flow.
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Algorithm 1 Riemannian gradient descent (RGD) for solving WN (2)

1: Input: Initial point X0 ∈ St(m, r),Θ0 ∈ Sr, stepsizes η, µ
2: for t = 0, 1, . . . , T do
3: Calculate Gt, the Riemannian gradient of Xt, via (3)
4: Update Xt+1 via (4) // The direction variable
5: Calculate Kt := ∇Θf(Xt+1,Θt) via (9)
6: Update Θt+1 via (5) // The magnitude variable
7: end for
8: Output: XT+1,ΘT+1

in Euclidean space. Extensions to other geometry are straightforward. To optimize the direction
variable Xt, let G̃t := ∇Xf(Xt,Θt) denote the Euclidean gradient on Xt (a detailed expression is
given in (8) of Appendix C). The Riemannian gradient for Xt can be written as

Gt := (Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt). (3)

Further applying the polar retraction2 to ensure feasibility, the update for Xt is given by

Xt+1 = (Xt − ηGt)(Ir + η2G⊤
t Gt)

−1/2 (4)

where η > 0 is the stepsize. Detailed derivations of (3) and (4) are deferred to Appendix C. Note that
polar retraction is used here for theoretical simplicity. Shown later sections, other popular retractions
for Stiefel manifolds such as QR and Cayley3 share almost identical performance numerically.

An alternative update method is adopted for the magnitude variable Θt. Denote its gradient as
Kt := ∇Θf(Xt+1,Θt), whose expression can be found from (9) in Appendix C. We use GD with
a stepsize µ > 0 to optimize Θt, i.e.,

Θt+1 = Θt − µKt. (5)

This update ensures feasibility of the symmetric constraint on Θt,∀t ≥ 0, whenever initialized with
Θ0 ∈ Sr; see a proof in Lemma F.9. The step-by-step procedure for solving (2) is summarized in
Algorithm 1, and it is termed as RGD for future reference.

3 ON THE BENEFITS OF WN

This section demonstrates that WN delivers exact convergence at a linear rate for overparameterized
matrix sensing (2) and leverages additional overparameterization to yield faster optimization and
lower sample complexity. Recall that the rank of A is denoted by rA. Let the compact SVD of A be
A = UΣU⊤, where U ∈ Rm×rA and Σ ∈ SrA+ . Without loss of generality, we assume σ1(Σ) = 1
and σrA(Σ) = 1/κ with κ ≥ 1 denoting the condition number. We will use the restricted isometry
property (RIP) (Recht et al., 2010), a standard assumption in matrix sensing, in our proofs; see more
in, e.g., (Zhang et al., 2021; Stöger & Soltanolkotabi, 2021; Xu et al., 2023; Xiong et al., 2024).

Definition 3.1 (Restricted Isometry Property (RIP)) The linear mapping M(·) is (r, δ)-RIP, with
δ ∈ [0, 1), if for all matrices A ∈ Sm of rank at most r, it satisfies

(1− δ)∥A∥2F ≤ ∥M(A)∥2 ≤ (1 + δ)∥A∥2F.

RIP ensures that the linear measurement approximately preserves the Frobenius norm of low-rank
matrices. This property has been shown to hold for a wide range of measurement operators. For ex-
ample, when Mi is symmetric Gaussian, a sample size of n = O(mr/δ2) suffices to guarantee that
(r, δ)-RIP holds with high probability. A detailed discussion with illustrative examples is provided
in Appendix A.3. With these preparations, we are ready to uncover the merits of WN.

2Let X ∈ St(m, r) and a point in its tangent space G ∈ TXSt(m, r). The polar retraction for X + G is
given by RX(G) = (X+G)(Ir +G⊤G)−1/2.

3See e.g., (Absil et al., 2008), for more detailed discussions on retractions.
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3.1 MAIN RESULTS

We consider WN under random initialization, meaning that X0 is chosen uniformly at random from
the manifold St(m, r). One possible approach is to set X0 = Z0(Z

⊤
0 Z0)

−1/2, where the entries of
Z0 ∈ Rm×r are i.i.d. Gaussian random variables N (0, 1) (Chikuse, 2012).

Theorem 3.2 Consider solving the WN-aided sensing problem (2) initialized with random X0 ∈
St(m, r) and Θ0 ∈ Sr satisfying ∥Θ0∥ ≤ 2. Assume that rA ≤ m

2 and M(·) is (r+rA+1, δ)-RIP

with δ = O
( (r−rA)6

κ2m3r4rA

)
. Algorithm 1 using stepsizes η = O

( (r−rA)4

κ2m2r2rA

)
and µ = 2 generates a

sequence {Xt,Θt}∞t=0. With high probability over the initialization, this sequence proceeds in two
distinct phases, separated by a burn-in time t0 with an upper bound O

(κ4m4r4r2A
(r−rA)8

)
:

i) Saddle phase. For some universal constant c2 ∈ (0, 1), it follows that

∥XtΘtX
⊤
t −A∥F ≤ 2

√
rA − c2(r − rA)8t

κ4m4r4rA
+ 1, 1 ≤ t ≤ t0.

ii) Linearly convergent phase. For some universal constant c3 ∈ (0, 1), it is guaranteed that

∥XtΘtX
⊤
t −A∥F ≤ 3

(
1− c3(r − rA)

4

κ4m2r2rA

)t−t0

, ∀ t ≥ t0 + 1.

This theorem showcases the two regimes of convergence behavior using randomly initialized RGD.
In the first phase, the upper bound of reconstruction error ∥XtΘtX

⊤
t −A∥F is proved to monoton-

ically decrease over iterations. This seemingly slow convergence arises from the potential saddle
escape that will be discussed in the next section. Eventually, RGD achieves a linear rate until exact
convergence, i.e., limt→∞ ∥XtΘtX

⊤
t − A∥F = 0. Next, we break down Theorem 3.2 to demon-

strate the benefits of WN for the overparameterized matrix sensing from two different perspectives.

Optimization benefits of WN include i) faster convergence rate, and ii) less stringent initialization
requirements. Theorem 3.2 shows that WN achieves exact convergence to the ground-truth matrix
A with a linear rate. In contrast, without WN, the convergence behavior of randomly initialized
GD on (1) is weaker. Specifically, (Stöger & Soltanolkotabi, 2021) shows that GD can only attain a
constant reconstruction error with early stopping, but not guarantee last-iteration convergence. On
the other hand, (Xiong et al., 2024) establishes a lower bound for exact recovery of GD, giving a
sublinear dependence on t; see a detailed comparison in Table 1. In addition, our guarantee of this
linear rate is obtained without strict requirements on initialization, which stands in stark contrast
to the non-WN setting, where the magnitude of random initialization must be carefully controlled,
often inversely proportional to κ (Stöger & Soltanolkotabi, 2021; Jin et al., 2023; Xu et al., 2023).

WN makes overparameterization a friend. Because the additional parameters induce computation
and memory overheads, it is natural to expect more gains from overparameterization. It can be seen
from Table 1 that GD does not benefit from overparameterization, while the benefits of overparame-
terization for WN are twofold. Setting r = prA for some p > 1, one can rewrite the upper bound of
the burn-in time t0 as O

(
κ4m4p4

(p−1)8r2A

)
, which decreases polynomially with p. In the linearly convergent

phase, WN achieves a convergence rate of exp
(
−O

( (p−1)4rA
κ4m2p2 t

))
, which is also faster with a larger

p. In terms of iteration complexity, this translates into a polynomial improvement with the level of
overparameterization. To quantitatively understand the merits of overparameterization, we consider
two cases. In the mildly overparameterized regime, where r = rA + c for some constant c = O(1),
the convergence rate reads exp

(
−O( t

κ4m2r3A
)
)
. When the level of overparameterization increases

to r = crA, the rate improves to exp
(
− O( rAt

κ4m2 )
)
. Through comparison, it is readily seen that

additional overparameterization yields up to a factor of O(r4A) improvement in the exponent. On the
statistical side, the sample complexity of WN is determined by the RIP assumption on M(·). Under
the Gaussian design, as detailed in Appendix A.3, the RIP holds w.h.p. when n = O

(κ4m7r9r2A
(r−rA)12

)
.

Notably, the sample complexity n reduces polynomially as r increases. In particular, following the
same analysis as for the convergence rate, this reduction can reach up to a factor of O(r12A ).
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Figure 1: The saddle-to-saddle (i.e., sequential learning) behaviors in WN. The x-axis corresponds to
the iteration number, and the y-axis follows the subfigure title. (a) Each plateau signifies a saddle; (b)
gradient norm at saddles drops by orders; (c) saddles strongly relate to the best rank-ρ approximation
of A; (d) sequential learning in the alignment between Xt and U; (e) sequential learning in the
alignment between Xt and U⊥; and, (f) sequential pattern in the magnitude variable Θt.

3.2 A GEOMETRY PROOF SKETCH

The proof of Theorem 3.2, while involved, admits a clear geometrical interpretation originated from
the direction-magnitude decoupling of WN. Here, we only focus on the “direction” Xt to gain more
intuition. Given that both Xt and U are bases of a linear subspace, it is desirable that span(U) ⊂
span(Xt) at convergence. Equivalently, the principle angles between span(U) and span(Xt) at
optimal should all be 0. This can be depicted via the alignment matrix Φt := U⊤Xt, whose
singular values coincide with the cosine of these principle angles (Björck & Golub, 1973). Our
proof builds upon this and shows that Tr(ΦtΦ

⊤
t ) → rA, i.e., the two subspaces align.

The convergence unfolds in two phases. In the first phase, Tr(ΦtΦ
⊤
t ) grows from near 0 (due to

random initialization) to near optimal rA − 0.5. Through consecutive lemmas, it can be shown
that Tr(Φt+1Φ

⊤
t+1) − Tr(ΦtΦ

⊤
t ) ≥ O( (r−rA)8

κ4m4r4rA
). This monotonic increase in alignment en-

sures a polynomial time to escape (potential) saddles, and also translates to the decreasing bound of
∥XtΘtX

⊤
t −A∥F in Theorem 3.2. The second phase starts after Tr(ΦtΦ

⊤
t ) > rA − 0.5, where the

alignment error rA − Tr(ΦtΦ
⊤
t ) = Tr(IrA −ΦtΦ

⊤
t ) decreases linearly to 0.

4 DIVING DEEPER INTO THE SADDLE PHASE

Next, we take a closer look at the convergence of RGD on WN in the saddle phase, that is t ≤ t0,
or equivalently Tr(ΦtΦ

⊤
t ) ≤ rA − 0.5. Our numerical experiments in Figure 1 indicate that RGD

traverse a sequence of saddles. The saddle-to-saddle behavior is known for GD on (1) (Li et al.,
2021; Jin et al., 2023). This section shows that this behavior persists for (2), yet can be faster with
a higher level of overparameterization. To bypass the randomness associated with Mi, we begin by
pinpointing the saddles for the population loss, i.e., problem (2) in the infinite data limit n → ∞.
More precisely, the objective is given by f∞(X,Θ) = 1

4

∥∥XΘX⊤ −A
∥∥2
F
.
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(a) Different κ (b) Different r (c) Full rank r = m

Figure 2: Convergence comparison of RGD on WN and GD on (1) under varying problem conditions
(squared reconstruction error vs. iteration). (a): WN enables RGD to converge linearly regardless
of κ; (b): with WN, larger r leads to a shorter saddle phase and a faster convergence rate; (c): WN
converges remarkably fast in the full rank case r = m.

Lemma 4.1 For a given ρ ∈ {0, 1, . . . , rA − 1}, let Aρ be the best rank-ρ approximation of A, i.e.,
Aρ = argminrank(Â)≤ρ ∥Â−A∥2F. In particular, we let A0 = 0. A point (X,Θ) is a saddle of the
population loss f∞ if XΘX⊤ = Aρ and Tr(X⊤UU⊤X) = ρ.

Lemma 4.1 indicates that the saddles of f∞ are closely related to the best rank-ρ approximation
of A. It further suggests that a saddle-to-saddle dynamic is aligned with incremental learning4: the
algorithm successively learns Aρ for increasing ρ until the ground-truth matrix is recovered. Lemma
4.2 below shows that in the finite-sample regime, the saddles of f∞ also have small gradient norm
on f , i.e., no larger than O( (r−rA)6

κ2m2r4rA
) under the parameter choices of Theorem 3.2.

Lemma 4.2 Assume that M(·) is (r + rA + 1, δ)-RIP, and ∥Θ∥ ≤ 2, the finite sample loss in (2)
satisfies ∥∇R

Xf∞(X,Θ)−∇R
Xf(X,Θ)∥F ≤ 12mδ and ∥∇Θf∞(X,Θ)−∇Θf(X,Θ)∥F ≤ 3

2mδ.
Here, ∇R

X denotes the Riemannian gradient with respect to X.

Having characterized the saddles, we now turn to the saddle-to-saddle trajectory in Figure 1. This
figure traces the optimization trajectory of Algorithm 1 on WN with m = 300, rA = 5, r = 10,
and κ = 3, with more details shown in Appendix G.1. Figure 1a plots the squared reconstruction
error across iterations. Each plateau marks escape from a saddle, as confirmed by the small gradient
norm shown in Figure 1b. Figure 1c further shows that these saddles are exactly those characterized
in Lemma 4.1, where ∥XtΘtX

⊤
t −Aρ∥2F for ρ ∈ {0, 1, . . . , rA − 1} stays close to 0 sequentially.

In other words, each saddle escape corresponds to leaving the neighborhood of Aρ.

In addition, the optimization variables, geometrically interpretable as direction and magnitude, also
exhibit a sequential learning behavior. For the direction variable Xt, the singular values of ΦtΦ

⊤
t

(which characterize the squared cosine of the principle angles between Xt and U) are visualized in
Figure 1d. Further, let U⊥ ∈ Rm×(m−rA) be an orthonormal basis for the orthogonal complement
of span(U). The alignment of Xt and U⊥ is plotted in Figure 1e, with the alignment matrix defined
as Ψt := U⊤

⊥Xt. The singular values of the magnitude variable Θt are plotted in Figure 1f. A clear
sequential learning pattern is observed among all these figures.

Lastly, we highlight that polynomial time is needed to escape all saddles: Theorem 3.2 bounds the
duration of this phase to be at most O

(κ4m4r4r2A
(r−rA)8

)
iterations. This bound decreases with larger r,

indicating that overparameterization facilitates saddle escape under WN.

5 NUMERICAL EXPERIMENTS

Numerical experiments using both synthetic and real-world data are conducted in this section to
validate our theoretical findings for WN on overparameterized matrix sensing problems. In the ex-
periments with synthetic data, the target matrix is generated as A = UΣU⊤ ∈ Rm×m, where

4Also known as deflation; see e.g., (Ge et al., 2021; Anandkumar et al., 2014; Seddik et al., 2023)
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(a) Various retractions (b) Noisy measurement

Figure 3: Additional numerical results of WN (squared reconstruction error vs. iteration).

U ∈ Rm×rA is a random matrix with orthonormal columns, and Σ ∈ SrA+ is a diagonal matrix with
condition number κ. In the image reconstruction experiments, the target matrix A is directly con-
structed from the underlying image. For the measurements, we use n independent random Gaussian
feature matrices {Mi}ni=1 to ensure RIP. More details on setups are deferred to Appendix G.2.

5.1 FASTER CONVERGENCE OF WN

Under various choices of the condition number κ, we compare the convergence behavior of RGD on
problem (2) with random initialization, against that of GD on (1) with small random initialization.

In this experiment, we consider target matrices with large condition numbers, i.e., κ ∈ {50, 75, 100}.
We set m = 10, r = 5, rA = 3, and n = 60000. The squared reconstruction error versus the number
of iterations is plotted in Figure 2a. We observe that WN enables RGD to converge linearly to zero
after a saddle phase, regardless of the condition number κ. This is consistent with our theoretical
result in Theorem 3.2. In contrast, GD slows down to a sublinear rate after its initial phase, yielding
substantially larger errors at the same iteration count.

5.2 ON THE BENEFIT OF OVERPARAMETERIZATION

Next, we demonstrate that WN leverages overparameterization for faster convergence. To this end,
we consider randomly initialized problem instances of (1) and (2) under different r.

In this experiment, we focus on a setting with m = 300, rA = 5, and κ = 10. The level of
overparameterization is chosen from r ∈ {50, 75, 100}, and the number of measurements is set to
n = 50000. RGD is run with random initialization and GD is run with small random initialization.
The squared reconstruction error versus the number of iterations is plotted in Figure 2b.

The results show that under WN, RGD converges faster as r increases. This behavior is consistent
with our analysis in Theorem 3.2. In comparison, although the theoretical convergence rate given by
(Xiong et al., 2024) is independent of r, our empirical results indicate that a larger r leads to slightly
slower convergence of GD. Moreover, Figure 2b clearly shows that saddle escape becomes faster
with larger r, as reflected in shorter plateaus or earlier onset of linear convergence. Figure 2b also
shows that a larger r in WN leads to a steeper slope in the linearly convergent phase, demonstrating
that additional overparameterization prompts a faster rate. This aligns well with our theoretical
observations and discussions in Sections 3.1 and 4.

We also demonstrate that WN is remarkably effective in the full rank setting with r = m in Figure
2c, where the convergence on three instances with m = r ∈ {50, 75, 100}, rA ∈ {10, 15, 20}, κ ∈
{1, 15, 50}, and n = 30000 is plotted. The faster convergence arises from the fact that at initializa-
tion, X0 ∈ St(m,m) already aligns with the target subspace spanned by U, i.e., Tr(IrA−Φ0Φ

⊤
0 ) =

0. Equivalently, this is the case where only the magnitude Θ is optimized. This faster convergence
implies that learning the correct direction (i.e., U) is more challenging than magnitude.
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(a) Ground truth (b) RGD reconstruction (c) GD reconstruction

(d) Ground truth (e) RGD reconstruction (f) GD reconstruction

Figure 4: The advantages of WN on image reconstruction.

5.3 ADDITIONAL EXPERIMENTS

Moreover, additional experiments reveal other interesting behaviors of WN.

Alternative manners of retraction. Although our algorithm for WN tackles only the polar retrac-
tion, other popular retractions share similar performance. In Figure 3a, we plot the performance of
Algorithm 1 with different manners for retraction, such as Cayley and QR, on an instance of (2) with
m = 10, r = 5, rA = 3, κ = 2, n = 1000. The three curves of squared reconstruction errors nearly
coincide. For better visualization, we scale the errors of Cayley and QR by 3 and 1/3, respectively.

Noisy measurements. To examine the robustness of WN, we consider a setting with corrupted
labels, i.e., yi = Tr(M⊤

i A) + bi for i.i.d. Gaussian noise bi ∼ N (0, ξ2). Figure 3b compares
WN with the vanilla problem (1) under the choices of ξ = 10−1, ξ = 10−3, and ξ = 10−5. It
can be seen that RGD holds a linear rate under all choices of ξ, and the final squared reconstruction
error stabilizes around O(ξ2). On the other hand, the error of GD is mainly confined by its slow
convergence rate. This demonstrates that the power of WN carries to noisy settings as well.

5.4 IMAGE RECONSTRUCTION EXPERIMENTS

Lastly, we evaluate the advantages of WN on two image reconstruction problems.

The first experiment follows (Duchi et al., 2020) to consider a generalized phase retrieval problem
on a 32 × 32 horse image from the CIFAR-10 dataset (Krizhevsky & Hinton, 2009). The image is
converted to grayscale and vectorized as a ∈ R1024. Standard lifting reformulation converts this
problem to a sensing problem on a rank-one ground-truth matrix A = aa⊤ ∈ S1024+ ; see (Candès &
Li, 2014). The second considers direct matrix sensing of a structured image given by A ∈ S128+ with
rA = 2. In both cases, we set the overparameterization level to r = 100 and use n = 50000 feature
matrices. RGD and GD are randomly initialized and run for tRGD = 100, tGD = 200 iterations in
both experiments to make the overall runtime comparable; see Appendix G.2.2 for details.

The reconstructions from the two experiments are presented in Figure 4. As shown, WN enables
RGD to achieve more accurate recovery of the ground truth compared to GD. These results demon-
strate that WN provides a significant improvement for image reconstruction problems.
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6 CONCLUSION

This work provides new theoretical insights into the role of weight normalization (WN) in over-
parameterized matrix sensing. We prove that randomly initialized WN with proper Riemannian
optimization guarantees a linear rate, yielding an exponential improvement on overparameterized
sensing problems without WN. Moreover, we show that overparameterization can be exploited un-
der WN to achieve faster optimization and lower sample complexity. Our analysis also reveals
a two-phase convergence behavior, with detailed characterizations of faster convergence in both
phases. Numerical experiments on both synthetic and real-world data further validate our findings.
Future work includes extending these results to broader non-convex learning settings, such as tensor
problems (Tong et al., 2022), and developing new algorithms that build on WN.

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our work. For the theoretical results,
we provide complete proofs of all theorems and lemmas in Appendices E and F. For the empirical
results, Section 5 contains detailed descriptions of the numerical experiments, and the experimental
setups are presented in Appendix G.
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USAGE OF LLMS

The authors conducted all aspects of the research, including conception, theoretical proofs, experi-
mentation, analysis, and writing of the manuscripts. Large language models (LLMs) were employed
exclusively for the purpose of language refinement.

A MORE ON BACKGROUNDS

A.1 POLAR DECOMPOSITION

The definition of the polar decomposition is provided below; see (Golub & Van Loan, 2013, Section
9.4.3) for a detailed discussion and theoretical background.

Definition A.1 The polar decomposition of a matrix X ∈ Rm×r with m ≥ r is defined as

X = UP,

where U ∈ Rm×r has orthonormal columns and P ∈ Sr+ is a positive semi-definite matrix.

This decomposition can be interpreted as expressing X as the product of directions (U) and a mag-
nitude part (P). It is unique when X has full column rank.

A.2 RIEMANNIAN OPTIMIZATION

Riemannian optimization provides a principled framework for optimization problems whose vari-
ables are constrained on a smooth manifold, such as spheres, Stiefel and Grassmann manifolds.

Let M be a smooth manifold and f : M → R be a differentiable objective function. At any point
X ∈ M, the feasible directions form the tangent space TXM. The Riemannian gradient, denoted
∇Rf(X), is defined as the orthogonal projection of the Euclidean gradient ∇f(X) onto TXM.
Intuitively, it is the direction of steepest descent that remains compatible with the manifold geometry.

A basic Riemannian gradient descent (RGD) iteration consists of two steps:

Gt = ∇Rf(Xt) ∈ TXt
M, Xt+1 = RXt

(Gt),

where RXt : TXtM → M is retraction, namely a smooth mapping satisfying RXt(0) = Xt and
whose curve c(s) = RXt(sGt) has initial velocity c′(0) = Gt. Such a mapping brings a tangent
step back to the manifold while approximating the true geodesic. Retractions admit simple closed
forms on many manifolds, such as normalization on the sphere.

This framework generalizes standard gradient methods to curved spaces while preserving their in-
tuitive interpretation. As a result, Riemannian optimization has become a popular tool for problems
with geometric constraints, and is supported by a rich theoretical foundation and efficient algorithms;
see, e.g., (Absil et al., 2008; Smith, 2014; Mishra et al., 2012; Boumal, 2023).

A.3 RESTRICTED ISOMETRY PROPERTY (RIP)

The RIP condition (Recht et al., 2010) in Definition 3.1 is a standard assumption in matrix sensing,
ensuring that the linear measurement operator approximately preserves the Frobenius norm of low-
rank matrices. This property has been verified to hold with high probability for a wide variety of
measurement operators. The following lemma establishes RIP for Gaussian design measurements.

Lemma A.2 (Candès & Plan, 2011) If M(·) is a Gaussian random measurement ensemble, i.e.,
the entries of {Mi}ni=1 ⊂ Sm are independent up to symmetry with diagonal elements sampled
from N (0, 1/n) and off-diagonal elements from N (0, 1/2n), then with high probability, M(·) is
(r, δr)-RIP, as long as n ≥ Cmr/δ2r for some sufficiently large universal constant C > 0.

A.4 OVERPARAMETERIZATION IN OTHER NONCONVEX ESTIMATION PROBLEMS

Beyond matrix sensing, the role of overparameterization has also been examined in a range of non-
convex estimation problems. For matrix completion, (Ma & Fattahi, 2024) proves that the vanilla
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gradient descent with small initialization converges to the ground truth matrix without requiring any
explicit regularization, even in the overparameterized scenario. In Gaussian mixture learning, (Zhou
et al., 2025) establishes that Gradient EM achieves global convergence at a polynomial rate with
polynomial samples, when the model is mildly overparameterized. For neural network training, (Xu
& Du, 2023) shows that in the problem of learning a single neuron with ReLU activation, randomly
initialized gradient descent can suffer from an exponential slowdown when the model is overparam-
eterized. These studies illustrate that overparameterization appears across diverse problem settings,
while its precise influence on the convergence behavior is problem-dependent.

A.5 PRECONDITIONED ALGORITHMS

Preconditioning is a popular tool for BM-based matrix sensing to improve the convergence rate. For
example, considering the problem

min
Y∈Rm×r

g(Y) :=
1

4
∥M(YY⊤)− y∥2,

preconditioned gradient descent (PrecGD) (Zhang et al., 2021) and scaled gradient descent
(ScaledGD) (Tong et al., 2021) adopt the following updates:

PrecGD: Yt+1 = Yt − η∇g(Yt)(Y
⊤
t Yt + λI)−1,

ScaledGD: Yt+1 = Yt − η∇g(Yt)(Y
⊤
t Yt)

−1.

Since (Y⊤
t Yt) may be singular in the overparameterized regime, ScaledGD cannot be directly ap-

plied. The variant ScaledGD(λ) proposed in (Xu et al., 2023) addresses this by using a similar
update to PrecGD with a particular choice of λ. Next, we provide a detailed comparison of pro-
posed approach with these preconditioned methods.

Comparison with PrecGD. PrecGD establishes only a local convergence guarantee, requiring
initialization sufficiently close to the ground truth. Although (Zhang et al., 2021) also dis-
cusses globally convergent variants of PrecGD, they rely on gradient perturbations of the form
Yt+1 = Yt − η[∇g(Yt)(Y

⊤
t Yt + λI)−1 + ζt] with some random noise ζt to escape potential

saddles. In addition, they require a multi-stage switching mechanism that monitors several quanti-
ties, including ∥∇f(Yt)∥F, λmin(∇2f(Yt)) and λmin(Y

⊤
t Yt). Notably, ∇2f(Yt) ∈ Rm×r×m×r

is a fourth-order tensor, which is memory-intensive. In fact, one key motivation for adopting
the Burer–Monteiro factorization is to reduce the parameter dimension to mr by exploiting the
low-rank structure, whereas forming such a tensor negates this advantage. Moreover, computing
λmin(∇2f(Yt)) is especially expensive in large-scale matrix sensing problems. In contrast, our
algorithm has a global convergence guarantee from random initialization without requiring pertur-
bations or multi-stage switching rules.

Comparison with ScaledGD(λ). ScaledGD(λ) requires a carefully controlled small initialization
with magnitude α. To reach accuracy ε, the method must satisfy α ≤ O(ε3), implying that exact
convergence (ε = 0) can not be guaranteed. Moreover, ScaledGD(λ) requires an (rA + 1, δ)-
RIP condition with δ ≤ O(κ−Cδ) for a sufficiently large constant Cδ . In contrast, we just need
δ ≤ O(κ−2). As a result, our sample complexity is significantly smaller, especially when the
condition number κ is large, i.e., in ill-conditioned settings.

Comparison of the benefits of overparameterization. A major advantage of our approach is that
a higher level of overparameterization can not only improve the convergence rate, but also reduce
the required sample complexity. In contrast, ScaledGD(λ) does not show explicit benefits from
increasing r. PrecGD’s local convergence improves only with a square-root dependence on r, which
is much weaker than the polynomial improvement achieved by our algorithm. In addition, PrecGD
does not gain reduction in sample complexity from additional overparameterization.

Comparison of potential extensions. A further benefit is the generality of our weight normalization
formulation. This way of factorization can be directly applied to arbitrary low-rank PSD optimiza-
tion problems. In contrast, PrecGD and ScaledGD(λ) rely on second-order information of the loss
function g, restricting their applicability beyond matrix sensing.

Comparison of iteration complexity. For the iteration complexity, PrecGD and ScaledGD(λ)
achieve better κ-dependence than our algorithm. However, the faster rates partially arise from the
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quasi-newton nature of their update, where (Y⊤
t Yt + λI) is an estimation to Hessian. On the other

hand, our algorithm is a purely first-order method, and we believe that incorporating second-order
information can improve the convergence of our algorithm as well. To further validate this point, we
initialize a preconditioned version of proposed approach as follows.

WN with preconditioner. Motivated by the designs of PrecGD and ScaledGD(λ), we also explore
incorporating second-order information to improve convergence empirically. To this end, we first
derive a preconditioner for RGD.

For any direction H ∈ Rm×r, the Hessian with respect to X takes the form

∇2
Xf(H,Θ) = [M∗M(HΘX⊤ +XΘH⊤)]XΘ+ [M∗M(XΘX⊤ −A)]HΘ

= M∗M(HΘX⊤)XΘ+M∗M(XΘH⊤)XΘ+M∗M(XΘX⊤ −A)HΘ.

When the RIP constant δ ≪ 1, we can approximate M∗M ≈ I, which yields

∇2
Xf(H,Θ) ≈ HΘ2 +XΘH⊤XΘ+ (XΘX⊤ −A)HΘ.

Near the optimum, the residual term satisfies (XΘX⊤ − A)HΘ ≈ 0. If we further ignore
the term XΘH⊤XΘ, the Hessian is well approximated by HΘ2. Vectorizing both sides gives
vec(∇2

Xf(H,Θ))≈(I ⊗ Θ2)·vec(H), which implies the approximated Hessian structure ∇2
Xf ≈

I ⊗Θ2. Motivated by this approximation, we design a preconditioner (Θ2 + λI)−1 for RGD, i.e.,
replacing the Euclidean gradient of Xt by ∇Xf(Xt,Θt)(Θ

2
t + λI)−1, where λ is a regulariza-

tion parameter that may be changed from iteration to iteration. We call this variant preconditioned
Riemannian gradient descent (PrecRGD).

Figure 5: Comparison with preconditioned algorithms
(squared reconstruction error vs. iteration).

We conduct experiments on an instance of m =
50, r = 40, rA = 3, κ = 10, with n = 8000
sensing matrices as well as a second instance
with a larger overparameterization level r = 45
while keeping all other parameters fixed; see
Appendix G.3 for more details on setups. As
shown in Figure 5, PrecRGD exhibits a higher
convergence rate than RGD, demonstrating that
our preconditioner design is highly effective for
faster convergence under the WN formulation.
Moreover, PrecRGD outperforms PrecGD and
achieves a convergence behavior that is compa-
rable to ScaledGD(λ). This suggests that WN
is fully compatible with preconditioning tech-
niques, and we believe that this is a promising direction for further improving the convergence rate.
Furthermore, when the level of overparameterization r increases, PrecRGD converges even faster,
while PrecGD and ScaledGD(λ) do not show explicit improvements when r increases. This again
highlights the benefits of overparameterization for WN.

B OTHER EXTENSIONS

B.1 EXTENSION TO ASYMMETRIC PROBLEMS

We have shown the high effectiveness of WN in overparameterized matrix sensing problems,
and its underlying parameterization reveals that it is broadly applicable to a wide range of low-
rank optimization tasks, even when the target matrix is asymmetric. Consider a general matrix
A ∈ Rm×n with Burer-Monteiro factorization Y1Y

⊤
2 , where Y1 ∈ Rm×r and Y2 ∈ Rn×r.

We can apply the Polar decomposition to each factor, i.e., Y1 = X1Θ1,Y2 = X2Θ2, with
X1 ∈ St(m, r),X2 ∈ St(n, r) and Θ1,Θ2 ∈ Sr+. By combining the two magnitude matrices
into Θ = Θ1Θ

⊤
2 ∈ Rr×r, we obtain the representation A = X1ΘX⊤

2 .

This generality suggests that WN has substantial potential in a variety of applications, including
collaborative filtering (Schafer et al., 2007), compressed sensing (Candès et al., 2013), matrix com-
pletion (Recht, 2011), and other related problems.
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Figure 6: Comparison of RGD with WN and GD on the challenging matrix completion problems
(% successful convergence vs. perturbation size).

B.2 EXTENSION TO NON-BENIGN LOSS LANDSCAPE

We further evaluate WN on the challenging matrix completion tasks proposed in (Yalçın et al., 2022),
where the loss is constructed to have exponentially many spurious local minima, leading to the
failure of most gradient-based methods. Using Burer-Monteiro factorization, the matrix completion
objective can be written as

min
Y∈Rm×r

1

4
∥(YY⊤ −M∗

ε)Ω∥2F, (6)

where M∗
ε is a low-rank ground truth matrix and the measurement operator (·)Ω is constructed from

specially designed combinatorial structures.

Applying WN, the problem becomes

min
X,Θ

1

4
∥(XΘX⊤ −M∗

ε)Ω||2F , s.t. X ∈ St(m, r),Θ ∈ Sr. (7)

We use an update rule similar to Algorithm (1), with the operator M(·) replaced by (·)Ω. Follow-
ing the experimental setup in (Yalçın et al., 2022) (see details in Appendix G.4), we evaluate the
success rate across a range of ranks r = 1, 2, 3, maximum independent set sizes |S| = 2, 4, 6 and
perturbation levels ε ∈ [0.05, 0.5]. Our findings are summarized as follows:

• Rank r = 1: Our algorithm performs particularly well. For |S| = 2 and |S| = 4, the
success rates are over 90% under almost all the perturbation levels, substantially higher
than that of GD. Even for the more difficult case |S| = 6, our method still achieves a
successful rate around 40%, again significantly outperforming GD.

• Rank r = 2, 3: In these regimes, both our algorithm and GD exhibit similarly low success
rates, consistent with the intrinsic difficulty of the problem reported in (Yalçın et al., 2022).

These experiments on this challenging setting show that our approach has clear advantages over GD.
The results indicate that WN remains effective even when the objective involves specially designed
combinatorial structures or exhibits highly nontrivial optimization landscapes. This further high-
lights the potential of WN as a broadly applicable framework for low-rank optimization problems.

C ALGORITHM 1 DERIVATION

We consider the overparameterized setting r > rA and apply a joint update on both Xt and Θt

in an alternating manner. Let M∗ : Rn 7→ Sm denote the adjoint of M with explicit form
M∗(y) =

∑n
i=1 yiMi. The Stiefel manifold St(m, r) is embedded in the Euclidean space, then we

first compute the Euclidean gradient of Xt as

G̃t =
[
M∗M(XtΘtX

⊤
t −A)

]
XtΘt (8)

= (XtΘtX
⊤
t −A)XtΘt +

[
(M∗M−I)(XtΘtX

⊤
t −A)

]
XtΘt.
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Projecting it onto the tangent space of St(m, r) yields the Riemannian gradient

Gt := (Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt).

Using polar retraction, the update of Xt along the direction Gt with stepsize η is given by

Xt+1 = (Xt − ηGt)(Ir + η2G⊤
t Gt)

−1/2.

For the magnitude variable Θt, the Euclidean gradient is

Kt =
1

2
X⊤

t+1

[
M∗M(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1. (9)

Denoting the identity mapping by I, the update of Θt with stepsize µ becomes

Θt+1 = Θt −
µ

2
X⊤

t+1

[
M∗M(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1 (10)

= X⊤
t+1AXt+1 −X⊤

t+1

[
(M∗M− µ

2
I)(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1.

Figure 7: Lack of convergence with diagonal Θ
(squared reconstruction error vs. iteration).

Note that we do not impose diagonal or nonneg-
ative constraints on Θ during the updates. In
fact, forcing Θ to be diagonal and nonnegative
often worsen the loss landscape and may lead
to non-convergence Levin et al. (2025). We il-
lustrate this phenomenon with a simple experi-
ment in Figure 7, where we constrain Θ to be
diagonal and nonnegative via SVD followed by
hard-thresholding; see Appendix G.5 for details
of the experimental setup. As shown by the
curve labeled “Diagonalized”, such constraints
indeed hinder the algorithm from converging to
the ground truth.

D PROOF STRATEGIES AND SUPPORTING LEMMAS

D.1 PROOF STRATEGIES

To establish convergence of Theorem 3.2, we analyze the evolution of the principle angles between
span(U) and span(Xt). Specifically, we track the quantity Tr(IrA − ΦtΦ

⊤
t ). This term reflects

the subspace alignment error between span(U) and span(Xt). For notational convenience, we set
µ = 2, which is consistent with our choice in Theorem 3.2.

Our proof is structured into two phases:

• Phase I (Saddle phase): When the alignment error is large, i.e., Tr(IrA−ΦtΦ
⊤
t ) ≥ 0.55, we

rely on the fact that σ2
rA(Φt) remains bounded away from zero. This property guarantees

that the alignment error decreases by at least a constant amount at each iteration.
• Phase II (Linearly convergent phase): Once Tr(IrA −ΦtΦ

⊤
t ) < 0.5, we enter a contraction

regime. In this regime, we establish that the reconstruction error and the alignment error
decrease jointly, governed by a coupled inequality system.

Throughout both phases, two error terms caused by the limited number of measurements must be
carefully controlled. Formally, we introduce the following definitions:

∆t := (M∗M−I)(Xt+1ΘtX
⊤
t+1 −A),

Ξt := (M∗M−I)(XtΘtX
⊤
t −A).

50.5 is chosen for simplicity, any constant c ∈ (0, 1) is valid; see proof E.8 for a detailed analysis.
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Incorporating these two error terms, we can rewrite G̃t and Θt+1 as follows:

G̃t = (XtΘtX
⊤
t −A)XtΘt +ΞtXtΘt,

Θt+1 = X⊤
t+1AXt+1 −X⊤

t+1∆tXt+1.

These two terms will be used repeatedly throughout the proofs in the following sections.

D.2 SUPPORTING LEMMAS

Since Theorem 3.2 considers random initialization, it is conditioned on the following high-
probability event F , which gives a lower bound on the smallest singular value of Φ0 = U⊤X0:

F = {σ2
rA(U

⊤X0) ≥
(r − rA)

2

c1mr
},

where c1 > max{1, 36C2
1} is a universal constant, with C1 given in Lemma F.7.

Lemma D.1 With respect to the randomness in X0, event F occurs with probability at least

1− exp(−m/2)− Cr−rA+1
3 − exp(−C2r),

where C2 > 0 and C3 = 6C1√
c1

∈ (0, 1) are universal constants.

This lemma ensures that the smallest singular value of the initial alignment between U and X0 is
bounded away from zero with high probability, which is critical to initialize Phase I. g

Lemma D.2 Suppose that at iteration t, the alignment error satisfies that

Tr(IrA −ΦtΦ
⊤
t ) ≤ ρ,

then the reconstruction error at iteration t satisfies that

∥XtΘtX
⊤
t −A∥F ≤ 2

√
ρ+ ∥∆t−1∥F.

The lemma above connects the reconstruction error ∥XtΘtX
⊤
t − A∥F with the alignment error

Tr(IrA − ΦtΦ
⊤
t ) and the measurement error ∥∆t−1∥F. It means that the reconstruction error is

small once Xt and U are sufficiently aligned and the measurement error is small.

Lemma D.3 Assuming η < 1
300κ2rA

, M(·) is (r + rA + 1, δ)-RIP with δ = ξ√
mr

, ξ ∈ [0, 1), and
∥Θt∥ ≤ 2. Then, the measurement errors satisfy that

∥∆t∥F ≤ ξ∥XtΘtX
⊤
t −A∥F,

∥Ξt∥F ≤ ξ∥XtΘtX
⊤
t −A∥F.

This provides upper bounds on the norm of the measurement error terms ∆t,Ξt by the reconstruc-
tion error ∥XtΘtX

⊤
t −A∥F, which is guaranteed by the RIP property of M(·).

Lemma D.4 Let χt := (∥∆t−1∥+ ∥Ξt∥)2 +
√

Tr(IrA −ΦtΦ⊤
t )(∥∆t−1∥+ ∥Ξt∥),

βt := σ1(IrA −ΦtΦ
⊤
t ),

Ht := (Im −XtX
⊤
t )(AXtX

⊤
t ∆t−1Xt +ΞtXtΘt)

+
1

2
(XtX

⊤
t ΞtXtΘt −XtΘtX

⊤
t ΞtXt)

+
1

2
(XtX

⊤
t AXtX

⊤
t ∆t−1Xt −XtX

⊤
t ∆t−1XtX

⊤
t AXt).

Assuming ∥∆t−1∥F, ∥Ξt∥F ≤ 1, η ≤ 1
10rA

, and ∥Θt∥ ≤ 2, then the following inequality holds:

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t ) (11)

≤ η2(βt + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2βt − 16η2χt)σ
2
rA(Φt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ 2η

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

+ 2η2
√

Tr(IrA −ΦtΦ⊤
t )∥Ht∥F.

19



Published as a conference paper at ICLR 2026

This lemma quantifies how the alignment error Tr(IrA − ΦtΦ
⊤
t ) evolves between iterations. This

is the key lemma that drives the reduction of the alignment error.

Lemma D.5 Assuming M(·) is (r + rA + 1, δ)-RIP with δ ≤ 1
3
√
m

. If ∥Θt∥ ≤ 2, then it is
guaranteed that

∥Θt+1∥ ≤ 2.

As shown in Lemmas D.3 and Lemma D.4, the analyses require that ∥Θt∥ is upper bounded by 2.
This condition has already been guaranteed at initialization. Moreover, based on the update rule of
Θt given in (10), we observe that ∥Θt∥ remains close to ∥X⊤

t AXt∥ in each iteration.

Lemma D.6 Assuming η ≤ 1,M(·) is (r + rA + 1, δ)-RIP, and ∥Θt−1∥, ∥Θt∥ ≤ 2, we have that

Ψt+1Ψ
⊤
t+1 ⪯

(
1+6η(

√
rA+2

√
r)δ

)2
ΨtΨ

⊤
t +

(
4η(

√
rA+2

√
r)δ+28η2(

√
rA+2

√
r)2δ2

)
Im−rA .

Moreover, it is also guaranteed that

Ψ1Ψ
⊤
1 ⪯

(
1+2η+2η(

√
rA+2

√
r)δ

)2
Ψ0Ψ

⊤
0 +

(
12η(

√
rA+2

√
r)δ+8η2(

√
rA+2

√
r)2δ2

)
Im−rA .

This lemma establishes an upper bound on the growth of ΨtΨ
⊤
t . Together with Lemma F.2, we can

ensure that σ2
rA(Φt) remains adequately large throughout Phase I.

Lemma D.7 Assuming η ≤ 1
500rA

, M(·) is (r + rA + 1, δ)-RIP with δ ≤ 1√
m

, and ∥Θt∥ ≤ 2.
Then for any t ≥ 0, the alignment error satisfies that

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ Tr(IrA −ΦtΦ

⊤
t ) + 0.1.

This guarantees that the alignment error Tr(IrA − ΦtΦ
⊤
t ) does not increase too much in one step

when we choose suitable stepsize η, which is crucial for bridging Phase I and Phase II.

E PROOFS

E.1 PROOF OF LEMMA D.1

Proof. Since the initialization X0 satisfies the conditions stated in Lemma F.8, we can apply the
lemma directly. In particular, substituting τ = 6√

c1
yields the desired result. □

E.2 PROOF OF LEMMA D.2

Proof. Directly substituting the expression of Θt into the Frobenius norm term, we have that

∥XtΘtX
⊤
t −A∥F = ∥XtX

⊤
t AXtX

⊤
t −A−XtX

⊤
t ∆t−1XtX

⊤
t ∥F

≤ ∥XtX
⊤
t AXtX

⊤
t −A∥F + ∥XtX

⊤
t ∆t−1XtX

⊤
t ∥F

≤ ∥XtX
⊤
t AXtX

⊤
t −AXtX

⊤
t ∥F + ∥AXtX

⊤
t −A∥F + ∥XtX

⊤
t ∆t−1XtX

⊤
t ∥F

(a)

≤ 2∥Σ∥∥(Im −XtX
⊤
t )U∥F + ∥∆t−1∥F

= 2∥Σ∥
√
Tr(IrA −ΦtΦ⊤

t ) + ∥∆t−1∥F
≤ 2∥Σ∥√ρ+ ∥∆t−1∥F
= 2

√
ρ+ ∥∆t−1∥F,

where (a) is by the inequality ∥AB∥F ≤ ∥A∥∥B∥F that is valid for any conformable matrices. □
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E.3 PROOF OF LEMMA D.3

Proof. We first prove that ∥Gt∥F ≤ 2∥G̃t∥F. Indeed,

∥Gt∥F = ∥(Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt)∥F

≤ ∥Im −XtX
⊤
t ∥∥G̃t∥F + ∥XtX

⊤
t ∥∥G̃t∥F

≤ 2∥G̃t∥F.

We now proceed to estimate the update distance ∥Xt+1 −Xt∥F.

∥Xt+1 −Xt∥F = ∥(Xt − ηGt)(Ir + η2G⊤
t Gt)

−1/2 −Xt∥F
≤ ∥Xt((Ir + η2G⊤

t Gt)
−1/2 − Ir)∥F + ∥ηGt(Ir + η2G⊤

t Gt)
−1/2∥F

≤ ∥Xt∥∥(Ir + η2G⊤
t Gt)

−1/2 − Ir∥F + η∥(Ir + η2G⊤
t Gt)

−1/2∥∥Gt∥F
≤

√
r∥(Ir + η2G⊤

t Gt)
−1/2 − Ir∥+ η∥Gt∥F

≤
√
r∥(Ir + η2G⊤

t Gt)
−1/2 − Ir∥+ 2η∥G̃t∥F

≤
√
r(1− (1 + η2σ1(G

⊤
t Gt))

−1/2) + 2η∥G̃t∥F
(a)

≤
√
r(1− 1

1 + (η2∥Gt∥2F)1/2
) + 2η∥G̃t∥F

≤
√
rη∥Gt∥F + 2η∥G̃t∥F,

where (a) is by
√
1 + x ≤ 1 +

√
x for any x ≥ 0. Since ∥Gt∥F ≤ 2∥G̃t∥F, we arrive at

∥Xt+1 −Xt∥F ≤ 2η(
√
r + 1)∥G̃t∥F

= 2η(
√
r + 1)∥(XtΘtX

⊤
t −A)XtΘt +ΞtXtΘt∥F

(b)

≤ 2η(
√
r + 1)∥Θt∥∥Xt∥∥(XtΘtX

⊤
t −A) +Ξt∥F

(c)

≤ 4η(
√
r + 1)

(
∥Ξt∥F + ∥XtΘtX

⊤
t −A∥F

)
≤ 4η(

√
r + 1)

(√
m∥(M∗M−I)(XtΘtX

⊤
t −A)∥+ ∥XtΘtX

⊤
t −A∥F

)
(d)

≤ 4η(
√
r + 1)(

√
mδ + 1)∥XtΘtX

⊤
t −A∥F,

where (b) is from ∥AB∥F ≤ ∥A∥∥B∥F; (c) is due to ∥Θt∥ ≤ 2, ∥Xt∥ ≤ 1; and (d) follows from
Lemma F.11 and rank(XtΘtX

⊤
t −A) ≤ rank(XtΘtX

⊤
t ) + rank(A) ≤ r + rA.
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Finally, we turn to estimating ∥∆t∥F and ∥Ξt∥F.

∥∆t∥F = ∥(M∗M−I)(Xt+1ΘtX
⊤
t+1 −A)∥F

≤
√
m∥(M∗M−I)(Xt+1ΘtX

⊤
t+1 −A)∥

(e)

≤
√
mδ∥Xt+1ΘtX

⊤
t+1 −A∥F

≤
√
mδ(∥XtΘtX

⊤
t −A∥F + ∥Xt+1Θt(X

⊤
t+1 −X⊤

t )∥F + ∥(Xt+1 −Xt)ΘtX
⊤
t ∥F)

(f)

≤
√
mδ(∥XtΘtX

⊤
t −A∥F + 4∥Xt+1 −Xt∥F)

≤
√
mδ

(
1 + 16η(

√
r + 1)(

√
mδ + 1)

)
∥XtΘtX

⊤
t −A∥F

(g)

≤ ξ
√
m√
mr

(1 +
64

300

√
r)∥XtΘtX

⊤
t −A∥F

≤ ξ∥XtΘtX
⊤
t −A∥F,

∥Ξt∥F = ∥(M∗M−I)(XtΘtX
⊤
t −A)∥F

≤
√
m∥(M∗M−I)(XtΘtX

⊤
t −A)∥

(h)

≤
√
mδ∥XtΘtX

⊤
t −A∥F

(g)

≤ ξ∥XtΘtX
⊤
t −A∥F,

where (e) is by Lemma F.11 and rank(Xt+1ΘtX
⊤
t+1 − A) ≤ rank(Xt+1ΘtX

⊤
t+1) + rank(A) ≤

r + rA; (f) is from ∥Xt+1∥ ≤ 1 and ∥Θt∥ ≤ 2; (g) is due to η ≤ 1
300κ2rA

and δ ≤ ξ√
mr

; and (h)

follows from Lemma F.11 and rank(XtΘtX
⊤
t −A) ≤ rank(XtΘtX

⊤
t ) + rank(A) ≤ r + rA. □

E.4 PROOF OF LEMMA D.4

Proof. Noting that ∥Xt∥ ≤ 1, ∥A∥ ≤ 1, ∥Θt∥ ≤ 2, ∥Im −XtX
⊤
t ∥ ≤ 1, we obtain

∥Ht∥F ≤ ∥(Im −XtX
⊤
t )AXtX

⊤
t ∆t−1Xt∥F + ∥(Im −XtX

⊤
t )ΞtXtΘt∥F

+
1

2
(∥XtX

⊤
t ΞtXtΘt∥F + ∥XtΘtX

⊤
t ΞtXt∥F)

+
1

2
(∥XtX

⊤
t AXtX

⊤
t ∆t−1Xt∥F + ∥XtX

⊤
t ∆t−1XtX

⊤
t AXt∥F)

≤ 2∥∆t−1∥F + 4∥Ξt∥F. (12)

In the same way, it follows that ∥Ht∥ ≤ 2∥∆t−1∥+ 4∥Ξt∥.

From the update of Xt, we have Xt+1X
⊤
t+1 = (Xt − ηGt)(Ir + η2G⊤

t Gt)
−1(Xt − ηGt)

⊤.
Premultiplying by U⊤ and postmultiplying by U, it follows that

Φt+1Φ
⊤
t+1

= (Φt − ηU⊤Gt)(Ir + η2G⊤
t Gt)

−1(Φ⊤
t − ηG⊤

t U)

(a)
=

([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)
(Ir + η2G⊤

t Gt)
−1([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)⊤

(b)

⪰
([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)
(Ir − η2G⊤

t Gt)([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)⊤
,

where (a) is from directly expanding Gt; and (b) is by Lemma F.1.
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We next derive an upper bound for G⊤
t Gt. Substituting the expression of Gt, we obtain

G⊤
t Gt = X⊤

t AXtX
⊤
t A(Im −XtX

⊤
t )AXtX

⊤
t AXt +H⊤

t Ht

−X⊤
t AXtX

⊤
t A(Im −XtX

⊤
t )Ht

−H⊤
t (Im −XtX

⊤
t )AXtX

⊤
t AXt

(c)

⪯ σ1(IrA −ΦtΦ
⊤
t )Ir + (∥Ht∥2 + 2∥(Im −XtX

⊤
t )U∥∥Ht∥)Ir

(d)

⪯ σ1(IrA −ΦtΦ
⊤
t )Ir + 16χtIr,

where (c) follows from Lemma F.12, ∥Xt∥ ≤ 1 and ∥A∥ ≤ 1; and (d) is due to ∥(Im −
XtX

⊤
t )U∥ ≤ ∥(Im −XtX

⊤
t )U∥F =

√
Tr(IrA −ΦtΦ⊤

t ), and ∥Ht∥ ≤ 2∥∆t−1∥+ 4∥Ξt∥ ≤ 6.

Combining the lower bound on Φt+1Φ
⊤
t+1, the upper bound on G⊤

t Gt derived above, and the
inequality 1− η2βt − 16η2χt ≥ 1− 1

100 (1 + 96) > 0, we derive

1

1− η2βt − 16η2χt
Φt+1Φ

⊤
t+1

⪰
([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)
(13)([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
Φt − ηU⊤Ht

)⊤
.

Let the compact SVD of Φt be QtΛtP
⊤
t , where Qt ∈ RrA×rA , Λt ∈ RrA×rA , and Pt ∈ Rr×rA .

Denote St := Q⊤
t ΣQt. It is a positive definite matrix. This gives that

Tr
([

IrA + η(IrA −ΦtΦ
⊤
t )ΣΦtΦ

⊤
t Σ

]
ΦtΦ

⊤
t

[
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]⊤)
= Tr

(
Qt

[
IrA + η(IrA −Λ2

t )StΛ
2
tSt

]
Λ2

t

[
IrA + ηStΛ

2
tSt(IrA −Λ2

t )
]
Q⊤

t

)
(e)

≥ Tr
(
Qt

[
Λ2

t + η(IrA −Λ2
t )StΛ

2
tStΛ

2
t + ηΛ2

tStΛ
2
tSt(IrA −Λ2

t )
]
Q⊤

t

)
= Tr(QtΛ

2
tQ

⊤
t ) + ηTr

(
(IrA −Λ2

t )StΛ
2
tStΛ

2
t +Λ2

tStΛ
2
tSt(IrA −Λ2

t )
)

(f)

≥ Tr(QtΛ
2
tQ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −Λ2

t )Λ
2
t

)
= Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
,

where (e) follows from the fact that η2Qt(IrA −Λ2
t )StΛ

2
tStΛ

2
tStΛ

2
tSt(IrA −Λ2

t )Q
⊤
t is PSD; and

(f) is by Lemma F.3 and Lemma F.4. More precisely, we use σrA(StΛ
2
tSt) ≥ σ2

rA(St)σrA(Λ
2
t ) =

σrA(Λ
2
t )/κ

2.
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Taking trace on both sides of (13), we arrive at
1

1− η2βt − 16η2χt
Tr(Φt+1Φ

⊤
t+1) (14)

≥ Tr(ΦtΦ
⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

([
IrA + η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t Σ

]
ΦtH

⊤
t U

)
+ η2Tr(U⊤HtH

⊤
t U)

≥ Tr(ΦtΦ
⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

(
ΦtH

⊤
t U+ η(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
(g)
= Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

(
U⊤(Im −XtX

⊤
t )AXtX

⊤
t ∆t−1XtΦ

⊤
t

)
− 2ηTr(U⊤(Im −XtX

⊤
t )ΞtXtΘtΦ

⊤
t )

− ηTr
(
ΦtX

⊤
t ΞtXtΘtΦ

⊤
t −ΦtΘtX

⊤
t ΞtXtΦ

⊤
t

)
− ηTr

(
ΦtX

⊤
t AXtX

⊤
t ∆t−1XtΦ

⊤
t −ΦtX

⊤
t ∆t−1XtX

⊤
t AXtΦ

⊤
t

)
− 2η2Tr

(
(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
(h)
= Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2ηTr

(
U⊤(Im −XtX

⊤
t )UΣU⊤XtX

⊤
t ∆t−1XtΦ

⊤
t

)
− 2ηTr(U⊤(Im −XtX

⊤
t )ΞtXtΘtΦ

⊤
t )

− 2η2Tr
(
(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
where (g) is by substituting Ht in; and (h) arises from Tr(M) = Tr(M⊤) for any M ∈ RrA×rA .
By the Cauchy–Schwarz inequality, we can upper bound the three trace terms as follows.

For the first term, we have that
Tr
(
U⊤(Im −XtX

⊤
t )UΣU⊤XtX

⊤
t ∆t−1XtΦ

⊤
t

)
(15)

≤ ∥U⊤(Im −XtX
⊤
t )UΣU⊤∥F∥XtX

⊤
t ∆t−1XtΦ

⊤
t ∥F

(i)

≤ ∥(Im −XtX
⊤
t )U∥F∥∆t−1∥F

=
√

Tr(IrA −ΦtΦ⊤
t )∥∆t−1∥F.

For the second term, we can obtain that
Tr(U⊤(Im −XtX

⊤
t )ΞtXtΘtΦ

⊤
t ) (16)

≤ ∥U⊤(Im −XtX
⊤
t )∥F∥ΞtXtΘtΦ

⊤
t ∥F

(i)

≤ 2∥U⊤(Im −XtX
⊤
t )∥F∥Ξt∥F

= 2
√

Tr(IrA −ΦtΦ⊤
t )∥Ξt∥F.

For the third term, it holds that
Tr
(
(IrA −ΦtΦ

⊤
t )ΣΦtΦ

⊤
t ΣΦtH

⊤
t U

)
(17)

≤ ∥IrA −ΦtΦ
⊤
t ∥F∥ΣΦtΦ

⊤
t ΣΦtH

⊤
t U∥F

= ∥U⊤(Im −XtX
⊤
t )U∥F∥ΣΦtΦ

⊤
t ΣΦtH

⊤
t U∥F

(i)

≤ ∥(Im −XtX
⊤
t )U∥F∥Ht∥F

=
√

Tr(IrA −ΦtΦ⊤
t )∥Ht∥F.
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Here (i) is from ∥U∥ ≤ 1, ∥Σ∥ ≤ 1, ∥Xt∥ ≤ 1, ∥Φt∥ ≤ 1, and ∥Θt∥ ≤ 2. Combining inequalities
(14), (15), (16), and (17), it follows that

1

1− η2βt − 16η2χt
Tr(Φt+1Φ

⊤
t+1) ≥Tr(ΦtΦ

⊤
t ) +

2ησrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
− 2η

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

− 2η2
√
Tr(IrA −ΦtΦ⊤

t )∥Ht∥F.

Reorganizing the terms, we arrive at

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ η2(βt + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2βt − 16η2χt)σrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ (2η − 2η3βt − 32η3χt)

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

+ (2η2 − 2η4βt − 32η4χt)
√

Tr(IrA −ΦtΦ⊤
t )∥Ht∥F

≤ η2(βt + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2βt − 16η2χt)σrA(Λ
2
t )

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ 2η

√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F)

+ 2η2
√

Tr(IrA −ΦtΦ⊤
t )∥Ht∥F.

Together with σrA(Λ
2
t ) = σrA(Q

⊤
t ΦtΦ

⊤
t Qt) = σ2

rA(Φt), we conclude the proof. □

E.5 PROOF OF LEMMA D.5

Proof. From the update formula of Θt, we obtain

∥Θt+1∥ = ∥X⊤
t+1AXt+1 −X⊤

t+1∆tXt+1∥
≤ ∥X⊤

t+1AXt+1∥+ ∥X⊤
t+1∆tXt+1∥

(a)

≤ 1 + ∥∆t∥
= 1 + ∥(M∗M−I)(Xt+1ΘtX

⊤
t+1 −A)∥

(b)

≤ 1 +
1

3
√
m
∥Xt+1ΘtX

⊤
t+1 −A∥F

≤ 1 +

√
m

3
√
m
∥Xt+1ΘtX

⊤
t+1 −A∥

≤ 1 +
1

3
(∥Θt∥+ ∥A∥)

≤ 2,

where (a) is by ∥Xt∥, ∥A∥ ≤ 1; and (b) follows from Lemma F.11 and rank(Xt+1ΘtX
⊤
t+1−A) ≤

rank(Xt+1ΘtX
⊤
t+1) + rank(A) ≤ r + rA. □

E.6 PROOF OF LEMMA D.6

Proof. Let Lt := X⊤
t AXtX

⊤
t ∆t−1Xt +X⊤ΞtXtΘt +

1
2 (ΘtX

⊤
t ΞtXt −X⊤

t ΞtXtΘt)

+ 1
2 (X

⊤
t ∆t−1XtX

⊤
t AXt −X⊤

t AXtX
⊤
t ∆t−1Xt).
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Applying the triangular inequality, we obtain

∥Lt∥ ≤ ∥X⊤
t AXtX

⊤
t ∆t−1Xt∥+ ∥X⊤ΞtXtΘt∥+

1

2
(∥ΘtX

⊤
t ΞtXt∥+ ∥X⊤

t ΞtXtΘt∥)

+
1

2
(∥X⊤

t ∆t−1XtX
⊤
t AXt∥+ ∥X⊤

t AXtX
⊤
t ∆t−1Xt∥) (18)

(a)

≤ 2∥∆t−1∥+ 4∥Ξt∥,

where (a) is from ∥Xt∥ ≤ 1, ∥A∥ ≤ 1 and ∥Θt∥ ≤ 2. Multiplying the update formula (4) on the
left by U⊤

⊥, we have that

Ψt+1 = U⊤
⊥(Xt − ηGt)(Ir + η2G⊤

t Gt)
−1/2

(b)
=

(
Ψt − ηΨtX

⊤
t AXtX

⊤
t AXt + ηΨtLt − ηU⊤

⊥ΞtXtΘt

)
(Ir + η2G⊤

t Gt)
−1/2

=
(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)
(Ir + η2G⊤

t Gt)
−1/2,

where (b) is by expanding Gt directly. Consequently, we have the following upper bound for
Ψt+1Ψ

⊤
t+1:

Ψt+1Ψ
⊤
t+1 =

(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)
(Ir + η2G⊤

t Gt)
−1(

Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)⊤

(c)

⪯
(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)
(
Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
− ηU⊤

⊥ΞtXtΘt

)⊤

= Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t

− ηU⊤
⊥ΞtXtΘt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t (19)

− ηΨt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
ΘtX

⊤
t ΞtU⊥

+ η2U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥,

where (c) is from that (Ir + η2G⊤
t Gt)

−1 is PSD and all of its eigenvalues are smaller than 1. Since
YY⊤ ⪯ ∥Y∥2Ir holds for any symmetric matrix Y ∈ Rr×r and by Lemma F.12, we can upper
bound the three terms as follows.

For the first term, we can obtain that

Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t (20)

⪯ ∥Ir − ηX⊤
t AXtX

⊤
t AXt + ηLt∥2ΨtΨ

⊤
t .

For the second term, it holds that

U⊤
⊥ΞtXtΘt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)⊤
Ψ⊤

t

+Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
ΘtX

⊤
t ΞtU⊥ (21)

⪯ 2∥Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
∥∥ΘtX

⊤
t ΞtU⊥∥Im−rA .

For the third term, we have that

U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥ ⪯ ∥U⊤

⊥ΞtXtΘ
2
tX

⊤
t ΞtU⊥∥Im−rA . (22)
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Combining inequalities (19), (20), (21) and (22), it follows that

Ψt+1Ψ
⊤
t+1 ⪯ ∥Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt∥2ΨtΨ

⊤
t

+ 2η∥Ψt

(
Ir − ηX⊤

t AXtX
⊤
t AXt + ηLt

)
∥∥ΘtX

⊤
t ΞtU⊥∥Im−rA

+ η2∥U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥∥Im−rA

(d)

⪯ (∥Ir − ηX⊤
t AXtX

⊤
t AXt∥+ η∥Lt∥)2ΨtΨ

⊤
t

+ 2η∥Ψt∥(∥Ir − ηX⊤
t AXtX

⊤
t AXt∥+ η∥Lt∥)∥ΘtX

⊤
t ΞtU⊥∥Im−rA

+ η2∥U⊤
⊥ΞtXtΘ

2
tX

⊤
t ΞtU⊥∥Im−rA

(e)

⪯ (1 + η∥Lt∥)2ΨtΨ
⊤
t + 4η(1 + η∥Lt∥)∥Ξt∥Im−rA + 4η2∥Ξt∥2Im−rA ,

where (d) is by triangular inequality; and (e) is from that all the eigenvalues of the PSD matrix
X⊤

t AXtX
⊤
t AXt are smaller than 1, along with ∥Ψt∥ ≤ 1, ∥Xt∥ ≤ 1, ∥U⊥∥ ≤ 1 and ∥Θt∥ ≤ 2.

From (18), we obtain ∥Lt∥ ≤ 2∥∆t−1∥+ 4∥Ξt∥. Then, we can further simplify the inequality as

Ψt+1Ψ
⊤
t+1 ⪯

(
1 + 2η(∥∆t−1∥+ 2∥Ξt∥)

)2
ΨtΨ

⊤
t

+
(
4η∥Ξt∥+ 4η2(5∥Ξt∥2 + 2∥∆t−1∥∥Ξt∥)

)
Im−rA . (23)

From Lemma F.11 and our assumption of the RIP property of M(·), we obtain upper bounds for the
two error terms.

∥∆t−1∥ = ∥(M∗M−I)(XtΘt−1X
⊤
t −A)∥

≤ δ∥XtΘt−1X
⊤
t −A∥F

≤ δ(∥XtΘt−1X
⊤
t ∥F + ∥A∥F)

(f)

≤ (2
√
r +

√
rA)δ,

∥Ξt∥ = ∥(M∗M−I)(XtΘtX
⊤
t −A)∥

≤ δ∥XtΘtX
⊤
t −A∥F

≤ δ(∥XtΘtXt∥F + ∥A∥F)
(f)

≤ (2
√
r +

√
rA)δ,

where (f) is from ∥Xt∥ ≤ 1, ∥Θt−1∥F ≤
√
r∥Θt−1∥ ≤ 2

√
r, ∥Θt∥F ≤

√
r∥Θt∥ ≤ 2

√
r, and

∥A∥F ≤ √
rA∥A∥ ≤ √

rA. Plugging these two upper bounds into (23), we arrive at

Ψt+1Ψ
⊤
t+1 ⪯

(
1+6η(

√
rA+2

√
r)δ

)2
ΨtΨ

⊤
t +

(
4η(

√
rA+2

√
r)δ+28η2(

√
rA+2

√
r)2δ2

)
Im−rA .

We now consider the relationship between Ψ1Ψ
⊤
1 and Ψ0Ψ

⊤
0 .

Let L̃0 := 1
2 (X

⊤
0 AX0Θ0 +Θ0X

⊤
0 AX0)− 1

2 (X
⊤
0 Ξ0X0Θ0 +Θ0X0Ξ0X0).

Multiplying the update formula (4) at t = 0 on the left by U⊤
⊥, we have that

Ψ1 = U⊤
⊥(X0 − ηG0)(Ir + η2G⊤

0 G0)
−1/2.

Consequently, we derive the following upper bound on Ψ1Ψ
⊤
1 :

Ψ1Ψ
⊤
1 = U⊤

⊥(X0 − ηG0)(Ir + η2G⊤
0 G0)

−1(X0 − ηG0)
⊤U⊥

(g)

⪯ U⊤
⊥(X0 − ηG0)(X0 − ηG0)

⊤U⊥

(h)
=

(
Ψ0(Ir − ηL̃0)− ηU⊤

⊥Ξ0X0Θ0

)(
Ψ0(Ir − ηL̃0)− ηU⊤

⊥Ξ0X0Θ0

)⊤
= Ψ0(Ir − ηL̃0)(Ir − ηL̃0)

⊤Ψ⊤
0 − ηΨ0(Ir − ηL̃0)Θ0X

⊤
0 Ξ0U⊥ (24)

− ηU⊤
⊥Ξ0X0Θ0(Ir − ηL̃0)

⊤Ψ⊤
0 + η2U⊤

⊥Ξ0X0Θ
2
0X

⊤
0 Ξ0U⊥,
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where (g) is from that (Ir + η2G⊤
0 G0)

−1 is PSD and all of its eigenvalues are smaller than 1; and
(h) is by expanding the expression of G0 directly. Since YY⊤ ⪯ ∥Y∥2Ir holds for any symmetric
matrix Y ∈ Rr×r and by Lemma F.12, we can upper bound the three terms as follows.

For the first term, it holds that

Ψ0(Ir − ηL̃0)(Ir − ηL̃0)
⊤Ψ⊤

0 ⪯ ∥Ir − ηL̃0∥2Ψ0Ψ
⊤
0 . (25)

For the second term, we have that

Ψ0(Ir − ηL̃0)Θ0X
⊤
0 Ξ0U⊥ +U⊤

⊥Ξ0X0Θ0(Ir − ηL̃0)
⊤Ψ⊤

0

⪯ 2∥Ψ0(Ir − ηL̃0)∥∥Θ0X
⊤
0 Ξ0U⊥∥Im−rA . (26)

For the third term, we can obtain that

U⊤
⊥Ξ0X0Θ

2
0X

⊤
0 Ξ0U⊥ ⪯ ∥U⊤

⊥Ξ0X0Θ
2
0X

⊤
0 Ξ0U⊥∥Im−rA . (27)

Combining inequalities (24), (25), (26) and (27), it follows that

Ψ1Ψ
⊤
1 ⪯ ∥Ir − ηL̃0∥2Ψ0Ψ

⊤
0 + 2η∥Ψ0(Ir − ηL̃0)∥∥Θ0X

⊤
0 Ξ0U⊥∥Im−rA

+ η2∥U⊤
⊥Ξ0X0Θ

2
0X

⊤
0 Ξ0U⊥∥Im−rA

(i)

⪯ (1 + η∥L̃0∥)2Ψ0Ψ
⊤
0 + 4η(1 + η∥L̃0∥)∥Ξ0∥Im−rA + 4η2∥Ξ0∥2Im−rA , (28)

where (i) is by ∥X0∥ ≤ 1, ∥U⊥∥ ≤ 1, and ∥Θ0∥ ≤ 2.

From Lemma F.11 and our assumption of the RIP property of M(·), we have that

∥Ξ0∥ = ∥(M∗M−I)(X0Θ0X
⊤
0 −A)∥

≤ δ∥X0Θ0X
⊤
0 −A∥F

≤ δ(∥X0Θ0X
⊤
0 ∥F + ∥A∥F)

≤ (2
√
r +

√
rA)δ.

Then, we can bound ∥L̃0∥ as follows:

∥L̃0∥ =
1

2
∥X⊤

0 AX0Θ0 +Θ0X
⊤
0 AX0 − (X⊤

0 Ξ0X0Θ0 +Θ0X0Ξ0X0)∥

≤ 2 + 2∥Ξ0∥
≤ 2 + 2(2

√
r +

√
rA)δ.

Plugging theses two upper bounds into inequality (28), we finally arrive at

Ψ1Ψ
⊤
1 ⪯ (1+2η+2η(

√
rA+2

√
r)δ)2Ψ0Ψ

⊤
0 +

(
12η(

√
rA+2

√
r)δ+8η2(

√
rA+2

√
r)2δ2

)
Im−rA .

□

E.7 PROOF OF LEMMA D.7

Proof. We first estimate ∥G̃t∥ and ∥Gt∥. From the expression of G̃t, we have that

∥G̃t∥ = ∥
[
M∗M(XtΘtX

⊤
t −A)

]
XtΘt∥

(a)

≤ 2∥M∗M(XtΘtX
⊤
t −A)∥

≤ 2(∥(M∗M−I)(XtΘtX
⊤
t −A)∥+ ∥XtΘtX

⊤
t −A∥)

(b)

≤ 2√
m
∥XtΘtX

⊤
t −A∥F + 2∥XtΘtX

⊤
t −A∥

≤ 4∥XtΘtX
⊤
t −A∥

≤ 4(∥XtΘtX
⊤
t ∥+ ∥A∥)

(a)

≤ 12,
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where (a) is due to ∥Xt∥ ≤ 1, ∥Θt∥ ≤ 2, and ∥A∥ ≤ 1; and (b) is from Lemma F.11. Analogously,
we can upper bound ∥Gt∥ as follows:

∥Gt∥ = ∥(Im −XtX
⊤
t )G̃t +

Xt

2
(X⊤

t G̃t − G̃⊤
t Xt)∥

≤ ∥Im −XtX
⊤
t ∥∥G̃t∥+ ∥Xt∥∥G̃⊤

t Xt∥
(c)

≤ 2∥G̃t∥
≤ 24,

where (c) follows from ∥Xt∥ ≤ 1 and the fact that all the eigenvalues of the PSD matrix Im−XtX
⊤
t

are less than 1. Multiplying the update formula (4) on the left by U⊤, we obtain

Φt+1Φ
⊤
t+1 = U⊤Xt+1X

⊤
t+1U

= (Φt − ηU⊤Gt)(Ir + η2G⊤
t Gt)

−1(Φ⊤
t − ηG⊤

t U)

(d)

⪰ (Φt − ηU⊤Gt)(Ir − η2G⊤
t Gt)(Φ

⊤
t − ηG⊤

t U)

= ΦtΦ
⊤
t − η2ΦtG

⊤
t GtΦ

⊤
t − η(ΦtG

⊤
t U+U⊤GtΦ

⊤
t )

+ η3(ΦtG
⊤
t GtG

⊤
t U+U⊤GtG

⊤
t GtΦ

⊤
t )

− η4U⊤GtG
⊤
t GtG

⊤
t U+ η2U⊤GtG

⊤
t U

(e)

⪰ ΦtΦ
⊤
t −

(
η2∥ΦtG

⊤
t GtΦ

⊤
t ∥+ 2η∥ΦtG

⊤
t U∥

+ 2η3∥ΦtG
⊤
t GtG

⊤
t U∥+ η4∥U⊤GtG

⊤
t GtG

⊤
t U∥

)
IrA

(f)

⪰ ΦtΦ
⊤
t − 1

10rA
IrA ,

where (d) is from Lemma F.1; (e) is by Lemma F.12; and (f) is due to ∥Φt∥ ≤ 1, ∥U∥ ≤ 1, ∥Gt∥ ≤
24 and η ≤ 1

500rA
. By subtracting the inequality from IrA , it follows that

IrA −Φt+1Φ
⊤
t+1 ⪯ IrA −ΦtΦ

⊤
t +

1

10rA
IrA .

Taking trace on both sides yields

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ Tr(IrA −ΦtΦ

⊤
t ) + 0.1.

□

E.8 PROOF OF THEOREM 3.2

Proof. For the proof, we take η = (r−rA)4

975c21κ
2m2r2rA

and δ = c4(r−rA)6

κ2m3r4rA
, where c4 = O( 1

c31
). From

Lemma D.5, we have that ∥Θt∥ ≤ 2 holds for all t ≥ 0 by mathematical induction. For later use,
we define the following three terms in the same way as in Lemma D.4:

βt : = σ1(IrA −ΦtΦ
⊤
t ) ≤ 1,

χt : = (∥∆t−1∥+ ∥Ξt∥)2 +
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥+ ∥Ξt∥),

Ht : = (Im −XtX
⊤
t )(AXtX

⊤
t ∆t−1Xt +ΞtXtΘt)

+
1

2
(XtX

⊤
t ΞtXtΘt −XtΘtX

⊤
t ΞtXt)

+
1

2
(XtX

⊤
t AXtX

⊤
t ∆t−1Xt −XtX

⊤
t ∆t−1XtX

⊤
t AXt).

Lemma D.3 with the RIP property of M(·) implies that ∥∆t−1∥F, ∥Ξt∥F ≤ 1 for all t ≥ 1. Thus,
the assumptions of Lemma D.4 are met, guaranteeing that inequality (11) holds for all iterations.
Building on inequality (11), we divide the convergence analysis into two phases.
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Phase I (Saddle phase). Tr(IrA −ΦtΦ
⊤
t ) ≥ 0.5.

We assume for now that σ2
rA(Φt) ≥ (r−rA)

2/(2c1mr) holds in Phase I, which will be proved later.
Let the compact SVD of Φt be QtΛtP

⊤
t , where Qt ∈ RrA×rA , Λt ∈ RrA×rA , and Pt ∈ Rr×rA .

We can simplify (11) as follows:

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ η2(1 + 16χt)Tr(ΦtΦ
⊤
t )−

2η(1− η2 − 16η2χt)σ
2
rA(Φt)

κ2
Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
+ 2η

√
rA(∥∆t−1∥F + 2∥Ξt∥F) + 2η2

√
rA∥Ht∥F

(a)

≤ η2(1 + 16χt)rA −
2η(1− η2 − 16η2χt)σ

4
rA(Φt)

κ2
Tr(IrA −ΦtΦ

⊤
t )

+ 2η
√
rA(∥∆t−1∥F + 2∥Ξt∥F) + 2η2

√
rA∥Ht∥F

(b)

≤ η2(1 + 16χt)rA − η(1− η2 − 16η2χt)(r − rA)
4

2c21κ
2m2r2

Tr(IrA −ΦtΦ
⊤
t ) (29)

+ 2η
√
rA(∥∆t−1∥F + 2∥Ξt∥F) + 2η2

√
rA∥Ht∥F,

where (a) is by Lemma F.3 and Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
= Tr

(
(IrA − Λ2

t )Λ
2
t

)
; and (b) is from

our assumption that σ2
rA(Φt) ≥ (r − rA)

2/(2c1mr).

Using Lemma F.11 and the RIP property of M(·), we can control the quantities of the two er-
ror terms. In particular, following inequalities imply that both ∥∆t−1∥F and ∥Ξt∥F are uniformly
bounded by a constant that depends only on m, r and rA but is independent of t.

Expanding the expression of ∆t−1 and applying Lemma F.11, we have that

∥∆t−1∥F ≤
√
m∥(M∗M−I)(XtΘt−1X

⊤
t −A)∥

≤ c4(r − rA)
6

κ2m5/2r4rA
∥XtΘt−1X

⊤
t −A∥F

≤ c4(r − rA)
6

κ2m5/2r4rA
(2
√
r +

√
rA)

≤ 3c4(r − rA)
6

κ2m5/2r7/2rA
(c)

≤ min{ (r − rA)
4

48c21κ
2m2r2rA

,
1

48
√
rA

}. (30)

Applying the same reasoning to Ξt, it follows that

∥Ξt∥F ≤
√
m∥(M∗M−I)(XtΘtX

⊤
t −A)∥

≤ c4(r − rA)
6

κ2m5/2r4rA
∥XtΘtX

⊤
t −A∥F

≤ c4(r − rA)
6

κ2m5/2r4rA
(2
√
r +

√
rA)

≤ 3c4(r − rA)
6

κ2m5/2r7/2rA
(c)

≤ min{ (r − rA)
4

48c21κ
2m2r2rA

,
1

48
√
rA

}. (31)
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Here, (c) is from c4 = O( 1
c31
), c1 > 1 and r− rA ≤ r ≤ m. Since Tr(IrA −ΦtΦ

⊤
t ) ≤ rA, together

with (30) and (31), we can upper bound χt as follows:

χt = (∥∆t−1∥+ ∥Ξt∥)2 +
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥+ ∥Ξt∥)

≤ (∥∆t−1∥F + ∥Ξt∥F)2 +
√
rA(∥∆t−1∥F + ∥Ξt∥F)

≤ (
1

48
+

1

48
)2 +

√
rA(

1

48
√
rA

+
1

48
√
rA

)

≤ 1

16
.

From inequalities (12), (30), and (31), we obtain the following upper bound on ∥Ht∥F.

∥Ht∥F ≤ 2∥∆t−1∥F + 4∥Ξt∥F

≤ 2× 1

48
√
rA

+ 4× 1

48
√
rA

≤ 1

2
√
rA

.

With these upper bounds, inequality (29) can be simplified as follows:

Tr(IrA −Φt+1Φ
⊤
t+1)− Tr(IrA −ΦtΦ

⊤
t )

≤ 2η2rA − η(1− 2η2)(r − rA)
4

2c21κ
2m2r2

Tr(IrA −ΦtΦ
⊤
t ) +

η(r − rA)
4

8c21κ
2m2r2

+ η2

(d)

≤
(
− η(r − rA)

4

2c21κ
2m2r2

+
η(r − rA)

4

4c21κ
2m2r2

+ 6η2rA +
η3(r − rA)

4

c21κ
2m2r2

)
Tr(IrA −ΦtΦ

⊤
t )

=
(
− η(r − rA)

4

4c21κ
2m2r2

+ 6η2rA +
η3(r − rA)

4

c21κ
2m2r2

)
Tr(IrA −ΦtΦ

⊤
t )

(e)

≤ 1

2

(
− η(r − rA)

4

4c21κ
2m2r2

+ 6η2rA +
η3(r − rA)

4

c21κ
2m2r2

)
,

where (d) is by Tr(IrA −ΦtΦ
⊤
t ) ≥ 0.5; and (e) holds if the expression in bracket is less than zero.

Recall that η = (r−rA)4

975c21κ
2m2r2rA

. The summation of the terms in bracket is negative, which implies

that at each step, Tr(IrA −ΦtΦ
⊤
t ) decreases at least by ∆ := (r−rA)8

7000c41κ
4m4r4rA

. Consequently, after

at most (rA − 0.5)/∆ ≤ 7000c41κ
4m4r4r2A

(r−rA)8 iterations, RGD leaves Phase I.

Let c2 := 1
7000c41

∈ (0, 1). Denote t0 ≥ 1 as the last iteration in this phase. The analysis above

implies that Tr(IrA −ΦtΦ
⊤
t ) ≤ rA − c2(r−rA)8t

κ4m4r4rA
for all 1 ≤ t ≤ t0 and t0 ≤ 7000c41κ

4m4r4r2A
(r−rA)8 .

From Lemma D.2 and inequality (30), we obtain the following bound for 1 ≤ t ≤ t0:

∥XtΘtX
⊤
t −A∥F ≤ 2

√
Tr(IrA −ΦtΦ⊤

t ) + ∥∆t−1∥F

≤ 2

√
rA − c2(r − rA)8t

κ4m4r4rA
+ ∥∆t−1∥F

≤ 2

√
rA − c2(r − rA)8t

κ4m4r4rA
+ 1.

We now prove that σ2
rA(Φt) ≥ (r−rA)

2/(2c1mr) holds in Phase I. By Lemma D.1, it holds w.h.p.,

σ2
rA(Φ0) = σ2

rA(U
⊤X0) ≥

(r − rA)
2

c1mr
.
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Moreover, by Lemma F.2 and the assumption rA ≤ m
2 , it follows that

σ2
rA(Ψ0) = 1− σ2

rA(Φ0) ≤ 1− (r − rA)
2

c1mr
.

Since η = (r−rA)4

975c21κ
2m2r2rA

and δ = c4(r−rA)6

κ2m3r4rA
, we can deduce that

η(
√
rA + 2

√
r)δ ≤ c4(r − rA)

10

325c21κ
4m5r5r2A

.

From Lemma D.6 and the upper bound on η(
√
rA + 2

√
r)δ, we obtain the following inequality

Ψ1Ψ
⊤
1 ⪯ (1 +

4(r − rA)
4

975c21κ
2m2r2rA

)2Ψ0Ψ
⊤
0 +

4c4(r − rA)
10

65c21κ
4m5r5r2A

Im−rA .

Using Weyl’s inequality and c4 = O( 1
c31
), we have the following upper bound on σ2

rA(Ψ1)

σ2
rA(Ψ1) ≤ (1 +

4(r − rA)
4

975c21κ
2m2r2rA

)2σ2
rA(Ψ0) +

4c4(r − rA)
10

65c21κ
4m5r5r2A

≤ (1 +
4(r − rA)

4

975c21κ
2m2r2rA

)2(1− (r − rA)
2

c1mr
) +

4c4(r − rA)
10

65c21κ
4m5r5r2A

(f)

≤ 1 +
16(r − rA)

4

195c21κ
2m2r2rA

− (r − rA)
2

c1mr

(f)

≤ 1− 2(r − rA)
2

3c1mr
,

where (f) is by r− rA ≤ r ≤ m and c1, κ, rA ≥ 1. Applying Lemma D.6 with the upper bound on
η(
√
rA + 2

√
r)δ, we obtain

Ψt+1Ψ
⊤
t+1 ⪯

(
1 +

c4(r − rA)
10

40c21κ
4m5r5r2A

)2
ΨtΨ

⊤
t +

c4(r − rA)
10

40c21κ
4m5r5r2A

Im−rA , t ≥ 1.

Using Weyl’s inequality, we have the following relationship between σ2
rA(Ψt+1) and σ2

rA(Ψt)

σ2
rA(Ψt+1) = σrA(Ψt+1Ψ

⊤
t+1) ≤

(
1 +

c4(r − rA)
10

40c21κ
4m5r5r2A

)2
σrA(ΨtΨ

⊤
t ) +

c4(r − rA)
10

40c21κ
4m5r5r2A

=
(
1 +

c4(r − rA)
10

40c21κ
4m5r5r2A

)2
σ2
rA(Ψt) +

c4(r − rA)
10

40c21κ
4m5r5r2A

.

Denote ζ := c4(r−rA)10

40c21κ
4m5r5r2A

. By iterating the recursive inequality, the following upper bound holds

σ2
rA(Ψt) ≤

(
1 + ζ

)2(t−1)
σ2
rA(Ψ1) + ζ

t−2∑
i=0

(
1 + ζ

)2i
≤

(
1 + ζ

)2t
σ2
rA(Ψ1) + ζ

t−1∑
i=0

(
1 + ζ

)2i
=

(
1 + ζ

)2t
σ2
rA(Ψ1) + ζ

[(
1 + ζ

)2t − 1
]/[(

1 + ζ
)2 − 1

]
≤

(
1 + ζ

)2t
σ2
rA(Ψ1) +

(
1 + ζ

)2t − 1,

for all 1 ≤ t ≤ 7000c41κ
4m4r4r2A

(r−rA)8 . Invoking Lemma F.13 and noting that ζ ≤ 1
2t , which is ensured by

c4 = O( 1
c31
), we obtain

σ2
rA(Ψt) ≤

(
1 + 6tζ

)
σ2
rA(Ψ1) + 6tζ

(g)

≤ σ2
rA(Ψ1) +

2100c21c4(r − rA)
2

mr

≤ 1− 2(r − rA)
2

3c1mr
+

2100c21c4(r − rA)
2

mr
(h)

≤ 1− (r − rA)
2

2c1mr
,
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where (g) is by tζ ≤ 175c21c4(r−rA)2

mr and σ2
rA(Ψ1) ≤ 1; and (h) holds by c4 = O( 1

c31
). By Lemma

F.2 and the assumption rA ≤ m
2 , it can be seen that σ2

rA(Φt) = 1 − σ2
rA(Ψt) ≥ (r−rA)2

2c1mr holds for

all t ≤ t0 ≤ 7000c21κ
4m4r4r2A

(r−rA)8 , i.e., throughout Phase I.

Phase II (Linearly convergent phase). Tr(IrA −ΦtΦ
⊤
t ) < 0.5.

This corresponds to a near-optimal regime. An immediate implication of this phase is that
Tr(ΦtΦ

⊤
t ) ≥ rA − 0.5 ≥ rA − 0.6. Recall that t0 ≥ 1 is the last iteration in the first phase.

We assume that Tr(ΦtΦ
⊤
t ) ≥ rA − 0.6 for all t ≥ t0 + 1, and we will prove this later.

Given that the singular values of ΦtΦ
⊤
t lie in [0, 1], we have

0.4 ≤ σ2
rA(Φt) = σrA(ΦtΦ

⊤
t ) ≤ σ2

1(Φt) ≤ 1.

Moreover, since βt = σ1(IrA −ΦtΦ
⊤
t ) ≤ Tr(IrA −ΦtΦ

⊤
t ) and βt ≤ 1, it follows that

βtTr(ΦtΦ
⊤
t ) ≤ rATr(IrA −ΦtΦ

⊤
t ), χtTr(ΦtΦ

⊤
t ) ≤ rAχt.

In addition, it can be derived that

4

25
Tr(IrA −ΦtΦ

⊤
t ) ≤ σ2

rA(Φt)Tr
(
(IrA −ΦtΦ

⊤
t )ΦtΦ

⊤
t

)
≤ σ2

1(Φt)Tr(IrA −ΦtΦ
⊤
t )

≤ Tr(IrA −ΦtΦ
⊤
t ).

With the inequalities above, we can simplify (11) as follows:

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ (1− 8η

25κ2
+ η2rA +

2η3

κ2
+

32η3

κ2
χt)Tr(IrA −ΦtΦ

⊤
t ) (32)

+ 16η2rAχt + 2η
√
Tr(IrA −ΦtΦ⊤

t )(∥∆t−1∥F + 2∥Ξt∥F + η∥Ht∥F).

Recall that χt = (∥∆t−1∥ + ∥Ξt∥)2 +
√

Tr(IrA −ΦtΦ⊤
t )(∥∆t−1∥ + ∥Ξt∥) and ∥Ht∥F ≤

2∥∆t−1∥F + 4∥Ξt∥F. Since ∥∆t−1∥ ≤ 1 and ∥Ξt∥ ≤ 1, (32) can be written as

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ (1− 8η

25κ2
+ η2rA +

194η3

κ2
)Tr(IrA −ΦtΦ

⊤
t )

+ 16η2rA(∥∆t−1∥+ ∥Ξt∥)2

+
√
Tr(IrA −ΦtΦ⊤

t ) ·
(
16η2rA(∥∆t−1∥+ ∥Ξt∥)

)
+
√
Tr(IrA −ΦtΦ⊤

t ) · (4η2 + 2η)(∥∆t−1∥F + 2∥Ξt∥F).

Substituting η = (r−rA)4

975c21κ
2m2r2rA

into the inequality above, it follows that

Tr(IrA −Φt+1Φ
⊤
t+1) ≤ qTr(IrA −ΦtΦ

⊤
t ) +

1

κ4rA
(∥∆t−1∥+ ∥Ξt∥)2

+
√

Tr(IrA −ΦtΦ⊤
t ) ·

1

κ4rA
(∥∆t−1∥+ ∥Ξt∥) (33)

+
√

Tr(IrA −ΦtΦ⊤
t ) · (

1

κ4r2A
+

1

κ2rA
)(∥∆t−1∥F + 2∥Ξt∥F),

where q := 1− (r−rA)4

8125c21κ
4m2r2rA

is a constant in ( 12 , 1).
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From Lemma D.3 and the RIP property of M(·) with δ = c4(r−rA)6

κ2m3r4rA
, it guarantees that

∥∆t−1∥ ≤ ∥∆t−1∥F ≤ c4(r − rA)
6

κ2m5/2r7/2rA
∥Xt−1Θt−1X

⊤
t−1 −A∥F

≤ c4(r − rA)
4

κ2m2r2
∥Xt−1Θt−1X

⊤
t−1 −A∥F,

∥Ξt∥ ≤ ∥Ξt∥F ≤ c4(r − rA)
6

κ2m5/2r7/2rA
∥XtΘtX

⊤
t −A∥F

≤ c4(r − rA)
4

κ2m2r2
∥XtΘtX

⊤
t −A∥F.

Together with c4 = O( 1
c31
), we can rewrite inequality (33) as

Tr(IrA −Φt+1Φ
⊤
t+1)

≤ qTr(IrA −ΦtΦ
⊤
t ) +

1− q

180

(
∥Xt−1Θt−1X

⊤
t−1 −A∥2F + ∥XtΘtX

⊤
t −A∥2F

+ 2∥Xt−1Θt−1X
⊤
t−1 −A∥F∥XtΘtX

⊤
t −A∥F (34)

+
√

Tr(IrA −ΦtΦ⊤
t )

(
∥Xt−1Θt−1X

⊤
t−1 −A∥F + ∥XtΘtX

⊤
t −A∥F

))
.

Denote bt := Tr(IrA −ΦtΦ
⊤
t ), at := ∥XtΘtX

⊤
t −A∥F. Inequality (34) can be expressed as

bt+1 ≤ qbt +
1− q

180

(
a2t−1 + a2t + 2at−1at +

√
bt(at−1 + at)

)
. (35)

Combining Lemma D.2, Lemma D.3 and the RIP property of M(·) with δ = c4(r−rA)6

κ2m3r4rA
, we obtain

at ≤ 2
√

bt +
1

6
at−1. (36)

Since t0 + 1 is the first iteration in Phase II, we have Tr(IrA −Φt0+1Φ
⊤
t0+1) ≤ 0.5. From Lemma

D.7, it follows that Tr(IrA −Φt0+2Φ
⊤
t0+2) ≤ 0.6. Hence, bt0+1, bt0+2 ∈ [0, 0.6].

From Lemma F.14, to establish the linear convergence rate of at, it suffices to analyze the following
equality system of {b̃t}∞t=t0+1 and {ãt}∞t=t0+1:

b̃t+1 = qb̃t +
1− q

180

(
ã2t−1 + ã2t + 2ãt−1ãt +

√
b̃t(ãt−1 + ãt)

)
,

ãt = 2

√
b̃t +

1

6
ãt−1, t = t0 + 2, t0 + 3, ...,

ãt0+1 = at0+1, b̃t0+1 = 0.6, b̃t0+2 = 0.6.

By Lemma D.2 and the RIP property of M(·) with δ = c4(r−rA)6

κ2m3r4rA
, we derive

ãt0+1 = at0+1 ≤ 2
√
bt0+1 + ∥∆t0∥F

(i)

≤ 2
√
bt0+1 +

1

48
√
rA

≤ 3

√
b̃t0+1 ≤ 3

√
2√

1 + q

√
b̃t0+2,

where (i) is from inequality (30). From the update of ãt at t = t0 + 2, it follows that

ãt0+2 = 2

√
b̃t0+2 +

1

6
ãt0+1 ≤ 2

√
b̃t0+2 +

1

3

√
bt0+1 +

1

288
√
rA

≤ 3

√
b̃t0+2.

Therefore, applying Lemma F.14 and Lemma F.15, we arrive at

at0+1+t ≤ ãt0+1+t ≤ 3

√
b̃t0+1

(
1 + q

2

)t/2

≤ 3

(
1− 1− q

4

)t+1

= 3

(
1− c3(r − rA)

4

κ4m2r2rA

)t+1

,

for all t ≥ 0, with c3 := 1
32500c21

∈ (0, 1). This establishes the linear convergence rate of at.
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We now prove that Tr(ΦtΦ
⊤
t ) ≥ rA − 0.6 for all t ≥ t0 + 1. This amounts to proving that

Tr(IrA −ΦtΦ
⊤
t ) = bt ≤ 0.6 for all t ≥ t0 + 1.

Since bt0+2 ≤ 0.6, inequality (35) holds for t = t0 + 2. Hence,

bt0+3 ≤ qbt0+2 +
1− q

180

(
a2t0+1 + a2t0+2 + 2at0+1at0+2 +

√
bt0+2(at0+1 + at0+2)

)
(j)

≤ 0.6q +
1− q

180
(9× 0.6 + 9× 0.6 + 18× 0.6 + 6× 0.6)

≤ 1 + q

2
× 0.6

≤ 0.6,

where (j) is from the fact that at0+1 ≤ 3
√

b̃t0+1 = 3
√
0.6, at0+2 ≤ ãt0+2 ≤ 3

√
b̃t0+2 = 3

√
0.6.

Therefore, inequality (35) holds for t = t0 + 3. From inequality (36), we have at0+3 ≤ 2
√

bt0+3 +
1
6at0+2 ≤ 3

√
0.6. By recursion, it follows that Tr(IrA −ΦtΦ

⊤
t ) = bt ≤ 0.6 for all t ≥ t0 + 1.

To conclude, by choosing stepsizes η = (r−rA)4

975c21κ
2m2r2rA

and µ = 2, we have that ∥XtΘtX
⊤
t −A∥F ≤

3
(
1− c3(r−rA)4

κ4m2r2rA

)t−t0
for all t ≥ t0 + 1, with high probability over the initialization. □

E.9 PROOF OF LEMMA 4.1

Proof. Let UΣU⊤ be the compact SVD of A, where U = [u1,u2, . . . ,urA ] and Σ =
diag(λ1, λ2, . . . , λrA), with λ1 ≥ λ2 ≥ · · · ≥ λrA > 0. Here, diag(λ1, λ2, . . . , λrA) denotes
the diagonal matrix whose diagonal entries are λ1, λ2, . . . , λrA .

We first consider ρ ≥ 1. From the Eckart–Young–Mirsky theorem, we have that the best rank − ρ
approximation of A under the Frobenius norm is Aρ = U1Σ1U

⊤
1 , where U1 = [u1,u2, . . . ,uρ]

and Σ = diag(λ1, λ2, . . . , λρ), without considering the ordering of the eigenvalues.

We begin by analyzing the form of X and Θ. Since rank(Aρ) = rank(U1) = ρ and
range(Aρ) ⊆ range(U1), it follows that range(Aρ) = range(U1). Together with range(Aρ) =
range(XΘX⊤) ⊆ range(X), we can obtain range(U1) ⊆ range(X). Therefore, there exsits a
matrix Q ∈ Rr×ρ, such that U1 = XQ. By the definition of U1, we derive that

U⊤
1 U1 = Q⊤X⊤XQ = Q⊤Q = Iρ,

which implies that Q is a column-orthonormal matrix.

We extend Q to an r × r orthogonal matrix Q̃ = [Q,P]. Let V1 = XP, then [U1,V1] =

[XQ,XP] = XQ̃. Since Q̃⊤X⊤XQ̃ = Q̃⊤Q̃ = Ir, then [U1,V1] is also a column-orthonormal
matrix, which means that

V1 = [v1,v2, . . . ,vr−ρ], withv1,v2, . . . ,vr−ρ ∈ U⊥
1 ; V

⊤
1 V1 = Ir−ρ.

Let U2 = [uρ+1,uρ+2, . . . ,urA ], and then U = [U1,U2]. By substituting U and X, we obtain

X⊤U = Q̃

[
U⊤

1

V⊤
1

]
[U1,U2]

(a)
= Q̃

[
Iρ 0
0 V⊤

1 U2

]
,

where (a) is from v1,v2, . . . ,vr−ρ ∈ U⊥
1 .

35



Published as a conference paper at ICLR 2026

Since Tr(X⊤UU⊤X) = ρ, it follows that

ρ = Tr(X⊤UU⊤X)

= Tr

(
Q̃

[
Iρ 0
0 V⊤

1 U2

] [
Iρ 0
0 U⊤

2 V1

]
Q̃⊤

)
= Tr

([
Iρ 0
0 V⊤

1 U2U
⊤
2 V1

])
= ρ+ Tr(V⊤

1 U2U
⊤
2 V1).

After cancelling the term ρ on both sides, we obtain Tr(V⊤
1 U2U

⊤
2 V1) = ∥U⊤

2 V1∥2F = 0.
Hence, we have that U⊤

2 V1 = 0, which implies that v1,v2, . . . ,vr−ρ ∈ U⊥
2 . Moreover, since

v1,v2, . . . ,vr−ρ ∈ U⊥
1 as well, we conclude that v1,v2, . . . ,vr−ρ ∈ U⊥.

Substituting X = [U1,V1]Q̃
⊤ into XΘX⊤ = Aρ, we can obtain

[U1,V1]Q̃
⊤ΘQ̃[U1,V1]

⊤ = Aρ

= U1diag(λ1, λ2, . . . , λρ)U
⊤
1

= [U1,V1]diag(λ1, λ2, . . . , λρ, 0, . . . , 0)[U1,V1]
⊤.

Expanding both sides of the equation, together with v1,v2, . . . ,vr−ρ ∈ U⊥ , we can obtain

Q̃⊤ΘQ̃ = diag(λ1, λ2, . . . , λρ, 0, . . . , 0).

This implies that
Θ = Q̃diag(λ1, λ2, . . . , λρ, 0, . . . , 0)Q̃

⊤.

To proceed, we first verify that (X̃, Θ̃) := ([U1,V1], diag(λ1, λ2, . . . , λρ, 0, . . . , 0)) is indeed a
saddle point and then prove (X,Θ) is also a saddle point.

We compute the Euclidean gradients of f∞ with respect to X and Θ as follows:

∇Xf∞(X̃, Θ̃) = (X̃Θ̃X̃⊤ −A)X̃Θ̃ = X̃Θ̃2 −AX̃Θ̃,

∇Θf∞(X̃, Θ̃) =
1

2
X̃⊤(X̃Θ̃X̃⊤ −A)X̃ =

1

2
(Θ̃− X̃⊤AX̃).

By plugging the expression of (X̃, Θ̃) in, we obtain

∇Xf∞(X̃, Θ̃) = X̃Θ̃2 −AX̃Θ̃

= [λ2
1u1, λ

2
2u2, . . . , λ

2
ρuρ,0, . . . ,0]− [λ2

1u1, λ
2
2u2, . . . , λ

2
ρuρ,0, . . . ,0]

= 0,

∇Θf∞(X̃, Θ̃) =
1

2
(Θ̃− X̃⊤AX̃)

=
1

2
(diag(λ1, λ2, . . . , λρ, 0, . . . , 0)− diag(λ1, λ2, . . . , λρ, 0, . . . , 0))

= 0.

Then, the Riemannian gradient is

(Im − X̃X̃⊤)∇Xf∞(X̃, Θ̃) +
X̃

2
(X̃⊤∇Xf∞(X̃, Θ̃)−∇Xf∞(X̃, Θ̃)⊤X̃) = 0.

Therefore, (X̃, Θ̃) is a stationary point in the Riemannian sense.

We now show that (X̃, Θ̃) is neither a local minimum nor a local maximum of the objective function.

For any 0 < ν < λrA , we will construct a pair (X̃+, Θ̃+), such that f∞(X̃+, Θ̃+) > f∞(X̃, Θ̃),

d
(
(X̃+, Θ̃+), (X̃, Θ̃)

)
:=

√
∥X̃+ − X̃∥2F + ∥Θ̃+ − Θ̃∥2F ≤ ν and X̃⊤

+X̃+ = Ir.
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Let X̃+ = X̃ = [U1,V1] and Θ̃+ = diag(λ1−ν, λ2, . . . , λρ, 0, . . . , 0). By construction, X̃⊤
+X̃+ =

Ir and d
(
(X̃+, Θ̃+), (X̃, Θ̃)

)
=

√
ν2 ≤ ν hold. The value of the objective function is

f∞(X̃+, Θ̃+) =
1

4
∥X̃+Θ̃+X̃

⊤
+ −A∥2F

=
1

4
∥(λ1 − ν)u1u

⊤
1 +

ρ∑
i=2

λiuiu
⊤
i −

rA∑
i=1

λiuiu
⊤
i ∥2F

=
1

4
∥νu1u

⊤
1 +

rA∑
i=ρ+1

λiuiu
⊤
i ∥2F

(b)
=

1

4
(ν2∥u1u

⊤
1 ∥2F + ∥X̃Θ̃X̃⊤ −A∥2F)

> f∞(X̃, Θ̃),

where (b) is by the orthogonality of {u1,u2, . . . ,urA}.

We now try to construct a pair (X̃−, Θ̃−), such that f∞(X̃−, Θ̃−) < f∞(X̃, Θ̃),

d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
:=

√
∥X̃− − X̃∥2F + ∥Θ̃− − Θ̃∥2F ≤ ν, and X̃⊤

−X̃− = Ir.

Since vi ∈ U⊥ for any i ∈ {1, 2, . . . , r − ρ}, it follows that vi ∈ span{urA+1,urA+2, . . . ,um}.
Accordingly, we consider

X̃− = [U1, kv1 + suρ+1,v2, . . . ,vr−ρ],

Θ̃− = diag(λ1, λ2, . . . , λρ, ν0, 0, . . . , 0),

where k, s, ν0 > 0, k2 + s2 = 1 and k, s, ν0 will be given later. We can easily verify that X̃⊤
−X̃− =

Ir holds. The distance is

d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
=

√
∥X̃− − X̃∥2F + ∥Θ̃− − Θ̃∥2F

=
√
∥(k − 1)v1 + suρ+1∥2 + ν20

=
√

(k − 1)2 + s2 + ν20

=
√
2− 2k + ν20 .

Let k = 1 − ν2

4 , s =
√
1− k2 and ν0 ≤ ν

2 , then d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
≤

√
ν2

2 + ν2

4 ≤ ν. The
value of the objective function is

f∞(X̃−, Θ̃−)

=
1

4
∥X̃−Θ̃−X̃

⊤ −A∥2F

=
1

4
∥ν0(k2v1v

⊤
1 + ksuρ+1v

⊤
1 + ksv1u

⊤
ρ+1) + (ν0s

2 − λρ)uρ+1u
⊤
ρ+1 −

rA∑
i=ρ+2

λiuiu
⊤
i ∥2F

(c)
=

1

4

(
ν20(k

4 + k2s2∥uρ+1v
⊤
1 ∥2F + k2s2∥v1u

⊤
ρ+1∥2F) + (ν0s

2 − λρ)
2
)
+ f∞(X̃, Θ̃)− 1

4
λ2
ρ

=
1

4
ν20

(
k4 + 2k2s2 + s4

)
− 1

2
ν0λρs

2 + f∞(X̃, Θ̃),

where (c) is from the orthogonality of {u1,u2, . . . ,urA ,v1}. Let ν0 > 0 be sufficiently small.
Then 1

4ν
2
0

(
k4 + 2k2s2 + s4

)
− 1

2ν0λρs
2 < 0. This ensures that the perturbed pair leads to a strictly

smaller objective value, i.e., f∞(X̃−, Θ̃−) < f∞(X̃, Θ̃).

Therefore, we have verified that (X̃, Θ̃) is a saddle point. Building upon this result, we now proceed
to show that (X,Θ) = (X̃Q̃⊤, Q̃Θ̃Q̃⊤) is also a saddle point.
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Plugging in the expression of (X,Θ), we obtain the Euclidean gradients as follows:

∇Xf∞(X,Θ) = (XΘX⊤ −A)XΘ

= (X̃Q̃⊤Q̃Θ̃Q̃⊤Q̃X̃⊤ −A)X̃Q̃⊤Q̃Θ̃Q̃⊤

= (X̃Θ̃2 −AX̃Θ̃)Q̃⊤

= 0,

∇Θf∞(X,Θ) =
1

2
X⊤(XΘX⊤ −A)X

=
1

2
Q̃X̃⊤(X̃Q̃⊤Q̃Θ̃Q̃⊤Q̃X̃⊤ −A)X̃Q̃⊤

=
1

2
Q̃(Θ̃− X̃⊤AX̃)Q̃⊤

= 0.

Then, the Riemannian gradient is

(Im −XX⊤)∇Xf∞(X,Θ) +
X

2
(X⊤∇Xf∞(X,Θ)−∇Xf∞(X,Θ)⊤X) = 0.

Therefore, (X,Θ) is a stationary point in the Riemannian sense.

Let (X+,Θ+) = (X̃+Q̃
⊤, Q̃Θ+Q̃

⊤), (X−,Θ−) = (X̃−Q̃
⊤, Q̃Θ−Q̃

⊤). The distance is

d ((X+,Θ+), (X,Θ)) =
√
∥X+ −X∥2F + ∥Θ+ −Θ∥2F

=

√
∥(X̃+ − X̃)Q̃⊤∥2F + ∥Q̃(Θ̃+ − Θ̃)Q̃⊤∥2F

=

√
∥X̃+ − X̃∥2F + ∥Θ̃+ − Θ̃∥2F

= d
(
(X̃+, Θ̃+), (X̃, Θ̃)

)
.

In the same manner, we can obtain that d ((X−,Θ−), (X,Θ)) = d
(
(X̃−, Θ̃−), (X̃, Θ̃)

)
. By the

orthogonality of Q̃, the following three identities hold:

XΘX⊤ = X̃Q̃⊤Q̃Θ̃Q̃⊤Q̃X̃⊤ = X̃Θ̃X̃⊤,

X+Θ+X
⊤
+ = X̃+Q̃

⊤Q̃Θ̃+Q̃
⊤Q̃X̃⊤

+ = X̃+Θ̃+X̃
⊤
+,

X−Θ−X
⊤
− = X̃−Q̃

⊤Q̃Θ̃−Q̃
⊤Q̃X̃⊤

− = X̃−Θ̃−X̃
⊤
−.

Then, we have f(X,Θ) = f(X̃, Θ̃), f(X+,Θ+) = f(X̃+, Θ̃+) and f(X−,Θ−) = f(X̃−, Θ̃−).
Thus, we obtain the strict inequality f(X−,Θ−) < f(X,Θ) < f(X+,Θ+). Therefore, (X,Θ) is
also a saddle point.

We now turn to the case ρ = 0, i.e., XΘX⊤ = A0 = 0. Consequently, Θ = X⊤A0X = 0. Let X
be expressed as X = [x1,x2, . . . ,xr], where each xi is a column vector. Since Tr(X⊤UU⊤X) =
∥U⊤X∥2F = 0, it follows that U⊤X = 0. Hence, each xi lies in U⊥ for i ∈ {1, 2, . . . , r}.

We compute the Euclidean gradient of the objective function f∞ with respect to X and Θ

∇Xf∞(X,Θ) = (XΘX⊤ −A)XΘ = XΘ2 −AXΘ = 0,

∇Θf∞(X,Θ) =
1

2
X⊤(XΘX⊤ −A)X =

1

2
(Θ−X⊤AX) = 0.

Then, the Riemannian gradient is

(Im −XX⊤)∇Xf∞(X,Θ) +
X

2
(X⊤∇Xf∞(X,Θ)−∇Xf∞(X,Θ)⊤X) = 0.

Therefore, (X,Θ) is a stationary point in the Riemannian sense.
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For any 0 < ν < λrA , we construct the pair (X+,Θ+) as follows:

X+ = [kx1 + su1,x2, . . . ,xr],

Θ+ = diag(−ν1, 0, . . . , 0),

where k = 1− ν2

4 , s =
√
1− k2, and 0 < ν1 ≤ ν

2 . We can easily verify that X⊤
+X+ = Ir and the

distance is

d ((X+,Θ+), (X,Θ)) =
√

∥X+ −X∥2F + ∥Θ+ −Θ∥2F

=
√

∥(k − 1)x1 + su1∥2 + ν21

=
√

(k − 1)2 + s2 + ν21

≤
√

ν2

2
+

ν2

4
≤ ν.

The value of the objective function is

f∞(X+,Θ+) =
1

4
∥X+Θ+X

⊤
+ −A∥2F

=
1

4
∥ − ν1

(
k2x1x

⊤
1 + s2u1u

⊤
1

)
−

rA∑
i=1

λiuiu
⊤
i ∥2F

=
1

4
∥ν1k2x1x

⊤
1 + ν1s

2u1u
⊤
1 +

rA∑
i=1

λiuiu
⊤
i ∥2F

(d)
=

1

4

(
ν21k

4 + ν21s
4 + 2ν1λ1s

2 + ∥XΘX⊤ −A∥2F
)

> f∞(X,Θ),

where (d) is due to the orthogonality of {u1,u2, . . . ,urA ,x1}. Now consider the pair (X−,Θ−)
defined as:

X− = [kx1 + su1,x2, . . . ,xr],

Θ− = diag(ν2, 0, . . . , 0),

where k = 1 − ν2

4 , s =
√
1− k2, and 0 < ν2 ≤ ν

2 . It can be verified that X⊤
−X− = Ir, and the

distance is

d ((X−,Θ−), (X,Θ)) =
√

∥X− −X∥2F + ∥Θ− −Θ∥2F

=
√

∥(k − 1)x1 + su1∥2 + ν22

=
√

(k − 1)2 + s2 + ν22

≤
√

ν2

2
+

ν2

4
≤ ν.
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The value of the objective function is

f∞(X−,Θ−) =
1

4
∥X−Θ−X

⊤
− −A∥2F

=
1

4
∥ν2

(
k2x1x

⊤
1 + s2u1u

⊤
1

)
−

rA∑
i=1

λiuiu
⊤
i ∥2F

=
1

4
∥ν2k2x1x

⊤
1 + ν2s

2u1u
⊤
1 −

rA∑
i=1

λiuiu
⊤
i ∥2F

(e)
=

1

4

(
ν22k

4 + ν22s
4 − 2ν2λ1s

2 + ∥XΘX⊤ −A∥2F
)

=
1

4

(
ν22(k

4 + s4)− 2ν2λ1s
2
)
+ f∞(X,Θ),

where (e) is by the orthogonality of {u1,u2, . . . ,urA ,x1}. Let ν2 > 0 be sufficiently small. Then
1
4

(
ν22(k

4 + s4)− 2ν2λ1s
2
)
< 0. This guarantees that f∞(X−,Θ−) < f∞(X,Θ). Therefore,

(X,Θ) is also a saddle point when ρ = 0. □

E.10 PROOF OF LEMMA 4.2

Proof. We begin by computing the Euclidean gradients of f∞ and f with respect to X and Θ:

∇Xf∞(X,Θ) = (XΘX⊤ −A)XΘ,

∇Θf∞(X,Θ) =
1

2
X⊤(XΘX⊤ −A)X,

∇Xf(X,Θ) = M∗M(XΘX⊤ −A)XΘ,

∇Θf(X,Θ) =
1

2
X⊤M∗M(XΘX⊤ −A)X.

Then, we can obtain that the gap between population gradient and sensing gradient is

∥∇Xf∞(X,Θ)−∇Xf(X,Θ)∥F = ∥(M∗M−I)(XΘX⊤ −A)XΘ∥F
≤ ∥(M∗M−I)(XΘX⊤ −A)∥F∥X∥∥Θ∥
(f)

≤ 2∥(M∗M−I)(XΘX⊤ −A)∥F
≤ 2

√
m∥(M∗M−I)(XΘX⊤ −A)∥

(g)

≤ 2
√
mδ∥XΘX⊤ −A∥F

≤ 2mδ∥XΘX⊤ −A∥
≤ 2mδ(∥X∥∥Θ∥∥X∥+ ∥A∥)
(f)

≤ 6mδ,

40



Published as a conference paper at ICLR 2026

∥∇Θf∞(X,Θ)−∇Θf(X,Θ)∥F =
1

2
∥X⊤(M∗M−I)(XΘX⊤ −A)X∥F

≤ 1

2
∥X∥∥(M∗M−I)(XΘX⊤ −A)∥F∥X∥

≤ 1

2
∥(M∗M−I)(XΘX⊤ −A)∥F

≤ 1

2

√
m∥(M∗M−I)(XΘX⊤ −A)∥

(g)

≤ 1

2

√
mδ∥XΘX⊤ −A∥F

≤ 1

2
mδ∥XΘX⊤ −A∥

≤ 1

2
mδ(∥X∥∥Θ∥∥X∥+ ∥A∥)

(f)

≤ 3

2
mδ,

where (f) is by ∥X∥ ≤ 1, ∥Θ∥ ≤ 2, ∥A∥ ≤ 1; and (g) is from Lemma F.11. Then, the difference
between the two Riemannian gradients can be bounded as

∥∇R
Xf∞(X,Θ)−∇R

Xf(X,Θ)∥F = ∥(Im −XX⊤)(∇Xf∞(X,Θ)−∇Xf(X,Θ))

+
1

2
XX⊤(∇Xf∞(X,Θ)−∇Xf(X,Θ))

− 1

2
X(∇Xf∞(X,Θ)⊤ −∇Xf(X,Θ)⊤)X∥F

≤ ∥(Im −XX⊤)(∇Xf∞(X,Θ)−∇Xf(X,Θ))∥F

+
1

2
∥XX⊤(∇Xf∞(X,Θ)−∇Xf(X,Θ))∥F

+
1

2
∥X(∇Xf∞(X,Θ)⊤ −∇Xf(X,Θ)⊤)X∥F

≤ 6mδ(∥Im −XX⊤∥+ 1

2
∥X∥∥X∥+ 1

2
∥X∥∥X∥)

(h)

≤ 12mδ,

where (h) is due to ∥Im −XX⊤∥, ∥X∥ ≤ 1. □

F OTHER USEFUL LEMMAS

Lemma F.1 Given a PSD matrix A, we have that (I+A)−1 ⪰ I−A.

Proof. Diagonalizing both sides and using 1/(1 + λ) ≥ 1− λ, ∀λ ≥ 0 yields the result.

□

Lemma F.2 Let X ∈ St(m, r) and U ∈ St(m, rA). Let U⊥ ∈ Rm×(m−rA) be an orthonormal
basis for the orthogonal complement of span(U). Denote Φ = U⊤X ∈ RrA×r and Ψ = U⊤

⊥X ∈
R(m−rA)×r. It is guaranteed that σ2

i (Φ) + σ2
i (Ψ) = 1 holds for i ∈ {1, 2, . . . , r}.

Proof. Since X lies in the Stiefel manifold, we have that

Ir = X⊤X = X⊤ImX = X⊤[U,U⊥]

[
U⊤

U⊤
⊥

]
X (37)

= Φ⊤Φ+Ψ⊤Ψ.
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Equation (37) shows that Ψ⊤Ψ and Φ⊤Φ commute, i.e.,

(Φ⊤Φ)(Ψ⊤Ψ) = (Φ⊤Φ)(Ir −Φ⊤Φ) = Φ⊤Φ−Φ⊤ΦΦ⊤Φ

= (Ir −Φ⊤Φ)(Φ⊤Φ) = (Ψ⊤Ψ)(Φ⊤Φ).

The commutativity shows that the eigenspaces of Φ⊤Φ and Ψ⊤Ψ coincide. As a result, we have
again from (37) that σ2

i (Φ) + σ2
i (Ψ) = 1 for i ∈ {1, 2, . . . , r}. □

Lemma F.3 Suppose that P and Q are m × m diagonal matrices, with non-negative diagonal
entries. Let S ∈ Sm be a positive definite matrix with smallest eigenvalue λmin, then we have that

Tr(PSQ) ≥ λminTr(PQ).

Proof. Let pi and qi be the (i, i)-th entry of P and Q, respectively. Then we have that

Tr(PSQ) =
∑
i

piSi,iqi ≥ λmin

∑
i

piqi = λminTr(PQ),

where the last inequality comes from S being positive definite, i.e., Si,i = e⊤i Sei ≥ λmin. □

Lemma F.4 Let A ∈ Rm×n be a matrix with full column rank and B ∈ Rn×p be a non-zero
matrix. Let σmin(·) denote the smallest non-zero singular value. Then it holds that σmin(AB) ≥
σmin(A)σmin(B).

Proof. Using the min-max principle for singular values,

σmin(AB) = min
∥x∥=1,x∈ColSpan(B)

∥ABx∥

= min
∥x∥=1,x∈ColSpan(B)

∥∥∥A Bx

∥Bx∥

∥∥∥ · ∥Bx∥

(a)
= min

∥x∥=1,∥y∥=1,x∈ColSpan(B),y∈ColSpan(B)
∥Ay∥ · ∥Bx∥

≥ min
∥y∥=1,y∈ColSpan(B)

∥Ay∥ · min
∥x∥=1,x∈ColSpan(B)

∥Bx∥

≥ min
∥y∥=1

∥Ay∥ · min
∥x∥=1,x∈ColSpan(B)

∥Bx∥

= σmin(A)σmin(B),

where (a) is by changing of variables, i.e., y = Bx/∥Bx∥. □

Lemma F.5 (Theorem 2.2.1 of (Chikuse, 2012)) If Z ∈ Rm×r has entries drawn i.i.d. from Gaus-
sian distribution N (0, 1), then X = Z(Z⊤Z)−1/2 is a random matrix uniformly distributed on
St(m, r).

Lemma F.6 (Vershynin, 2010) If Z ∈ Rm×r is a matrix whose entries are independently drawn
from N (0, 1). Then for every τ ≥ 0, with probability at least 1− exp(−τ2/2), we have

σ1(Z) ≤
√
m+

√
r + τ.

Lemma F.7 (Rudelson & Vershynin, 2009) If Z ∈ Rm×r is a matrix whose entries are indepen-
dently drawn from N (0, 1). Suppose that m ≥ r. Then for every τ ≥ 0, we have for two universal
constants C1 > 0 and C2 > 0 that

P
(
σr(Z) ≤ τ(

√
m−

√
r − 1)

)
≤ (C1τ)

m−r+1 + exp(−C2m).

Lemma F.8 If U ∈ St(m, rA) is a fixed matrix, X ∈ St(m, r) is uniformly sampled from St(m, r)
using methods described in Lemma F.5, and r > rA, then we have that with probability at least
1− exp(−m/2)− (C1τ)

r−rA+1 − exp(−C2r),

σrA(U
⊤X) ≥ τ(r − rA + 1)

6
√
mr

.
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Proof. Since X ∈ St(m, r) is uniformly sampled from St(m, r) using methods described in Lemma
F.5, we can write X = Z(Z⊤Z)−1/2, where Z ∈ Rm×r has entries i.i.d. sampled from N (0, 1).
We thus have

σrA(U
⊤X) = σrA

(
U⊤Z(Z⊤Z)−1/2

)
.

We now consider U⊤Z ∈ RrA×r. It is clear that the entries of U⊤Z are also i.i.d N (0, 1) random
variables. As a consequence of Lemma F.7, we have that with probability at least 1−(C1τ)

r−rA+1−
exp(−C2r),

σrA

(
U⊤Z

)
≥ τ(

√
r −

√
rA − 1).

We also have from Lemma F.6 that with probability at least 1− exp(−m/2),

σ1(Z
⊤Z) = σ2

1(Z) ≤ (2
√
m+

√
r)2.

Taking union bound, we have with probability at least 1−exp(−m/2)−(C1τ)
r−rA+1−exp(−C2r),

σrA(U
⊤X)

(a)

≥
σrA

(
U⊤Z)

σ1(Z)
=

τ(
√
r −

√
rA − 1)

2
√
m+

√
r

≥ τ(r − rA + 1)

3
√
m · 2

√
r

=
τ(r − rA + 1)

6
√
mr

,

where (a) comes from Lemma F.4. □

Lemma F.9 Suppose Θt ∈ Sr. Then the update rule (10) guarantees that Θt+1 also belongs to Sr.

Proof. From the update rule, we have that

Θt+1 = X⊤
t+1AXt+1 −X⊤

t+1

[
(M∗M− µ

2
I)(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1.

Since Θt ∈ Sr and A ∈ Sm, it follows that Xt+1ΘtX
⊤
t+1 −A ∈ Sm and X⊤

t+1AXt+1 ∈ Sr.

By definition of M and M∗, the composition M∗M defines a self-adjoint operator in Sm. Hence,

X⊤
t+1

[
(M∗M− µ

2
I)(Xt+1ΘtX

⊤
t+1 −A)

]
Xt+1 ∈ Sr.

Thus, Θt+1 ∈ Sr, which completes the proof. □

Lemma F.10 Let M(·) : Sm → Rn be a linear mapping that is (r + r′, δ)-RIP with δ ∈ [0, 1).
Then for any symmetric matrix Z of rank at most r and any symmetric matrix Y of rank at most r′,
we have that

|⟨(M∗M−I)(Z),Y⟩| ≤ δ∥Z∥F∥Y∥F.

Proof. Denote ∆(Z,Y) := ⟨(M∗M − I)(Z),Y⟩ = ⟨M(Z),M(Y)⟩ − ⟨Z,Y⟩. The above
inequality trivially holds when ∥Z∥F = 0 or ∥Y∥F = 0. Without loss of generality, we assume that
∥Z∥F ̸= 0 and ∥Y∥F ̸= 0. Define Z̃ := Z

∥Z∥F
and Ỹ := Y

∥Y∥F
. It then follows that

∆(Z,Y) = ∆(Z̃, Ỹ) · ∥Z∥F∥Y∥F.

Using the polarization identity, we obtain

⟨M(Z̃),M(Ỹ)⟩ = 1

4
(∥M(Z̃+ Ỹ)∥2 − ∥M(Z̃− Ỹ)∥2),

⟨Z̃, Ỹ⟩ = 1

4
(∥Z̃+ Ỹ∥2F − ∥Z̃− Ỹ∥2F).
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Substituting the two equalities into the expression of ∆(Z̃, Ỹ), we have that

|∆(Z̃, Ỹ)| = |⟨M(Z̃),M(Ỹ)⟩ − ⟨Z̃, Ỹ⟩|

=
1

4
|(∥M(Z̃+ Ỹ)∥2 − ∥M(Z̃− Ỹ)∥2)− (∥Z̃+ Ỹ∥2F − ∥Z̃− Ỹ∥2F)|

≤ 1

4

(
|∥M(Z̃+ Ỹ)∥2 − ∥Z̃+ Ỹ∥2F|+ |∥M(Z̃− Ỹ)∥2 − ∥Z̃− Ỹ∥2F|

)
(a)

≤ δ

4
(∥Z̃+ Ỹ∥2F + ∥Z̃− Ỹ∥2F)

=
δ

2
(∥Z̃∥2F + ∥Ỹ∥2F)

= δ,

where (a) is from the facts that M(·) is (r+ r′, δ)-RIP with constant δ, rank(Z̃+ Ỹ) ≤ rank(Z̃) +

rank(Ỹ) ≤ r + r′, and rank(Z̃− Ỹ) ≤ rank(Z̃) + rank(Ỹ) ≤ r + r′. Therefore, we have that

|⟨(M∗M−I)(Z),Y⟩| = |∆(Z,Y)| = |∆(Z̃, Ỹ) · ∥Z∥F∥Y∥F| ≤ δ∥Z∥F∥Y∥F,
which completes the proof.

□

Lemma F.11 (Lemma 7.3 of (Stöger & Soltanolkotabi, 2021)) Let M(·) : Sm → Rn be a linear
mapping that is (r + rA + 1, δ)-RIP with δ ∈ [0, 1), then ∥(M∗M − I)(A)∥ ≤ δ∥A∥F for all
matrices A ∈ Sm of rank at most r + rA.

Proof. By Lemma F.10, if A ∈ Sm has rank at most r + rA and Y ∈ Sm has rank at most 1, then it
holds that

|⟨(M∗M−I)(A),Y⟩| ≤ δ∥A∥F∥Y∥F.
Hence, it suffices to prove that there exists a matrix Y of rank 1, such that |⟨(M∗M−I)(A),Y⟩| =
∥(M∗M−I)(A)∥ and ∥Y∥F ≤ 1. Since (M∗M−I)(A) is a symmetric matrix, it follows that

∥(M∗M−I)(A)∥ = max
∥u∥=1

u⊤(M∗M−I)(A)u

= max
∥u∥=1

Tr((M∗M−I)(A)uu⊤)

= max
∥u∥=1

⟨(M∗M−I)(A),uu⊤⟩.

Let Y = ũũ⊤, where ũ ∈ argmax
∥u∥=1

⟨(M∗M − I)(A),uu⊤⟩. We then have that rank(Y) = 1,

Y ∈ Sm, |⟨(M∗M−I)(A),Y⟩| = ∥(M∗M−I)(A)∥, and ∥Y∥F ≤ 1. □

Lemma F.12 Let A ∈ Rn×m, B ∈ Rm×n be two real matrices, then the following inequality holds

AB+B⊤A⊤ ⪯ 2∥A∥∥B∥In.

Proof. For any unit vector x ∈ Rn with ∥x∥ = 1, we can obtain that

x⊤(AB+B⊤A⊤)x = x⊤ABx+ x⊤B⊤A⊤x
(a)
= 2x⊤ABx,

where (a) is from the fact that x⊤B⊤A⊤x is a scalar. By the Cauchy–Schwarz inequality and the
definition of the spectral norm, we have that

|x⊤ABx| ≤ ∥ABx∥ · ∥x∥ ≤ ∥A∥ · ∥B∥ · ∥x∥2 = ∥A∥∥B∥.
Hence, we obtain the following inequality:

x⊤(AB+B⊤A⊤)x ≤ 2∥A∥∥B∥.
Since this holds for any unit vector x, it follows that

AB+B⊤A⊤ ⪯ 2∥A∥∥B∥In.
□
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Lemma F.13 Let t ≥ 1 be a positive integer. For all real numbers x, satisfying 0 ≤ x ≤ 1
t , the

following inequality holds:
(1 + x)t ≤ 1 + 3tx.

Proof. Let f(x) := 1 + 3tx− (1 + x)t, x ∈ [0, 1
t ]. Then, for all x ∈ [0, 1

t ], we obtain

f ′(x) = 3t− t(1 + x)t−1 ≥ 3t− t(1 +
1

t
)t−1 ≥ (3− e)t > 0.

Therefore, for all x ∈ [0, 1
t ], f(x) ≥ f(0) = 0, which means (1 + x)t ≤ 1 + 3tx for all x ∈ [0, 1

t ].
□

Lemma F.14 Let k ∈ R≥1, q ∈ ( 12 , 1). Suppose that sequences {at}∞t=0, {bt}∞t=0 ⊂ R≥0 satisfy

bt+1 ≤ qbt +
1− q

180k2
(
a2t−1 + a2t + 2at−1at +

√
bt(at−1 + at)

)
, (38)

at ≤ 2k
√
bt +

1

6
at−1, t = 1, 2 . . . , (39)

and another pair of sequences {ãt}∞t=0, {b̃t}∞t=0 ⊂ R≥0 satisfy

b̃t+1 = qb̃t +
1− q

180k2
(
ã2t−1 + ã2t + 2ãt−1ãt +

√
b̃t(ãt−1 + ãt)

)
, (40)

ãt = 2k

√
b̃t +

1

6
ãt−1, t = 1, 2 . . . . (41)

If the initial conditions satisfy
a0 ≤ ã0, b0 ≤ b̃0, b1 ≤ b̃1,

then at ≤ ãt and bt ≤ b̃t hold for all t ≥ 0.

Proof. We proceed by mathematical induction. From inequality (38), we obtain

a1 ≤ 2k
√
b1 +

1

6
a0

(a)

≤ 2k

√
b̃1 +

1

6
ã0

(b)
= ã1,

where (a) is by initial conditions; and (b) is from equality (40). Analogously, inequality (39) implies

b2 ≤ qb1 +
1− q

180k2
(
a20 + a21 + 2a0a1 +

√
b1(a0 + a1)

)
(c)

≤ qb̃1 +
1− q

180k2
(
ã20 + ã21 + 2ã0ã1 +

√
b̃1(ã0 + ã1)

)
(d)
= b̃2,

where (c) is due to initial conditions and a1 ≤ ã1; and (d) is by equality (41). By induction, we
conclude that at ≤ ãt and bt ≤ b̃t for all t ≥ 0, which completes the proof. □

Lemma F.15 Let k ∈ R≥1, q ∈ ( 12 , 1). Suppose that sequences {ãt}∞t=0, {b̃t}∞t=0 ⊂ R≥0 satisfy:

b̃t+1 = qb̃t +
1− q

180k2
(
ã2t−1 + ã2t + 2ãt−1ãt +

√
b̃t(ãt−1 + ãt)

)
, (42)

ãt = 2k

√
b̃t +

1

6
ãt−1, t = 1, 2 . . . . (43)

If the initial conditions satisfy

ã0, ã1, b̃0, b̃1 ∈ R≥0, ã0 ≤ 3k

√
b̃0 ≤ 3

√
2k√

1 + q

√
b̃1, ã1 ≤ 3k

√
b̃1,

then we have that ãt ≤ 3k
√
b̃0

(
1+q
2

)t/2
for all t ≥ 0.
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Proof. We proceed by mathematical induction. We first consider the following auxiliary system:

b̂t+1 = max{qb̂t +
1− q

180k2
(
â2t−1 + â2t + 2ât−1ât +

√
b̂t(ât−1 + ât)),

1 + q

2
b̂t}, (44)

ât = max{2k
√

b̂t +
1

6
ât−1, 3k

√
b̂t}, t = 1, 2, . . . . (45)

Let â0 = ã0, b̂0 = b̃0, and b̂1 = b̃1. It holds that â0 ≤ 3k
√
b̂0 ≤ 3

√
2k√

1+q

√
b̂1, and thus we have

2k

√
b̂1 +

1

6
â0 ≤ 2k

√
b̂1 +

√
2k

2
√
1 + q

√
b̂1 ≤ 3k

√
b̂1.

From equality (45) at t = 1, we obtain â1 = 3k
√

b̂1. Since â0 ≤ 3
√
2k√

1+q

√
b̂1 and â1 = 3k

√
b̂1, it

follows that

qb̂1 +
1− q

180k2
(
â20 + â21 + 2â0â1 +

√
b̂1(â0 + â1))

≤ qb̂1 +
1− q

180k2
( 18k2
1 + q

b̂1 + 9k2b̂1 +
18

√
2k2√

1 + q
b̂1 +

3
√
2k√

1 + q
b̂1 + 3kb̂1

)
≤ qb̂1 +

1− q

180k2
(
18k2 + 9k2 + 18

√
2k2 + 3

√
2k2 + 3k2

)
b̂1

≤ qb̂1 +
1− q

2
b̂1

≤ 1 + q

2
b̂1.

From equality (44) at t = 1, we have b̂2 = 1+q
2 b̂1. Using the same reasoning for t = 2 yields

2k

√
b̂2 +

1

6
â1 = 2k

√
b̂2 +

k

2

√
b̂1 = 2k

√
b̂2 +

k

2

√
2

1 + q

√
b̂2 ≤ 3k

√
b̂2.

Equality (45) at t = 1 implies that â2 = 3k
√
b̂2. Since â1 = 3k

√
b̂1 and â2 = 3k

√
b̂2, we obtain

qb̂2 +
1− q

180k2
(
â21 + â22 + 2â1â2 +

√
b̂2(â1 + â2))

= qb̂2 +
1− q

180k2
(
9k2b̂1 + 9k2b̂2 + 18k2

√
b̂1b̂2 + 3k(

√
b̂1b̂2 + b̂2)

)
= qb̂2 +

1− q

180k2
( 18k2
1 + q

+ 9k2 +
18

√
2k2√

1 + q
+

3
√
2k√

1 + q
+ 3k

)
b̂2

≤ qb̂2 +
1− q

180k2
(
18k2 + 9k2 + 18

√
2k2 + 3

√
2k2 + 3k2

)
b̂2

≤ qb̂2 +
1− q

2
b̂2

≤ 1 + q

2
b̂2.

Applying equality (44) at t = 2, b̂3 = 1+q
2 b̂2 is derived. Therefore, we have that â1 = 3k

√
b̂1, â2 =

3k
√
b̂2, and b̂3 = 1+q

2 b̂2. Assume that ât−1 = 3k

√
b̂t−1, ât = 3k

√
b̂t, and b̂t+1 = 1+q

2 b̂t, we

claim that ât+1 = 3k

√
b̂t+1 and b̂t+2 = 1+q

2 b̂t+1. From equality (45), we obtain

ât+1 = max{2k
√

b̂t+1 +
1

6
ât, 3k

√
b̂t+1}

= max{2k
√

b̂t+1 +
1

2
k

√
b̂t, 3k

√
b̂t+1}

= max{2k
√

b̂t+1 +
k
√

2
1+q

2

√
b̂t+1, 3k

√
b̂t+1}

= 3k

√
b̂t+1.
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Analogously, equality (44) implies that

b̂t+2 = max{qb̂t+1 +
1− q

180k2
(
â2t + â2t+1 + 2âtât+1 +

√
b̂t+1(ât + ât+1)),

1 + q

2
b̂t+1}

= max{qb̂t+1 +
1− q

180k2
(9k2b̂t + 9k2b̂t+1 + 18k2

√
b̂tb̂t+1 +

√
b̂t+1(3k

√
b̂t + 3k

√
b̂t+1)),

1 + q

2
b̂t+1}

= max{qb̂t+1 +
1− q

20
(

2

1 + q
+ 1 + 2(

2

1 + q
)1/2 +

1

3k
(

2

1 + q
)1/2 +

1

3k
)b̂t+1,

1 + q

2
b̂t+1}

=
1 + q

2
b̂t+1.

Therefore, we have that {b̂t}t=∞
t=0 decreases in a linear rate and that ât = 3k

√
b̂t in the system (44)

and (45), which means that ât ≤ 3k
√
b̂0

(
1+q
2

)t/2
= 3k

√
b̃0

(
1+q
2

)t/2
for all t ≥ 0.

We now prove that ãt ≤ ât, b̃t ≤ b̂t for all t ≥ 0. Obviously, ã0 ≤ â0, ã1 ≤ â1, b̃0 ≤ b̂0, and
b̃1 ≤ b̂1 hold. Applying equality (42) at t = 1 and equality (43) at t = 2, we obtain

b̃2 = qb̃1 +
1− q

180k2
(
ã20 + ã21 + 2ã0ã1 +

√
b̃1(ã0 + ã1)

)
≤ qb̂1 +

1− q

180k2
(
â20 + â21 + 2â0â1 +

√
b̂1(â0 + â1))

≤ max{qb̂1 +
1− q

180k2
(
â20 + â21 + 2â0â1 +

√
b̂1(â0 + â1)),

1 + q

2
b̂1}

= b̂2,

ã2 = 2k

√
b̃2 +

1

6
ã1

≤ 2k

√
b̂2 +

1

6
â1

≤ max{2k
√
b̂2 +

1

6
â1, 3k

√
b̂2}

= â2.

Hence, ã2 ≤ â2, b̃2 ≤ b̂2 and recursively, we can obtain ãt ≤ ât, b̃t ≤ b̂t for all t ≥ 0. Consequently,
{ãt}t=∞

t=0 achieves at least a linear convergence rate in the system (42) and (43), which means that

ãt ≤ 3k
√
b̃0

(
1+q
2

)t/2
for all t ≥ 0.

□

G EXPERIMENTAL SETUPS

In this section, we provide experimental setups in detail.

G.1 SETUP FOR FIGURE 1

We apply Algorithm 1 to problem (2) and study the trajectory generated by the algorithm.

In this experiment, we set m = 300, r = 10, rA = 5, and κ = 3. The ground-truth matrix
A ∈ Rm×m is constructed as A = UΣU⊤, where U ∈ Rm×rA is a random orthonormal matrix
and Σ ∈ SrA+ is diagonal with entries generated by a power spacing scheme. Specifically, the j-th

entry of Σ is given by σj = κ
−( j−1

rA−1 )
p

for j = 1, . . . , rA, where we set p = 0.6.

We generate n = 50000 independent feature matrices {Mi}ni=1 ⊂ Sm in the following manner.
For each i ∈ {1, . . . , n}, we sample Ri ∈ Rm×m with i.i.d. standard Gaussian entries and define
Mi =

1
2
√
n
(Ri +R⊤

i ), which ensures the symmetry of Mi.
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We initialize X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = 0.5Ir, where Z0 ∈ Rm×r has i.i.d. standard
Gaussian entries. This initialization ensures that X0 lies on the manifold St(m, r) and Θ0 ∈ Sr.
For this experiment, we set the stepsizes to η = 0.2 and µ = 2.

G.2 SETUP FOR SECTION 5

G.2.1 SETUP FOR THE EXPERIMENTS WITH SYNTHETIC DATA

We apply Algorithm 1 to problem (2) and compare its convergence with standard GD applied to (1).

In the noisy measurement experiment, we set m = 10, r = 5, rA = 3, and n = 1000, while for
other experiments, the corresponding values are given in the main text. In these settings, the ground
truth matrix A ∈ Rm×m is formed as A = UΣU⊤, where U ∈ Rm×rA is a random orthonormal
matrix and Σ ∈ SrA+ is a diagonal matrix with entries evenly distributed on a logarithmic scale in
the interval [1/κ, 1]. Feature matrices {Mi}ni=1 are generated as described in G.1.

For other experiments, we initialize X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = Ir for Algorithm 1, where
Z0 ∈ Rm×r consists of i.i.d. standard Gaussian entries, and XGD

0 = 0.1Z0 for GD.

Throughout the experiments, we use stepsizes η = 0.1 and µ = 2 for RGD and η = 0.1 for GD,
except for the first experiment in Subsection 5.2. In that case, we set η = 0.1, 0.12, 0.14 and µ = 2
for RGD, and η = 0.1, 0.12, 0.14 for GD, corresponding to r = 50, 75, 100, respectively.

G.2.2 SETUP FOR IMAGE RECONSTRUCTION EXPERIMENTS

For the image reconstruction experiments, we conduct two setups:one based on recovering a CIFAR-
10 image from linear measurements and the other on direct matrix sensing of a structured image.

For the CIFAR-10 experiment, we take the first horse image from CIFAR-10 dataset, convert it to
grayscale, and vectorize it as a ∈ R1024. The ground-truth matrix is set as A = aa⊤ ∈ S1024+ . The
overparameterization level is set to r = 100, with n = 50000 feature matrices generated as in G.1.
RGD is initialized with X0 = Z0(Z

⊤
0 Z0)

−1/2 and Θ0 = Ir, where Z0 ∈ Rm×r has i.i.d. standard
Gaussian entries. GD uses small random initialization: XGD

0 = 0.1Z0. We run RGD for tRGD = 100
and GD for tGD = 200 iterations. For RGD, we adopt stepsizes of η = 0.01 for updating X and
µ = 2 for updating Θ. For GD, we apply stepsize η = 0.01 to update X.

After optimization, following the approach of (Duchi et al., 2020, Section 4.1), we perform a rank-
one truncated SVD on the recovered matrix Â, and the estimate of the original signal is constructed
as the leading singular vector multiplied by the square root of its corresponding singular value. The
resulting vector is then reshaped into a 32× 32 reconstruction image.

For the structured image experiment, we generate a grayscale matrix A ∈ S128+ of rank rA = 2 using
block-wave basis functions. Specifically, we construct rA one-dimensional signals of length 128,
where each signal is a normalized block wave taking values in ±1 with a random period. Stacking
these signals forms a matrix U ∈ R128×rA . The ground-truth image is defined as A = UΛU⊤,
where Λ is a 2 × 2 diagonal matrix with diagonal entries 1 and 0.9. This diagonal matrix assigns
geometrically decaying weights to different block-wave modes.

We again fix r = 100 and use n = 50000 feature matrices generated as in G.1. Both RGD and GD
are randomly initialized as above. We run RGD for tRGD = 100 and GD for tGD = 200 iterations.
We adopt stepsizes of η = 0.03 and µ = 2 in RGD and a stepsize of η = 0.03 in GD.

The per-iteration computational complexity of both RGD and GD is O(nm2r), which is dominated
by the operation of sensing. Since each RGD iteration requires performing two sensing operations
while GD requires only one, we set the number of iterations as tGD = 2tRGD to make the overall
runtime roughly comparable between the two methods.

G.3 SETUP FOR THE EXPERIMENTS OF PRECONDITIONED ALGORITHMS

We apply Algorithm 1 and PrecRGD to problem (2) and compare their convergence behavior with
GD, PrecGD and ScaledGD(λ) applied to problem (1).

48



Published as a conference paper at ICLR 2026

In this experiment, we set m = 50, r = 40, rA = 3, κ = 10, and n = 8000 for the first instance and
increase r to 45 in the second instance while keeping all other parameters fixed. The ground-truth
matrix A ∈ Rm×m is constructed as A = UΣU⊤, where U ∈ Rm×rA is a random orthonormal
matrix and Σ ∈ SrA+ is a diagonal matrix with entries evenly distributed on a logarithmic scale in
the interval [1/κ, 1]. Feature matrices {Mi}ni=1 are generated as described in G.1.

The regularization parameter λ used in PrecRGD is chosen adaptively as λ = ∥M∗M(XtΘtX
⊤
t −

A)∥∞, where ∥ · ∥∞ denotes the matrix infinity norm. For PrecGD and ScaledGD(λ), we set the
regularization parameters as λ = ∥M∗M(Y⊤

t Yt −A)∥∞ and λ = 0.1, respectively.

We initialize X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = Ir for RGD and PrecRGD, where Z0 ∈ Rm×r

consists of i.i.d. standard Gaussian entries. For GD and PrecGD, we use initialization XGD
0 = Z0.

For ScaledGD(λ), we set XScaled
0 = 10−6 · Z0. For RGD and PrecRGD, we adopt stepsizes of

η = 0.02 for updating X and µ = 2 for updating Θ. For GD, PrecGD and ScaledGD(λ), we apply
stepsize η = 0.02.

G.4 SETUP FOR THE MATRIX COMPLETION PROBLEMS

We apply RGD to problem (7) and compare its convergence behavior with that of GD applied to (6).

We directly use the code provided in the supplementary material of (Yalçın et al., 2022), replacing
only the objective function with our WN-based formulation (7). The update of Xt follows the same
step-size strategy as that of Yt in their implementation, and Θt is updated using a fixed step size of
µ = 2. Except for these modifications, other settings are kept identical to the original code.

G.5 SETUP FOR THE EXPERIMENT OF DIAGONAL AND NONNEGATIVE Θ

We apply algorithm (1) to WN and compare its convergence behavior with that of constraining Θ to
be diagonal and nonnegative.

In this experiment, we set m = 10, r = 5, rA = 3, κ = 3, and n = 1000. The ground-truth
matrix A ∈ Rm×m is constructed as A = UΣU⊤, where U ∈ Rm×rA is a random orthonormal
matrix and Σ ∈ SrA+ is a diagonal matrix with entries evenly distributed on a logarithmic scale in
the interval [1/κ, 1]. Feature matrices {Mi}ni=1 are generated as described in G.1.

We initialize X0 = Z0(Z
⊤
0 Z0)

−1/2 and Θ0 = Ir for both settings, where Z0 ∈ Rm×r consists
of i.i.d. standard Gaussian entries. We adopt stepsizes of η = 0.1 for updating X and µ = 2 for
updating Θ. To enforce Θ to be diagonal and nonnegative in the “Diagonalized” setting, we perform
an SVD on Θt after each update, extract the diagonal matrix, and apply hard thresholding to ensure
that all the diagonal entries are nonnegative.
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