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Abstract
Existing generative models exhibit a memorization–generalization trade-off, and thus, avoiding
memorization is a common strategy to promote generalization. In supervised learning, this long-
accepted trade-off is being challenged, as recent studies show modern overparametrized models can
achieve benign overfitting; that is, they generalize well even while exactly fitting, or memorizing, the
training data. This raises the question of whether overparametrized generative models can similarly
bypass this trade-off and achieve superior generalization alongside memorization. We address
this with an empirical risk formulation that uses presampled latent variables instead of integrating
over the entire latent distribution. We then recast the generative modeling problem as a supervised
learning task of learning an optimal transport map, enabling us to leverage the concept of benign
overfitting. In the one-dimensional setting, we show for the first time that benign overfitting can
occur in generative models. We further expand and empirically validate our approach to higher
dimensions, illustrating that benign overfitting extends more broadly across generative models.

1. Introduction

Generative models, such as generative adversarial networks [11] and diffusion models [14, 35], have
become increasingly influential across various domains, from image synthesis [16, 30, 37, 40] to
novel material generation [2, 24, 43]. Accordingly, interest in understanding their generalizability, the
ability to generate diverse realistic data unseen during training, has grown significantly in recent years.
A conventional wisdom in generative models is that there exists a trade-off between memorization
(i.e., overfitting) and generalization [26, 41, 44]. Hence, techniques such as weight decay, early
stopping, and underparametrization, are typically incorporated [3, 13] to suppress memorization and
thereby improve generalization.

Comparably, in the context of supervised learning, the memorization–generalization trade-off,
based on the bias–variance trade-off [12], was generally accepted as true, until just a few years ago,
and techniques to prevent memorization were commonly employed [18, 39]. However, recent studies
have shown that overparametrized supervised learning models trained to achieve zero empirical risk,
memorizing the training data, can exhibit superior generalization performance [5, 27]. This empir-
ically observed and theoretically supported phenomenon is now known as benign overfitting [4, 23].

In contrast, to the best of our knowledge, there is currently neither theoretical nor even exper-
imental evidence showing that generative models can achieve superior generalization beyond the
conventional trade-off. This motivates the following central question of our study:

Can generative models exhibit superior generalization via benign overfitting,
similar to supervised learning?
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To explore this question, we first note that the empirical risk in training generative models is often
the distance between the generated distribution and the empirical target data distribution [19, 45].
However, this strategy forces all generated outputs to match training data, resulting in poor gener-
alization [21, 29]. Therefore, for the model to generate outputs not in the training data, we should
not utilize the entire latent distribution during training. We thus consider alternatively minimizing an
empirical risk that only uses a fixed subset of latent vectors presampled from the latent distribution.

While this alternative choice opens the possibility to challenge the conventional trade-off, it
remains unclear whether it can lead to superior generalization performance. As a first step toward
this direction, we recast generative modeling as a regression task enabling us to leverage the theory
of benign overfitting in regression. This leads to the following contributions:

1) In Section 3, we recast generative modeling as a regression task of learning the optimal
transport map from the latent distribution to the true data distribution, using presampled latent
variables and training data.

2) In Section 4, we show that generative models can exhibit benign overfitting, based on the ran-
dom feature model framework [34]. Among several relevant works [7, 15, 33], we focus on [34]
as it presents the “more is better” principle; increasing the model size improves performance.
This suggests that a similar phenomenon may happen in generative modeling, despite the
common belief that increasing model size without proper regularization impairs performance.

2. Preliminaries

2.1. Regression: population and empirical risks

Consider a standard regression setting with a training dataset D = {(zi, xi)}ni=1 where {zi}ni=1 are
i.i.d. samples from a probability distribution ξ over Rd, and

xi = f∗(zi) + ϵi (1)

for a target function f∗ : Rd → R and ϵi denoting the additive noise component. We further consider
regression with feature maps, where f(·) = ψ(·)⊤β with a feature map ψ : Rd → Rp and model
parameters β ∈ Rp. Then (1) reduces to estimating β∗ such that f∗(·) = ψ(·)⊤β∗. Moreover, we
set ψ to be a random feature map, which is of the form ψ(z) =

(
g(w1, z), . . . , g(wp, z)

)
for some

function g, and wi i.i.d. samples from some distribution ρ. For later purposes, assume that g admits
a singular value decomposition g(w, z) =

∑
i

√
λiζi(w)ϕi(z) with ζi ∈ L2(ρ) and ϕi ∈ L2(ξ).

Ideally, we would like to minimize the population risk

R(β) := Ez∼ξ[∥ψ(z)⊤β −ψ(z)⊤β∗∥2] = ∥β − β∗∥2Σ, (2)

where Σ := Ez∼ξ[ψ(z)ψ(z)
⊤], but typically β∗ is inaccessible. Hence, the empirical risk

R̂(β) :=
1

n

n∑
i=1

∥∥ψ(zi)⊤β − xi
∥∥2 (3)

is used as a proxy to be minimized. The generalization performance of the learned model f̂ = ψ⊤β̂,
obtained by minimizing the empirical risk, is still formulated by the population risk R(β̂).

Classical statistical learning theory suggests a bias–variance trade-off [12]. However, recent
studies have shown the opposite, that overparametrized models, despite being trained to perfectly
memorize the training data, can still exhibit strong generalization performance [4, 5, 27, 34, 38].

2



RETHINKING MEMORIZATION–GENERALIZATION TRADE-OFF IN GENERATIVE MODELS

2.2. Generative modeling: population and empirical risks

Now consider when the dataset {xi}ni=1 consists of n i.i.d. samples from a distribution ν on Rm.
Generative models aim to learn a process which approximates the target distribution ν by transform-
ing the latent distribution ξ. We focus on the models whose generative process is represented by a
deterministic map G. In this case, the goal is to approximate ν by G♯ξ, the pushforward of ξ by G.

The population risk of a generative model is defined by a divergence between the generated
distribution and target data distribution. Let us consider the squared 2-Wasserstein distance as the
population risk, R(G) := W2

2 (G♯ξ, ν). In practice, ν is not directly accessible, so the semi-discrete
empirical risk R̂semi(G) := W2

2 (G♯ξ, ν̂) is often minimized instead, where ν̂ := 1
n

∑n
i=1 δxi is the

empirical target distribution. A few works, e.g., [36], have also explored an alternative of minimizing

R̂fully(G) := W2
2 (G♯ξ̂, ν̂) = inf

π∈Sn

1

n

n∑
i=1

∥G(zi)− xπ(i)∥2, (4)

which we call the fully-discrete empirical risk, where ξ̂ = 1
n

∑n
i=1 δzi is the empirical latent

distribution on the i.i.d. samples z1, . . . ,zn ∼ ξ, and Sn is the set of all permutations of {1, . . . , n}.

3. Recasting Generative Modeling as Regression via Optimal Transport

Generative modeling and supervised learning are typically viewed as two distinct paradigms. Here,
we bridge the two by recasting generative modeling as a regression problem via optimal transport.

3.1. The first step toward bridging generative modeling and regression

Since generative modeling in general admits infinitely many mappings minimizing R(G), linking
it with regression requires choosing a particular generator G∗. We choose G∗ to be the optimal
transport map. To this end, the rest of this paper considers the equal-dimensional case d = m, leaving
extensions to unequal dimensions for future work.

Given a cost function c, an optimal transport (OT) map G∗ from ξ to ν is an optimal solution to

inf
G :G♯ξ=ν

∫
c(z, G(z)) dξ(z). (5)

For the quadratic cost c(x,y) = ∥x−y∥2, if ξ is absolutely continuous with respect to the Lebesgue
measure, then Brenier’s theorem [6] ensures that there uniquely exists an optimal transport map G∗.

Learning the OT map in the context of generative modeling is not new; see, e.g., [17, 22, 31].
However, there were no discussions on the generalization behavior when learning from finite training
data. In contrast, this paper systemically analyzes how an OT map can be learned from finite training
data {xi}ni=1 and presampled latent variables {zi}ni=1, by casting the problem as a regression task.

3.2. Optimal transport map based regression model for generative modeling

We now formulate a regression model, analogous to (1), for generative modeling based on the OT
map. This requires pairing the finite training data with presampled latent variables. We naturally
choose the OT map π̃ ∈ Sn between them, a permutation minimizing minπ∈Sn

∑n
i=1 ∥zi − xπ(i)∥2.

Having paired the dataset as {(zi,xπ̃(i))}ni=1, we obtain the regression model

xπ̃(i) = G∗(zi) + ϵi, (6)
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where ϵi ∈ Rm denotes noise resulting from recasting generative modeling as regression. That said,
these noises are not i.i.d., and this complicates the use of existing benign overfitting theories [34].

3.2.1. OPTIMAL TRANSPORT MAP BASED REGRESSION MODELS: ONE-DIMENSIONAL SETTING

By particularly focusing on the one-dimensional setting, we can get a more refined characterization
of the noises. It is well known that, for empirical distributions ξ̂ and ν̂ on R, the OT map pairs the
sorted zis to the sorted xis [28, Remark 2.28]. Hence, the regression model (6) becomes1

xi:n = G∗(zi:n) + ϵi, (7)

where xi:n denotes ith order statistic, i.e., the ith smallest one among {xi}ni=1. However, for arbitrary
target distribution ν, complete characterization of order statistics remains unavailable.

Fortunately, for our subsequent benign overfitting analyses, we only need the variances of ϵis to
be bounded. This turns out to be achievable, under a mild assumption on the target distribution ν.

Assumption 1 The target distribution ν has finite variance; i.e., for x ∼ ν, we have Var(x) ≤ σ2.

Lemma 1 Under Assumption 1, for any n ≥ 1, the noise in (7) satisfies 1
n

∑n
i=1Var(ϵi) ≤ 2σ2.

4. Benign Overfitting in Generative Models

In this section, we demonstrate benign overfitting of generative models, built upon the results of [34].

4.1. Theoretical results in the one-dimensional setting

Let us first study the simpler case, of when d = m = 1. To facilitate a plausible yet theoretical
analysis, we adopt the following ansatz, introduced therein.

Assumption 2 (34, Gaussian Universality Ansatz) The expected population risk remains unchanged
even if we replace {ϕ̃i(z)} with i.i.d. samples from N (0, 1) when z ∼ ξ, and {ζ̃i(w)} with i.i.d.
samples from N (0, 1) when w ∼ ρ.

As in kernel regression, we approximate G∗ by minimizing the least squares objective,

min
G( · )=ψ( · )⊤β

1

n

n∑
i=1

∥G(zi)− xπ̃(i)∥2. (8)

We focus on its ridge regression version, in which we solve (8) with an additional term δ
n ∥β∥2 with

δ > 0 in the objective. The optimal solution is then β̂(δ) = Ψ⊤(ΨΨ⊤ + δI)−1x, where Ψ is a ma-
trix whose ith row is ψ(zi)⊤. Accordingly, the learned model to be studied is Ĝ( · ) = ψ( · )⊤β̂(δ).

Let G∗(z) =
∑

i viϕi(z) be the expansion of the target function with respect to {ϕi}i. In the
random feature eigenframework [34], which deals with classical ridge regression problems under the
traditional assumption that ϵ1, . . . , ϵn are i.i.d. Gaussians, it is proposed that the expected population
risk can be well approximated by

ED
[
R(β̂(δ))

]
≈ Ete :=

1

1− q(p−2s)+s2

n(p−q)

(∑
i

(
γ

λi + γ
− κλi

(λi + γ)2
p

p− q

)
v2i + σ̌2

)
, (9)

1. For simplicity, we continue to use ϵi, where the index i is assumed to have been reordered.
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where, for s :=
∑

i
λi

λi+γ and q :=
∑

i

(
λi

λi+γ

)2, κ and γ are unique nonnegative numbers such that
n = s + δ

κ and p = s + pκ
γ . It is stated in Appendix I.3 of [33], the work from which [34] is

developed, that σ̌2 is the term corresponding to what is “effectively noise”. In their setting, that
quantity is the mean squared error of xi −G∗(zi). We argue that this reasoning also applies to our
setting, and σ̌2 should be set as the expected residual variance σ̌2 = 1

n E
[∑n

i=1(xi:n −G∗(zi:n))
2
]
.

Founded on these specifications, as in [34], we can show that increasing the number of features
reduces the risk, so long as we are free to choose the ridge parameter.

Theorem 2 Let Ete(n, p, δ) denote the value of Ete with dataset size n, number of features p, and
ridge parameter δ. Suppose that p ≤ p′. Then, under Assumptions 1 and 2, it holds that

min
δ

Ete(n, p
′, δ) ≤ min

δ
Ete(n, p, δ).

Moreover, if we further assume that p > n, then denoting Ete, 0 = limδ→0+ Ete, it holds that

Ete, 0(n, p
′) ≤ Ete, 0(n, p).

4.2. Extending the theory to higher dimensions

The theoretical results in Section 4.1 can be extended to higher dimensions, under assumptions
appropriately modified. Consider where a dataset is now {(zi,xi)}ni=1 ⊂ Rd × Rm. We wish to
estimate β under the linear model generalizing (1); for ψ : Rd → Rp×m, β ∈ Rp, and ϵi ∈ Rm,

xi = ψ(zi)
⊤β + ϵi. (10)

In particular, the change in ψ amounts to g now being an Rm-valued function. Then, we can show
that Theorem 2 holds almost verbatim; the exact statements are in Theorems 13 and 14. For further
details, with an overview on kernel regression with vector-valued targets, see Appendices C and D.

4.3. Experiments

We present experimental results in Appendix E to validate our analyses of the random feature model,
particularly the approximation of the population risk by Ete, thereby empirically supporting the
principle that using more features is better.

5. Conclusion

We showed that overparametrized generative models can generalize despite memorizing training
data, contrary to conventional belief that memorization undermines generalization performance. Our
approach demonstrated this through learning the optimal transport map. By reformulating generative
modeling into a regression task, quantitative generalization analyses became possible, leading to theo-
retical demonstrations that benign overfitting can occur in generative models. Specifically, we showed
that increasing the number of features improves performance. Our work hence frames a new approach
for studying the interplay between overparameterization and generalization in generative models.

Our work is yet limited to the latent and target distributions defined on the same space. Future
work could explore alternative mappings beyond the optimal transport map, such as those based on
the Gromov–Wasserstein theory or optimal transport maps composed with embeddings, which could
enable analysis when the distributions lie on different underlying spaces.
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Appendix A. Missing Details for Section 3

For a distribution ν on R, let Fν(x) := ν((−∞, x]) be its cumulative distribution function (CDF),
and F

[−1]
ν (x) := inf {t ∈ R : Fν(t) ≥ x} be its quantile function, the generalized inverse of Fν .

Let us begin by recalling the following well-known fact.

Theorem 3 (32, Theorem 2.9) Let ξ and ν be probability distributions on R. If ξ is absolutely
continuous with respect to the Lebesgue measure, then a nondecreasing function G∗ = F

[−1]
ν ◦ Fξ is

the an OT map under the quadratic cost.

A.1. Characterizing the noise model in the one-dimensional setting

We study the distributions of the noise ϵi in (7). Our main focus is to show that they are bounded on
expectation. In proving this boundedness, the following lemma plays a pivotal role.

Lemma 4 Suppose that ξ is absolutely continuous with respect to the Lebesgue measure. Then, xi:n
and G∗(zi:n) are identically distributed.

Proof Showing that G∗(zi:n) and xi:n are identically distributed amounts to showing that their CDFs
are identical. Notice that by the definition of the generalized inverse of Fµ it holds that

F [−1]
µ (p) ≤ x ⇐⇒ p ≤ Fµ(x). (11)

It is well-known that the CDF of the order statistic zi:n is

Fzi:n(t) = P(zi:n ≤ t) =
n∑

j=i

(
n

j

)(
Fξ(t)

)j(
1− Fξ(t)

)n−j
.

By Theorem 3, we know that G∗(t) =
(
F

[−1]
ν ◦ Fξ

)
(t). Thus, with (11), one can observe that

the CDF of G∗(zi:n) satisfies

FG∗(zi:n)(t) = P(G∗(zi:n) ≤ t)

= P
((
F [−1]
ν ◦ Fξ

)
(zi:n) ≤ t

)
= P(Fξ(zi:n) ≤ Fν(t)).

As we assume that ξ is absolutely continuous with respect to the Lebesgue measure, Fξ has a
well-defined inverse. Hence, continuing from the above, we get

FG∗(zi:n)(t) = P(Fξ(zi:n) ≤ Fν(t))

= P(zi:n ≤ (F−1
ξ ◦ Fν)(t))

=
n∑

j=i

(
n

j

)(
(Fξ ◦ F−1

ξ ◦ Fν)(t)
)j(

1− (Fξ ◦ F−1
ξ ◦ Fν)(t)

)n−j

=

n∑
j=i

(
n

j

)(
Fν(t)

)j(
1− Fν(t)

)n−j

= P(xi:n ≤ t)

= Fxi:n(t).

Therefore, the distributions of G∗(zi:n) and xi:n are identical.

11
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A.2. Proof of Lemma 1

Let us begin with some simple observations. As usual, we denote x1, . . . , xn
i.i.d.∼ ν, and let

x1:n, . . . , xn:n be their order statistics.

Proposition 5 Let ν be a probability distribution with Ex∼ν [|x|] < ∞. Then for any i = 1, . . . , n,
it holds that E[xi:n] ≤ nE[|x1|].

Proof From the chain of inequalities

E[xi:n] ≤ E[|xi:n|] ≤ E

[
n∑

i=1

|xi:n|

]
= E

[
n∑

i=1

|xi|

]
= nE

[
|x1|
]

the bound is immediate.

Proposition 6 Let ν be a probability distribution with a finite second moment. Then for any
1 ≤ i, j ≤ n, it holds that E[xi:nxj:n] ≤ nE[x21].

Proof In a similar manner to the preceding proposition, it holds for any i = 1, . . . , n that

E[x2i:n] ≤ E

[
n∑

i=1

x2i:n

]
= nE

[
x21
]
.

Therefore, by the Cauchy-Schwarz inequality

E[xi:nxj:n] ≤
√
E[x2i:n]E[x2j:n] ≤ nE

[
x21
]

and we are done.

With these results, we can prove the following lemma, which will play a key role in the proof
of Lemma 1.

Lemma 7 Under Assumption 1, for any 1 ≤ i, j ≤ n, the covariance of xi:n and xj:n is nonnegative.
That is,

Cov(xi:n, xj:n) ≥ 0. (12)

Proof For notational convenience, let x = (x1, . . . , xn). As x1, . . . , xn are i.i.d. samples, they are
associated [10, Theorem 2.1], in the sense that for any two nondecreasing functions f, g with all of
E[f(x)], E[g(x)], and E[f(x)g(x)] finite, it holds that

Cov(f(x), g(x)) ≥ 0. (13)

Now for each i = 1, . . . , n, define

hi(a1, . . . , an) = (the ith smallest value among a1, . . . , an)

so that hi(x1, . . . , xn) = xi:n. If we can take f = hi and g = hj in (13), then (12) will follow. To
this end, observe that for any i and j, by Theorem 5 and Jensen’s inequality,

E[hi(x)] = E[xi:n] ≤ nE[|x1|] ≤ n
√
E[x21] < ∞,

12
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and by Theorem 6,
E[hi(x)hj(x)] = E[xi:nxj:n] ≤ nE[x21] < ∞.

Hence, it suffices to show that hi is nondecreasing for each i. But this is immediate from the definition
of hi; indeed, if any xk increases (while all the other arguments are held fixed), then the ith order
statistic cannot decrease. This completes the proof.

We are now ready to prove Lemma 1.

Lemma 8 (Lemma 1) Under Assumption 1, for any n ≥ 1, the noise in (7) satisfies

1

n

n∑
i=1

Var(ϵi) ≤ 2σ2.

Proof As zi and xj are independent for any pair of i and j, we can decompose the variances into

1

n

n∑
i=1

Var(ϵi) =
1

n

n∑
i=1

Var(ϵzi:n + ϵxi:n)

=
1

n

n∑
i=1

Var(ϵzi:n) +
1

n

n∑
i=1

Var(ϵxi:n).

Thus, it suffices to show that both noise components induced by zi:n and xi:n have bounded variances.
Bounding the variance of the noises induced by xi:n can be done as

1

n

n∑
i=1

Var(ϵxi:n) =
1

n

n∑
i=1

Var(xi:n − E[xi:n])

=
1

n

n∑
i=1

Var(xi:n)

=
1

n
Var

(
n∑

i=1

xi:n

)
− 2

n

∑
1≤i<j≤n

Cov(xi:n, xj:n)

=
1

n
Var

(
n∑

i=1

xi

)
− 2

n

∑
1≤i<j≤n

Cov(xi:n, xj:n)

≤ σ2 − 2

n

n∑
1≤i<j≤n

Cov(xi:n, xj:n)

≤ σ2

where the first inequality follows from ν being a distribution with a bounded variance (Assumption 1),
and the second inequality is a direct consequence of Theorem 7.

For the other sum, observe that

1

n

n∑
i=1

Var(ϵi,z) =
1

n

n∑
i=1

Var(E[G∗(zi:n)]−G∗(zi:n)) =
1

n

n∑
i=1

Var(G∗(zi:n)).

13
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By Lemma 4, for each i = 1, . . . , n, we know that G∗(zi:n) and xi:n are identically distributed.
Hence, we have

n∑
i=1

Var(G∗(zi:n)) =
n∑

i=1

Var(xi:n),

and therefore
1

n

n∑
i=1

Var(ϵi) =
2

n

n∑
i=1

Var(xi:n) ≤ 2σ2 (14)

which is exactly the claimed bound.

Appendix B. Proof for Section 4.1

B.1. Proof of Theorem 2

Theorem 9 (Theorem 2) Let Ete(n, p, δ) denote the value of Ete with dataset size n, number of
features p, and ridge parameter δ ≥ 0. Suppose that p ≤ p′. Then, under Assumptions 1 and 2, it
holds that

min
δ

Ete(n, p
′, δ) ≤ min

δ
Ete(n, p, δ).

Moreover, if we further assume that p > n, then denoting Ete, 0 = limδ→0+ Ete, it holds that

Ete, 0(n, p
′) ≤ Ete, 0(n, p).

Proof The first part of the statement is an immediate consequence of Theorem 1 in [34], which states
that if σ2 is a fixed constant then p 7→ minδ Ete(n, p, δ) is nonincreasing. In our regression model,
the noise may depend on the dataset size n, but it is clear that it does not depend on the number of
features p. Hence, if n is kept fixed, σ̌2 = 1

n

∑n
i=1Var(ϵi) in (9) will also be a fixed constant, and

therefore, the nonincreasing property of Ete implies the claimed inequality.
The second part of the statement follows from Proposition 2 in [34], under a similar logic. Indeed,

if n is kept fixed, σ̌2 will also be fixed, so in the limit as δ → 0+, we can apply [34, Proposition 2]
to conclude that ∂Ete, 0

∂p ≤ 0 when p > n. The claimed inequality is then immediate.

Appendix C. Vector-Valued Kernel Regression: Prerequisites for Section 4.2

C.1. Vector-valued linear models

As a preliminary step, let us briefly review how the kernel method can be extended to when the
targets, or labels, are multidimensional. For further details, see, for example, [25].

Suppose we are given a dataset {(zi,xi)}i=1,...,n ⊂ Rd×Rm. In finding a regressor, we consider
linear models, which are functions of the form f(z) = ψ(z)⊤β for some matrix-valued feature map
ψ : Rd → Rp×m, so that the model is linear on the p-dimensional parameter β ∈ Rp.

Such a feature map induces a matrix-valued kernel k(z, z′) = ψ(z)⊤ψ(z′) ∈ Rm×m. By
mimicking the construction of the reproducing Hilbert kernel space (RKHS) associated with scalar-
valued kernels, one can show the existence of the RKHS H associated with k, in the sense that

(i) H is a Hilbert space consisting of functions Rd → Rp,

14
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(ii) there exists a function κ : Rd → H such that k(z, z′) = ⟨κ(z), κ(z′)⟩H ∀z, z′ ∈ Rd, where
⟨ · , · ⟩H is the inner product defined on H, and

(iii) for any h ∈ H and z ∈ Rd, denoting by hj the jth component function of h and by ej the jth
standard basis vector of Rm, it holds that

⟨h,k( · , z)ej⟩H = hj(z). (15)

Notice that the empirical kernel matrix (or the Gram matrix) becomes a block matrix of the form

K̂ =

k(z1, z1) · · · k(z1, zn)
...

. . .
...

k(zn, z1) · · · k(zn, zn)

 ∈ Rnm×nm.

Now we consider the empirical risk minimization problem, applied to this setting. For a loss
function ℓ : Rm × Rm → R, one can either consider an empirical risk minimization problem of
finding an optimal parameter,

min
β

n∑
i=1

ℓ(xi,ψ(zi)
⊤β) +

δ

2
∥β∥2 , (16)

or minimizing the empirical risk directly over the RKHS,

min
f∈H

n∑
i=1

ℓ(xi,f(zi)) +
δ

2
∥f∥2H . (17)

The representer theorem also holds for vector-valued outputs. In other words, there exist vectors
a1, . . . ,an ∈ Rm such that the empirical risk minimization problem (16) has an optimal solution β̂
which can be written as

β̂ =
n∑

j=1

ψ(zj)aj ,

and moreover, for the same vectors a1, . . . ,an, the function

f̂ =
n∑

j=1

k( · , zj)aj

becomes an optimal solution f̂ to (17). In particular, for our purpose, we set ℓ to be the mean squared
error ℓ(x,x′) = 1

2 ∥x− x′∥2. Then, (16) becomes an unconstrained convex quadratic programming,
for which we readily have a closed-form solution

a = (K̂ + δI)−1x.

Here a and x are concatenations of a1, . . . ,an and x1, . . . ,xn, respectively, into vectors in Rnm.

15
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C.2. Extending the eigenlearning framework

To simplify our narration, we act as if the data points z1, . . . ,zn are sampled without replacement
from a discrete set X ⊂ Rd with |X | = M very large. This is a strategy also taken in [33], and the
arguments supporting the validity of this choice therein still apply.

Under very mild assumptions, the kernel k admits a Mercer-type decomposition

k(z, z′) =
∑
i

λiϕi(z)ϕi(z
′)⊤. (18)

For example, only by assuming that ψ is continuous and z 7→ ∥k(z, z)∥ is locally bounded one can
get a decomposition with each eigenvector ϕi being continuous [8].

The decomposition (18) of the kernel k leads to a decompositionK = Φ⊤ΛΦ of the empirical
kernel matrix, where Φ is the design matrix having a block matrix form

Φ =

 ϕ1(z1)
⊤ · · · ϕ1(zn)

⊤

...
. . .

...
ϕM (z1)

⊤ · · · ϕM (zn)
⊤


and Λ = diag(λ1, . . . , λM ).

Let f =
∑

i viϕi and f̂ =
∑

i v̂iϕi be the expansions of the target function f and the estimator
f̂ , respectively, with respect to the eigenbasis. With some algebra (which we omit here, as the
derivations are mostly identical to what we detail in Appendix C.3), one can verify that the identity

v̂ = ΛΦ(Φ⊤ΛΦ+ δI)−1Φ⊤︸ ︷︷ ︸
=:T

v

still holds mutatis mutandis, with the learning transfer matrix T .

C.3. Extending the RF eigenframework

Let us now move on to random feature models, where the feature map ψ is possibly nondeterministic.
More precisely, we assume that for some function g : Rh × Rd → Rm and a probability distribution
ρ on Rh, the feature map ψ is given by

ψ(z) =

 g(w1, z)
⊤

...
g(wp, z)

⊤

 (19)

where w1, . . . ,wp are i.i.d. samples from ρ.
Due to the targets being multidimensional, we have to deal with vector spaces of Rm-valued

functions. In particular, we have to work with L2(ξ;Rm), the vector space of Rm-valued functions
that are “square-integrable with respect to ξ”. Strictly speaking, to define measurability and inte-
grability of Banach-space-valued functions in general, one has to introduce the concept of Bochner
integrals; see, e.g., [42, Sections V.4–5]. Fortunately, when the codomain is a Euclidean space Rm,
the measurability (resp., integrability) of a function reduces to the measurability (resp., integrability)

16
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of each of the component functions. Under this notion of integrability, L2(ξ;Rm) becomes a Hilbert
space once we give the inner product as

⟨f ,h⟩L2(ξ;Rm) :=

∫
f(z)⊤h(z) dξ(z).

In the RF eigenlearning framework [34] which considers the case where m = 1, the singular
value decomposition (SVD) of g(w, z), a scalar-valued function in that case, plays an important role.
Thus, a key step in extending this framework is to show that SVD is also possible for vector-valued
functions.

Theorem 10 (Singular Value Decomposition of Vector-Valued Functions) Assume that L2(ρ)
and L2(ξ;Rm) are separable, and g ∈ L2(ρ × ξ;Rm). Then, there exist positive numbers
σ1 ≥ σ2 ≥ · · · and orthonormal sequences {ζi}i ⊂ L2(ρ) and {ϕi}i ⊂ L2(ξ;Rm) such that

g(w, z) =
∑
i

σiζi(w)ϕi(z) (20)

where the sum is either finite or converges in the L2 norm.

Proof Consider an integral operator I : L2(ρ) → L2(ξ ;Rm) defined as

I(f) =
∫
g(w, · )f(w) dρ(w),

and denote the component operators of I by I(f) = (I1(f), . . . , Im(f)). As g is coordinatewise
square-integrable, each of I1, . . . , Im is compact [20, Theorem 22.4]. Now let f1, f2, . . . be a
bounded sequence in L2(ρ). By passing into a subsequence m times, with at the jth pass ensuring
that the image of the obtained subsequence under Ij converges, we can find a subsequence, say
{fkj}j , of {fk}k such that all of {I1(fkj )}j , . . . , {Im(fkj )}j converge. This is equivalent to the
convergence of {I(fkj )}j , showing that I itself is also a compact operator. Then I admits a singular
value decomposition [9, Theorem 1.6]; there exist positive numbers σ1 ≥ σ2 ≥ . . . and orthonormal
sequences {ζi}i ⊂ L2(ρ) and {ϕi}i ⊂ L2(ξ;Rm) such that

I( · ) =
∑
i

σi ⟨ζi, · ⟩L2(ρ)ϕi (21)

where the sum converges in the operator norm.
Let {ηi}i an orthonormal sequence in L2(ρ) so that {ζi}∪ {ηi} is an orthonormal basis of L2(ρ).

Similarly, let {χi}i ⊂ L2(ξ;Rm) be so that {ϕi}i∪{χi}i is an orthonormal basis of L2(ξ;Rm). For
the moment, let us assume that the right hand side of (21) is an infinite sum. For each k = 1, 2, . . . ,
let gk(w, z) =

∑k
i=1 σiζi(w)ϕi(z), rk+1 = g − gk, and

Jk(f) =

∫
rk+1(w, · )f(w) dρ(w).

17
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Then by (21), we have

Jk(ζi) =

∫
g(w, · )ζi(w) dρ(w)−

∫
gk(w, · )ζi(w) dρ(w)

= I(ζi)−
k∑

j=1

∫
ζi(w)ζj(w)ϕj dρ(w)

= σiϕi − σiϕi1{i≤k}

= σiϕi1{i>k}.

(22)

For any i, j = 1, 2, . . . , using ζiϕj to denote (w, z) 7→ ζi(w)ϕj(z), it follows that

⟨rk+1, ζiϕj⟩L2(ρ×ξ;Rm) =

∫∫
rk+1(w, z)⊤ (ζi(w)ϕj(z)) d(ρ× ξ)(w, z)

=

∫ (∫
rk+1(w, z)ζi(w) dρ(w)

)⊤
ϕj(z) dξ(z)

=

∫
Jk(ζi)

⊤ϕj dξ

= ⟨Jk(ζi),ϕj⟩L2(ξ;Rm)

= σiδij1{i>k}.

(23)

Let us use analogous notations for ηiϕj , ζiχj , and ηiχj . As ⟨ζI , ηi⟩L2(ρ) = 0 for any pair (I, i), it
is immediate from (21) that I(ηi) = 0. Following the same steps as in (22) and (23), we also get
Jk(ηi) = 0 and hence

⟨rk+1, ηiϕj⟩L2(ρ×ξ;Rm) = 0. (24)

Moreover, as ⟨ϕI ,χi⟩L2(ξ;Rm) = 0 for any pair (I, i), for any θ ∈ {ζi} ∪ {ηi}, from (21) we get
⟨I(θ),χj⟩L2(ξ;Rm) = 0, and by the construction of gk we further have ⟨Jk(θ),χj⟩L2(ξ;Rm) = 0. So
it follows that

⟨rk+1, θχj⟩L2(ρ×ξ;Rm) = ⟨Jk(θ),χj⟩L2(ξ;Rm) = 0. (25)

As {ζiϕj}i,j ∪ {ηiϕj}i,j ∪ {ζiχj}i,j ∪ {ηiχj}i,j is an orthonormal basis of L2(ρ× ξ;Rm) with
(24) and (25), we conclude that

∥rk+1∥2L2(ρ×ξ;Rm) =
∑
i,j

∣∣∣⟨rk+1, ζiϕj⟩L2(ρ×ξ;Rm)

∣∣∣2
=
∑
i,j

σ2
i δij1{i>k}

=
∑
i>k

σ2
i .

In particular, by considering when k = 0, because r1 = g is square-integrable we get
∑

i σ
2
i < ∞,

and consequently, ∥g − gk∥2L2(ρ×ξ;Rm) = ∥rk+1∥2L2(ρ×ξ;Rm) → 0 as k → ∞. That is,

g(w, z) =
∑
i

σiζi(w)ϕi(z), (26)

18
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where the sum converges in the L2 norm. Now, if the right hand side of (21) were a finite sum, say i
ranging from 1 to I , the same logic applies, but it suffices to consider k ranging only up to I , and we
would have g − gI = 0. Still, we do have (26) in this case also, hence the proof is complete.

To avoid unnecessary complexities, it is desirable that {ζi}i and {ϕi} are orthonormal bases of
their respective ambient spaces. To this end, from now on let us assume that the dimensions of L2(ρ)
and L2(ξ;Rm) are equal, so that even if we extend {ζi}i and {ϕi}i into orthonormal bases, we still
have the expansion of g as in (20) by allowing σi = 0 if necessary. For example, under the mild
assumption that ρ and ξ each assign nonzero measures to a countably infinite number of disjoint sets
in Rh and Rd respectively, the dimensions of both spaces will be countably infinite.

Equipped with the SVD of vector-valued functions, we have the empirical kernel

k̂(z, z′) =
1

p
ψ(z)⊤ψ(z′) =

1

p

p∑
i=1

g(wi, z)g(wi, z
′)⊤

=
1

p

∑
j,j′

p∑
i=1

σjσj′ζj(wi)ζj′(wi)ϕj(z)ϕj′(z
′)⊤

(27)

and the deterministic kernel

k(z, z′) = Ew[g(w, z)g(w, z′)⊤] =
∑
j

λjϕj(z)ϕj(z
′)⊤ (28)

where we set λj = σ2
j . Thanks to the similarity of the equations (27) and (28) to their counterparts in

the scalar-valued regression RF eigenframework [34], the remaining steps are mostly straightforward,
resembling what we did in Appendix C.2 to extend the scalar-valued framework into the vector-valued
setting. Define Λ := diag(λ1, λ2, . . . ) and

Z :=

ζ1(w1) · · · ζ1(wp)
ζ2(w1) · · · ζ2(wp)

...
...

...


so that Λ̃ := 1

pΛ
1/2ZZ⊤Λ1/2 is a matrix whose entries are Λ̃jj′ =

1
p

∑p
i=1 σjσj′ζj(wi)ζj′(wi).

Then for a design matrix

Φ =

 ϕ1(z1)
⊤ · · · ϕ1(zn)

⊤

ϕ2(z1)
⊤ · · · ϕ2(zn)

⊤

...
...

...

 ,

it is clear from (27) that the empirical kernel matrix K̂ =
[
k̂(zi, zj)

]
i,j

can be written as

K̂ = Φ⊤Λ̃Φ.

Again, let f =
∑

i viϕi and f̂ =
∑

i v̂iϕi be the expansions with respect to the eigenbasis of
the target function f and the estimator f̂ , respectively. Then for each J = 1, 2, . . . , noting that the
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kernel we actually use in the regression is the empirical kernel k̂, one can observe that

v̂J =
〈
ϕJ , f̂

〉
L2(ξ;Rd)

=

〈
ϕJ ,

n∑
s=1

k̂( · , zs)as

〉
L2(ξ;Rd)

=
n∑

s=1

1

p

∑
j′

p∑
i=1

σJσj′ζJ(wi)ζj′(wi)ϕj′(zs)
⊤as

=
n∑

s=1

∑
j′

Λ̃Jj′ϕj′(zs)
⊤as

=
[
Λ̃Φa

]
J

where [ · ]J denotes the J th component of a vector. Therefore, when there is no noise in the targets
(i.e., labels), the identity

v̂ = Λ̃Φ
(
Φ⊤Λ̃Φ+ δI

)−1
Φ⊤︸ ︷︷ ︸

=:T̃

v

still holds mutatis mutandis, with the learning transfer matrix T̃ .
For further analyses, it would be desirable to have an assumption similar to the Gaussian

universality ansatz (Assumption 2). The orthonormality equations

Ew∼ρ[ζi(w)ζj(w)] = δij (29a)

Ez∼ξ[ϕi(z)
⊤ϕj(z)] = δij (29b)

suggest a natural multivariate rendition of the ansatz as follows.

Assumption M2 (Multivariate Gaussian Universality Ansatz) The expected population risk re-
mains unchanged even if we replace {ϕi} and {ζi} each with random Gaussian functions {ϕ̃i}
and {ζ̃i}, in the sense that {ζ̃i(w)} become i.i.d. samples from N (0, 1) whenw ∼ µ, and {ϕ̃i(z)}
become i.i.d. samples from N (0, 1

mI) when z ∼ ξ.

Remark 11 The covariance matrix associated to ϕ is 1
mI instead of I , as we wish to have

E
[∥∥ϕ̃i(zj)

∥∥2] = 1, based on (29b).

Under the multivariate Gaussian universality ansatz, Φ is a matrix whose entries are i.i.d. samples
from N (0, 1

m), or equivalently, 1√
m
N (0, 1). Hence, rewriting the learning transfer matrix in terms

of Ω =
√
mΦ as

T̃ = Λ̃Ω
(
Ω⊤Λ̃Ω+mδI

)−1
Ω⊤

shows that T̃ is statistically equivalent to the learning transfer matrix appearing in the scalar-valued
RF eigenframework, up to the number of samples n and the ridge parameter δ being scaled by a
factor of m. That is, we can apply the results from the RF eigenframework [34], with necessary
modifications, as follows.
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Let s :=
∑

i
λi

λi+γ , q :=
∑

i

(
λi

λi+γ

)2
, and κ, γ ≥ 0 be the unique nonnegative scalars such that

nm = s+
mδ

κ
and p = s+

pκ

γ
.

The test error of the vector-valued RF regression is then given approximately by

ED
[
R(β̂)

]
≈ Ete :=

1

1− q(p−2s)+s2

nm(p−q)

(∑
i

(
γ

λi + γ
− κλi

(λi + γ)2
p

p− q

)
v2i + σ̌2

)
(30)

where σ̌2 is the mean squared error of the noise, or in other words, the part of the data that is
effectively noise.

C.4. Neural-network-like random feature models

When the labels are scalar-valued, a noteworthy interpretation of linear models that reveals their
connection to modern machine learning models is as 2-layer (fully-connected feed-forward) neural
networks, with a fixed first layer and a trainable second layer. Thus, it is natural to ask if this is also
the case in the vector-valued case. The answer is yes, but with a slight caveat, which we now detail.

A 2-layer network with p hidden neurons, taking d-dimensional inputs and producing m-
dimensional outputs, can be modeled as f(z) = Bσ(Wz + c), for weights W ∈ Rp×d, c ∈ Rp,
B ∈ Rm×p, and an activation function σ applied elementwise. As f is linear on B, it indeed is a
linear model, and this becomes more apparent from the reformulation

f(z) =


σ(Wz + b)⊤ 0 . . . 0

0 σ(Wz + b)⊤ . . . 0
...

...
. . .

...
0 0 . . . σ(Wz + b)⊤



β1

β2
...
βm


where βi is the ith row vector ofB in the column vector form. In other words, f is a linear model
with a block diagonal feature map.

That said, this is exactly where the caveat arises. The issue is that the feature map is not of the
form of (19), as that formulation cannot produce the precise pattern of zeros we now require. This
shows that a separate analysis from Appendix C.3 is required for this case.

To this end, let us consider a setting where the feature map now is a block diagonal matrix

ψ(z) =

ψ1(z)
. . .

ψ1(z)

 ∈ Rmp×m. (31)

The notation ψ1 is used to emphasize that ψ1(z) takes the same form as feature maps (19) for
when m = 1. In other words, as in the scalar-valued labels setting, for some scalar valued map
g : Rh × Rd → R we consider when ψ1(z) =

(
g(w1, z), . . . , g(wp, z)

)
with w1, . . . ,wp

i.i.d.∼ ρ.
Let us call the linear models that arise from (random) feature maps having such block diagonal form
the neural-network-like linear models. For convenience, we also let Ψ1 :=

[
ψ1(z1) · · · ψ1(zn)

]⊤.
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Similar to before, we define the empirical kernel as k̂(z, z′) = 1
pψ(z)

⊤ψ(z′),2 then we get

k̂(z, z′) =
1

p
ψ1(z)

⊤ψ1(z
′)I

=
1

p

p∑
i=1

g(wi, z)g(wi, z
′)I.

Observe that 1
p

∑p
i=1 g(wi, z)g(wi, z

′) is in fact what we would get as the empirical kernel when

m = 1 so that ψ1 is used as the feature map. Thus, for K̂1 denoting the matrix whose entries
are K̂j,j′ = 1

p

∑p
i=1 g(wi, zj)g(wi, zj′), the empirical kernel matrix K̂ =

[
k̂(zi, zj)

]
i,j

is a

block diagonal matrix whose block entries are all constant multiples of the identity matrix, that is,
K̂ = K̂1 ⊗ I where ⊗ denotes the Kronecker product of two matrices.

Recall that x = (x11, . . . , x1m, . . . , xn1, . . . , xnm). Define a permutation matrix P ∈ Rnm×nm

such that P x = (x11, . . . , xn1, . . . , x1m, . . . , xnm). For j = 1, . . . ,m, denote yj = (x1j , . . . , xnj).
Then as permutation matrices satisfy P⊤ = P−1, it holds that

(K̂ + δI)−1x = P⊤P (K̂ + δI)−1P⊤P x

= P⊤(PK̂P⊤ + δI)−1P x

= P⊤

K̂1(z1, z1) + δI · · · 0
...

. . .
...

0 · · · K̂1(z1, z1) + δI


−1

P x

= P⊤


(
K̂1(z1, z1) + δI

)−1 · · · 0
...

. . .
...

0 · · ·
(
K̂1(z1, z1) + δI

)−1


y1...
ym

 ,

and thus denoting by β̂ the concatenation of β̂1, . . . , β̂n into a vector in Rmp, we obtain

β̂ =
[
ψ(z1) · · · ψ(zn)

]
(K̂ + δI)−1x

=
[
ψ(z1) · · · ψ(zn)

]
P⊤


(
K̂1(z1, z1) + δI

)−1
y1

...(
K̂1(z1, z1) + δI

)−1
ym



=

Ψ
⊤
1 · · · 0
...

. . .
...

0 · · · Ψ⊤
1



(
K̂1(z1, z1) + δI

)−1
y1

...(
K̂1(z1, z1) + δI

)−1
ym



=

Ψ
⊤
1

(
K̂1(z1, z1) + δI

)−1
y1

...
Ψ⊤

1

(
K̂1(z1, z1) + δI

)−1
ym

 .

2. As the number of rows in ψ is now mp, one can choose the factor multiplied to the sum to be 1/mp instead of 1/p to
maintain consistency with Appendix C.3. However, as the main functionality of that factor is to convert the sum into a
mean, and as each column of ψ now contains only p nonzero elements, we prefer 1/p over 1/mp. It soon turns out that
such a choice also allows us to directly apply one-dimensional results to this setting.
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That is, for each i = 1, . . . ,m, each β̂i only depends on yi, the collection of the ith coordinates from
{x1, . . . ,xn}. In other words, each β̂i is computed independently from others, as if it is obtained
from a kernel regression in a scalar-valued labels setting by only looking at the ith coordinates in the
data. On top of this, we also have

Σ = Ez∼ξ[ψ(z)ψ(z)
⊤]

=


Ez∼ξ[ψ1(z)ψ1(z)

⊤] 0 · · · 0
0 Ez∼ξ[ψ1(z)ψ1(z)

⊤] · · · 0
...

...
. . .

...
0 0 · · · Ez∼ξ[ψ1(z)ψ1(z)

⊤]

 ,

allowing us to conclude that the population risk is the sum of the coordinatewise population risk.
Meanwhile, notice that the mean squared error of the noise is the sum of the mean squared

errors of the coordinatewise noises, no matter the noise model. Hence, estimating the population
risk can be done as computing the sum of coordinatewise estimations by Ete as in (9). It follows
that the proper assumption to make when studying neural-network-like linear models is the singular
value decomposition of the scalar-valued function g(w, z) =

∑
i σiζi(w)ϕi(z) and the Gaussian

universality ansatz (Assumption 2), not their multivariate versions.
With these established, let us now consider the expansions f =

(∑
j v1jϕj , . . . ,

∑
j vmjϕj

)
and f̂ =

(∑
j v̂1jϕj , . . . ,

∑
j v̂mjϕj

)
. Denote by σ̌2

i the mean squared noise in the ith coordinate.
Then, from the coordinatewise approximation using (9), we have

ED[R(β̂)] ≈
m∑
i=1

1

1− q(p−2s)+s2

n(p−q)

∑
j

(
γ

λj + γ
− κλj

(λj + γ)2
p

p− q

)
v2ij + σ̌2

i

 (32)

where, for s :=
∑

j
λj

λj+γ and q :=
∑

j

( λj

λj+γ

)2, κ and γ are unique nonnegative numbers such that

n = s+ δ
κ and p = s+ pκ

γ . As n, p, q, and s do not depend on the summation index i in the above,
denoting by σ̌2 =

∑n
i=1 σ̌

2
i the overall mean squared noise, we conclude that

ED[R(β̂)] ≈ 1

1− q(p−2s)+s2

n(p−q)

 m∑
i=1

∑
j

(
γ

λj + γ
− κλj

(λj + γ)2
p

p− q

)
v2ij + σ̌2

 . (33)

Remark 12 The same conclusion can be derived by repeating the logic developed in Appendix C.3
but withψ as described in (31). In particular, the same expansions f =

(∑
j v1jϕj , . . . ,

∑
j vmjϕj

)
and f̂ =

(∑
j v̂1jϕj , . . . ,

∑
j v̂mjϕj

)
will be obtained by considering {ϕjei}i,j as the orthonormal

basis of L2(ξ;Rm), where ei denotes the ith standard basis vector of Rm. This also shows that the
multivariate Gaussian universality ansatz is not quite appropriate for neural-network-like linear
models; ϕjei is a sparse vector, whereas N (0, 1pI) is a full-dimensional distribution. We omit the
details of the derivations in this direction.
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Appendix D. Missing Details for Section 4.2

D.1. Statements on the random feature models in higher dimensions

Although our empirical results in Appendix E suggest that the bounded noise assumption analogously
holds in higher dimensions, we were unable to theoretically extend the boundedness analysis of
Lemma 1 beyond the one-dimensional setting. We therefore explicitly assume the following.

Assumption M1 The ϵis in (10) satisfy 1
n

∑n
i=1

∑m
j=1Var(ϵij) ≤ σ̃2.

Then we can prove Theorem 13, which states that using more features is better for random feature
models, detailed in Appendix C.3, in high dimensions also.

Theorem 13 Consider random feature models with targets in Rm. Let Ete(n, p, δ) denote the value
of Ete in (33) with dataset size n, number of features p, and ridge parameter δ. Under Assump-
tions M1 and M2, if p ≤ p′ then minδ Ete(n, p

′, δ) ≤ minδ Ete(n, p, δ), and if moreover p > nm, then
Ete, 0(n, p

′) ≤ Ete, 0(n, p).

Proof Let E ′
te(n, p, δ) denote the value of Ete in the one-dimensional setting (9), then it holds that

Ete(n, p, δ) = E ′
te(nm, p, δm), given that both sides involve the same σ̌2. Hence, the statements in

this theorem are direct consequences of Theorem 2.

It is clear that a similar result holds for neural-network-like random feature models, in particular
because, as we saw in Appendix C.4 the population risk is essentially the aggregation of the
coordinatewise risks. For completeness, we formalize this result as follows.

Theorem 14 Consider neural-network-like random feature models. Let Ete(n, p, δ) denote the
value of Ete in (33) with dataset size n, number of features p, and ridge parameter δ. Under
Assumptions 2 and M1, if p ≤ p′ then minδ Ete(n, p

′, δ) ≤ minδ Ete(n, p, δ), and if moreover p > n,
then Ete, 0(n, p

′) ≤ Ete, 0(n, p).

Proof Clearly, each σ̌2
i is finite, as we assume that σ̌2 is finite. Recalling (32), we know that Ete in

(33) is a sum of m quantities of the form specified as Ete in the one-dimensional setting (9). Hence,
applying Theorem 2, the results on the one-dimensional setting, to each of those m quantities, the
conclusions follow.

Appendix E. Experimental Results

In this section, we discuss the claims regarding random feature models, in particular focusing on the
approximation of the population risk with Ete as stated in (9) for the one-dimensional case and (30)
for higher dimensions, with empirical results.

E.1. One dimensional examples

By choosing ν = Uniform(0, 1), we can exploit the following well known fact on order statistics.

Proposition 15 (1, Examples 2.2.1 and 2.3.1) In the case of ν = Uniform(0, 1), the order statis-
tics satisfy xi:n ∼ Beta(i, n− i+ 1) and (xi:n, xj:n) ∼ BivariateBeta(i, j − i, n− j + 1). In
particular, we have E[xi:n] = i

n+1 , Var(xi:n) =
i(n−i+1)

(n+1)2(n+2)
, and Cov(xi:n, xj:n) =

i(n−j+1)
(n+1)2(n+2)

.
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(b) Uniform(0, 1) to Uniform(0, 1)

Figure 1: Learning the optimal transport maps with random feature models in 1D. We plot the
computed theoretical and experimental population risks. For the meaning of the curves
and scatter plots, see the discussions in Appendix E.

In the statement of Proposition 15, by BivariateBeta(i, j − i, n− j + 1) we are referring to the
so-called bivariate Beta distribution whose probability density function is

f(x, y) =
n!

(i− 1)!(j − i− 1)!(n− j)!
xi−1(y − x)j−i−1(1− y)n−j10<x<y<1(x, y).

Proposition 15 allows us to explicitly characterize the noise model. In specific, with recalling (14),
we have

1

n

n∑
i=1

Var(ϵi) =
2

n

n∑
i=1

Var(xi:n) =
2

n

n∑
i=1

i(n− i+ 1)

(n+ 1)2(n+ 2)
=

1

3(n+ 1)
.

For the latent distribution ξ, we consider two options, N (0, 1) and Uniform(0, 1). As Fν is
the identity function, when ξ is a standard Gaussian, by Theorem 3 the optimal transport map is
G∗(x) = Fξ(x) =

1
2 +

1
2 erf(

x√
2
). Meanwhile, when ξ is also Uniform(0, 1), we have ξ = ν, so the

identity function itself is clearly a solution of (5), hence it is the optimal transport map.
The OT maps are learned by random feature models with g(w, z) = sin(wz + b), where w

denotes the pair (w, b) of random samples w ∼ N (0, 42) and b ∼ N (0, 1).
Figure 1 shows the plots of the results. The curves drawn with solid lines, labeled theory, are the

plots of the estimated population risk Ete, computed by (9) and (30). The scatter plots with vertical
error bars, labeled experiment, represent the “true” population risks computed by 200 iterations of
Monte Carlo integration. The circle markers are the means, and the error bars range from the 2.5th
percentile to the 97.5th percentile of the results from those 200 iterations.

As the captions indicate, Figure 1(a) shows the results when ξ = N (0, 1), and Figure 1(b) shows
the results when ξ = Uniform(0, 1). In both experiments, we set n = 64.

From the plots, we can observe that Ete reasonably approximates the population risk ED
[
R(β̂)

]
,

concurrently capturing the overall tendency of decreasing with respect to the number of features.
These results demonstrate that Ete serves as a reliable proxy for the expected population risk, thereby
empirically supporting the results regarding “using more features is better” derived via Ete.
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E.2. Random feature models in higher dimensions

As an empirical validation of our extension of the theories to the setting of multidimensional targets,
we consider the setting where both the latent and the target distributions are multivariate Gaussians,
ξ = N (µ0,Σ0) and ν = N (µ1,Σ1).

One advantage of working with Gaussians is that we have an explicit formula for the OT map,
allowing us to seamlessly apply our theories.

Theorem 16 (28, Remark 2.31) For ξ = N (µ0,Σ0) and ν = N (µ1,Σ1) with Σ0 invertible, the
optimal transport map G∗ from ξ to ν is an affine function of the form

G∗(z) = µ1 +Σ
−1/2
0

(
Σ

1/2
0 Σ1Σ

1/2
0

)1/2
Σ

−1/2
0 (z − µ0).

As an instantiation of the manifold hypothesis, we set Σ1 to be degenerate, so that ν is supported
on an affine subspace whose dimensionality is lower than its ambient space.

The noise part, that is, the term σ̌2 in the formula (30) of Ete, is estimated in a way described in
Section 3.2. More precisely, given samples z1, . . . ,zn

i.i.d.∼ ξ and x1, . . . ,xn
i.i.d.∼ ν, let π̃ ∈ Sn be

the permutation of {1, . . . , n} such that the optimal transport map from ξ̂ to ν̂ is zi 7→ xπ̃(i), and for
such π̃ we set

σ̌2 = E

[
1

n

n∑
i=1

∥∥G∗(zi)− xπ̃(i)

∥∥2] .
In the experiments, the values of σ̌2 are approximated by Monte Carlo integration using fresh
samples that are not used in the regression phase. While we do not have a theoretical proof that
Assumption M1 holds in this setting, the results of the Monte Carlo integration serve as empirical
evidence supporting its validity.

For the function g determining the (random) feature map ψ in (19), we chose

g(w,x) =

sin(ω
⊤
1 x+ b1)

...
sin(ω⊤

p x+ bp)

 (34)

for w here denoting the collection of all the weights ω1, . . . ,ωp
i.i.d.∼ N (0, 4I) and all the biases

b1, . . . , bp
i.i.d.∼ N (0, 1). We remark that this is essentially ρ being a Gaussian distribution on Rdp+p.

Figure 2(a) is a result when the ambient space is R2, with

µ0 =

[
0.5
0.5

]
, Σ

1/2
0 =

[
0.16 0
0 0.08

]
,

µ1 =

[
−0.5
−0.5

]
, Σ

1/2
1 =

[
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

] [
0.16 0
0 0

] [
1/
√
2 1/

√
2

−1/
√
2 1/

√
2

]⊤
.

In this case, we set n = 64. In each of the Monte Carlo integrations to compute the “true” population
risks, 256 samples were used.
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Figure 2: Learning the optimal transport maps between multivariate Gaussians with random
feature models. We plot the computed theoretical and experimental population risks. The
meanings of the curves and scatter plots are the same as Figure 1.

Figure 2(b) is a result when the ambient space is R3, with

µ0 =

0.50.5
0.5

 , Σ
1/2
0 =

1

4

1 0 0
0 0.75 0
0 0 0.5

 ,

µ1 =

−0.3
−0.4
−0.5

 , Σ
1/2
1 =

1

4
R

0.75 0 0
0 0.5 0
0 0 0

R⊤

whereR is a rotation matrix

R =

 1/2 0 −
√
3/2

0 1 0√
3/2 0 1/2

 1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1

 .

In this case, we set n = 128. In each of the Monte Carlo integrations to compute the “true” population
risks, 1024 samples were used.

Both results in Figure 2 show that Ete is a fairly accurate approximation of the population risk
ED
[
R(β̂)

]
. This empirically validates the discussions we made in Appendix C.

E.3. Neural-network-like model experiments

We also experimented with neural-network-like models, testing the potency of the formula (33) for
Ete as the estimator of the population risk.

To exhibit a comparison to the previous section, we performed an experiment in two dimensions,
using the same target and latent distributions as in the two-dimensional experiment in Appendix E.2.
Meanwhile, to provide insight into more practical settings involving modern generative models where
the neural networks are trained with the standard Gaussian latent distribution, we conducted the
three-dimensional experiment with the same target distribution as in Appendix E.2 but changed the
latent distribution to ξ = N (0, I).
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Figure 3: Learning the optimal transport maps with neural-network-like models. We plot the
computed theoretical and experimental population risks. The meanings of the curves and
scatter plots are the same as Figures 1 and 2.

The same g is used as in (34), but the random feature map follows the configuration of (31). All
other details remain identical to Appendix E.2.

Figure 3 shows the plots of the results. The curves and the scatter plots are drawn in the exact
same way as in the previous experiments. Again, we can observe an agreement between actual
experimental results and the theoretical estimation by Ete, this time computed using (33).
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