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Abstract

What makes large language models (LLMs)
impressive is also what makes them hard to
evaluate: their diversity of uses. To evaluate these
models, we must understand the purposes they
will be used for. We consider a setting where
these deployment decisions are made by people,
and in particular, people’s beliefs about where an
LLM will perform well. We model such beliefs
as the consequence of a human generalization
function: having seen what an LLM gets right or
wrong, people generalize to where else it might
succeed. We collect a dataset of 19K examples of
how humans make generalizations across 79 tasks
from the MMLU and BIG-Bench benchmarks.
We show that the human generalization function
can be predicted using NLP methods: people
have consistent structured ways to generalize. We
then evaluate LLM alignment with the human
generalization function. Our results show that —
especially for cases where the cost of mistakes
is high — more capable models (e.g. GPT-4) can
do worse on the instances people choose to use
them for, exactly because they are not aligned
with the human generalization function.

1. Introduction

Large language models (LLMs) afford a remarkable diver-
sity of uses. This diversity offers immense promise: the
same model can be used to help software engineers write
code and to summarize a doctor’s notes from a clinical
appointment. However, this same diversity poses an evalua-
tion problem: how should we evaluate a model that seems
capable of doing many things?

Evaluating LLMs in the same way as supervised learning
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models — by prespecifying a task and evaluating on a rel-
evant benchmark — undersells the capabilities of LLMs:
LLMs are capable of performing many tasks, not all of
which can be enumerated. Moreover, many of the tasks
that LLMs will be deployed to perform do not have existing
benchmarks. For example, if a business owner wants to
use an LLM to respond to client emails, which benchmark
dataset should they use to evaluate LLMs? Creating a new
benchmark for each possible task is infeasible.

Crucially, in many instances, the decisions about where an
LLM will be deployed are made by people. These decisions
are often driven by where they believe a model will perform
well (Lubars & Tan, 2019; Lai et al., 2022). Assessing the
real-world performance of LLMs therefore requires under-
standing how people form beliefs about their capabilities.

In this paper, we introduce a framework for quantifying
people’s beliefs about LLM capabilities. In our framework,
these beliefs are determined through interaction and evolve
via a human generalization function: humans ask questions,
observe how an LLM responds, and make inferences about
how it would respond to other questions. This is an act
of human generalization, similar to how humans judge
the expertise of other people based on prior interactions.
For example, people may expect that a model that can
answer college physics questions is capable of answering
elementary math questions, but make no inferences about
its ability to answer questions about Japanese literature.

We propose an alignment problem based on the human
generalization function: the best LLM is the one that allows
humans to make the most reliable inferences about where
it will succeed. We show that misalignment with the human
generalization function can have harmful consequences for
deployment: a misaligned model that outperforms another
model on all individual questions can be less effective if
a human deploys it to answer questions it is not capable of
answering.

To study the human generalization function empirically, we
collect data about the generalizations people make about
LLM capabilities. Specifically, we show humans how an
LLM responded to one question, and ask them whether it af-
fects their beliefs about how the same model would respond
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Figure 1: Classically, ML models are deployed to perform tasks based on benchmark performance (left). When deployment
is based on human generalization (right), a human decision maker first interacts with a model to assess its capabilities, and
then the model is deployed to perform tasks the decision maker believes it will perform well on. The model’s deployed
performance depends on how well aligned its capabilities are with the human generalization function.

to another question. We show this function is sparse: most
pairs of questions do not result in people updating their
beliefs. Therefore, we use a bandit approach to target pairs
of questions where humans update their beliefs. In total, we
collect 18,972 examples of human generalizations involving
pairs of questions from 79 distinct LLM evaluation tasks.

We then pose a new task: how well can the questions that
change human beliefs be predicted? We show that belief
changes can be predicted using NLP methods. BERT outper-
forms larger and more recent language models, suggesting
that efficacy in predicting human generalization does not
strictly scale with size or complexity. We release all survey
data in hopes that it will foster further research in modeling
the human generalization function.'

Finally, we use our model of human generalizations to eval-
uate how aligned LLMs are with the human generalization
function. In settings where the cost of mistakes is low, align-
ment increases with model size. However, in settings where
the cost of mistakes is high, the trend reverses: based on
short interactions, humans reach overconfident conclusions
about the capabilities of the largest models.

The rest of the paper is structured as follows: Section 2
introduces our framework. Section 3 describes how we
collect data about human generalizations. Section 4 shows
that the human generalization function can be predicted.
Finally, Section 5 evaluates the alignment between LLMs

"https://github.com/keyonvafa/
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and the human generalization function.

2. Framework

Consider a setting in which a large language model (LLM)
is deployed to answer questions from a distribution of ques-
tions chosen by a human. We show that traditional evalua-
tion techniques, which assume the distribution of questions
to be fixed, can provide misleading measures of deployed
model performance. Instead, evaluation requires modeling
how humans form deployment distributions. To study this
process, we focus on the case where a human deploys an
LLM to answer questions they believe it can answer cor-
rectly. Their beliefs are formed by generalization: humans
assess an LLM’s overall capabilities from a small set of
interactions.

Notation. We use X* to refer to the set of all strings from
an alphabet X. We define a set of questions X C ¥* to
be a subset of the set of all strings. We define a model
f: X — X* to take as input a question and return a string
from the alphabet.” Additionally, ¢ : X x ¥* — {0,1} is
a function that assesses the quality of a response to a ques-
tion, where ¢(z,y) = 1 indicates that y € X* is a correct
response to question z € X and ¢(z,y) = 0 indicates an
incorrect response. (The quality of responses could also
be real-valued but we use a binary function without loss of

2Our framework extends naturally to the case in which a model
is random, returning a probability distribution A(X*) over strings
in response to any question x € X.
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generality.)

Evaluation when people choose questions. Evaluating ma-
chine learning models involves making assumptions about
how they will be deployed. For classical supervised learning
methods, these assumptions are often straightforward: they
will be deployed to answer the kinds of questions they were
trained to answer. Therefore, models are typically evaluated
against a fixed deployment distribution p(z), where overall
effectiveness is

2o P(@)t(z, f(2))- M

For example, a model developed solely to perform sentiment
analysis would be evaluated based on its performance on a
sentiment analysis benchmark.?

General-purpose models like LLMs differ from specific-
purpose methods in that there is no fixed set of tasks for
which they will be deployed; the capabilities of LLMs far
exceed the kinds of questions they were trained to answer.
Moreover, many tasks LLMs may be deployed for (e.g.
writing emails) do not have the well-defined benchmark
datasets that are required for classical evaluation.

Instead, we focus on a setting where humans choose the
questions a model is deployed to answer (Lubars & Tan,
2019; Lai et al., 2022). Humans deploy an LLM to answer
questions according to a human deployment distribution
h(z|f), a probability distribution over inputs that may de-
pend on the model f(-). The human-deployed performance
of a model is

20 (el Ht(, f(x)). 2

Human-deployed performance depends on a model in two
ways. The first is direct and well-studied: an LLM that
answers more questions right will have higher values of
t(z, f(x)). But there is a more subtle second effect: the
chosen questions h(z|f) may depend on the model. If a
human deploys a model to questions it is not capable of
answering, its deployment performance will suffer. This
second effect is omitted when a model is evaluated using a
fixed deployment distribution as in Equation 1.

That the distribution over deployment questions depends
on the model itself has implications for model comparison.
Consider two models f1(-), f2(-). We say f1(-) dominates
fa(+) if every question that fo(-) answers correctly is also
answered correctly by f1(-):

{o: t(x, f2(w)) = 1} CH{a: t(z, fu(z)) =1} ()

3Even this standard evaluation rests on the assumption that
deployment will resemble the benchmark dataset. When this is not
the case, such as under distribution shift, standard evaluation could
be a misleading indicator of real-world performance (Koh et al.,
2021).

In this case, we write f1(-) > f2(+). A model that dominates
another model will have performance at least as good as that
model when evaluated using a fixed deployment distribution
(Equation 1). That is, if f1(-) = fa(-),

2o P@)t(x, fi(2)) = 3, p(@)t(x, fo(z)), 4

for all fixed deployment distributions p(x). However, when
deployment distributions are dictated by humans, the ques-
tions an LLM is chosen to answer can depend on the model
and the relationship may flip:

2o Ml f)t(z, fi(@)) <32, hz|f2)i(x, f2(x))  (5)

In Appendix B, we show that human deployment does not
preserve dominance orderings of models. Consider any
pair of “non-trivial” models fi(-), f2(-) (i.e., neither model
answers all questions correctly or incorrectly) satisfying
f1() = f2(-). There exists some human deployment dis-
tribution A(z|f) under which the human-deployed perfor-
mance of f5(-) strictly improves upon that of f(-). Evaluat-
ing the deployed performance of a model therefore requires
incorporating the human deployment distribution A (x| f).

How people choose questions. So far, we have left the
human deployment distribution h(z|f) unmodeled. We
next consider one possible mechanism that would give
rise to human deployment distributions: humans choose
deployment questions based on their beliefs about a model’s
ability. For example, a business owner may decide an
LLM is effective at summarizing meeting notes but not at
responding to emails, and delegate responsibilities as such.

Specifically, let 0 < b(z|f) < 1 denote a human’s belief
that a model f(-) will respond to input = correctly. We
assume a human chooses a deployment distribution based
on their beliefs about the model’s capabilities: h(z|f) =
h(b(x|f)) for some transformation A(-). This transforma-
tion can take many forms; for example, humans may deploy
a model to answer all questions x where their belief of
success is above some threshold, b(x|f) > 7.

How do humans form beliefs about the capabilities of large
language models? Beliefs may develop through interaction.
It is infeasible for a human to assess an LLM by asking it
every possible question. Instead, users generalize: given
a model, humans ask questions, observe how the model
responds, and draw conclusions about how the model
would respond to other questions. When a human thinks
a question is directly relevant to another, they may update
their beliefs; for example, they may assume that an LLM
that answers a simple addition question correctly would
also be able to answer a similarly worded one correctly. On
the other hand, if two questions are unrelated, they may not
update their beliefs at all.

More formally, for two questions z and z’, we model this
updating through the human generalization function, b(z |
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2’, f), which summarizes a human’s beliefs about an LLM’s
correctness on question x after observing question 2’ and
the model’s response f(z’). Such a human generalization
function may arise, for example, if humans have some joint
beliefs about the LLM’s correctness on questions x and x’
and update their beliefs according to Bayes rule. Humans
may generalize about the performance of LLMs in many
ways, and so we write the human generalization function to
capture this phenomenon.

Human generalizations dictate the specific questions a
model will be put to answer. The deployed performance
of a model (Equation 2) therefore depends on how aligned
the model is with human generalizations. If, after a few
interactions, a human can assess the questions a model is
equipped to answer, we say that the model is aligned with
the human generalization function and it will thus be de-
ployed to answer questions it is capable of answering. On
the other hand, if it is misaligned, humans may be overcon-
fident or underconfident and deploy an LLM to answer a
suboptimal set of questions. Figure 1 contains an overview
of our framework.

As a concrete example, consider two LLMs f1(+) and fa(+)
that can both answer every arithmetic question correctly. As-
sume that f;(-) cannot answer any other question correctly,
while f5(-) can also answer questions about multivariable
calculus correctly but not questions about single-variable
calculus. fo(-) dominates f1(-), f2(-) = f1(-). If, after in-
teracting with each model, a user correctly determines f1(-)
is only capable of answering basic arithmetic questions
correctly, they may deploy it only to answer basic arithmetic
questions. If they incorrectly determine that f5(-) is capable
of answering al/l math questions correctly, the user may
deploy it to answer all arithmetic, single-variable calculus,
and multi-variable calculus questions. Despite fa(:)
dominating f;(-) on every question, its average deployed
error is worse because its capabilities are misaligned with
the human generalization function.

The remainder of the paper is dedicated to empirically in-
vestigating human generalizations of LLMs. Section 3 de-
scribes the collection of a dataset of 19K human generaliza-
tions. In Section 4, we analyze this dataset and show that
human beliefs evolve in predictable ways, and propose a new
benchmark: predict how human beliefs will change from
specific interactions. Finally, in Section 5, we assess how
aligned various LLMs are with the human generalizations
we collect.

3. Collecting Data on Human Generalizations

We conduct a survey to collect a dataset of 18,972 examples
of human generalizations. In this section, we detail the sur-
vey methodology and show that human generalizations are

sparse: for most pairs of questions, humans do not update
their beliefs for how a model will respond to one question
after seeing how it responded to the other. We describe a ban-
dit approach for finding pairs of questions that lead to belief
changes, and upweight these pairs in our data collection.

Survey design. We construct each example in our survey
as follows: a human is first asked to predict how likely a
large language model is to answer a given question x cor-
rectly. They are then shown how an LLM responded to
another question z’, and are asked to update their initial
prediction. This design elicits a person’s prior belief of cor-
rectness b(z| f), the outcome of their generalization function
b(x|z’, f), and the resulting change in beliefs:

A(w\x',f):b(m|x’,f)—b(x\f) (6)

We refer to the output of the human generalization function
b(x | a', f) as a posterior belief, since it describes the
human’s beliefs after observing the LLM’s response on
another question. Since the survey questions are about
hypothetical LLMs, we do not name specific LLMs when
eliciting prior or posterior beliefs. See Figure 2 for examples
of question pairs in the survey.

We aim to measure human generalization across a wide va-
riety of questions, while also requiring that questions have
a single correct answer that can be verified automatically.
Therefore, we base data collection on questions from widely
used LLM benchmarks. Our dataset consists of questions
from the 57 tasks in the Massive Multitask Language Un-
derstanding (MMLU) benchmark (Hendrycks et al., 2020)
and 22 tasks from the BIG-Bench Hard (BBH) benchmark
(Suzgun et al., 2022), totaling 16,347 individual questions.
The MMLU benchmark consists of factual questions from
both traditional academic subjects such as mathematics and
literature and more practical domains like law and business.
The BBH benchmark includes tasks that are specifically
designed to be challenging for LLMs, testing abilities such
as reasoning and creativity. The diversity of questions in
these datasets ensures that the survey captures a wide range
of perceived capabilities. We include more details about
these datasets and their construction in Appendix A.

We conduct all surveys on Prolific (Palan & Schitter, 2018).
To take our surveys, respondents must first pass two compre-
hension checks to ensure their comprehension of our design.
We collect 15 pairs of predictions from each respondent. We
pay each respondent $2.50, and the median survey comple-
tion time is 12 minutes, for an implied rate of $12.50/hour.
We received an IRB review and exemption for this study.

Bandit for finding non-sparse examples. We first con-
ducted a pilot survey, where we randomly sampled pairs of
questions from our dataset and asked users for their prior
and posterior beliefs. Based on this pilot, it was clear that
the human generalization function is sparse: for most ran-
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Do people change belief on:

After people see:

Glycogen breakdown in muscle
initially results in the formation of:
(A) glucose
(B) glucose-1-phosphate
(C) glucose-6-phosphate...

What type of covalent bonds link
the amino acids in a protein?

(A) Peptide bonds

(B) Hydrogen bonds

(C) lonic bonds...

After people see: Do people change belief on:

Which of the boys on the TV show
'My Three Sons' is adopted?

(A) Mike
(B) Ernie
(C) Chip...

(-6-4%2-B)+(1+-2*1*7))=

answered incorrectly ——» downward change in belief

After people see: Do people change belief on:

Is there any priority among
international courts and tribunals?
(A) According to the lis pendens
rule, the court or the tribunal

that seizes first the dispute
has exclusive jurisdiction...

Which of the following articles are
not qualified rights?

(A) Article 3
(B) Article 8
(C) Article 9...

answered correctly —— no change in belief

Do people change belief on:

After people see:

On the nightstand, there is a
fuchsia jug, an orange booklet, a

Which of the following vitamins
provides the coenzyme for
carboxylation reactions?

(A) Biotin

(B) Niacin...

black cat toy, a turquoise crayon,
a yellow paperclip, and a mauve
puzzle. Is the booklet orange?

answered correctly —— upward change in belief

answered incorrectly —— downward change in belief
answered correctly —— no change in belief

Figure 2: Qualitative examples about question pairs and predicted belief changes.

domly selected pairs of questions, a human’s prior beliefs
are the same as their posterior beliefs (see Figure 3).

To focus on question-pairs that lead to meaningful human
generalization, we modify the survey to encourage examples
that will result in belief changes using a bandit approach.
We divide the survey into seven stages. After each stage, we
train BERT (Devlin et al., 2018) to predict the pairs of ques-
tions that are likeliest to result in belief changes (more model
details are in Section 4). For the next stage, we upweight
question pairs that are predicted to result in the large be-
liefs changes based on epsilon-greedy sampling (Kuleshov
& Precup, 2014), sampling the majority of questions from
the top 10th percentile of the model’s predicted likelihood
change and the remaining questions from elsewhere in the
distribution. This is effective at finding question pairs with
non-zero belief changes. Figure 3 shows how the sampling
approach becomes more successful over time. As the survey
progresses, the model’s predictions of the likeliest questions
to result in belief changes improve.

After seven stages of survey collection, we collected a total
of 18,480 response pairs. We performed one final stage
of data collection to use as a test set, collecting at least
8 responses for each of 492 response pairs to be used for
model evaluation. We aggregated belief changes by taking
the majority response for each pair. For this final stage,
we targeted a 50/50 balance between pairs of questions
that change beliefs and those that do not. We did this by
sampling 2/3 of the dataset from the top 1-percent of the
bandit’s distribution and the remaining 1/3 from the bottom
1-percent. This test dataset consists of 492 response pairs,
43% of which resulted in a belief change.

4. Modeling Human Generalizations

Having collected data, we turn to modeling human gener-
alizations: how predictable are human belief changes from
the text of prior interactions? We consider different models
for predicting these changes, which we will use in Section 5
to evaluate LLM alignment with human generalizations.

Predicting belief changes. Recall that an individual’s
belief change about how an LLM f(:) will respond to
question z given its response to z’ is given by A(z|z’, f)
(Equation 6). We define a benchmark task to predict
whether an individual’s belief will change: here, the goal
is predicting the binary outcome 1(A(z|z’, f) # 0). We
consider different models denoted by gg(z|z’, f(z')),
where each model predicts the likelihood of belief change.
We consider the following models:

* Previous correct: A baseline model that doesn’t use
text. It predicts whether a human’s belief about ques-
tion  will change only from whether an LLM an-
swered question 2’ correctly. gg(z|2’, f(z')) is mod-
eled as a logistic regression.

¢ Previous correct + same task: Another baseline
model that does not use text. This model adds one
additional feature to the previous baseline: whether z
and x’ are from the same task (of the 79 possible tasks).
The model is trained as a logistic regression.

* Fixed embeddings + XGBoost: This model embeds
each question using fixed sentence embeddings from
VoyageAl. Embeddings for 2’ and x are concatenated,
and XGBoost (Chen & Guestrin, 2016) is used to pre-
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Figure 3: Left: The human generalization function is sparse. Most pairs of randomly sampled questions result in no belief
change. Right: The bandit is effective at identifying instances where beliefs change. The x-axis ranks bandit predictions by
likelihood of belief change, while the y-axis shows the fraction actually containing belief changes (using a held-out set).
Over time, the bandit becomes effective at finding non-zero belief changes.

dict belief change on .

¢ BERT: An ensemble of 5 BERT-base models (Devlin
et al., 2018) are fine-tuned, taking as input the pair of
concatenated inputs z’ and = along with a special token
denoting whether 2’ was answered correctly. Predic-
tions are averaged across ensembles.

¢ Llama-2 7B/13B: Llama-2 models (Touvron et al.,
2023) are fine-tuned to predict belief change on x using
a custom prompt containing x, x’, and whether 2’ was
answered correctly.

¢ GPT-3.5 turbo (10-shot, exact inference): We prompt
GPT-3.5 turbo (Brown et al., 2020) using 10 other
examples of generalizations and record the likelihood
the model predicts ‘0” or ‘1°.

* GPT-4 (10-shot, MC inference): We prompt GPT-
4 (Achiam et al., 2023) using 10 other examples of
generalizations. Since the GPT-4 API doesn’t provide
predicted probabilities, we sample 5 answers with tem-
perature 1.0 and record the predicted probability as the
Monte Carlo average.

Each model is trained on the initial 18,480 response pairs
and evaluated on the test set of 492 aggregated labels.
More details about models and evaluation are provided in
Appendix C.

Table 1 shows the held-out negative-log likelihood (NLL)
and AUC of each model on the 492 test labels. The human
generalization function is predictable: the best model has
an AUC of 0.81, compared to the simplest non-text baseline
with an AUC of 0.60. The models with text perform better
than the baseline models, with BERT being the best model.
This table has two key takeaways. The first is an optimistic
one: existing language models already contain the structure
needed to predict human generalization. This need not have
been the case since it is possible the encoding needed to
perform existing NLP tasks does not contain the information
people use to generalize with. The second is a less optimistic

one: as LL.Ms become larger, some of that information ap-
pears to be lost. The models which contain the most struc-
ture for predicting generalization are actually some of the
simpler and smaller ones (e.g. BERT), although it is possible
that different prompting strategies could improve the perfor-
mance of the modern LLMs. For the remainder of the paper,
we use BERT as our model of human generalizations.

Qualitative examples. We examine the human general-
ization function qualitatively using BERT’s predictions. We
sample 10,000 pairs of questions (z, z’), with each question
sampled uniformly at random from all possible questions.
We then generate the model’s predicted belief change for
each pair of question twice: one for the setting where
z' is answered correctly, and one where z’ is answered
incorrectly. Mirroring a pattern in the training data, humans
are predicted to be more likely to update their beliefs
about an LLM when it answers a question incorrectly; the
mean predicted probability of belief update is 0.46 when
z' is answered incorrectly, compared to 0.32 when 7’ is
answered correctly.

Figure 2 shows examples of question pairs with extreme
predictions. When an LLM answers a chemistry question
incorrectly (top left panel), there is a large predicted proba-
bility that a human will update their beliefs about the LLM’s
ability to answer a metabolism question correctly. We see a
similar pattern when the LLM answers a question about hu-
man rights correctly (bottom left panel). When there are two
unrelated questions, however, the model predicts a low prob-
ability of belief change: for example, correctly answering
a question about a TV sitcom does not affect beliefs about
whether it can answer basic arithmetic (top right panel). Fi-
nally, the example in the bottom right panel illustrates that
if a human sees that an LLM answers a basic question about
color correctly, they are unlikely to change their belief about
whether it would answer a complex question about chem-
istry correctly. If however they see that an LLM answers the
basic question incorrectly, their beliefs on the complex ques-
tion are likelier to change. Predicted human generalizations
may reflect different assessed difficulties of each question:



Do Large Language Models Perform the Way People Expect?

NLL AUC
Overall Prev. correct Prev. incorrect Overall Prev. correct  Prev. incorrect
Previous correct 0.666 0.638 0.694 0.599 0.500 0.500
Same subject + previous correct 0.637 0.598 0.675 0.688 0.680 0.556
Fixed embeddings + XGBoost 0.629 0.589 0.669 0.682 0.627 0.690
BERT (fine-tuned) 0.593 0.545 0.640 0.812 0.855 0.775
Llama-2 (7B) (fine-tuned) 0.652 0.620 0.690 0.755 0.827 0.668
Llama-2 (13B) (fine-tuned) 0.624 0.591 0.663 0.787 0.867 0.772
GPT-3.5 (turbo) (10-shot, exact inference) 0.912 0911 1.094 0.537 0.528 0.418
GPT-4 (10-shot, MC inference) 0.789 0.705 0.873 0.640 0.585 0.566

Table 1: Each model’s performance at predicting human belief change on question x after seeing an LLM’s response to
question z’. Results are divided into three categories: overall, previous correct (when 2’ is answered correctly) and previous
incorrect (when z’ is answered incorrectly). Lower is better for NLL, higher is better for AUC.

that an LLLM answers an easier question correctly has little
bearing on how it will answer a more difficult question, but
if the easier question is answered incorrectly the model is
perceived as unlikely to answer the more difficult question
correctly. We stress that these are qualitative interpretations
that do not hold universally, highlighting the importance of
modeling belief changes as a machine learning task. Ap-
pendix D contains more examples.

5. Evaluating LLM Alignment with Human
Generalizations

We now assess the alignment of large language models with
human generalizations. After interacting with an LLM,
a human forms assessments of how likely the LLM is to
answer other questions they did not ask. How well does
model performance align with these expectations?

In our framework, after seeing how an LLM responded to
question 2, a human forms a belief of how likely the model
is to respond correctly to question x: b(x|z’, f). The accu-
racy of the human generalization function can be evaluated
by comparing it to whether the LLM’s response is correct,
t(zx, f(x)). We evaluate the weighted generalized accuracy
of the human’s predictions. The weighted accuracy for a
single example is given by

lo(y,b) = yb+ a(l —y)(1 - b), @)

fory € {0,1},0 < b < 1, and o > 0. By varying the
parameter o« > 0, Equation 7 varies the relative weight
placed on incorrect LLM responses. We then aggregate
across question pairs according to

Eq o [a(t(x, f(2)), b(x|2’, 1)), ®

where b(x|z’, f) is an estimate of the human’s posterior be-
lief given by the BERT model of the human generalization
function (see Appendix C for more details). We further nor-
malize Equation 8 by E,, . [t(z, f(2)) + a(1 —t(z, f(x)))]
so that the weighted accuracy takes values between zero
and one.

Implied deployment threshold

50% 90%  95%  99%
Alpaca (7B) 0466 0.397 0.393 0.392
Llama-2 (7B) 0.494 0396 0.390 0.388
StripedHyena Nous (7B)  0.495 0.393 0.386 0.384
Mistral Instruct (7B) 0517 0393 0.387 0.384
Llama-2 (13B) 0499 0.395 0.388 0.386
Llama-2 (70B) 0512 0.393 0384 0.381
GPT-3.5 (turbo) 0.528 0.397 0.386 0.382
GPT-4 0.569 0.408 0.386 0.379

Table 2: Weighted generalized accuracy (higher is better)
between large language models and human generalizations.
Each deployment threshold corresponds to o /(1 + «).

The consequences of failing to generalize an incorrect re-
sponse from an LLM can be far more harmful than failing to
generalize a correct response; for example, an LLM being
deployed to give unsound medical advice can be signif-
icantly more harmful than an LLM that is not deployed
when it could have been (Singhal et al., 2023). Weighted
generalized accuracy captures this possible asymmetry as
each choice of o can be mapped to a particular choice of
deployment: a human with these beliefs deploys when-
ever b(z | «', f) > 1. From this perspective, @ = 1
corresponds to a user who will deploy the LLM if the as-
sessed likelihood of correctness is greater than 50%. As
« increases, the user becomes more risk-averse, requiring
higher confidence in the LLM’s correctness to justify its
deployment. In practice, for a chosen value of o, we take
the expectation with respect to question pairs sampled uni-
formly at random over the set of 16,347 questions from
the MMLU and BBH benchmarks, and we approximate
human posterior beliefs using the BERT model described in
Section 4.

We assess the alignment between eight different LLMs and
our estimated human generalization function. We approx-
imate the expectation in Equation 8 by taking 500 Monte-
Carlo samples of question pairs. We pose the same questions
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Human sees model
answer correctly

LLM answers correctly

%P

Human expects model to
answer correctly

LLM answers incorrectly

Suppose that current disposable
income is $10000 and
consumption spending is $8000.
For every $100 increase in
disposable income saving
increases $10. Given this
information

(A) the marginal propensity to

consume is .80....

Alice, Bob, and Claire are on the
same team in a soccer match...
Alice is playing fullback, Bob is
playing cheerleader, and Claire is
playing left winger... First, Alice
and Claire trade positions... At the
end of the match, Claire is

playing:

Alice, Bob, and Claire are on the
same team in a soccer match...
Alice is playing right winger, Bob
is playing cheerleader, and Claire
is playing striker... First, Alice
and Claire trade positions... At
the end of the match, Alice is

playing:

According to Hume, morality is
ultimately based on:

(A) reason

(B) God’s commands

(C) social agreements

(D) sympathy

For which of these two scenarios
does the main character do
something clearly morally wrong?
Scenario 1 | | stuck a knife in his
black heart.
Scenario 2 | | took games away
from my son as a punishment for

skipping school.

Figure 4: Examples of human generalization failures due to
misalignment of Llama-2 (70B).

to each model and automatically assess correctness. We use
the Together AI API to query all LLMs except for GPT-
3.5 and GPT-4, for which we use the OpenAl API. See
Appendix C for more details.

Table 2 shows the alignment between each LLM and human
generalizations for different risk tolerances. When humans
put equal weight on correct and incorrect answers, larger
models are more aligned with the human generalization
function; GPT-4 has the highest accuracy when the implied
deployment questions are those where humans have larger
than 50% confidence. As the relative weight on incorrect
LLM responses increases, GPT-4’s performance under hu-
man deployment deteriorates; it has the worst generalized
accuracy for the highest-stakes setting. We find that smaller
models outperform their larger counterparts for high-stakes
settings. These results suggest that larger models can induce
false confidence; although they are capable of answering
more questions in general, humans can reach overoptimistic
conclusions about their capabilities, leading to overdeploy-
ment and worse overall performance. In Appendix H we
evaluate the binary cross-entropy of human predictions and
find qualitatively similar results.

In Figure 4, we show specific examples of LLM misalign-
ment leading to human generalization failures. For each
question pair (z,z’), human survey respondents who saw
an LLM respond correctly to question z’ increased their

beliefs that question = would also be answered correctly.
However, for all examples, Llama-2 (70B) responded to
2’ correctly but not x. These examples contain a variety
of human generalization failures: in the first example, an
LLM computes an economic quantity correctly but fails to
answer a basic arithmetic question; in the second example,
an LLM correctly tracks the positions of players on a soccer
team but fails on a very similarly worded problem; in the
last example, an LLM can answer a question about moral
philosophy correctly but cannot apply moral reasoning.

6. Related Work

A large literature focuses on designing Al systems to benefit
human interactions. For example, the field of interactive ma-
chine learning (Fails & Olsen Jr, 2003; Amershi et al., 2014;
Holzinger, 2016; Wondimu et al., 2022) explores ways to
integrate human feedback into the learning process of Al
systems, allowing models to learn from humans in real-time.
Most related to our work, Wu et al. (2022) propose a method
for prompting large language models (LLMs) so they are
more controllable by humans wishing to use them while
Lee et al. (2022) introduce benchmarks for measuring the
success of human-LLM interactions. Our work is comple-
mentary; we measure the success of interactions with an
LLM not by the specific output of the interaction, but by
how a human makes conclusions about its capabilities.

The field of Al-assisted decision-making studies how
Al-provided assistance can improve human decisions
(Green & Chen, 2019; Zhang et al., 2020; Wang & Yin,
2021; Lai et al., 2021) or increase productivity (Noy &
Zhang, 2023; Dell’ Acqua et al., 2023; Perry et al., 2023;
Brynjolfsson et al., 2023). More closely related is the
field of task delegation in machine learning (Lai & Tan,
2019; Mackeprang et al., 2019; Wang et al., 2021). This
area seeks to understand how humans decide which tasks
should be automated and which should be solved manually.
For example, Lubars & Tan (2019) conduct a survey and
find that humans are more likely to deploy Al systems
in settings where they have strong beliefs in the system’s
capabilities. Our paper complements Lai et al. (2022), who
create interfaces to help humans understand where models
perform well before deciding to deploy them. We focus
on measuring the alignment between LLMs and human
generalizations; future work should study how interventions
such as those by Lai et al. (2022) improve this alignment.

A related research field seeks to understand how humans
perceive the inner workings of Al systems (Abdul et al.,
2018; Lim et al., 2009; Rader et al., 2018). The goal of
explainable AI (XAI) is to improve human perceptions of
Al models by providing explanations of a model’s inner
workings (Bansal et al., 2021; Buginca et al., 2021; Adadi
& Berrada, 2018; Gilpin et al., 2018). A common method
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is to form instance-level explanations, e.g. in the form of
rationales (Lei et al., 2016; Chen et al., 2018; Yoon et al.,
2018; Bastings et al., 2019; Jain et al., 2020). It would be
interesting to explore how such interventions affect human
generalizations and deployment decisions, as defined by our
framework.

Our framework involves evaluating machine learning mod-
els against a human deployment distribution, which is an
example of a distribution shift (Miller et al., 2020; Taori
et al., 2020; Koh et al., 2021). It is well understood that the
distribution a model is evaluated against can have a large
effect on performance. We investigate a specific kind of
distribution shift, one that depends on a human’s perception
of the model. Our goal is to measure the beliefs that lead to
this distribution shift.

Our paper also relates to recent work on LLM alignment
(Gabriel, 2020; Bai et al., 2022; Wang et al., 2023; Wolf
et al., 2023; Ji et al., 2023; Sucholutsky et al., 2023). For
example, one strand of this literature seeks to develop meth-
ods to align LLMs with human values: the goal is to ensure
that LLMs act in ways that are consistent with human ethics
and societal norms. Our paper poses a different kind of
alignment. Instead of aligning an LLM to be consistent
with human values, we seek to measure how aligned LLM
capabilities are with human generalizations.

Finally, this paper contributes to the expanding set of eval-
uation benchmarks for LLMs and NLP systems generally
(Chang et al., 2023). This paper proposes two types of
benchmarks: an NLP task for modeling the human gener-
alization function from the text of questions, along with a
method to benchmark LLMs based on their alignment with
the human generalization function.

7. Conclusion

In conclusion, we introduce a framework for evaluating
large language models under human deployment. We link
deployment decisions to people’s beliefs about model capa-
bilities, which is informed by human generalizations. We
collect data about the human generalization function, and
show it is predictable. Our results show that when the cost
of mistakes is high, more capable models can perform worse
on the instances people choose to use them for because they
are not aligned with the human generalization function.

Our approach has limitations that suggest promising av-
enues of future research. One limitation of this study is that
we study the human generalization function in the aggregate,
while the true function may differ between humans. Future
research should prioritize collecting more data to allow mod-
eling heterogeneity in the human generalization function.
Additionally, while we only collect data about generaliza-
tions involving one question, it is also interesting to consider

generalizations from multiple questions. Multi-question be-
lief changes may be computed from single-question exam-
ples following Bayes rule under certain assumptions; testing
whether this holds from data would be a useful next step.
Finally, the human generalization function may change over
time as people understand the capabilities of LLMs better.
Examples of human generalization should be collected over
time to assess these changes.

A complementary direction of research is to find interven-
tions that improve the alignment of LLMs with the human
generalization function. Human generalizations can be
aided by interfaces that help humans understand where
models perform well. Measuring how generalizations
change when humans are assisted by computational
techniques is a promising direction of future research.
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Figure 5: The distribution of prior beliefs, posterior beliefs, and the changes in beliefs for survey respondents after the first
stage of survey collection.

A. Dataset construction

As described in Section 3, we base our survey on a dataset of questions used to evaluate LLMs. Our dataset consists of
questions from the Massive Multitask Language Understanding (MMLU) benchmark (Hendrycks et al., 2020) and the
BIG-Bench Hard (BBH) benchmark (Suzgun et al., 2022). The MMLU benchmark consists of factual questions from both
traditional academic subjects such as mathematics and literature and more practical domains like law and business. The
BBH benchmark includes tasks that are specifically designed to be challenging for LLMs, testing abilities such as reasoning
and creativity.

We include all 57 tasks from MMLU. Since our goal is to measure human generalization of LLM capabilities, we did
not include 6 tasks from BBH that we determined were difficult for humans to understand: Boolean expressions, Dyck
languages, salient translation error detection, word sorting, geometric shapes, and DROP. We also did not include questions
that were longer than 750 characters. In total, we were left with 16,347 individual questions.

We conducted all surveys using the Prolific platform (Palan & Schitter, 2018). We limited test-takers to English-language
speakers. Each survey consisted of 15 pairs of generalization questions. Respondents were paid $2.50, and the median
survey duration was 12 minutes, totaling a rate of $12.50/hour. We did not allow the same user to take a survey multiple
times.

Figure 5 contains the distribution of prior beliefs, posterior beliefs, and changes in beliefs for survey respondents after the
first stage of survey collection (8805 total responses). This figure indicates the sparsity of human generalizations: for most
randomly sampled pairs of questions, seeing how an LLM responded to one has no bearing a user’s perception of how it
would respond to the other.

B. Evaluation against human deployment distributions doesn’t preserve dominance

Evaluating models against human deployment distributions does not preserve dominance relations between models. Consider
two models f1(-), f2(+). Recall that f;(-) dominates f2(-) (denoted by f1(-) = fa(-)) if every question that f5(-) answers
correctly is also answered correctly by f(-):

{z:t(z, fox)) =1} S {z: t(z, fi(2)) =1},

Assume f1(-) = fa(-). First, note that evaluating models against a fixed deployment distribution (Equation 1) preserves
dominance orderings: for all fixed deployment distributions p(x),

ZP t(x, fr(x ZP t(z, f2(z)).
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We now consider the case where models are evaluated against human deployment distributions h(z|f). We allow the human
deployment distribution h(z|f) to arbitrarily depend on the model f(-). Now further assume f1(-), f2(+) are non-trivial,
meaning that there is at least one input z where f; is incorrect and at least one input 2z’ where fs is correct (z # 2’ since

f1() = f20)):

Fz: t(z, f1(2)) =0
3 (2, f2(2) = 1.

Since the human deployment distribution can depend arbitrarily on the model f(-), we can adversarially construct human
deployment distributions as follows:

1, ife==z
h(z =<
(zlf1) {0, otherwise
1, ifx=2
0, otherwise

h(z|f2) = {

By construction,

0= 3" half)te, fi(2) < 3 hlal e, fole)) = 1 ©)

This highlights the importance of the human deployment distribution. Even if a model is better overall (i.e., dominates
another model), it can still induce a human to deploy it to inputs it is not capable of answering correctly.

C. Experimental details
We begin by describing the models used to predict belief change from Section 4.

For BERT, we use the BERT-base-uncased model provided by Hugging Face (Wolf et al., 2019). BERT’s tokenizer includes
a special token to indicate two separate inputs. We use this token to separate the two inputs: the previous question that was
answered either correctly or incorrectly, and the new question. We use a separate special token to indicate whether the first
question was answered correctly or incorrectly. We fine-tune BERT using a batch size of 32 for 2 epochs, optimizing using

Adam (Kingma & Ba, 2014) and a learning rate of 5e-5. We ensemble predictions over 5 random training seeds (Dietterich,
2000).

For the Llama models, we fine-tune Llama-2 (7B) and Llama-2 (13B) using full-parameter fine-tuning on Together Al. We
use a custom prompt that includes all textual information. Here is one example:

<s>[INST] <<SYS>>
You are predicting how people’s perceptions of large language models would
change as they see more information.

You will see a question posed to a large language model, and whether the
large language model responded to that question correctly or incorrectly.

You will then see a second question, and be asked to predict whether one’s
confidence in the large language model’s ability to answer this second
question changes after seeing how it responded to the first one.

The final prediction will be 0 (for no change) or 1 (for change).

Many questions will be unrelated (and thus result in 0).

<</SYS>>

The large language model was asked the following question:

<gl>
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Is the following sentence plausible? "Aleksander Barkov passed the
puck."
</ql>

It answered this question correctly.
The large language model was then asked the following gquestion:

<g2>
A special feature of adaptive immunity is:
(A) Speed of response to a foreign protein
(B) Ability to distinguish self and non self
(C) Ability to distinguish viruses and bacteria
) Short memory
</q2>

Should you change your confidence in the large language model’s ability
to answer Question 2 after seeing it answered Question 1 incorrectly?
[/INST] </s>

This prompt was followed by a 0 when a survey respondent didn’t report a belief change, and 1 otherwise. We trained each
model for 3 epochs, using a batch size of 4 and learning rate of le-5. Since each model was trained to predict a 0 or 1, we
evaluated each model using exact inference.

For GPT-3.5 (turbo), we evaluate in a few-shot setting. We chained together 10 prompts of examples similar to the above,
followed by the prompt for the question under consideration. Similarly to the Llama models, we were able to perform exact
inference since the model predictions were binary.

Finally, for GPT-4, we proceeded analogously as with GPT-3.5 but with the exception that GPT-4 does not provide users
with log-probabilities of predictions. Instead, we evaluated predictions using Monte-Carlo sampling. We sampled from
GPT-4 five times using a temperature of 1 and averaged its predictions to form a single prediction.

We also model human posterior beliefs using our model of predicted belief change for the experiments in Section 5. We
model posterior beliefs as following a mixture model: when the predicted belief change is 0, the posterior belief is equal to
the prior belief. Otherwise, posterior beliefs are scaled by predicted belief change. We scale posterior beliefs according to
empirical averages, corresponding to average posterior beliefs for all questions responded to correctly and incorrectly.

For the experiments in Section 5, we evaluate the alignment of eight different LLMs with our model of human generalizations.
For each question, we prompt a model in a zero-shot setting. We automatically evaluate the model’s correctness. We
consider the following models: Alpaca (Taori et al., 2023), StripedHyena Nous (Poli et al., 2023), Llama-2 (7B, 13B, and
70B) (Touvron et al., 2023), Mistral Instruct v0.2 (7B) (Jiang et al., 2023), GPT-3.5 turbo (Brown et al., 2020), and GPT-4
(Achiam et al., 2023). We use the OpenAl API to query GPT-3.5 turbo and GPT-4. For all other models, we use the Together
Al APL

D. Qualitative examples

Here we include additional qualitative examples of predictions from our model trained on human generalizations. Figure 6
contains examples of the pairs of questions that induce the largest predicted human belief change, both for when the initial
question is answered correctly and incorrectly.
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After people see:

For which of these two scenarios
does the main character do
something clearly morally wrong?
Scenario 1 | | bought a bowl
from the marketplace.
Scenario 2 | | refused to shake
hands because | didn't want the
virus to infect me.

For which of these two scenarios

does the main character do

something clearly morally wrong?
Scenario 1 | | copied answers
from a book during an open
book test at school.
Scenario 2 | When my friend
told me in private she had a
crush, | told everyone at school.

,—( Do people change belief on: }a

After people see:

Alice, Bob, Claire, Dave, and Eve
are holding a white elephant gift
exchange... Alice has a brown
present, Bob has a white present,
Claire has a black ball, Dave has
ared present, and Eve has a
purple present... First, Bob and
Claire swap their gifts... At the
end of the event, Bob has the:

,—( Do people change belief on: }a

Alice, Bob, Claire, Dave, and Eve
are playing a game... Alice has a
orange ball, Bob has a black ball,
Claire has a red ball, Dave has a
pink ball, and Eve has a blue
ball... First, Eve and Bob swap
balls... At the end of the game,
Bob has the:

answered correctly —»

After people see:

For which of these two scenarios

does the main character do

something clearly morally wrong?
Scenario 1 | | answered the
phone and hung up as soon as |
heard my mom start talking.
Scenario 2 | | stole the show at
the talent show.

upward change in belief

For which of these two scenarios

does the main character do

something clearly morally wrong?
Scenario 1 | | did not stop to
help the stranded swimmer.
Scenario 2 | | took clothes that
weren't mine at the self-
laundromat.

,—( Do people change belief on: }a

After people see:

Alice, Bob, and Claire are holding
a white elephant gift exchange...
Alice has a red present, Bob has
a blue present, and Claire has a
yellow present... First, Alice and
Claire swap their gifts... At the
end of the event, Claire has the:

answered incorrectly ——» downward change in belief

,—{ Do people change belief on: }a

Alice, Bob, Claire, Dave, and Eve
are playing a game... Alice has a
red ball, Bob has a blue ball,
Claire has a brown ball, Dave has
a black ball, and Eve has a
orange ball... First, Dave and
Claire swap balls... At the end of
the game, Claire has the:

answered correctly

After people see:

For which of these two scenarios

does the main character do

something clearly morally wrong?
Scenario 1 | | took my best
friend's wife on a romantic
cruise to the Bahamas.
Scenario 2 | | bound her arms
and legs and lashed her with a
whip.

S

upward change in belief

,—( Do people change belief on: }-\

For which of these two scenarios

does the main character do

something clearly morally wrong?
Scenario 1 | | planted
cucumbers in my neighbor's
garden.
Scenario 2 | When | stayed over
at my friends' house, | used their
bathroom, brushed my teeth,

and spat in their sink.

After people see:

Alice, Bob, Claire, Dave, and Eve
are holding a white elephant gift
exchange... Alice has a green
present, Bob has a purple
present, Claire has a blue
present, Dave has a black ball,
and Eve has a red present...
First, Dave and Claire swap their
gifts... At the end of the event,

Eve has the:

answered incorrectly ——» downward change in belief

,—( Do people change belief on: }-\

Alice, Bob, and Claire are holding
a white elephant gift exchange...
Alice has a red present, Bob has
a blue present, and Claire has a
yellow present... First, Alice and
Claire swap their gifts... At the
end of the event, Claire has the:

answered correctly ——»

upward change in belief

answered incorrectly —» downward change in belief

Figure 6: The question pairs with the highest predicted likelihood of belief change. On the left are examples where the
initial question is answered correctly, and on the right are examples where the initial question is answered incorrectly. These
are the examples with the highest predictions among 10,000 question pairs sampled uniformly at random.
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E. Examples of human explanations for changes

In some of our surveys, we ask humans to provide explanations for their belief changes (or lack thereof). Below we include
a few examples:

“Both questions can be answered through searching online so I assume the model cannot do this well.”
“This question is just math, it should know”
“The LLM had a problem with an easy question”

“The second question makes me think [it] has a database of regular and already answered questions. [So] the
answer would be [straightforward]”

“The question is easy for LLM to evaluate”
“Seems like the LLM doesn’t get confused easily”

These examples highlight the structured manner in which humans make generalizations about the capabilities and limitations
of language models (LLMs).

F. Generalization of human responses

In Section 5, we assessed the alignment of LLMs and human generalizations. It is natural to ask: how well are human
generalizations aligned with the capabilities of other humans?

This is in general a difficult question to answer that would require ample data collection from many humans across tasks.
Rather than attempt to answer this question generally, we study the question on a small scale using questions from two
benchmark tasks: high school chemistry questions from MMLU (Hendrycks et al., 2020) and logical deduction questions
(with 3 objects) from BIG-Bench Hard (Suzgun et al., 2022). To collect the human generalization function, we perform the
survey described in the main text with two modifications: first, we limit data to these two tasks, and second, we inform
survey respondents that the examples they see will come from either Al systems or humans but we do not tell them which is
which (for the main survey we explicitly mention that answers come from an LLM).

We then assess how well posterior beliefs about question answering capabilities align with true performance for both humans
and LLMs. In other words: when humans see a human response to one question, how accurate are they at predicting whether
they’1l respond to another question correctly? And the analogous question for generalizing LLMs: when humans see an
LLM’s response to one question, how accurate are they at predicting whether it will respond to another question correctly?

Answering these questions involves collecting human and LLM responses to benchmark questions. For human responses,
we conduct another Prolific survey to collect 300 responses from 15 different survey takers. To collect LLM responses, we
query them as before. We then evaluate posterior calibration by dividing posterior belief into three regions: confident in
incorrect response (0-30% belief in correctness), uncertain (30-70% belief in correctness), and confident in correct response
(70-100% belief in correctness). We then calculate the average accuracy for each region. For example, the average accuracy
for the “uncertain” region is given by

Ey o [t(z, f(z)) ] 0.30 < b(z|2’, f) < 0.70], (10)

where f refers to either an LLM or a human. When f refers to a human, we use the same human’s response for x and 2/,
but average accuracy over all humans.

Because the domain of questions is narrow for this exercise, we can use the empirical human generalization function instead
of approximating it with an ML model. We use 585 samples of question pairs to evaluate posterior calibration.

Figure 7 shows the calibration of the human generalization function when generalizing humans versus LLMs. Humans are
most calibrated when assessing other humans. When a human predicts that an answer will be inaccurate, the actual answer
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Figure 7: Comparing human generalization of LLMs to human generalization of humans. This experiment consists of

questions from two benchmark tasks: high school chemistry questions from MMLU and logical deduction questions from
BIG-Bench Hard. Standard errors are shaded in.

is inaccurate more often for humans than for LLMs. On the flip side, when a human predicts that an answer will be accurate,
the actual answer is accurate more often for humans than for LLMs. As humans become more confident, their assessments
of human responses improve. However, for LLMs, the relationship between confidence of human generalization and LLM
performance is less clear.

These results suggest that human generalizations are more aligned with human capabilities than LLM capabilities for this
set of questions, LL.Ms, and survey-takers. Future work should prioritize studying this question more broadly, across more
tasks and humans.

G. Survey example

Figure 8 shows an example screen from the our survey for eliciting beliefs from a respondent.

Round 1/15: Make Prediction

A large language model (LLM) was asked the following question:
((-8*-8--5*-6)"(3+-9-5--1))=

How likely do you think it is that it will answer this question correctly?

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

O O O O O O O O O O O

Figure 8: Example screen about collecting human beliefs from the survey.
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H. Additional analyses

To further analyze the BERT model’s performance at predicting belief changes, we investigate the source tasks for which it
is performing well and poorly. Table 3 shows AUC broken down in two ways: first by the task people generalize from (i.e.
the task for question x’) and second by the task people generalize to (i.e. the task for question x). Table 4 shows a similar
analysis for task pairs. (For both tables, we exclude tasks/pairs of tasks that have less than five examples in the test set.) We
see that the model’s strengths and weaknesses are varied across tasks and sources (e.g. BIG-Bench Hard versus MMLU)).

Grouped by task people generalize from Grouped by task people generalize to
Task AUC  Task AUC
Logical deduction [seven objects] (BBH) 1.00  Ruin names (BBH ) 1.00
Miscellaneous (MMLU) 1.00  High school psychology (MMLU) 1.00
High school psychology (MMLU) 1.00  Logical deduction [three obejcts] (BBH)  0.91
College medicine (MMLU) 1.00  Astronomy (MMLU) 0.89
College chemistry (MMLU) 0.50  Moral scenarios (MMLU) 0.50
Conceptual physics (MMLU) 0.50  College biology (MMLU) 0.48
Web of lies (BBH) 0.48  Movie recommendation (BBH) 0.44
Penguins in a table (BBH) 0.08  Sports understanding (BBH) 0.20

Table 3: AUC broken down by the task people generalize from (e.g. ') and the task people generalize to (e.g. x). Questions
from the Massive Multitask Language Understanding dataset are denoted by MMLU and questions from the BIG-Bench
Hard dataset are denoted by BBH.

Grouped by task pairs
Task people generalize from Task people generalize to AUC
Tracking five shuffled objects (BBH) Logical deduction [three objects] (BBH)  1.00
Clinical knowledge (MMLU) Clinical knowledge (MMLU) 1.00
Tracking five shuffled objects (BBH) Tracking five shuffled objects (BBH) 0.83
Logical deduction [five objects] (BBH) Logical deduction [five objects] (BBH) 0.69
High school biology (MMLU) College biology (MMLU) 0.67
High school biology (MMLU) Clinical knowledge (MMLU) 0.67

Table 4: AUC broken down by the pair of generalization tasks (x, z’). Questions from the Massive Multitask Language
Understanding dataset are denoted by MMLU and questions from the BIG-Bench Hard dataset are denoted by BBH.

Implied deployment threshold
50% 95%  98%  99%

Alpaca (7B) 0.788 0.929 0.936 0.938
Llama-2 (7B) 0.733 0933 0945 0.950
StripedHyena Nous (7B)  0.733 0942 0.956 0.960
Mistral Instruct (7B) 0.689 0.935 0.954 0.960
Llama-2 (13B) 0.725 0.937 0951 0.956
Llama-2 (70B) 0.701 0.945 0.963 0.969
GPT-3.5 (turbo) 0.668 0.935 0.958 0.965
GPT-4 0.588 0917 0962 0977

Table 5: Weighted binary cross-entropy (lower is better) between large language models and human generalizations. Each
deployment threshold corresponds to a/(1 + «).

Table 5 replicates the alignment analysis from Section 5 using weighted binary cross-entropy instead of weighted accuracy.
The results are qualitatively similar to those in Table 2.
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