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ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities in
processing long-context information. However, the quadratic complexity of atten-
tion computation with respect to sequence length poses significant computational
challenges, and I/O aware algorithms have been proposed. This paper presents a
comprehensive analysis of the I/O complexity for attention mechanisms, focusing
on backward passes by categorizing into small and large cache scenarios. Using
the red-blue pebble game framework, we establish tight bounds on I/O complex-
ity across all cache sizes. We confirm that the de facto standard I/O aware algo-
rithm FlashAttention is optimal for both forward and backward passes for the large
cache size scenario. For small cache sizes, we provide an algorithm that improves
over existing methods and achieves the tight bounds. Additionally, we extend our
analysis to sparse attention, a mainstream speeding-up approach, deriving fine-
grained lower bounds for both forward and backward passes and both small and
large caches. Our findings complete the theoretical foundation for I/O complex-
ity in attention mechanisms, offering insights for designing efficient algorithms of
LLM training and inference.

1 INTRODUCTION

Large Language Models (LLMs), such as GPT-4 (Achiam et al., 2023)), Claude (Anthropic, |2024),
Llama (Llama Teaml [2024), and more recently ol (OpenAl, 2024) from OpenAl, have demon-
strated immense potential to enhance various aspects of our daily lives, including conversational
Al (Liu et al., |2024), Al agents (X1 et al., [2023; |Chen et al., |2024b), search Al (OpenAll |2024),
Al assistants (Kuo et al.| 2024} [Feng et al.| |2024b)), and many others. One of the most emergent
abilities of LLMs is dealing with long-context information, which is crucial for processing materials
such as academic papers, official reports, and legal documents. LLMs have proven adept at tack-
ling long-context tasks, such as zero-shot summarization (Chhabra et al., 2024} Zhao et al.| [2024)
and maintaining very long-term conversations (Xu et al., |2022; Maharana et al., 2024). OpenAl’s
ol model (OpenAll 2024) serves as a significant advancement in this area. It leverages Chain-of-
Thought (CoT) reasoning (Wei et al.l 2022} Kojima et al.| 2022) and employs Retrieval Augmented
Generation (RAG) (Lewis et al., 2020; |Gao et al., 2023) to exhibit PhD-level abilities, where both
techniques require long context inputs for generation. This proficiency underscores the necessity for
developing long-context modeling capabilities within LLMs.

LLMs are primarily based on the Transformer architecture (Vaswani et al., 2017), whose core com-
ponent is the self-attention mechanism. However, the quadratic complexity of attention computation
with respect to sequence length dominates the computational FLOPs during long-context training
and inference. To address this issue, FlashAttention (Dao et al., 2022; Daol [2023; |Shah et al., [2024)
accelerates attention computation and has become the de facto standard in the industry of LLM
training and inference deployment. The success of FlashAttention lies in its I/O awareness (Ag-
garwal & Vitter, [1988)), accounting for reads and writes to different levels of fast cache (e.g., GPU
on-chip SRAM) and slow memory (e.g., GPU high-bandwidth memory) within the hardware hierar-
chy. Leveraging modern hardware design in GPUs, e.g., NVIDIA A100 and H100, efficiently allows
FlashAttention to be integrated as a go-to method for LLM training and inference.
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For the 1/0 complexity of exact attentiorﬂ forward computation, the theoretical analysis of FlashAt-
tention in|Dao et al.|(2022) only provides upper and lower bounds when the cache size M € [d, nd).
Their bounds are only tight in the range of M = ©(nd), where n is the input sequence length and d
is the hidden dimension. By fine-grained analysis, a recent work (Saha & Yel [2024) provides match-
ing upper and lower I/O complexity bounds of the attention forward passes for any cache size M.
For the I/0 complexity of attention backward passes, existing work only provides an upper bound
for FlashAttention for the cache size M € [d, nd] (Dao et al., 2022)), without known lower bounds.
Thus, the tight bounds for the I/O complexity of attention backward passes are lacking. This raises
a natural question:

What is the optimal I/O complexity of attention backward computations for any cache size?

In this paper, we address this question and provide matching upper and lower I/O complexity bounds
for backward passes of exact attention computation for all cache sizes, completing the picture of I/O
complexity for the attention mechanism.

1.1 OUR CONTRIBUTIONS
Attention Backward I/O Complexity

In this work, we analyze the I/O complexity
in the same setting as the existing work of
FlashAttention (Dao et al.| 2022) and|Saha &
Ye| (2024). We consider a two-level memory
hierarchy consisting of a small but fast layer
called the cache and a large but slower layer
referred to as memory. The I/O complexity
quantifies the data transfer between these two
layers, which can be formally defined as a
red-blue pebble game (Hong & Kung, [1981)) : i

as in Definition[3.4] We study the exact atten- d* Cache Size M
tion computation using standard matrix mul-

tiplication as the existing Workﬂ and focus Figure 1: Attention backward I/O complexity com-
on backward gradient computation. We es- parison. The z-axis is the cache size, and the y-
tablish matching I/O complexity upper and axis is the I/O complexity. The red line represents
lower bounds for attention backward compu-  our tight upper/lower bound (Theorem|[I.1), and the
tation (formalized in Theorem [[.T] and illus- blue dash denotes the upper bound for FlashAtten-
trated in Fig.m). Combined with the attention tion (Dao et al, 2022). The cross point is M =
forward results from [Saha & Ye| (2024), this ©(d?), the dividing point of large cache and small
completes the theory of I/O complexity in the cache settings. The results show that FlashAttention
attention mechanism. is optimal when M = Q(d?).
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1/0 Complexity

Our main result is stated as follows:

Theorem 1.1 (Main result). Let n be the sequence length, d the head dimension, and M the cache
size. The I/O complexity of attention backward computation under standard matrix multiplication is

o < ) {n2d2 +nd® n2d+nd? })
min , .
M VM
To interpret our main result, we categorize the cache size M into two cases: the small cache case
where M = o(d?) and the large cache case where M = Q(d?) (see Fig. for illustration).

In the small cache scenario, M = o(d?), by computation graph Fig. and Algorithm@ we show that
the upper bound of the I/O complexity is O(”ZL\/MMZ). In detail, Algorithm@ explicitly read/write
the n X n attention matrix and other n x d intermediate matrices from/to memory. Note that, when
M = o(d?), our Algorithm E] has a better upper bound than FlashAttention, whose upper bound

is O(W). Furthermore, to establish a lower bound on the I/O complexity, we show that the

'In this work, we only consider exact attention computation without any approximation.

2Note that there are many fast matrix multiplication methods. We do not study them, as they are hard to be
parallelized. Standard matrix multiplication is still the most popular implementation on GPU, e.g., PyTorch.
We refer readers to SectionE] for more details.
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Table 1: Summary of our contributions. We categorize the cache size M into two cases: (1) Large
cache M = Q(d?); (2) Small cache M = o(d?). Assume n > d. We list our contributions for
general and sparse attention below. Zi,,. and Zqk denote the number of nonzero entries of the
input matrix and the key-query matrix, respectively.

Attention Algorithm \ Large Cache Reference \ Small Cache Reference
Forward Upper | O(n%d?/M)  |Dao et al.[(2022) O(n2d/vVM) Saha & Ye|(2024)
General  Forward Lower | Q(n?d?/M)  |Saha & Ye|(2024) Q(n2d/vVM) Saha & Ye|(2024)
Backward Upper | O(n2d?/M)  |Dao et al.|(2022) O(n2d/vVM) Theorem 4.3
Backward Lower | Q(n2d?/M) Theorem Q(n2d/vVM) Theorem 4.4
Sparse Forward Lower | Q(Z2 input /M) Theorem QU Zinpus v/ Zqk /VM) Theorem .5
Backward Lower | Q(Z2 hput/M) Theorem Q(Zmput VZqk /VM) Theorem .5

I/O complexity of attention backward computation is equivalent to the I/O complexity of matrix
multiplication when M = o(d?), which matches the upper bound of Algorithm@

In the more practical large cache case, M = €)(d?), we prove an upper bound O(M) on

the I/O complexity for the attention backward algorithms (Algorithm [9), which matches that of
FlashAttention (Dao et al., [2022; Daol 2023}, |Shah et al.,|2024). We prove that this upper bound is
tight by providing a matching lower bound for the I/O complexity of attention backward using the
red-blue pebble game analysis framework from Hong & Kung|(1981).

Therefore, we provide the optimal bounds and algorithms for backward passes for all cache sizes.
This fully characterizes the I/O complexity of attention forward/backward when combined with
existing results on forward passes (Saha & Yel [2024). Notably, we confirm that FlashAttention is
optimal for both the forward and backward passes when the cache size is large enough M = (d?).

Moreover, in recent years, sparse attention has become another mainstream method for speeding up
the training process of transformer-based models (Child et al., 2019} [Zaheer et al [2020; Beltagy
et al., 2020). These approaches mainly focus on techniques for sparsifying the attention matrix,
thereby reducing the quadratic bottleneck in running time. However, it remains unknown whether
this method can be integrated with I/O-aware algorithms like FlashAttention. Consequently, we
further analyze the I/O complexity of sparse attention to provide theoretical guarantees, offering
fine-grained lower bounds.

Theorem 1.2 (Lower bound for sparse attention forward and backward, informal version of Theo-
rem . Let Zinput and Zqx be the number of nonzero entries of the input matrix and the key-query
matrix, respectively. Then any algorithm for both attention forward and backward computation us-
ing sparse semi-ring matrix multiplication has I/O complexity

Q | min Zianut Zinput\/ ZQK
M’ VM

Our I/0O complexity lower bound for sparse attention recovers the lower bound for both attention
forward and backward passes when matrices involved in attention computation are dense ie.,

Zinput = QUnd), Zqx = Q(n?). In such case, our lower bound reads as (min{2

we ndy),
matching Theorem The dividing point between small and large cache for sparse attention is
M =272 Zqxk, which also matches the dense case.

input

We summarize our contributions in Table[I] and also conclude as follows:

* For small cache sizes M = o(d?) in the backward pass, we present optimal upper and
lower bounds and propose an algorithm achieving the optimal (Algorithm [6). Notably,
FlashAttention is not optimal in this setting, and our algorithm outperforms it.

* For large cache sizes M = (d?) in the backward pass, we establish an optimal lower
bound that matches the existing upper bound. We also prove the optimal upper bound and
introduce an optimal algorithm (Algorithm [9), matching the existing results for FlashAt-
tention but providing a different analysis.



Under review as a conference paper at ICLR 2025

* For sparse attention, we offer fine-grained lower bounds for both forward and backward
passes and across all cache sizes (Theorem |.5).

Roadmap. In Section 2] we review related literature. In Section 3] we introduce the definitions
and background necessary for our study. We present our main results in Section 4] and discuss the
techniques we employed in Section[5] Section[6]concludes our paper.

2 RELATED WORK

Attention Computation Acceleration. The quadratic time complexity of attention computation
with respect to the length of the input sequence (Vaswani et al., |2017) poses significant computa-
tional challenges, especially for long sequences. Consequently, accelerating attention computation
has become a crucial research area. From a theoretical standpoint, numerous works focus on ap-
proximating the attention matrix to accelerate computation (Han et al.l 2024} |Alman & Song}, 2023;
2024a;|Liang et al.,2024c; |Alman & Song,2024bj Liang et al.,|2024f). Experimental approaches in-
volve modifying model architectures and optimizing implementations to accelerate inference. Meth-
ods such as Mamba (Gu & Dao| 2023} Dao & Gul 2024), Linearizing Transformers (Zhang et al.,
2024b; Mercat et al., 2024), Hopfield Models (Hu et al., 2023; [Wu et al., |2024b; |Hu et al.|, |[2024c;
Xu et al., 2024a; Wu et al., [2024a; |[Hu et al.| 2024azb)) and PolySketchFormer (Zandieh et al., [2023;
Kacham et al.l [2023) aim to improve model performance and inference speed. System-level opti-
mizations, such as FlashAttention (Dao et al., 2022; [Daol 2023} [Shah et al., 2024)) and block-wise
parallel decoding (Stern et al., 2018)), address bottlenecks in attention mechanisms and enhance
inference speed through efficient implementation strategies. Collectively, these advancements con-
tribute to making attention mechanisms more scalable and efficient, facilitating the deployment of
large-scale language models. |Shi et al.|(2024a)) accelerates inference by compressing the input text.

Learning with Bounded Memory and I/O Complexity. A common memory model in compu-
tational systems is the two-level memory hierarchy. In this model, there are two layers of memory:
a small but fast layer called the cache, and a large but slower layer called the memory. The I/O
(input/output) complexity of an algorithm measures its efficiency based on the number of data trans-
fer operations it performs between the cache and the memory. The early work of Hong & Kung
(1981) formulated the I/O complexity mathematically using the language of graph theory. Learn-
ing with bounded memory has been studied in various fields in machine learning such as online
learning (Srinivas et al.l [2022; Peng & Rubinstein, [2023}; |[Peng & Zhang, 2023), convex optimiza-
tion (Marsden et al., 2022} Chen & Peng| 2023), active learning (Hopkins et al., [2021), attention
computation (Addanki et al.,[2023)), and continual learning (Chen et al., 2022 |[Ermis et al.|[2022).

Sparse Attention. Over the past few years, there has been extensive research on sparse Trans-
former/Attention models with weights pruning and inputs pruning, aimed at accelerating computa-
tion and training (Ye et al.l[2019; |Sukhbaatar et al., 2019; Beltagy et al.,|2020; |Tay et al., [2020; |Guo
et al.| [2023; |Shirzad et al.| 2023 |Sun et al., [2024; |[L1 et al., 2024} Deng et al.| [2024; |Chen et al.,
2024a)). In practice, the attention matrix is sparse, significantly reducing computational costs. Theo-
retical studies, such as|Yun et al.| (2020), have demonstrated that sparse transformers are expressive
enough and can achieve universal approximation properties.

3 PRELIMINARY

In this work, we consider using a standard algorithm for matrix multiplication, which means that
for any two matrices A € R™*4 B € R¥*"2_ each entry of AB is computed by (AB);; =

ZZ=1 A; By j for i € [n;1],j € [n2]. Note that this setting is also used in FlashAttetnion (Dao
et al.| 2022) and Saha & Ye|(2024)). Then, we introduce some key concepts needed for this paper.

3.1 KEY CONCEPT OF ATTENTION

Before formally stating our results, we begin by precisely defining the problems we study. We define
the following computation of the general Softmax attention forward layer.
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D = diag(4- 1,)

p, = diag(p, - 1,,) - f A = exp(4;X43)

=
o

Figure 2: The computational graph for attention forward and backward. The blue boxes are input
matrices, the gray boxes are intermediate matrices, the green box is the forward output, and the
orange box is the final gradient matrix. Here, A;, A2, A3 denote the previous inputs, dO denotes
the upstream gradient, and X, Y denote the attention weights. More detailed definitions of each
variables can be found in Section [3]and [B}

Definition 3.1 (Attention forward computation). Let n be the input length and d be the head dimen-
sion. Let Ay, Ay, A3 € R™ % be the inputs of previous layer. Given query, key and value weights
matrix Wo, Wi, Wy € R4 e have the Softmax attention forward computation being

Attn (Al, AQ, A3) = D_1 exp(A1 WQW}AJ)AgWV,

where (1) D := diag(exp(A1WoW L AJ) - 1,,), (2) exp denotes the exponential function and is
applied entry-wisely, (3) diag() operation takes a vector and outputs a diagonal matrix with the
entries of that vector, and (4) 1,, denotes the length-n all ones vector.

To simplify and focus more clearly on the core computational aspects of the problem, we set X =
WoWik € R™ and Y = Wy, € R4,

Note that, we have Softmax(A4; X AJ ) = D~ ltexp(41XA]) € R™ ", and usually we call it the
attention matrix. The above definition is general and encompasses both self-attention and cross-
attention mechanisms in Transformer architectures. Specifically, self-attention occurs when A; =
A, = Ags, meaning that the queries, keys, and values are all derived from the same source. In
contrast, cross-attention happens when A, = Az, indicating that the keys and values come from one
source while the queries come from the other.

Notably, FlashAttention (Dao et all, 2022}, [Dao}, 2023}, [Shah et al.} 2024) and [Saha & Ye| (2024)

consider Q, K,V € R™* after applying the linear layer to the previous inputs, while we consider
a more detailed structure as Q = A;Wgq, K = AsWg,V = AzWy (Definition [3.T) explicitly
calculating module-wise gradients on attention Weirhts. This explains why our I/O complexity

bound O (min{ "Zdzj\}r"d3 , ”2%‘12 }) in Theorem |1.1|has an additional term nd? in the small cache

case and nd? in the large cache case. When n > d, the additional term will disappear.

Mathematically, optimizing the attention computation involves adjusting the attention weight matri-
ces X, and Y. Using the previous results on attention gradients from [Alman & Song| (2024a)) and
Liang et al.|(2024c), we have the following definition of attention gradient:

Definition 3.2 (Attention backward gradient). Let A;, Ay € R™*% Let p(X) € R™ ™ be defined
in Definition @ (see Fig. IZl for an illustration). Let L(X) be some loss function. The attention
backward gradient for X € R4*4 is:

dL(X)
dX
Remark 3.3. Since the attention module depends only linearly on'Y, it is straightforward to incor-

porate it into an algorithm, and it is not a complexity bottleneck. Thus, we focus on the case where
X is variable and Y is a fixed input.

= AIP(X)A}
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Figure 3: This diagram shows a summation tree with d = 2 in the computational graph for the
backward passes of attention using standard matrix multiplication. The orange and green nodes
represent the input nodes of the level-1 summation tree. The brown nodes, along with the blue
nodes (output from the level-1 summation tree), serve as inputs for the level-2 summation tree. The
purple nodes represent the target output. When d gets larger, the summation tree will expand with
additional layers, where each new layer introduces intermediate nodes that represent the sums of
pairs of nodes from the previous layer, i.e., there will be total 1 + log, d layer in total.

3.2 SUMMATION TREE

In this subsection, we need to introduce the computational graph of the attention backward gradient,
which is the key concept in our I/O complexity analysis.

In the computational graph shown in Fig.@ we can first compute A; X and then compute (A; X)AJ ,
or first compute X AJ and then compute A; (X A, ). In either case, we perform two matrix multi-
plications: one between an n X d matrix and a d X d matrix, and the other between an n X d matrix
and a d x n matrix. Without loss of generality for illustration, we consider the first case. To compute
A, X, we need to calculate the products {(A1); x X ;} foralli € [n], k € [d], j € [d]. Each en-
try (A1X); ; is then obtained by summing these products over k: (41 X); ; = ZZ=1(A1)i,ka,j-
In the computational graph, this summation is represented by a summation tree that connects the
product nodes (A1 ); xXp,; to the sum node (A,X); ;. We define the product nodes (A1 ); 1 Xk j,
the nodes corresponding to the sums (A;X); ;, and all intermediate nodes in the summation trees
as level-1 nodes. Similarly, we define level-2 nodes as these nodes in the summation trees involved
in computing (4; X)A, . We give an example of the summation tree with d = 2 in Fig.

3.3 1/0 COMPLEXITY

There are various ways to define the two-level memory hierarchy and the I/O complexity. We state
the definition in|[Hong & Kung| (1981), which formulates the two-level memory hierarchy as a red-
blue pebble game played on a computational graph. Very recently, Saha & Ye| (2024) proved that
the I/O complexity of forward computation of FlashAttention is optimal by analyzing the red-blue
pebble game on an attention forward computational graph.

Definition 3.4 (Red-blue pebble game (Hong & Kung] [1981)). Consider a game played on a di-
rected acyclic graph that has a limited number of red pebbles and an unlimited number of blue
pebbles. Initially, each input node (a node with no parents) is marked with a blue pebble, while all
other nodes have no pebbles. The player is allowed to perform the following operations:

* Input: Replace a blue pebble on a node with a red pebble.

* Qutput: Replace a red pebble on a node with a blue pebble.

* Compute: Place a red pebble on a node if all its parent nodes have red pebbles.
e Delete: Remove a pebble from a node.

The objective of the game is to place blue pebbles on all output nodes (i.e., nodes with no children)
while minimizing the total number of input and output operations used throughout the process.
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In the red-blue pebble game, each node represents a computational task. A red pebble denotes a
unit in the small but fast layer known as cache, while a blue pebble represents a unit in the large but
slower layer called memory. A task can only be computed once all its dependent tasks are completed.
All computations are assumed to occur within the cache. Hence, efficient use of cache plays a critical
role in reducing the I/O operations of an algorithm to minimize the cost associated with data transfer
between memory and cache. We can define the I/O complexity by using the red-blue pebble game.

Definition 3.5 (I/O complexity (Hong & Kung, |1981)). Consider the red-blue pebble game played
on a directed acyclic graph G. Let M be a positive integer. The 1/O complexity, denoted as
Q(G, M), is the minimum number of input and output operations to complete the objective of the
game with the restriction that no more than M red pebbles are present on the graph at any time. We
omit G when it is clear in the context.

The red-blue pebble game provides insight into cache management by modeling the limited cache
size through the number of red pebbles. The maximum number of red pebbles corresponds to the
size of the cache, which means that there can be at most M items in the cache at any given time.

4 MAIN RESULTS

In Theorem we provide matching upper and lower bounds for the I/O complexity of attention
gradient computation in the backward passes. In detail, Theorem @] states that the I/O complexity

. . Lo o n2dP4nd® n? . . .
of the attention gradient computation is © (min{ 24 + nd n %d }), which splits the cache size

into two cases: (1) small cache M = o(d?); (2) large cache M = §2(d?). At the cross point M = d?,

2 42 3 2 2 . . . . .
we have 24 Aj[r"d =5r ‘\ifﬁnd = n? + nd. An intuitive figure of the asymptotic I/O complexity is

shown in Fig.

Here we discuss two implications of Theorem [I.1] First, through the fine-grained analysis, our
result identifies a critical point at M = d?, where the I/O complexity changes its behavior. For
M = o(d?), we establish better upper and lower bounds compared to existing results, demonstrating
that FlashAttention is not optimal in this regime. Second, when M = Q(d?), Theoremprovides a
tighter lower bound than existing work using red-blue pebble game (Definition[3.4), offering insights
of algorithm design.

Moreover, by combining the results of [Saha & Ye| (2024) with our findings, we provide a more
general and tighter I/O complexity characterization of FlashAttention 1/2 (Dao et al.| [2022; Dao,
2023). In the large cache scenario where M = )(d?), the attention forward I/O complexity is

@(%), as discussed in Theorem 5.1 of |Saha & Ye|(2024)). Combining this result with our attention
backward I/O complexity @(W) (Theorem , we conclude that the overall complexity is
@(W). Thus, given the cache size is sufficiently large, i.e. M = (d?), the I/O complexity
of the forward and backward computation for FlashAttention 1/2 is optimal.

Our main result Theorem|[I.T]is a summary of our results for different cache sizes (Theorem[4.1] 4.2}
and [£4)), which will be discussed in the later subsections.

4.1 LARGE CACHE

The large cache scenario is more interesting and practical. We now prove an upper bound below.

Theorem 4.1 (Large cache upper bound, informal version of Theorem|[D.5). Suppose n is the input
length, d is the head dimension, and M = Q(dZ) is the cache size. There is an algorithm (see

AlgorithmEl) outputs a d X d matrix g = dﬁg) (Deﬁnition with I/O complexity O(W)

We then demonstrate that this upper bound is tight by providing a matching lower bound for the I/O
complexity of the attention backward passes. To achieve this, we employ the framework developed
in [Hong & Kung| (1981)), which shows that executing an algorithm on a machine with a two-level
memory hierarchy can be modeled by a red-blue pebble game (Definition on a directed acyclic
graph. We present the large cache lower bound below, which shows as long as the cache size

M = Q(d?), the I/O complexity is at least Q(W)
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Theorem 4.2 (Large cache lower bound, informal version of Theorem @[) Suppose n is the input
length and d is the head dimension. Suppose the cache size M = Q(d*). Then the I/O complexity

. . . . . . . . . 2 72 3
of attention gradient computation using standard matrix multiplication is always Q(”dT*”d).

4.2 SMALL CACHE

In the small cache case, we provide an upper bound below. Notice that this is better than the I/O
2 72 & 2 2
complexity of FlashAttention which is O(%*”d&) > O(%) when M = o(d?).

Theorem 4.3 (Small cache upper bound, informal version of Theorem [C.12). Suppose n is the
input length, d is the head dimension, and M = o(d?) is the cache size. There is an algorithm (see

Algorithm @) outputs a d X d matrix g = dﬁ()f) (Definition with I/O complexity O("QL\/MM?),

time complexity O(n?d + nd?), and space complexity O(n? + d?).

Furthermore, we show that attention gradient computation can be reduced to matrix multiplication,
establishing a matching lower bound.

Theorem 4.4 (Small cache lower bound, informal version of Theorem . Suppose n is the input
length and d is the head dimension. Suppose the cache size M = o(d*). Then the I/O complexity of

2 2
attention gradient computation using standard matrix multiplication is always ( %).

4.3 LOWER BOUND OF SPARSE ATTENTION FORWARD AND BACKWARD PASSES

Sparse attention is a generalization of standard attention and has been popular in practical applica-
tions. We refer readers to Section |Z| for more discussion. To state our results, we first introduce
some notations. For any matrix A, we use nnz(A) to denote the number of non-zero entries in the
matrix A. We assume that sparse matrices are stored by listing only their non-zero entries along with
their coordinates. We assume sparse semi-ring matrix multiplication, which restricts operations to
addition and multiplication of these entries. Each output entry (AB); ; can only be computed as the
sum of products given by >, A; By ;.

Theorem 4.5 (Lower bound for sparse attention forward and backward, formal version of Theo-
rem[I.2). Suppose n is the input length, d is the head dimension, and M is the cache size. Let Z  :=
min{nnz(A4;),nnz(4s)}, Zx = nnz(X),Zax = min{nnz(4;X),mz(XA3)}, Zaxa =
nnz(A1 X Ay ). Then any algorithm for both attention forward and backward computation using
sparse semi-ring matrix multiplication has I/O complexity

Q (min { Z3+ZaZx ZaNZaxa+NZaZxZax })
M ’ VM '

Remark 4.6. When matrices involved in attention computation are dense, i.e., Zy = Q(nd), Zx =

Qd*),Zax = Qnd), and Zaxa = Qn?). In such case, our lower bound reads as
Q(min{ "2d2]\j[r”d3 , ”Q%dQ }). Hence, it matches the result of lower bounds in the dense case.

The dividing point for sparse attention. The dividing point of small cache and large cache can be
Z3+Za%x ZaNZaxa+VZaZxZax
M VM

computed by equaling two lower bounds, i.e., . Rearranging
Zﬂ+ljlx

- _ —_ . Note that when matrices are dense, we have
ZaNZaxa+VZaZxZax ‘ ¢ ¢ ¢

. . Ve
the equation gives vV M =

— 2 52 3 1+-d? .. = .. /T . 2
VM = ’i’_,‘f, ‘ﬁ’y”/’ = 'ﬁ‘(, . Since we assume that n > d, this is exactly VM = d, i.e., M = d?,

which matches the dividing point of the dense case dicussed in the beginning of Section ]

5 TECHNICAL OVERVIEW

Upper Bound of Small Cache. In Section [C] we present algorithms for the backward passes of
attention in the small cache case, where M = o(d?). We observe that when M = o(d?), we have

2 42 3 2 2 . . . . .
n'd ]\} nd. > n il/%“i > n? 4+ nd. Then we can exploit this to design a better algorithm with I/O
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complexity better than w, by reading/writing the n x n attention matrix and other n x d in-
termediate matrices from/to memory. In detail, our small cache algorithm (Algorithm [6]) follows the
computational graph in Figure[2]and is divided into four phases. In Phase 1 (Algorithm 2, we com-
pute the attention matrix f (Definition and write it to memory. In Phase 2 (Algorithm [3), we
compute ¢ (Definition [B.8)), incorporating the information from the upstream gradient dO. Phase
3 (Algorithm [) computes the gradient component matrix p (Definition [B.9). Finally, in Phase 4
(Algorithm , we compute the final gradient g = A;'—pAQ (Definition At a high level, our
algorithm splits the input and output matrices into blocks of size v/M x v/M. On the other hand,
FlashAttention divides the n x d input matrices into multiple k£ x d matrices, where k < n. Compared
to our upper bound, we can see that FlashAttention is not optimal in this case. Following the com-
putational graph in Figure 2| we perform the backward passes of attention using each v/M x /M
block as basic elements in standard matrix multiplication. Compared to forward passes, the com-
putational graph of backward passes is more complicated and requires more fine-grained analysis,
e.g., the four phases mentioned above. Through a detailed analysis of Algorithm [6] we establish
Theorem [£.3]

Upper Bound of Large Cache. In Section D] we present algorithms for attention backward in the
large cache case, where M = Q(d?). Similar to FlashAttention, the n x n attention matrix f (Defi-
nition[B.3)) cannot be directly loaded into cache, even though it has been computed and can be stored
in memory. The overall algorithm (Algorithm [9) consists of two phases. In Phase 1 (Algorithm [7)),
we compute S = A; X and h = A3Y, and these two matrices are then passed to Phase 2. In Phase
2 (Algorithm , the inputs are matrices Ay, Az, S, h, O,dO € R**¢ (Deﬁnitions and
[B.8), and vector | € R™ (Definition [B.4). We vertically divide the inputs into row block matrices of
size B, x d or B, x d, where B, = min{[M/4d],d} and B, = [M/4d]. Using these row block
matrices as computation units, we follow the computational graph (Fig.[2) and FlashAttention’s pro-
cedure. After accounting for the reads and writes of the overall algorithm (Algorithm [J), we prove
Theorem Furthermore, when the cache size is as large as ©(nd), the I/O complexity can be
reduced to O(nd + d?), which corresponds to the size of the input and output of the algorithm.

Lower Bound of Large Cache and Small Cache. In Section[E] we establish the lower bounds for
the I/O complexity of attention gradient computation in both large and small cache cases. Following
Definitions [3.4] and [3.5] we analyze the red-blue pebble game on the computational graph of any
attention backward algorithm using standard matrix multiplication. More specifically, the key con-
cept is the M -partition, which decomposes the graph into subgraphs, ensuring that each subgraph
satisfies conditions related to dominator and minimum sets (Definitions[E.T} [E-2] [E.3] [E.4] and [E.3).
Our proofs for the lower bound of backward passes builds upon the lemmas (Lemmas [E.7 and [E.§),
which provide the foundation for relating the number of subgraphs to the I/O operations required.
For the large cache scenario, M = €(d?), we demonstrate that the I/O complexity scales with the
need to compute matrix products efficiently. In the small cache case, M = o(d?), we show that
higher I/O complexity is unavoidable due to the data transfers between cache and memory by re-
ducing to the standard matrix multiplication. These analyses are formally established in the proofs
of Theorems and In particular, our Theorems the small cache lower bound case,
requires a new analysis deviation.

Remark 5.1. The Softmax in Definition[3.1|can be changed to other non-linear activation functions
and our lower bound still holds. It is because we must compute matrix multiplication of size n X d
and d X n in non-linear attention. However, for linear attention, i.e., AlXAQTAgY, our lower bound

is loose, since we can compute A; As first, and then we have A1 X A; As Y .
~ N~~~ ~—

dxn nxd nxd dxXd  gxq dxd

Lower Bound of Sparse Attention Forward and Backward Passes. In Section [F|, we establish
lower bounds on the I/O complexity of sparse attention computation for both forward and back-
ward passes. Sparse matrix multiplication is considered, where only non-zero entries are stored
and used in computations. We derive I/O complexity bounds based on the non-zero counts of input
matrices and the I/O operations required for sparse matrix multiplication (Lemma [FI). We fur-
ther extend these bounds to the matrix products involved in the attention mechanism (Lemma ,
which requires multiple sparse matrix multiplication analysis. We analyze scenarios where matrices
are stored in cache or require intermediate I/Os during computation to obtain the I/O complexity
bounds for both forward and backward passes (Theorems E] and Theorem E]), and Theorem @]
directly holds as a consequence.
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6 CONCLUSION

This work provided a comprehensive analysis of the I/O complexity for attention mechanisms, fo-
cusing on backward passes. We established tight bounds on I/O complexity for both small and large
caches. Our results confirm that FlashAttention is optimal for both forward and backward on large
cache sizes. For small cache sizes, we provided improved upper and lower bounds compared to
existing methods. Additionally, we derived lower bounds for sparse attention for both forward and
backward and across cache sizes. Our findings complete the theoretical foundation for I/O com-
plexity in attention mechanisms, offering insights for efficient LLM training and inference. We
leave exploring practical implementations leveraging these theoretical insights and investigating I/O
complexity for other emerging attention variants as our future work.
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Appendix

Roadmap. In Section[A] we present a more comprehensive overview of related work pertinent to
our study. In Section B} we introduce additional preliminaries, including notations and definitions
of intermediate variables. Section [C| provides algorithms and establishes an upper bound theorem
for the attention backward pass in small cache case M = o(d?). In Section @ we offer algorithms
and an upper bound theorem for the attention backward pass in large cache case M = Q(d?). In
Section |[E] we provide proofs for our attention backward I/O complexity lower bound results. In
Section[Fl we prove the I/O complexity lower bounds for sparse attention.

A  MORE RELATED WORK

Large Language Models. The exceptional success of generative large language models (LLMs),
such as GPT-4 (Achiam et al., 2023)), Claude 3 (Anthropic, [2024)), Gemini 1.5 (Reid et al., [2024)),
Llama 3.1 (Llama Team), 2024), Mistral Nemo (Jiang et al., 2023), Phi 3.5 (Abdin et al., 2024), is
fundamentally attributed to the transformer architecture introduced by |Vaswani et al.|(2017) and all
support at least 128k input token length. The transformer architecture and its self-attention mech-
anism have become indispensable in leading natural language processing (NLP) models (Chang
et al.| [2024), demonstrating remarkable capabilities across a diverse array of applications, including
language translation (He et al.| 2021), sentiment analysis (Usama et al.| 2020), language model-
ing (Martin et al.l |2019), the integration of differential privacy (Singh et al.l 2024} |[Liang et al.,
2024¢e)), and multi-modal tasks (Zhang et al., [2024a; |Liang et al.| 2024f; Wang et al.| 2024). Trans-
formers’ emergent compositional abilities (Dziri et al.| [2024; [Xu et al., 2024b) and proficiency in
in-context learning (Olsson et al.,[2022; |Min et al.,|2022;|Shi et al., 2024b)) have led some to consider
them as early indicators of Artificial General Intelligence (AGI) (Bubeck et al., 2023)). As such, the
transformer architecture continues to play a pivotal role in advancing the field of Al

More about Attention Computation Acceleration. The quadratic time complexity of attention
computation with respect to the length of the input sequence (Vaswani et al.,|2017) poses significant
computational challenges, especially for long sequences. Consequently, accelerating attention com-
putation has become a crucial research area, with approaches broadly divided into two categories:
(1) theoretical optimization of computational complexity (Alman & Song, [2023}; [2024a)), and (2)
experimental improvements to model performance (Dao et al., 2022} |Dao| 2023} Shah et al., 2024;
Ge et al., 2023 [Feng et al., 2024a).

From a theoretical standpoint, numerous works focus on approximating the attention matrix to ac-
celerate computation. For example, |Alman & Song|(2023;20244a) utilize polynomial kernel approx-
imation techniques (Aggarwal & Alman| 2022)) to speed up both training and inference of a single
attention layer, achieving almost linear time complexity, and extend this approach to multi-layer
transformer (Liang et al.l [2024c)) and tensor attention (Alman & Song} [2024b; |Liang et al.|, 2024f).
Other theoretical contributions include the conv-basis method introduced by [Liang et al.| (2024a)
and a near-linear time algorithm proposed by |[Han et al.| (2024) under the assumptions of uniform
softmax column norms and sparsity.

Experimental approaches involve modifying model architectures and optimizing implementations
to accelerate inference. Methods such as Mamba (Gu & Daol 2023} |Dao & Gu, |2024), Linearizing
Transformers (Zhang et al., [2024b; Mercat et al.l 2024)), PolySketchFormer (Zandieh et al., 2023
Kacham et al.,|2023), and various implementations of the Hopfield Model (Hu et al., |2024bjaj; [Wu
et al., 2024a; | Xu et al.| 20244} |Hu et al.l [2024c; Wu et al.l [2024b; |Hu et al., [2023) aim to improve
model performance and inference speed. Additionally, specific techniques like weight pruning|Liang
et al.|(2024b); |L1 et al.| (2024)) have been developed to accelerate LLM generation. Some other tech-
niques are introduced for efficient adaptation, such as LoRA (Hu et al., 2022} Zeng & Lee, 2024;
Hu et al.,|2024d) and prefix turning (Li & Liang| [2021; Liang et al., 2024d). System-level optimiza-
tions, such as Flash Attention (Dao et al.,|2022; |Daol2023};|Shah et al.| |2024) and block-wise parallel
decoding (Stern et al.l 2018)), address bottlenecks in attention mechanisms and enhance inference
speed through efficient implementation strategies. Collectively, these advancements contribute to
making attention mechanisms more scalable and efficient, facilitating the deployment of large-scale
language models.
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More about Learning with Bounded Memory and I/O Complexity. Learning with bounded
memory has been studied in various fields in machine learning such as online learning (Maiti et al.,
20215 [Srinivas et al., 20225 |Peng & Rubinstein, [2023; |Peng & Zhang| 2023)), parity learning (Stein-
hardt et al., |2016; Raz, 2017; 2018} |Garg et al., [2018)), convex optimization (Woodworth & Srebro,
2019; Marsden et al., 2022; |Chen & Peng, [2023)), active learning (Hopkins et al.l [2021), learning
linear classifiers (Brown et al.l 2022), attention computation (Addanki et al., |2023), linear regres-
sion (Steinhardt & Duchil [2015; Sharan et al.,[2019; Brown et al.,|2022), linear programming (Tau-
man Kalai et al., 2016} Liu et al., 2020), semi-definite programming (Song et al., 2023), principal
component analysis (Deng et al.,|2023)), continual learning (Chen et al.| 2022} |[Ermis et al.,|2022)), en-
tropy estimation (Acharya et al., 20195 |Aliakbarpour et al.,2022)) and others (Moshkovitz & Tishby,
2017;|Gonen et al., 2020).

A common memory model in computational systems is the two-level memory hierarchy. In this
model, there are two layers of memory: a small but fast layer called the cache, and a large but slower
layer called the memory. The 1/O (input/output) complexity of an algorithm measures its efficiency
based on the number of data transfer operations it performs between the cache and the memory.
In domains such as big data analytics and database management, these data transfers can become
significant performance bottlenecks because massive datasets cannot be entirely accommodated in
the cache, and thus optimizing I/O is essential for fast data retrieval and storage, directly impacting
query performance and system scalability (Gropp et al., 2014; Zhang et al.,[2015). The early work
of Hong & Kung| (1981)) formulated the I/O complexity mathematically using the language of graph
theory. |Vitter| (2001) provides a comprehensive survey of the I/O complexity of various batched
and online problems. There exists a substantial body of work on the I/O complexity of numerous
problems, including sorting (Aggarwal & Vitter, |1988), graph algorithms (Cui et al., |2020; Jain
& Zaharial 2020; Jiang et al., 2021} |[Deng & Taol 2024), fine-grained I/O complexity (Demaine
et al., [2017)), computational trade-off in data transfers (Demaine & Liu, [2018)), computing prime
tables (Bender et al.,[2016)), attention computation (Saha & Ye}[2024)), integer multiplication (Bilardi
& De Stefanil, 2019; De Stefanil, 2019b), and matrix multiplication (De Stefani, 2019a; Nissim &
Schwartz, 2019)).

B PRELIMINARY

In Section[B.T] we define some basic notation we will use. In Section[B.2] we introduce the memory
hierarchy we consider. In Section[B.3] we state important facts related to fast matrix multiplication.
In Section[B.4] we define several intermediate functions which will arise in our algorithms.

B.1 NOTATIONS

For any positive integer n, we define [n] := {1,2,...,n}. For two same length vector x and y,
we use (z,y) to denote the inner product between x and y, i.e., (x,y) = Y ., x;y;. We use o
to denote the Hadamard product i.e. the (4, j)-entry of A o B is A; ;B; ;. We use x o y to denote
vector that ¢-th entry is x;y;. Let 1,, denote the length-n all ones vector. It is not hard to see that
(xoy,1,) = (z,y). For a vector z, we use ' to denote the transpose of x. For a matrix A, we use
AT to denote the transpose of matrix A. For a matrix A, we use exp(A) to denote the matrix that
(4, 7)-th coordinate is exp(A; ;).

Given a matrix A € R"*™, we index an individual entry as A[i, j]. The i-th row is denoted A[i]
while the j-th column is denoted A[x,j]. Ali1 : i2,j1 : jo| denotes a block of A consisting of
entries (7, j) where ¢ € [i1,42] and j € [j1, j2]. Given a block size B, the block A[(i —1) - B+ 1 :
i-B,(j—1)-B+1:j-B]isdenoted AP, j].

For a vector v € R™, we similarly denote entries v[i], a contiguous block of entries as v[iy : i2], and
the i-th block of size B as v(®)[i]. Let diag(v) denote the matrix D € R™*" with D[i,i] = v[i].

B.2 MEMORY HIERARCHY

In this study, we consider a two-level memory hierarchy composed of a small but fast layer called
the cache and a large, slower layer referred to as the memory. We assume that the memory has
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unlimited capacity, while the cache is constrained by a finite size M. Moreover, all computations
are performed exclusively within the cache.

B.3 MATRIX MULTIPLICATION

We define matrix multiplication notation and state some well-known facts here.

Definition B.1. Let nq, no, ns, denote any three positive integers. We use Tmat (11, na, n3) to denote
the time of multiplying an nq X no matrix with another no X ng.

Then, we introduce a well-known fact.

Fact B.2. Let ni,no,n3, denote any three positive integers. Tmat(n1,n2,n3) =
O(Tmat(n1,n3,n2)) = O(Tmat(n2,n1,13)) = O(Tmat(n2,n3,11)) = O(Tmat(n3, n1,n2)) =
O(Tmat(n37n27n1))'

B.4 DEFINITIONS OF INTERMEDIATE VARIABLES

We start by some definitions about X € R%x¢,

Definition B.3 (Definition 3.4 in|/Alman & Song| (2024a))). Let A1, As € R™*4 be two matrices. Let
X € Réx4,

Let us define function A(X) to be:
A(X) :=exp(A1 XA, ).
—_——
nxn

Definition B.4 (Definition 3.5 in|Alman & Song| (2024a))). For A(X) € R™*™ defined in Defini-
tion we define the softmax normalizing vector [(X) € R™ to be

I(X) = AX)- 1, .
—— =~
nxn nX1

Definition B.5 (Definition 3.6 in |/Alman & Song| (2024a)). Suppose that [(X) € R"™ is defined as
in Definition |B.4} Let A(X) € R"*"™ be defined as in Definition For a fixed jo € [n], let us
consider f(X);,

f(X)jo = Z(X)j_ol A(X)jo :
—_——
scalar nx1
Let f(X) € R™ ™ denote the matrix where jo-th row is (f(X)j,) "
Furthermore, the matrix form of f(X) is

f(X) = diag(I(X))A(X)

We then define h(Y) related to Y € R¥9,

Definition B.6 (Definition 3.7 in |Alman & Song (2024a)). For Az € R"*% and Y € R we
define h(Y) € R"*4 as:
h(Y):= A3 Y .
~—
nxd dxd

Let us define the forward output matrix O.

Definition B.7. Ler f(X),h(Y) be defined in Definition |B.3| and [B.6| We define the output of
attention as:

nxXn nxd

where O € R"*? s the output matrix of attention forward computation.
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Now, we define ¢, which incorporates the information from upstream gradient.

Definition B.8 (Definition C.10 in Liang et al[(2024c)). Let dO € R™"*? be the upstream gradient,
the matrix resulting from the application of the chain rule. Define h(Y') € R"* as in Definition

We define q(Y) € R"*™ as

Finally, we define the gradient component matrix p.
Definition B.9 (Definition C.5 in |Alman & Song| (2024a)). For every index jo € [n], we define
p(X)j, € R" as
p(X)jo = (dlag(f(X)]o) - f(X)]of(X);;)q(Y)]o
We define p(X) € R™™™ in the sense thatp(X);E) is the jo-th row of p(X). Additionally, p(X) has
matrix form as
p(X) = f(X) o q(Y) — diag((f(X) 0 q(Y)) - 1,,) f(X)
— (X) 0 q(Y) — diag((0 0dO) - 1,,) f(X)
where f(X), O are defined in Definition|B.3|and|B.7} and q(Y'),dO are defined in Definition|B.8|

C 1/0 CoMPLEXITY UPPER BOUND FOR SMALL CACHE

In this section, we prove the I/0 complexity upper bound (Theorem [C.12)) for small cache case M =
o(d?). Specifically, in Section we introduce an algorithm of attention gradient computation
without cache to guide our algorithm design. Section [C.2] presents algorithms and analyses for
attention gradient computation in the small cache setting. Finally, Section [C.3] provides the upper
bound theorem for the small cache case.

C.1 ALGORITHM FOR ATTENTION BACKWARD WITHOUT CACHE

Using results from |Alman & Song| (2024a), we can compute the gradient in Tiat(n,d,n) +
Tmat (1, d, d) time.

Lemma C.1 (Attention gradient computation, Lemma C.8 in |Alman & Song| (2024a)). If it holds
that

s Define Ay, Ay, A3, dO € R™"¥4, Define X,Y € R¥*? to be several input fixed matrices.

o Let X,Y € R¥ denote matrix variables (we will compute gradient with respect to X ).

o Letg = % € R¥¥4 (Definition .

Rdxd

Then, gradient g € can be computed in Thyat(n, d, n) + Tmat (0, d, d) time.

We first give a naive algorithm that have not utilized cache to compute the gradient (Algorithm T).

Lemma C.2 (Correctness). The ATTENTIONGRADIENTNOCACHE (Algorithm|[I)) outputs a d x d
matrix dfi()f) defined in Deﬁnition

Proof. From Lemma|C.T] we know this holds. O

Lemma C.3 (Time/space complexity). There exists an algorithm (see Algorithm([l) that can compute
the exact gradient in Deﬁnition in Tmat(n, d, n) + Tmat(n, d, d) time and O(n? + d?) space.

Proof. From Lemma|[C.I] we can prove the time complexity. Since the stored matrices have three
sizes, namely n X d, n X n, d x d, the space complexity is O(n? + nd + d?) = O(n? + d?). O
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Algorithm 1 Attention gradient computation without cache. See more details in Section B and C of
Alman & Song|(2024a) and Section F of [Liang et al.| (2024c)).

1: procedure ATTENTIONGRADIENTNOCACHE(A, Ag, A3, dO € R™*4, XY € R4¥9) >

Lemma[C.2] Lemma[C.3|
: Read A;, Ay, X, initialize A < 0"*", compute A +— A + A; X AJ, and delete X

2

3 Compute A < exp(A), initialize [ < 0™, and compute [ <~ [+ A -1

4 Initialize f < 0"*", compute f + f + diag(l) "' A, and delete A, d

5: Read As, Y, initialize h < 0"*%, compute h < h + A3Y, and delete A3,Y

6: Read dO, initialize ¢ < 0"*™, compute q < ¢ + dOh", and delete dO, h

7: Initialize p < 0™*", compute p < p+ f o g — diag((f o ¢) - 1) f, and delete f, q

8 Initialize g - 0"*™, compute g <— g + A pAs, and delete Ay, Ay, p

9:  returng >g= % € R¥™? see Deﬁnition
10: end procedure

C.2 ALGORITHMS FOR ATTENTION BACKWARD IN SMALL CACHE

We now give algorithms to compute the upper bound of small cache case M = o(d?) in attention
backward computation.

First, we give the algorithm and analysis for Phase 1 (see Algorithm [2)) to compute f defined in
Definition[B.3]

Lemma C.4 (Correctness of Phase 1). The ATTENTIONGRADIENTCACHEPHASE1 (Algorithm
outputs a n X n matrix f defined in Definition[B.5]

Proof. The algorithm first computes S = A; X. Then it computes A = SAJ, A = exp(A), and
[ = A - 1. Finally, it outputs f = diag(l)~*A which is f defined in Deﬁnition O

Lemma C.5 (I/O complexity of Phase 1). The I/O complexity of ATTENTIONGRADIENTCACHEP-
: o n2 n 2
HASE1 (Algorlthm is O(%).

Proof. InPhase 1 (Algorithm the number of items in cache is at most 3B% + B < 4B% < M. For
each iteration in computing S = A; X and A = SA], the algorithm reads O(B?) from memory
into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus, the 1/O

complexity of Phase 1 is O(%BQ) + O("B—d;BQ) = O(W) = O(”Zdi\;%dz). O

Second, we give the algorithm and analysis for Phase 2 (see Algorithm [3)) to compute ¢ defined in
Definition

Lemma C.6 (Correctness of Phase 2). The ATTENTIONGRADIENTCACHEPHASE?2 (Algorithm
outputs a n X n matrix q defined in Definition|B.8|

Proof. The algorithm first computes b = AzY. Then, it outputs ¢ = dOh which is exactly the
same as ¢ defined in Definition|B.§ L]

Lemma C.7 (I/O complexity of Phase 2). The I/O complexity of ATTENTIONGRADIENTCACHEP-

HASE2 (Algorithm is O(”QL\/JT’;‘P).

Proof. In Phase 2 (Algorithm the number of items in cache is at most 382 < 4B2 < M. For
each iteration in computing = A3Y and ¢ = dOh', the algorithm reads O(B?) from memory
into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus, the I/O

complexity of Phase 2 is O (% B2) + O(%gs B2) = O(-4gnd ) — O(m-dtnd), O

Then, we give the algorithm and analysis for Phase 3 (see Algorithm [)) to compute p defined in
Definition[B.9]
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Algorithm 2 Attention gradient computation with cache phase 1. Compute f.

1: procedure ATTENTIONGRADIENTCACHEPHASE1(A;, Ay € R"*4, X ¢ R4 M € N;) >

Lemmal[C.4] Lemma[C.3]

2: B+ |\/M/4]

3: /*Phase 1: Compute f*/

4: for1 <i<|[n/B]do

5: for1 <j<[d/B]do

6: Initialize SB[, j] +- 0%* in cache

7: for1 <k <[d/B]do

8: Read A?)[i, k] and X Bk, j] into cache

9: Compute SB)[i, j] « SBV[i, j] + AP [i, k)X B[k, j] in cache > = 41 X
10 Delete AgB) [i, k] and X (P)[k, 5] from cache
11: end for
12: Write S(®)[4, 5] in to memory, and delete S(7)]i, j] from cache
13: end for

14: end for
15: for 1 <i<[n/B]do

16: Initialize 1(®)[i] + 0F in cache

17: for1 <j <[n/B]do

18: Initialize A®)[4, 5] - 02*5 in cache

19: for1 <k <[d/B]do

20: Read S(P)[i, k] and (A] )(B)[k, j] into cache

21: Compute AP)[i, j] < AB[i j] + SB)[i, k](A; ) P)[k, 5] in cache >
A=SA]

22: Delete SP)[i, k] and (Ag )(B)[k, j] from cache

23: end for

24: Compute AP)[i, 5] + exp(AP)[i, j]) in cache, and write AP)[4, 5] into memory

25: Compute [(B)[i] « 1(B)[i] + AB)[i, j] - 1 in cache pl=A-1

26: Delete A(P)[i, j] from cache

27: end for

28: for1 <j<|[n/B]do

29: Initialize f(P)[i, j] < 0B*B in cache

30: Read A(P)[i, j] into cache

31: Compute fB)i, j] « fB]i, j] + diag (1P [i]) "L AB) i, j]

32: Write f(®)[4, ] into memory, and delete A®) [, j] and f(P)[i, j] from cache

33: end for

34: Delete I()[i] from cache

35: end for

36: return f > f € R™ "™, where f is defined in Deﬁnition

37: end procedure

Lemma C.8 (Correctness of Phase 3). The ATTENTIONGRADIENTCACHEPHASE3 (Algorithm H))

outputs a n X n matrix p defined in Definition|B.9

Proof. The algorithm first computes v = (f o ¢) - 1. Then it outputs p = f o ¢ — diag(v)f.

O

Lemma C.9 (I/O complexity of Phase 3). The I/O complexity of ATTENTIONGRADIENTCACHEP-

HASE3 (Algorithm is O(\}‘%)

Proof. In Phase 3 (Algorithm the number of items in cache is at most 382+ B < 4B2? < M. For
each iteration in computing v = (f o q) - 1 and p = f o ¢ — diag(v) f. The algorithm reads O(B?)
from memory into cache. This is the dominating factor of the I/O complexity of the algorithm. Thus,

the /O complexity of Phase 2 is O(%; B2) = O(%5) = O(\?QM)
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Algorithm 3 Attention gradient computation with cache phase 2. Compute q.

1: procedure ATTENTIONGRADIENTCACHEPHASE2(A3,dO € R 4, f € R"*" Y ¢ R4x9,

M eNy) > Lemma [C.6] Lemma|[C.7]

2 B« |J/M/4

3: /* Phase 2: Compute g */

4: for1 <i<|[n/B]do

5: for1 <j <[d/B]do

6: Initialize 2(B)[i, j] - 0%* in cache

7: for1 <k <[d/B]do

8: Read AP [i, k] and Y (B) [k, j] into cache

9: Compute h(B)[i, j] «+ hB)[i, 5] + AgB)[ ,k]Y (B)[E, 5] in cache
10: Delete AS”[i, k] and Y (B)[k, 5] from cache
11: end for
12: Write h(P)[i, 5] in to memory, and delete (P i, j] from cache
13: end for

14: end for
15: for 1 <i<|[n/B]do

16: for 1 <j <[n/B]do

17: Initialize ¢(P)[i, j] < 0%*F in cache

18: for1 <k <[d/B]do

19: Read dOP)[i, k] and (R ")) [k, j] into cache

20: Compute ¢B)[i, j] < ¢'B)[i, 5] + dOPB)[i, k](hT) B[k, 5] in cache
21: Delete dOP)[i, k] and (")) [k, j] from cache

22: end for

23: Write ¢(®)[i, 5] in to memory, and delete ') [i, j] from cache

24: end for

25: end for

26: return q > g € R™*"™ where q is defined in Definiton

27: end procedure

Lastly, we give the algorithm and analysis for Phase 4 (see Algorlthm to compute dL(X) .

Lemma C.10 (Correctness of Phase 4). The ATTENTIONGRADIENTCACHEPHASE4 (AlgorithmE])
outputs a d X d matrix g = dL(X) (Deﬁnmon

Proof. The algorithm first computes 7' = A/ p. Then it outputs g = T As. [

Lemma C.11 (I/O complexity of Phase 4). The I/O complexity of ATTENTIONGRADIENTCACHEP-

HASE4 (Algorithm is O(itnd’

Proof. In Phase 4 (Algorlthm S) the number of items in cache is at most 3B < 4B2? < M. For
each iteration in computing 7 = A/ p and g = T A,. The algorithm reads O(BQ) from memory
into cache. This is the domlnatmg factor of the I/O complexity of the algorithm. Thus, the I/O

n n n2 2 2 n2 T 2
complexity of Phase 2 is O(%5 ndp2y 4 O(%% 4’ B2) = O(mttnd ) — O(%). O

C.3 UPPER BOUND FOR ATTENTION BACKWARD IN SMALL CACHE M = o(d?)

When cache size is not so big, ie. M = o(d?), the attention backward is equivalent to matrix

multiplication, thus having O (2 (éﬂd ) bound on the I/O complexity.

We show the upper bound theorem below for the overall algorithm (see Algorithm [6)) to solve the
attention backward in small cache case.
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Algorithm 4 Attention gradient computation with cache phase 3. Compute p.

1: procedure ATTENTIONGRADIENTCACHEPHASE3(q € R™*"™, f € R™*"™ M € N,) >
Lemmal|C.8] Lemma[C.9]
2: B+ |\/M/4]
3: /* Phase 3: Compute p */
4: for 1 <i < [n/B]do
5: Initialize v(#)[i] <— 07 in cache
6: for 1 <j <[n/B]do
7: Read f(®)[i, j] and ¢'P) i, §] into cache
8: Compute v 2 [i] v [i] + (fP)[i, 5] 0 [, 5]) - 1 >v=(foq)-1
9: Delete f(®)[i, j] and ¢'®) i, j] from cache
10: end for
11: for1 <j <[n/B]do
12: Initialize p(®)[i, 5] + 0%*5 in cache
13: Read f(®)[i, j] and ¢P)]i, §] into cache
14: Compute p B[, ] = pP)[i, j] + fP]i, j] 0 ¢P[i, 5] — diag(v P [i]) fP]i, j]
15: Delete f(®)[i, j] and ¢®) i, j] from cache
16: Write p(5)[i, j] in to memory, and delete p(Z)]i, j] from cache
17: end for
18: Delete v(?)[i] from cache
19: end for
20: return p > p € R™ ™ where p is defined in Deﬁniton

21: end procedure

Theorem C.12 (Small cache upper bound, formal version of Theorem[@.3). Suppose n is the input
length, d is the head dimension, and M is the cache size. There is an algorithm (see Algorithm[6)

outputs a d X d matrix g = %;Q (Definition with I/O complexity O( M\/ﬁnd?), time complexity
Trnat (0, d, 1) + Tat (0, d, d), and space complexity O(n? + d?).

Proof. Time/space complexity.

First, we notice that Algorithm [6] calculates the same gradients as the Algorithm [T] except that the
former utilize cache to speed up the computation and specify the standard matrix multiplication
computations in cache. Thus, the overall time complexity Tmat (1, d, 1) + Tmat (1, d, d), and space
complexity O(n? + d?) should be the same as Lemma

I/O complexity.

From Lemma and , we know the overall I/O complexity is O("Q%(ﬁ) +

O(Jx7) = OC=J5%)-

Correctness.

From Lemma and the algorithm computes the correct dﬁ()‘(x) . O

D 1/0 COMPLEXITY UPPER BOUND FOR LARGE CACHE

In this section, we establish the upper bound (Theorem[D.5)) for the I/O complexity in the case where
the cache size is large, specifically when M = Q(d?). Sectionpresents algorithms and analyses
for attention gradient computation in the large cache setting. Section [D.2]provides the upper bound
theorem for the large cache case.

Since our goal is to compute the backward pass of the attention mechanism, and the forward pass has
already been performed, it is natural to assume that we have access to the softmax normalizing vector
l:= A-1 € R" (Definition [B.4) and the final attention forward output O = diag(l)"' AV € R"*¢
(Definition where A = exp(A4; X AJ ) (Definition .
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. . . . . dL(X)
Algorithm 5 Attention gradient computation with cache phase 4. Compute —7~.

1: procedure ATTENTIONGRADIENTCACHEPHASE4(A1, Ay € R™¥4, p e R"*", M € N,) >
Lemmal[C.10] Lemma|[C.11
B« [\/M/4]

; . dL(X)
/* Phase 4: Compute — 5 */

2

3

4: for1 <i < [d/B]do

5: for1 <j<|[n/B]do

6: Initialize T5)[i, 5] +~ 0%*5 in cache

7 for 1 <k <[n/B]do

8 Read (A )P)[i, k] and p'P)[E, j] into cache

9: Compute TB)[i, j] < TP)[i, j] 4+ (AT )P [i, k]pB) [k, j] in cache > T = A p
10: Delete (A] )B)[i, k] and p®)[k, j] from cache
11: end for
12: Write T®)[i, j] in to memory, and delete T7?)[i, j] from cache
13: end for

14: end for
15: for1 <i < [d/B]do

16: for1 <j <[d/B]do

17: Initialize g(®)[4, j] - 0%*5 in cache

18: for 1 <k <[n/B]do

19: Read T®)[, k] and AL [k, j] into cache

20: Compute gB)[i, j] « ¢ B)[i, 5] + TP)i, k]AgB)[k,j] in cache >g=TA,
21: Delete 7B)[i, k] and AS®) [k, j] from cache

22: end for

23: Write ¢(®)[i, j] in to memory, and delete ¢‘?) i, j] from cache

24: end for

25: end for

26:  returng >g= % € R¥™4 see Deﬁnition

27: end procedure

Algorithm 6 Attention gradient computation with small cache.

1: procedure ATTENTIONGRADIENTCACHE(A, A, A3,dO € R"¥4, XY € R4 M € Ny)
> Theorem [C.12]

dL(X) dxd
o € R

return g >g= , see Definition

end procedure

2: f < ATTENTIONGRADIENTCACHEPHASE1 (A1, A2, X, M) > see Algorithm
3: q + ATTENTIONGRADIENTCACHEPHASE2(A3,dO, f,Y, M) > see Algorithm
4: p < ATTENTIONGRADIENTCACHEPHASE3(q, f, M) > see Algorithm 4
5: g < ATTENTIONGRADIENTCACHEPHASE4 (A1, Ao, p, M) > see Algorithm
6:

7:

By utilizing these precomputed quantities from the forward pass, we can efficiently proceed with
the backward computation while optimizing the I/O operations required.

D.1 ALGORITHMS FOR ATTENTION BACKWARD IN LARGE CACHE
We first give Algorithm [7]and its analysis in large cache case for computing intermediate variables
S, h

Lemma D.1 (Correctness of Phase 1). The ATTENTIONGRADIENTLARGECACHEPHASEI (Algo-
rithm[7) outputs two n x d matrices S = A1 X (Definition[3.1) and h = A3Y (Definition [B.6).

Proof. The algorithm first divide A, As, X, Y into row/column blocks of size B, X d or d X B..
Then it reads the row/column block matrices to compute the corresponding small blocks of .S, h by
standard matrix multiplication. Thus, it computes the exact value for .S, h. [
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Algorithm 7 Attention gradient computation large cache phase 1. Compute S, h.

1: procedure ATTENTIONGRADIENTLARGECACHEPHASEI(A;, A3 € R™*? XY ¢ R¥*4,

M e Ny) > Lemma[D.I] Lemma[D.2]

22 B, + min{[{5],d} and B, + [11]

3: Vertically divide A; into 7, = TBT—LT] blocks A;1,...,A; 1, of size B, x d each, and
horizontally divide X into T, = [Bij blocks X, 1,..., X, 1, of size d x B, each

4: Vertically divide As into T, = (B%] blocks As1,...,As . of size B, x d each, and
horizontally divide Y into T, = [B%] blocks Y 1,..., Y, 1, of size d x B, each

5: > Here A, ;, As; € RB-*d means the i-th row block of Ay, Az fori € [T,], and
Xej, Yej € R?*Be means j-th column block of X, Y for j € [T}

6 for1 <i:<7T,.do

7: Read A ;, A3 ; € RBP4 into cache

8 for1 <j<T.do

9: Read X, ; € R¥*Be into cache, and initialize S; ; < 08P in cache

10: Compute S; j < S; ;j + A1, X« ; in cache >S=4X
11: Write S; ; to memory, and delete S; ;, X, ; from cache

12: Read Y, ; € R4*B- into cache, and initialize h; ; «— 0B~*B< in cache

13: Compute h; j < h; j + A3z ;Y. ; in cache >h =AY
14: Write h; ; to memory, and delete h; ;, Y ; from cache

15: end for

16: Delete A; ;, A3 ; from cache

17: end for

18: return S, h > S, h € R

19: end procedure

Lemma D.2 (I/O complexity of Phase 1). Suppose the cache size satisfy nd > M > d. The I/O
complexity of ATTENTIONGRADIENTLARGECACHEPHASE] (Algorithm@) is O(% + ”Wd‘?).

Proof. Why such conditions for B, B..

The cache size has three constraints, because we need matrices A; ;, Az; € RP-*4 X, .V, ; €
R4*Be “and S; ;, h; ; € RB*Be 1o fit into cache. Thus, we have

B,d=0(M)
B.d=0(M)
B,.B.=0(M)
Then, we need
B, = O(M/d)
B.=0(M/d)

By setting B, = O(M/d), we have

B, = ©(min{M/d, M/B,})
= O(min{M/d, d})

I/O complexity. We know B, <+ min{[{5],d} and B, - [4%],also T}, = [5-1and T;. = [B%]
nd

Substituting B, into 7., we get T}, = O(57). Observe that ;. B, = O(n) and T. B, = O(d).

The I/O complexity can be computed by:
T,(B,d + T.(dB.)) = O(nd) + T,d*
nd

= O(nd) +O(Md2)
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nd®

where the first step follows from 7,.B, = O(n) and T.B. = O(d), the second step follows from

T, = O(24), and the last step follows from simple algebra.

Because M < nd, we have

nd® ndM  nd®
O(’Ild‘i’iM)—O( % —M)
n2d®>  nd®
TR TR

Thus, the total I/O complexity is O( "Jz\f + nvds)

Algorithm 8 Attention gradient computation large cache phase 2. Compute g.

1: procedure ATTENTIONGRADIENTLARGECACHEPHASE2(A, A3, S,h,0,dO € R™ % | ¢

R™, M e Ny)
22 B, + min{[{5],d} and B, + [1]
3: Vertically divide S into T, = [5-]
divide A, into T, = (Blﬂ blocks Az 1, ..
into 7). = [5-] blocks l1,..., Iz, of size B, each

4: Vertically divide O into 7, = [4-] blocks Oy, ..

blocks 57, ..

> Lemma Lemma

, ST, of size B, x d each, vertically
., Ao 1, of size B. x d each, and vertically divide !

.,Or, of size B, x d each, vertically

divide dO into T, = (B%] blocks d01: ...,dOr, of size B, x d each, vertically divide A into

T. = [Bﬂj blocks hq, ..., hr, of size B. x d each, and vertically divide A; into T, = fBﬂ]
blocks A; 1,..., A1 1. of size B, x d each

5: Initialize g +— 09%< in cache

6: forl1 <i<T,do

7 Read S;, 0;,d0;, Ay ; € RB-*4 and [; € R into cache

8: Initialize v; < 05" and compute v; < v; + (dO; 0 O;) - Lin cache > v = (dO 0 O) - 1

9: Delete O; from cache

10: for1 <j <T.do
11: Read h; € RB-*? and initialize ¢; ; +— 0P~* B¢ in cache

12: Compute ¢; ; +— dO;h, in cache >q=dOhT
13: Read A, ; € RB<*? into cache, and initialize 4; ; « 05+*B< in cache

14: Compute A; j < A; ; + SiA;:j in cache >A= SA;'—
15: Compute A; ; < exp(A; ;) in cache, and initialize f; ; < 057*B¢ in cache

16: Compute f; j + f; ; + diag(l;)"* A, ; in cache > f = diag(l)A
17: Delete A; ; from cache, and initialize p; ; < 0B-*Be in cache

18: Compute p; ; < pi,; + fij © ¢;; — diag(v;) fi j incache > p = foq— diag(v)f
19: Delete f; ;, g; ; in cache, and initialize T, ; < 04%Be in cache
20: Compute T, ; < T, ; + A] ;p; j in cache >T=Alp
21: Compute g < g + T jAs ; >g=TA,
22: Delete T, ;, A2 j from cache
23: end for
24: Delete S;, Ay ;,dO;, l;, v; from cache
25: end for
26: Write g into memory
27:  returng bg= %)f) € R¥¥4 see Deﬁnition

28: end procedure

We then give Algorithm [8|along with its analysis for computing the gradient g.

Lemma D.3 (Correctness of Phase 2). The ATTENTIONGRADIENTLARGECACHEPHASE?2 (Algo-

rithm[8) outputs a d x d matrix g (Definition[3.2).

28



Under review as a conference paper at ICLR 2025

Proof. The algorithm first vertically divides the matrices .S, Az, [, O, dO, h, and A; into row blocks
of size B, x d or B, x d. Following the computational graph (Fig. [2) and the no-cache algorithm
(Algorithm [T)), we compute the gradient g exactly. It is important to note that, in algorithm design,
we need to avoid reading the attention matrix f € R”*" directly—even though it has been computed
during the forward pass—or any matrices of size B, x n or B. X n. Doing so would result in an
O(n?) I/O complexity, which cannot be improved through caching. O

Lemma D.4 (I/O complexity of Phase 2). Suppose the cache size satisfy nd > M > d*. The I/O

complexity of ATTENTIONGRADIENTLARGECACHEPHASE2 (Algorithm is O(”jw‘jl2 + ”Wd‘g).

Proof. The reason for conditions of B,., B, is the same as the proof of Lemma [D.2] However, it
is important to note that updating the gradient g in the cache requires assuming a cache size of
M > d?. This is necessary because we fuse the key and query weight matrices into a single matrix
X € R4, The update to the corresponding gradient g in the cache is driven by the outer product
representation of the matrix, as shown in Line [21|of Algorithm
Next we show the I/O complexity. Since B, < min{[4%],d} and B, « [{%],also T, = [ -] and
T. = [2], we get T, = O(22). Also, we observe that T}, B, = O(n) and T. B, = O(n).
The I/O complexity can be computed by:
T,(B,d + T.B.d) + d* = O(nd) + T,nd + d*
= O(T,nd) + d*
n2d?
M

where the first step follows from T,.B, = O(n) and T.B. = O(n), the second step follows from
T, > 1, and the last step follows from T}. = O("ﬁ).

=0(—=—)+d

Then, because M < nd, we can show

2d? d’M  n2d?
o+ =0
@+ =oCF + )
nd®  n2d?
O )
Thus, the total I/O complexity is O(# + "st) O

D.2 UPPER BOUND FOR ATTENTION BACKWARD IN LARGE CACHE M = §(d?)

In the large cache scenario, while it is feasible to precompute and store the n X n attention matrix,
reading it will result in an unavoidable O(n?) I/O complexity. Inspired by FlashAttention Dao et al.
(2022); |Dao| (2023); \Shah et al.|(2024)), we present the following theorem, which provides an upper
bound O(W) on the I/O complexity of the attention gradient algorithm in the large cache
(Algorithm [9).

Theorem D.5 (Large cache upper bound, formal version of Theorem {.1). Suppose n is the input
length, d is the head dimension, and nd > M > d? is the cache size. There is an algorithm (see

AlgorithmEl) outputs a d X d matrix g = de()?) (Definition with I/O complexity O(W).

Proof. Correctness. Combining Lemma|D.T|and[D.3] we finish the proof.
I/0 complexity. Combining Lemma|D.2)and [D.4] we finish the proof. O

E LOWER BOUND FOR ATTENTION BACKWARD COMPUTATION

In this section, we prove the lower bound of the attention gradient computation. In Section [E.T]
we state some definition in graph theory that will be used to establish the framework of |[Hong &
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Algorithm 9 Attention gradient computation with large cache.

1: procedure ATTENTIONGRADIENTLARGECACHE(A1, Ay, A3, 0,dO € R"*4, XY € R4¥9,

leR*", M € Ny) > Theorem [D.3]

2 S, h + ATTENTIONGRADIENTLARGECACHEPHASE1 (A1, A3, X,Y, M) > see
Algorithm 7]

3: g < ATTENTIONGRADIENTLARGECACHEPHASE4 (A1, Ao, h, S,0,dO, 1, M) > see
Algorithm §]

4:  returng bg= % € R¥™4 see Deﬁnition

5: end procedure

Kung (1981)) that will be used to analyze the I/O complexity. In Section we state some tools
from previous works from I/O compleixty of standard matrix multiplication and attention forward
computation. In Section we will establish our lower bounds of I/O complexity for attention
backward passes in both large cache case and small cache case.

E.1 BASIC DEFINITION IN GRAPH THEORY

Hong & Kung (1981) introduces a method for analyzing I/O complexity using the concept of an
M -partition on a graph. Before we define it, we first provide some definitions from graph theory.

Definition E.1 (Dominator set). Let G = (V, E) be a directed acyclic graph and S C V. We define
a set D C 'V as a dominator set of S if, for every path in G from a input node to any node in S,
there exists at least one node in D on that path.

Definition E.2 (Minimum set). Ler G = (V, E) be a directed acyclic graph and S C V. We say
that a set M C S is a minimum set of S if M contains all nodes in S that have no children in S.

Definition E.3 (Vertex subset dependence). Let G = (V, E) be a directed acyclic graph. Let
V1, Vo C V be two disjoint subsets. We say that V5 depends on V1 if there is a directed edge from a
node in Vi to a node in V5.

Definition E.4 (Cyclic dependence). Let G = (V, E) be a directed acyclic graph. Let V1, ...,V C
V' be h disjoint subsets of V. We say that there is a cyclic dependence among {V1,...,V,} if there
exists a permutation (iy, ..., 1) of [h] such that V;, depends on V;, , and for every j € {2,...,h},
Vi, depends on'V;,_,.

Now, we are ready to define M -partitons. In fact, the minimum number of sets in any M -partition
provides a lower bound on the I/O complexity.

Definition E.5 (M -partition (Hong & Kung, [1981)). Let G = (V, E) be a directed acyclic graph.
Let Vi,..., Vi, CV be h disjoint subsets of V. We say that {V1,...,V,} is a M-partition of G if
the following conditions are satisfied

o {(V1,..., W} is apartition of V, i.e., Vi, ..., V), are disjoint and V = U?Zl V.

e For each V;, there exists a dominator set D; of V; such that D; has at most M nodes.
» For each V;, there exists a minimum set M; of V; such that M; has at most M nodes.
o There is no cyclic dependence among {V1, ...,V }.

We use P(G, M) to denote the minimum number of sets in any M -partition of G.

E.2 PREVIOUS TOOLS FOR I/O COMPLEXITY

Now, we are ready to introduce some tools for I/O Complexity from|Hong & Kung|(1981)) by using
an M -partition on a graph.

Lemma E.6 (Lemma 3.1 of [Hong & Kung| (1981)). For any directed acyclic graph G and any
positive integer M, we have

Q(G, M) > M - (P(G,2M) — 1).

We omit G when it is clear in the context.
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We state two useful lemmas from previous works as follows.
Lemma E.7 (Lemma 3.3 of [Saha & Ye|(2024)). Suppose that M = Q(d?) and A € R™* B ¢
RI*"2_ Let P be an M -partition of the computational graph of any algorithm that computes AB

2
using standard matrix multiplication. Then for each V' € P, V' contains at most O(MT) product
nodes A; By, j, sum nodes (AB); ;, and all intermediate nodes in the summation trees.

In |Saha & Yel| (2024)), the matrices A and B in the above lemma are of sizes n X d and d X n,
respectively. We note that with slight modifications to the proofs, the result also holds when A and
B have different sizes, specifically n; X d and d x ns.

The next lemma gives the lower bound of I/O compleixty of standard matrix multiplication.

Lemma E.8 (Corollary 6.2 of Hong & Kung|(1981)). Let A € R"*4 B € R¥*"2. The standard

matrix multiplication algorithm computing AB has I/O complexity Q(M) = Q(%)

E.3 PROOF OF OUR LOWER BOUND

We establish the lower bounds of I/O complexity of attention gradient computation in both large
cache case and small cache case. We first give the lower bound in the large cache case, i.e., the
cache size M = Q(d?).

Theorem E.9 (Large cache lower bound, formal version of Theorem . Suppose n is the input
length and d is the head dimension. Suppose the cache size M = Q(d*). Then the I/O complexity

242 .3
of attention gradient computation using standard matrix multiplication is Q(%)

Proof. Any algorithm that computes the attention gradient needs to compute the matrix product
A1 X AJ using standard matrix multiplication. Note that we compute A; X AJ] using standard matrix
multiplication, so we either first compute A; X and then compute (A; X)Aj , or first compute X AJ
and then compute A;(X AJ ). In either case, we perform two matrix multiplications: one between
an n X d matrix and a d X d matrix, and another between an n x d matrix and a d X n matrix. Without
loss of generality, we assume the first case where we first compute A; X.

Recall that the level-1 nodes are the product nodes (A1), x Xk, j, the sum nodes (A;X); ;, and all
intermediate nodes in the summation trees. For every V” in an M -partition P, by Lemma there
are at most O(A—f) level-1 nodes in V. Since the number of sum nodes (A4; X); ; is nd?, the number
of parts in the M -partition P is at least Q(’}Vlij) By Lemma the I/O complexity for computing
A X is Q).

Similarly, we recall that level-2 nodes are the product nodes (A;X); (AJ )k ;» the sum nodes
((A1X)AJ); ;, and all intermediate nodes in the summation trees. For every V' in an M-partition
P, by Lemma , there are at most O(MTQ) level-2 nodes in V. Since the number of sum nodes
((A1X)AJ); ; is nd, the number of parts in the M -partition P is at least {( "]\Zf ). By Lemma
the 1/0 complexity for computing (A; X)AJ is Q(%)

. . . . . 3, .,,2 42
Therefore, the I/O complexity of attention gradient computation is at least Q(W) O

Next, we give the lower bound in the small cache case, i.e., the cache size M = o(dg).

Theorem E.10 (Small cache lower bound, formal version of Theorem {.4). Suppose n is the input
length and d is the head dimension. Suppose the cache size M = o(d?). Then the I/O complexity of

attention gradient computation using standard matrix multiplication is Q(Lj#)
Proof. We show that when M = o(d?), the attention gradient computation can be reduced to com-
puting the matrix product A; X AJ . Note that we compute A; X AJ using standard matrix multi-
plication, so we either compute A; X first and then compute (A; X)AJ , or we first compute X A
and then A, (X A, ). However, both cases require performing one matrix multiplication between an
n X d matrix and a d x d matrix, and one matrix multiplication between an n X d matrix and a d x n
matrix. Hence, without loss of generality, we assume that A; X is computed first. By Lemma [E.8§]
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the I/O complexity of computing A1 X is Q( W) and the /O complexity of computing (A4; X)A,
is ©(222). Hence, the total /O complexity of computing A; X AJ is Q(dtndy,

VM VM
Suppose that there is an algorithm A for attention gradient computation which has I/O complexity
0(%). We construct an algorithm B that computes the matrix product A; X AJ with I/O

complexity 0(%) Since M < o(d?), we have % > w(n?+nd) > w(n?), so algorithm

A is able to transfer the all entries of matrix product (A; X)AJ] from cache to memory. In the
language of the red-blue pebble game, algorithm 5 works as follows: whenever algorithm A delete
a blue pebble from a node in (A; X)AJ , do not delete it; whenever algorithm A place a red pebble
on a node in (A4; X) A, , also place a blue pebble on it. Since the I/O complexity of algorithm A is

2 2 .. . . .
o(%) and we need an additional n? I/O operations to transfer the entries of the matrix product

(A1 X)Ag from cache to memory. Since n? < of W) the overall I/O complexity of B is still

O(L\/M”d). However, this contradicts the fact that the I/O complexity of computing A; X A] is
Q(’#L\/ﬁdz). Therefore, the I/O complexity of attention gradient computation using standard matrix
multiplication is €(2-%End ), O

VM
F SPARSE ATTENTION COMPUTATION

In this section, we provide the lower bounds of sparse attention computation for both forward and
backward passes. In Section we state previous tools of sparse matrix multiplication. In Sec-
tion[F.2] we provide the proofs of the lower bounds of sparse attention.

F.1 PREvVIOUS TOOLS FOR I/O COMPLEXITY OF SPARSE MATRIX MULTIPLICATION

We assume that sparse matrices are stored by listing only their non-zero entries along with their co-
ordinates. Sparse semi-ring matrix multiplication restricts operations to addition and multiplication
of these entries, which means that each output entry (AB); ; can only be computed as the sum of
products given by >, A; 1By ;.

Lemma F.1 (Theorem 2 of Pagh & Stockel (2014)). Let A € R™*? and B € R¥™*™ be two
matrices such that Ry := nnz(A) + unz(B) and Ry := nnZ(AB) The sparse semi-ring matrix

multiplication that computes AB has I/0O complexity Q(min{ 3+ i le})

Note that in this statement, the I/O complexity also separates into the large cache case and the small
cache case, but the dividing point may not be d?. It depends on whether all the necessary values for
computing each output entry can be stored in the cache during the computation.

F.2 OUR LOWER BOUNDS FOR SPARSE ATTENTION COMPUTATION

We first prove a useful lemma which state the lower bound of I/O complexity of computing the
attention matrix.

Lemma F2. Let A, € R4 X ¢ R¥>4 A, € RY*™ pe three matrices. Let Zs :=
min{nnz(A4;),nnz(A2)}, Zx := mnz(X),Zax = min{nnz(A4;X),nnz(XA45)}, Zaxa =
nnz(A; X AJ). Then the sparse semi-ring matrix multiplication that computes Ay X Ay has I/O

Z24+74%
complexity Q(min{ Za* ZaZx Za ZAXA\';MZAZXZAX 1.

Proof. We first consider the case where all the necessary values for computing each output entry can

be stored in the cache during the computation. Suppose that A, X is computed first, by Lemma[F. T}

computing A; X has I/O compleixty

(nnz(A;) + nnz(X))?
M

nnz(A;)? 4+ 2nnz(A;) nnz(X) + nnz(X)?
i )
Z3 +2Z47x + Zg()
M

Y ) =

> 0
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7% +2Z47x
> QA=A 78
> Q % )
where the first step follows by the basic algebra, the second step uses the definition of Z4, Zx,

and the last step follows from the basic algebra. Then we compute the product (A4;X)AJ, by
Lemma [FI] computing A; X has I/O compleixty

o (nnz(AlX)]\}— nnz(Asz)) ) = Q(nnz(AlX) + 2nnZ(A§\2() nnz(As) + nnz(As) )

Zf‘)

M

where the first and second steps follow by the basic algebra, and the last step uses the defini-

zzf+22122) o
M

= Q(

tion of Z4. Therefore, computing A; X AJ in this way has I/O complexity Q(

Q(%Z Similary, suppose that X A] is computed first. Then we can also get the I/O com-
plexity Q(%)

Next, we consider the case where some elementary products of matrix multiplication needs to be
written in the memory during the computation. Suppose that A; X is computed first, and then
(A1 X)Ag is computed. By Lemma computing (A; X) has I/O compleixty

(nnz(A;) + nnz(X))y/nnz(A; X)) ) > Q(2\/nnz(Al) nnz(X)+/nnz(A4; X)
- VM
> 9(2\/ ZAZXZAX)
VM
where the first step uses Cauchy-Schwarz inequality, the second step uses the definition of Z4, Zx
and ZAXA-

By Lemma computing (A; X)AJ has I/O compleixty

Q(

)

=

(nnz(A; X) + nnz(Az))/nnz(A; X A, ) nnz(Az)y/nnz(A; X Aj)

Q( NI ) > Q( Vi )
S Q(ZA\/ZAXA)‘

B vM
where the first step follows by the basic algebra, the second step uses the definition of Z4 and

Zax a. Therefore, computing A; X AJ in this way has I/O complexity Q(Z4 ‘/ZAXA\J;%ZA ZxZax),

Similary, suppose that X AJ is computed first. Then we can also get the I/O complexity
Q(ZA ZAXA“F\/ZAZXZAX).

VM
Therefore, the sparse semi-ring matrix multiplication that computes A; X AJ has I/O complexity
. (ZA+ZaZx ZaZaxat+VZaZxZax
Q(min{ AT Tt b. O

Next, we can apply Lemma to get the lower bound of sparse attention forward and backward
passes.

Theorem F.3 (Lower bound for sparse attention forward). Suppose n is the input length, d is
the head dimension, and M is the cache size. Let Z4 := min{nnz(A,),nnz(As)}, Zx =
mnz(X), Zax = min{nnz(A; X),nnz(XAJ)}, Zaxa = nnz(A1 X AJ). Then any algorithm
for attention forward computation using sparse semi-ring matrix multiplication has /0O complexity

[ ZA+ZAZX  ZaZaxa+VZaZxZax
Q(min{ 7 , L ).

Proof. Any algorithm for attention forward computation needs to compute the matrix product
A1 X A to obtain the attention matrix. Thus by applying Lemma we complete the proof. [
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Theorem F.4 (Lower bound for sparse attention backward). Suppose n is the input length, d
is the head dimension, and M is the cache size. Let Z, := min{nnz(A,),nnz(As)}, Zx =
nnz(X), Zax = min{nnz(A; X),nnz(XAJ )}, Zaxa := nnz(A; X AJ ). Then any algorithm for
attention backward computation using sparse semi-ring matrix multiplication has I/O complexity

[ ZA+ZAZX  ZavZaxa+VZaZxZax
Q(min{ =A%, NaYi ).

Proof. Any algorithm for attention backward computation needs to compute the matrix product
A; X AJ to obtain the attention matrix. Thus by applying Lemma we complete the proof. [
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