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Abstract

A standard model that arises in several applications
in sequential decision-making is partially observ-
able Markov decision processes (POMDPs) where
a decision-making agent interacts with an uncer-
tain environment. A basic objective in POMDPs is
the reachability objective, where, given a target set
of states, the goal is to eventually arrive at one of
them. The limit-sure problem asks whether reach-
ability can be ensured with probability arbitrarily
close to 1. In general, the limit-sure reachability
problem for POMDPs is undecidable. However, in
many practical cases, the most relevant question
is the existence of policies with a small amount
of memory. In this work, we study the limit-sure
reachability problem for POMDPs with a fixed
amount of memory. We establish that the computa-
tional complexity of the problem is NP-complete.

1 INTRODUCTION

MDPs and POMDPs. A standard model in sequen-
tial decision-making is Markov decision processes
(MDPs) [Bellman, 1957, Howard, 1960], which represents
dynamical systems with both nondeterministic and proba-
bilistic behavior. MDPs provide the framework to model
and solve control and probabilistic planning and decision-
making problems [Filar and Vrieze, 1997, Puterman, 2014]
where the nondeterminism represents the choice of the con-
trol actions for the controller (or agent) and the probabilistic
behavior represents the stochastic response of the system to
control actions. In perfectly observable MDPs the controller
observes the evolution of the states of the system precisely,
whereas in partially observable MDPs (POMDPs) the state
space is partitioned according to observations for the con-
troller, i.e., the controller can only view the observation of
the current state (the partition the state belongs to) and not

the precise state [Bertsekas, 1976, Papadimitriou and Tsit-
siklis, 1987]. POMDPs are widely used in several applica-
tions, including computational biology [Durbin et al., 1998],
speech processing [Mohri, 1997], image processing [Culik
and Kari, 1997], software verification [Černý et al., 2011],
robot planning [Kress-Gazit et al., 2009, Kaelbling et al.,
1998], and reinforcement learning [Kaelbling et al., 1996].

Reachability objectives and computational problems.
A basic and fundamental objective in POMDPs is the reach-
ability objective. Given a set of target states, the reachability
objective requires that some target state is visited at least
once. A policy is a recipe that resolves the choice of control
actions. The main computational problems for POMDPs
with reachability objectives are: (a) the quantitative prob-
lem asks if, for a fixed λ ∈ (0, 1), there exists a policy
that ensures the reachability objective with probability at
least λ; and (b) the qualitative problem has two variants:
(i) almost-sure winning problem asks if there exists a policy
that ensures the reachability objective with probability 1;
and (ii) limit-sure winning problem asks whether, for every
λ < 1, there exists a policy that ensures the reachability
objective with probability at least λ (i.e., ensuring the reach-
ability objectives with probability arbitrarily close to 1).

Significance of qualitative problems. The qualitative
problem of limit-sure winning is of great significance in
several applications. For example, in the analysis of random-
ized embedded schedulers [Baruah et al., 1992, Chatterjee
et al., 2013], the important question is whether every thread
progresses with probability arbitrarily close to 1. Moreover,
in applications where it might be sufficient that the correct
behavior happens with probability at least λ < 1, the correct
choice of the threshold λ can still be challenging, due to
simplifications and imprecisions introduced during model-
ing. In cases where almost-sure winning cannot be ensured,
limit-sure winning provides the strongest guarantee as com-
pared to quantitative problems. Besides its importance in
practical applications, almost-sure and limit-sure conver-
gence, like convergence in expectation, is a fundamental
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Table 1: Complexity of quantitative, almost-sure, and limit-
sure problems for general and constant-memory policies.
Our contribution is marked in bold.

Problem Policies
General Constant memory

Almost-sure EXPTIME NP-complete

Limit-sure Undecidable
NP-complete

Theorem 1, Corollary 2
Quantitative Undecidable ETR-complete

concept in probability theory, and provides the strongest
probabilistic guarantees [Durrett, 2019].

Previous results. The quantitative analysis problem for
POMDPs with reachability objectives is undecidable [Paz
and Rheinboldt, 1971], and the undecidability result even
holds for any approximation [Madani et al., 2003]. In con-
trast, the complexities of the qualitative analysis problems
are as follows: (a) the almost-sure winning problem is
EXPTIME-complete [Chatterjee et al., 2010, Baier et al.,
2012]; and (b) the limit-sure winning problem is undecid-
able [Gimbert and Oualhadj, 2010, Chatterjee and Hen-
zinger, 2010].

Small-memory policies. While the computational com-
plexities for the general problems are very high (undecid-
able in several cases), the same computational questions
restricted to policies with small or constant amount of mem-
ory are important. This is an interesting theoretical question
and is practically relevant as the existence of a small-sized
controller is desirable in all applications. The existence of
small-memory policies for almost-sure winning was studied
by [Chatterjee et al., 2016], and proved to be NP-complete.
However, the quantitative problem is ETR-complete [Junges
et al., 2018, 2021], even for memoryless policies, where
ETR is the existential theory of the reals, and it is a major
open question if ETR is in NP or not. The complexity of the
limit-sure problem with respect to small-memory policies,
which reduces to memoryless policies, has not been studied
and is the focus of this work.

Our contributions. In contrast to perfect-observation
MDPs where almost-sure winning coincides with limit-sure
winning, we show that, in POMDPs, almost-sure winning is
different from limit-sure winning, see Example 1. Our main
contribution to the limit-sure winning problem for POMDPs
with reachability objectives with respect to constant memory
policies is to establish that the computational complexity is
NP-complete. Table 1 summarizes the complexity results.

Technical contributions. While we establish the same
computational complexity of NP-completeness for limit-
sure winning as for almost-sure winning, there are signif-
icant technical challenges. For example, in general, the

almost-sure problem is EXPTIME-complete whereas the
limit-sure problem is undecidable, which highlights that
they are different problems. Under memoryless policies, if
a policy is almost-sure winning, then playing the actions in
its support uniformly at random is also almost-sure winning,
so it suffices to guess the support of actions. In contrast,
we show that memoryless policies that are witness of the
limit-sure winning property are more refined: first, they are
functional policies; second, there is a notion of ranks over
actions where rank k actions are played with probability
proportional to εk.

Related works. The area of POMDPs with applications
is a huge and active research area. POMDPs with reacha-
bility objectives have been considered in the probabilistic
automata theory community [Gimbert and Oualhadj, 2010,
Chatterjee and Henzinger, 2010, Chatterjee et al., 2010,
Baier et al., 2012] as well as in the probabilistic planning
community [Kress-Gazit et al., 2009, Kaelbling et al., 1998].

The contingent or strong planning considers probabilistic
choices as an adversary and is different from the qualitative
winning problems we consider. The strong cyclic planning
problem is EXPTIME-complete [Kaelbling et al., 1998] and
is closer to the almost-sure winning problem, but there are
subtle differences, see [Chatterjee et al., 2016].

The almost-sure winning problem is considerably different
from limit-sure winning which is in general undecidable,
and none of the previous approaches apply to the limit-sure
winning problem under small-memory policies.

Similarly, the connection between small-memory policies
for POMDPs and parametric Markov chains (pMCs) was
established by [Junges et al., 2018] for quantitative reach-
avoid objectives. Later, [Junges et al., 2021] proved that
some qualitative reachability problems for pMCs are all
in NP. They qualitative problems they considered include
almost-sure reachability but not limit-sure reachability.
Therefore, this line of work doe not apply to the limit-sure
winning problem under small-memory policies either.

Detailed proofs omitted due to lack of space are presented
in the Appendix.

2 PRELIMINARIES

Notation. For a positive integer n the set {1, 2, . . . , n} is
denoted by [n]. For a set A, the set of probability distribu-
tions over A is denoted by ∆(A). The probability distribu-
tion that assigns probability one to an element a ∈ A is
denoted by 1[a]. The disjoint union of sets is denoted by ⊔.
For convenience, we will exchange the roles of λ and 1− ε
depending on the context.

POMDPs. A Partially Observable Markov Decision Pro-
cess (POMDP) is a tuple P = (S,A, δ,Z, o, s0) where:



• S is a finite set of states;

• A is a finite set of actions;

• δ : S×A → ∆(S) is a probabilistic transition function
that, given a state s and an action a, returns the prob-
ability distribution over the successor states, i.e., the
transition probability from s to s′ given a is denoted
by δ(s, a)(s′);

• Z is a finite set of observations;

• o : S → Z is an observation function that maps ev-
ery state to an observation which, for simplicity, and
without loss of generality, we consider that o is a deter-
ministic function [Chatterjee et al., 2015, Remark 1];

• so ∈ S is the unique initial state.

If |Z| = 1, then we call the POMDP a blind MDP since
the controller receives no information through the observa-
tions. In this case, we identify the blind MDP with the tuple
(S,A, δ, s0). Similarly, if |A| = |Z| = 1, then we call the
POMDP a Markov chain, which coincides with the classic
definition, and identify it simply with the tuple (S, δ, s0).

Plays and cones. A play (or a path) in a POMDP is an
infinite sequence (s0, a0, s1, a1, . . .) of states and actions
such that, for all i ≥ 0, we have δ(si, ai)(si+1) > 0. For
a finite prefix ω ∈ (S × A)∗ of a play, the cone given
by ω is the set of plays with ω as the prefix, and the last
state of ω, or s0 if ω is empty, is denoted by Last(ω). For
a finite prefix ω = (s0, a0, s1, a1, . . . , sn, an) the sequence
of observations and actions associated with ω is denoted by
o(ω) = (o(s0), a0, o(s1), a1, . . . , o(sn), an) ∈ (Z × A)∗,
which we call an observable history.

Policies. A policy is a recipe to extend prefixes of plays
and is a function σ : Z × (A×Z)∗ → ∆(A) that, given a
finite observable history, selects a probability distribution
over the actions. The set of all policies is denoted by Σ.

Policy with memory. A policy with memory is a tuple
σ = (σa, σu,M,m0) where: (i) M is a finite set of mem-
ory states; (ii) the function σa : M × Z → ∆(A) is the
action selection function that, given the current memory
state and observation, gives the probability distribution over
actions; (iii) the function σu : M×Z×A → M is the mem-
ory update function that, given the current memory state,
observation, and action, updates the memory state; and (iv)
the memory state m0 ∈ M is the initial memory state. The
set of all policies with memory amount m is denoted by
Σm.

Memoryless policies. A policy σ is memoryless (or
observation-stationary) if it depends only on the current
observation, i.e., for every two histories ω and ω′, if
o(Last(ω)) = o(Last(ω′)), then σ(o(ω)) = σ(o(ω′)).
Therefore, a memoryless policy is just a mapping from

observations to a distribution over actions σ : Z → ∆(A).
The set of all memoryless policies corresponds to Σ1.

Probability measure. Given a policy σ and a starting
state s0, the unique probability measure over Borel sets of
infinite plays obtained given σ is denoted by Pσ

s0(·), which is
defined by Carathéodory’s extension theorem by extending
the natural definition over cones of plays [Billingsley, 2012].

Reachability objective and value. Given a set of target
states, the reachability objective requires that a target state is
visited at least once. For simplicity and w.l.o.g., we consider
that there is a single target state ⊤ ∈ S since we can al-
ways add an additional state with transitions from all target
states. Formally, given a target state ⊤ ∈ S, the reachabil-
ity objective is Reach(⊤) = {(si, ai)i≥0 ∈ (S × A)N |
∃i ≥ 0 : si = ⊤}. The reachability value under Σ is
supσ∈Σ Pσ

s0(Reach(⊤)).

Almost-sure winning. A POMDP P with reachability
objective Reach(⊤) is almost-sure winning under Σ if there
is a fixed policy σ ∈ Σ such that

Pσ
s0(Reach(⊤)) = 1 .

Limit-sure winning. A POMDP P with reachability ob-
jective Reach(⊤) is limit-sure winning under Σ if its reach-
ability value under Σ is 1, i.e., if, for all ε > 0, there is
a policy σε ∈ Σ such that Pσε

s0 (Reach(⊤)) ≥ 1 − ε, or
equivalently, if

sup
σ∈Σ

Pσ
s0(Reach(⊤)) = 1 .

Problems under constant memory. The limit-sure (resp.
almost-sure) problem under constant amount of memory
m ≥ 1 asks whether a POMDP P is limit-sure (resp. almost-
sure) winning under policies restricted to Σm.

3 COMPUTATIONAL COMPLEXITY

In this section, we present the main complexity result and
show that almost-sure winning and limit-sure winning are
different properties in POMDPs through the following ex-
ample.

Example 1 (Almost-sure ̸= Limit-sure). Consider a blind
MDP (with no helpful observation) with four states and two
actions wait, w, and commit, c. The transitions are such
that, under action wait, the initial state, s0, may loop with
positive probability or may transition to a second state, s1,
with positive probability. Under action commit, the initial
state moves to an absorbing state, ⊥, while the second state
reaches the target, ⊤. See Figure 1 for an illustration. The
reachability value of this blind MDP is 1. On the one hand,
there is no policy that guarantees reachability value one,



s0 s1⊥ ⊤

w

w

w

c c

w, c w, c

Figure 1: Example of POMDP that is limit-sure winning but
not almost-sure winning. Edges represent a positive prob-
ability transition between states when the corresponding
action in its label is used.

and therefore the blind MDP is not almost-sure winning. On
the other hand, for every ε > 0, a policy guaranteeing a
reachability probability of at least 1 − ε requires playing
action wait sufficiently many times before playing action
commit. For every ε > 0, this behavior can be simulated
by a distribution over actions that assigns little probability
to action commit. Therefore, the blind MDP is limit-sure
winning, even under memoryless policies.

Main novelty of limit-sure vs almost-sure winning. The
limit-sure winning property relates to a sequence of poli-
cies, as opposed to the almost-sure winning property which
relates to a single policy. Moreover, given a sequence of poli-
cies (σε)ε>0 that prove the limit-sure winning property, if
it exists, the limit policy limε→0+ σε is not a witness of the
limit-sure winning property. This is the case in Example 1
where the limit policy applies action wait always and does
not indicate that the POMDP is limit-sure winning. To pre-
serve the asymptotic information, we work with symbolic
or functional policies, called rank policies, which assign
probabilities to actions based on ranks. For intuition, lower
ranks have higher priority, and, if low-rank actions form a
cycle, then higher-rank actions determine the exit distribu-
tion. In Example 1, a rank policy giving a low rank to action
wait and a high rank to commit reflects that the POMDP is
limit-sure winning. Note that considering rank policies with
only one rank is equivalent to classic policies that choose
actions uniformly at random in its support, which is enough
to solve the almost-sure problem [Chatterjee et al., 2016].

We now state the main complexity result.

Theorem 1. The problem of determining whether a
POMDP P with reachability objective is limit-sure winning
under memoryless policies is NP-complete.

The rest of this section is dedicated to the proof of Theo-
rem 1. First, we recall some fundamental concepts. Second,
we show the NP upper bound by proving the existence of
rank policy witnesses of polynomial size and providing a
polynomial-time verifier. Third, we show the NP-hardness
by a reduction from 3-SAT. Finally, we present extensions of
Theorem 1 for small-memory policies and objectives other
than reachability.

3.1 PREVIOUS CONCEPTS

We introduce the most important previous concepts used in
our proof.

Real-closed fields. A real-closed field R is a field, i.e.,
a set on which addition, subtraction, multiplication, and
division work as usual, and moreover the intermediate value
theorem applies. For an introduction, see [Basu et al., 2006].

Puiseux functions. The set of Puiseux functions is the
set of functions f : [0, ε0) → R of the form f(ε) =∑

i≥k ciε
i/q where k ∈ Z, i ranges in Z, ci ∈ R, q ∈ N,

and ε0 > 0. The field of Puiseux functions is an important
example of a nonarchimedean real-closed field.

Theorem 2 ([Bewley and Kohlberg, 1976, Section 10]). The
field of Puiseux functions is real-closed.

First-order theory of the reals. A sentence in the first-
order theory of the reals ϕ is given by

Q1x1Q2x2 . . . Qkxk F (x1, x2 . . . , xk) ,

where Qi ∈ {∃,∀} are quantifiers and F (x1, x2 . . . , xk) is
a quantifier-free formula in the language of ordered fields
with coefficients in a real-closed field. The decision problem
for the first-order theory of the reals is, given a sentence ϕ,
to decide whether it is true or false. A fundamental result in
logic is the following.

Theorem 3 (Tarski-Seidenberg principle [Basu et al., 2006,
Theorem 2.80, page 70]). Suppose that R is a real-closed
field that contains the real-closed field R. If ϕ is a sentence
in the language of ordered fields with coefficients in R, then
it is true in R if and only if it is true in R.

The following result is a characterization of the reachability
value in Markov chains.

Theorem 4 ([Baier and Katoen, 2008, Theorem 10.15, page
762]). Consider a Markov chain with a set of states S and
a target set {⊤}. Then, the reachability value as a function
of the initial state is a solution v∗ ∈ [0, 1]S of the system of
equations given by v(⊤) = 1 and, for all s ∈ S \ {⊤},

v(s) =
∑
s̃∈S

δ(s, s̃)v(s̃) ,

such that, for all other solutions u∗, we have that v∗(s) ≤
u∗(s), for all s ∈ S.

Since we consider Markov chains whose transition probabil-
ities are Puiseux functions, which we call Puiseux Markov
chains, we introduce a few concepts from Solan [2003].



Puiseux Markov chains. A Puiseux Markov chain is a
family of Markov chains parameterized by ε where the
transition function is a Puiseux function ε 7→ δε : S →
∆(S). In particular, for each ε, the transition δε and the
starting state s induces a probability measure Pε

s.

Reach and exit times, and exit event. For a Markov
chain, a state s ∈ S and a set of states B ⊆ S, we consider
the following random variables:

exit(B) := min{n ≥ 0 : sn ̸∈ B} ,
reach(s) := min{n ≥ 0 : sn = s} , and

Exit(B, s) := {exit(B) < ∞} ∩ {sexit(B) = s} ,

i.e., exit(B) is the first time a state outside of B is visited,
reach(s) is the first time the state s is visited, and Exit(B, s)
is the event of exiting the set B by visiting state s. In partic-
ular, the event Reach(s̃) is equivalent to reach(s̃) < ∞.

The following definition generalizes the concept of commu-
nicating class in Markov chains for Puiseux Markov chains.

Communicating class in Puiseux Markov chains. Given
a Puiseux Markov chain, a set of states B ⊆ S is a commu-
nicating class if, for all s, s̃ ∈ B, we have

lim
ε→0+

Pε
s

(
exit(B) < reach(s̃)

)
= 0 ,

lim
ε→0+

Pε
s

(
Reach(s̃)

)
= 1 ,

i.e., starting from s, state s̃ is visited before exiting B.
Note that the second condition corresponds to the case of
exit(B) = reach(s̃) = ∞ in [Solan, 2003], which is im-
plicitly included in this previous work and prevents that a
communicating class consists of unconnected states.

The following concept is key to characterizing events in
Puiseux Markov chains.

Exit graph. Given a Puiseux Markov chain and a set of
states B ⊆ S , an exit graph of B, denoted by g, is a directed
acyclic graph with edges E(g) ⊆ B × S such that, for all
s ∈ B, there exists s̃ ∈ S such that (s, s̃) ∈ E(g). The
set of all exit graphs of B is denoted by GB, and all those
in which s can reach s̃ by GB(s → s̃). The probability of
an exit graph g is the product of the probability of each
of its transitions defined as δ(g) :=

∏
(s,s̃)∈g δ(s)(s̃). The

weight of an exit graph g is the leading power in the Puiseux
series expansion of the product of the involved transitions
defined as

w(g) := inf

{
r ≥ 0 : lim

ε→0+

δε(g)

εr
̸= 0

}
.

The set of exit graphs of B that have minimal weight is
denoted by Gmin

B , and Gmin
B (s → s̃) for those in which s

can reach s̃.

The following result shows that the exit distribution of
a communicating class is independent of the initial state
within the communicating class.

Theorem 5 ([Solan, 2003, Lemma 3, page 270]). Consider
a Puiseux Markov chain and a communicating class B ⊆ S .
Then, the following expression is independent of the initial
state s ∈ B

δ(B, s̃) := lim
ε→0+

Pε
s(Exit(B, s̃)) .

Finally, the following result characterizes the exit “distribu-
tion” in terms of exit graphs.

Theorem 6 ([Solan, 2003, Equation 6, page 268]). Consider
a Puiseux Markov chain and a communicating class B ⊆ S .
Then, for all s ∈ B and s̃ ∈ S \ B,

δ(B, s̃) = lim
ε→0+

∑
g∈Gmin

B (s→s̃) δ
ε(g)∑

g∈Gmin
B

δε(g)
,

where the sum over an empty set is 0 and the quotient 0/0
is also 0.

We call δ(B, ·) an exit “distribution” even when it can be
constant to zero. Its support corresponds to all the states
mapped to a strictly positive value. The following concept
allows us to characterize limit-sure reachability in Puiseux
Markov chains.

Absorbing communicating class. Given a Puiseux
Markov chain, a communicating class B ⊆ S is absorbing if
its exit distribution has empty support, i.e., supp(δ(B, ·)) =
∅.

The following concept is classic in Graph theory and we
introduce it for completeness.

Bottom strongly connected component of a directed
graph. In a directed graph, a bottom strongly connected
component is a set of states where: there is a directed path
from every state to every other state in the set, and all edges
starting in the set lead to states within the set.

3.2 UPPER BOUND

The NP upper bound complexity is our main result and is
established through the following sequence of results.

1. We establish a reduction from general POMDPs to
blind MDPs (Lemma 1).

2. For blind MDPs, we establish the existence of Puiseux
function policy witnesses (Lemma 2).

3. We establish the laminar structure of a graph of commu-
nicating classes in Puiseux Markov chains (Lemma 3).



4. We establish that the graph of communicating classes
characterizes reachable states in Puiseux Markov
chains (Lemma 4).

5. We establish properties of the graph of communicat-
ing classes that characterize limit-sure reachability in
Puiseux Markov chains (Lemma 5).

6. We establish the existence of rank policy witnesses, a
simple and polynomial-size policy (Lemma 6).

7. We provide a polynomial-time verifier for rank policy
witnesses (Lemma 7).

The following result establishes a reduction from general
POMDPs to blind MDPs.

Lemma 1. For every POMDP P = (S,A, δ,Z, o, s0),
there exists a blind MDP with P ′ = (S,A × Z, δ′, s0)
with the same reachability value under memoryless policies.

Proof sketch. The action (a, z) in the blind MDP corre-
sponds to applying action a only to states whose observation
is z. We define the transition δ′ accordingly by introducing
loops when an action (a, z) is applied and the underlying
state s has a different observation, i.e., z ̸= o(s). A coupling
on the underlying dynamics, that eliminates the introduced
loops in the blind MDP, shows that the reachability values
under memoryless policies coincide.

Puiseux function policy. A (memoryless) Puiseux func-
tion policy σ is a function σ : [0, ε0) → ∆(A). Note that,
for all ε ∈ [0, ε0), the policy σ(ε) is a memoryless policy
and, together with an initial state s, induces a Markov chain
whose measure is denoted Pσ(ε)

s . For example, for some
a ∈ A, we may have that σ(ε)a = 1/(2 − ε), which is a
probability for ε ∈ [0, 1].

The following result establishes the existence of Puiseux
function policy witnesses for blind MDPs.

Lemma 2. Consider a blind MDP P = (S,A, δ, s0) and
a target state ⊤ ∈ S. Then, P is limit-sure winning under
memoryless policies if and only if the following decision
problem for the first-order theory of the reals has a solution
in the real-closed field of Puiseux functions.

∀λ < 1 ∃(σa)a∈A ∃(vs)s∈S such that

• Policy: for all a ∈ A, we have that σa ≥ 0, and∑
a∈A σa = 1.

• Fixpoint: for all s ∈ S, we have that v satisfies

vs =
∑
s̃∈S

∑
a∈A

σaδ(s, a)(s̃) vs̃ .

• Minimal solution: ∀(us)s∈S , if u satisfies the previous
fixpoint equation, then, for all s ∈ S, vs ≤ us.

• Value: vs0 ≥ λ.

Proof sketch. We follow an approach similar to Bewley and
Kohlberg [1976] where we characterize the limit-sure win-
ning problem as a decision problem in the first-order theory
of the reals: the POMDP is limit-sure winning if and only
if this decision problem is true. By Tarski’s principle [Basu
et al., 2006, Theorem 2.80, page 70], the decision prob-
lem is true if and only if it has a witness in the field of
Puiseux functions, which is a real-closed field. Therefore,
limit-sure winning POMDPs have Puiseux functions policy
witnesses.

Graph of communicating classes. A memoryless
Puiseux function policy σ on a blind MDP induces a Puiseux
Markov chain, which defines communicating classes. The
graph of communicating classes is a directed graph with one
vertex per communicating class and an edge between two
classes if the support of the exit distribution of one class
contains a state in the other. Formally, consider G = (V, E)
where V = {B ⊆ S : B is a communicating class } and
(B, B̃) ∈ E if and only if supp(δ(B, ·)) ∩ B̃ ̸= ∅. The graph
of communicating classes for Example 1, induced by the
Puiseux policy σ, where σε(w) = 1− ε and σε(c) = ε, is
illustrated in Figure 2.

The following result shows that communicating classes have
a laminar structure.

Lemma 3. Consider a Puiseux Markov chain with
a set of states S and disjoint communicating classes
B1,B2, . . . ,Bk ⊆ S, with k ≥ 2. We have that
B := ⊔i∈[k]Bi is a communicating class if and only if
{B1,B2, . . . ,Bk} is a bottom strongly connected compo-
nent in the graph with vertices {B1,B2, . . . ,Bk}⊔{⊥} and
edges

{(Bi,Bj) : ∃s ∈ Bj , s ∈ supp(δ(Bi, ·))} ⊔
{(Bi,⊥) : ∃s ∈ S \ B, s ∈ supp(δ(Bi, ·))} .

Proof sketch. The graph of the statement considers edges
based on the exit distribution of communicating classes. On
the one hand, if B is a communicating class, then starting in
B the dynamic reaches every other state in B before exiting
it. In particular, the exit distribution connects communicat-
ing classes between each other without leading to states
outside. On the other hand, if {B1,B2, . . . ,Bk} is a bottom
strongly connected component, then exit distributions link
the classes, ensuring mutual reachability. Therefore, starting
in a state in B the dynamic reaches every other state in B
before exiting it, so B is a communicating class.

The laminar structure implies the following bound on the
number of communicating classes.

Corollary 1. Consider a Puiseux Markov chain with a set of
states S . There are at most 2|S| − 1 communicating classes.



B1 = {s0} B2 = {s1} B4 = {⊤}B3 = {⊥}

Figure 2: Graph of communicating classes induced by the Puiseux policy σ, where σε(w) = 1 − ε and σε(c) = ε, for
Example 1. Each node represents a communicating class in the induced Puiseux Markov chain. Directed edges denote
non-zero exit probabilities (in the limit ε → 0) between classes.

The following result characterizes reachable states in a
Puiseux Markov chain.

Lemma 4. Consider a Puiseux Markov chain with a set
of states S. The limit reachability is given by connectivity
in the graph of communicating classes as follows. For all
states s, s̃ ∈ S, we have that

lim
ε→0+

Pε
s(Reach(s̃)) > 0

if and only if {s} is connected to a communicating class
B ∋ s̃ in the graph of communicating classes.

Proof. Note that the set of all reachable states in the limit
from s, i.e.,{

s̃ ∈ S : lim
ε→0+

Pε
s(Reach(s̃)) > 0

}
,

is characterized as the outcome of the following proce-
dure, which is similar to the procedure used in the proof of
Lemma 3. Start from {s}. First, closure by communicating
class, if a state is included and this state is in some com-
municating class, then all states in the communicating class
must be included. Second, closure by exit distribution, if
a state is in the support of the exit distribution of a reach-
able communicating class, then it also must be included.
Repeat the first and second closures until no more states are
included to obtain the set of all reachable states in the limit
from s. In particular, s̃ is reachable in the limit from s if and
only if the communicating class {s} is connected to B ∋ s̃
through, for example, a minimal sequence of additions in
this process to include s̃ as a reachable state from s.

The following result characterizes limit-sure reachability in
Puiseux Markov chains.

Lemma 5. A Puiseux Markov chain, with a set of states S
and a reachability objective, is limit-sure winning starting
from s ∈ S if and only if, for all communicating classes B ⊆
S, if {s} is connected to B in the graph of communicating
classes, then B = {⊤} or the support of its exit distribution
is not empty, i.e., supp(δ(B, ·)) ̸= ∅.

Proof sketch. On the one hand, if P is limit-sure winning,
then, by Lemma 4, {s} is connected to {⊤} in the graph

of communicating classes. By contradiction, if {s} is con-
nected to B and its exit distribution has empty support, then
starting from s the dynamic has positive probability of reach-
ing and staying forever in B, which contradicts the limit-sure
winning property. On the other hand, if s satisfies the as-
sumptions, then we show that the dynamic eventually exits
every subset of states containing s and not ⊤. Therefore, the
dynamic reaches ⊤ with probability one in the limit, which
proves that P is limit-sure winning.

Rank policy witness. Given a blind MDP P , we say that
a Puiseux policy σ is a witness for limit-sure winning if

lim
ε→0+

Pσ(ε)
s0 (Reach(⊤)) = 1 .

A (memoryless) Puiseux policy σ : [0, ε0) → ∆(A) is a
rank policy if, for all a ∈ A, the function ε 7→ σ(ε)(a) is ei-
ther constant to zero or an integer power of the identity up to
normalization, i.e., there exists a function f : A× [0, ε0) →
[0, 1] such that, for all a ∈ A, there exists i ≥ 0 such that
f(a, ε) = εi, and σ(ε)(a) = f(a, ε)/

∑
a∈A f(a, ε). In

particular, for rank policies, we have that ε0 = ∞.

The following result shows the existence of rank policy
witnesses.

Lemma 6. Consider a blind MDP P = (S,A, δ, s0) and a
target state ⊤. Then, P is limit-sure winning under memo-
ryless policies if and only if there is a rank policy witness.
Moreover, the description of the rank policy is of polynomial
size.

Proof sketch. By Lemma 2, P is limit-sure winning under
memoryless policies if and only if there is a Puiseux policy
witness. By Lemma 5, a Puiseux policy is a witness if and
only if the respective graph of communicating classes has
some properties. Note that the graph of communicating
classes is defined only through the asymptotic behavior
of the corresponding Puiseux Markov chain. Taking the
communicating classes and the edges between them as a
system of linear inequalities, we show the existence of a
rank policy that induces the same graph of communicating
classes and therefore is also a witness. Because ranks are
the solution of a system of linear equations, they are of
polynomial size.



Lemma 6 establishes the existence of a polynomial-size wit-
ness for limit-sure reachability of a blind MDP. To prove
the problem is in NP, the following result shows the exis-
tence of a polynomial-time verifier that decides whether a
rank policy is a witness of limit-sure reachability for a blind
MDP or not.

Lemma 7. There exists a polynomial-time algorithm that,
given a blind MDP and a rank policy, decides whether the
rank policy is a witness of limit-sure reachability or not.

Proof sketch. The algorithm has two main steps. First, given
a rank policy, it constructs its graph of communicating
classes. Second, it checks whether the only absorbing com-
municating class reachable from the initial state s0 is {⊤} or
not. The graph is constructed iteratively following the proof
of Lemma 6. The main operations are adding edges and
communicating classes. Each of them take polynomial time
and, by Corollary 1, there are at most (2|S| − 1) communi-
cating classes. For the second step, by the characterization
in Lemma 5, we can decide limit-sure reachability running a
depth-first search starting at {s0}. Therefore, the algorithm
runs in polynomial time.

3.3 LOWER BOUND

An NP-hardness result was established for a similar problem
by [Chatterjee et al., 2013, Lemma 1], namely, it was shown
that the problem of determining whether a two-player game
with partial-observation with reachability objective is limit-
sure winning under memoryless policies is NP-hard. The
reduction constructed a game that is a directed acyclic graph,
and replacing the adversarial player with a uniform distribu-
tion over choices shows that the limit-sure winning problem
under memoryless policies in POMDPs is also NP-hard.

Proposition 1. For all constants m ≥ 0, the problem of de-
termining whether a POMDP P with reachability objective
is limit-sure winning under memory m policies is NP-hard.

We finish this section with the proof of Theorem 1.

Proof of Theorem 1. Proposition 1 establish the NP-
hardness. Lemma 6 and Lemma 7 imply the existence of
a rank policy of polynomial size and a polynomial-time
verifier, which yields the NP upper bound.

3.4 EXTENSIONS

In this section, we discuss several extensions of Theorem 1.
The following result shows that Theorem 1 extends to con-
stant memory policies.

Corollary 2. The problem of determining whether a
POMDP P = (S,A, δ,Z, o, s0) with reachability objec-
tive is limit-sure winning under constant memory policies is
NP-complete.

Proof sketch. The NP-hardness follows from Proposition 1.
The NP upper bound is obtained as follows. For an amount
of memory m ≥ 1, guessing the update function σu, we
can solve the memoryless problem on the product of the
POMDP and the memory elements. Hence, the NP upper
bound follows.

Remark 1. While Corollary 2 is stated for constant memory,
the result holds for all memory bounds that are polynomial
in the size of the POMDP, as this ensures that the witness is
of polynomial size.

While Corollary 2 presents the extension to small memory
policies, we further extend Corollary 2 to other classic ob-
jectives, namely, parity or omega-regular objectives. Parity
objectives are canonical forms to express all ω-regular prop-
erties [Thomas, 1997], e.g., all properties expressed in the
linear-temporal logic (LTL) can be expressed as determin-
istic parity automata. In a parity condition, every state is
labeled with a positive integer priority and the objective
requires that the minimum priority visited infinitely often
is even. For any fixed memory policy, we obtain a Markov
chain, and the recurrent classes are reached with probabil-
ity 1. A recurrent class satisfies the parity objective with
probability 1 if the minimum priority is even, which we refer
to as a good recurrent class, otherwise satisfies the objective
with probability 0. Hence, the limit-sure problem for parity
under memoryless strategies reduces to limit-surely reach-
ing the good recurrent classes. Hence, the NP-completeness
result of Theorem 1 and Corollary 2 also extend to parity
objectives. However, we focus on reachability objectives as
all conceptual aspects are clarified in this basic and most
fundamental objective.

Corollary 3. The problem of determining whether a
POMDP P with parity objective is limit-sure winning under
constant memory policies is NP-complete.

Proof sketch. The NP-hardness follows from Proposition 1.
The NP upper bound is obtained as follows. By guessing
the support of rank policies, we can compute the recurrent
classes, and the objective is to reach the good recurrent
classes.

Remark 2. As mentioned before, while Corollary 3 is stated
for constant memory, the result holds for all memory bounds
that are polynomial in the POMDP size, as this ensures that
the witness is of polynomial size.

The following result shows that Theorem 1 extends to para-
metric Markov chains (pMCs) as presented by [Junges et al.,
2018].



Corollary 4. The problem of determining whether a para-
metric Markov chain with reachability objective is limit-sure
winning under constant memory policies is NP-complete.

Proof sketch. By [Junges et al., 2018, Corollary 1], the
quantitative problem for POMDPs and pMCs for reach-
avoid objectives are equivalent. In particular, the NP upper
bound for limit-sure winning for reachability objectives
translates immediately.

Corollary 4 complements the qualitative objectives investi-
gated by [Junges et al., 2021], which include almost-sure
but not limit-sure reachability.

4 CONCLUSION AND FUTURE WORK

In this work, we presented the first solution for limit-sure
winning with small memory policies for POMDPs. While
the present work establishes the theoretical foundations, in-
teresting directions of future work include the development
of efficient encodings in NP-complete problems that have
well developed solvers. This includes SAT and Mixed Linear
Program (MLP).

Along evaluating combinations of reductions and solvers in
standard benchmark instances, an important task is to iden-
tify classes of POMDPs on which a solver works particularly
well, possibly including efficient heuristics for scalability
and practical applications. Besides classic reductions, incre-
mental encodings should be investigated. In other words,
generating the clauses for SAT and the restrictions for MLP
incrementally as opposed to generating all of them at the
same time. Incremental encodings have been developed for
almost-sure reachability, see for example [Chatterjee et al.,
2016], and they take advantage of incremental solvers ob-
taining meaningful practical improvements.
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A PROOFS OF SECTION 3.2

In this section, we provide the detailed proofs of results in Section 3.2.

Lemma (Restated, Lemma 1). For every POMDP P = (S,A, δ,Z, o, s0), there exists a blind MDP with P ′ = (S,A×
Z, δ′, s0) with the same reachability value under memoryless policies.

Proof. Consider an arbitrary POMDP P = (S,A, δ,Z, o, s0). Define a blind MDP P ′ = (S,A′, δ′,Z ′, o′, s0) where

• A′ := A×Z;

• δ′ : S ×A′ → ∆(S) is given by

δ′(s, (a, z)) :=

{
δ(s, a) o(s) = z

1[s] o(s) ̸= z

• Z ′ := {#} a unique observation;

• o′ ≡ # a uninformative observation function.

We show that the value of this blind MDP P ′ is the same as the original POMDP P .

Consider an arbitrary memoryless policy σ : Z → ∆(A) in the POMDP P . Note that σ ∈ ∆(A)Z is a collection of
distributions. Define the memoryless policy σ′ : Z ′ → ∆(A′) in P ′, which we identify with an element of ∆(A′), by a
uniform choice over the distributions in σ, i.e.,

σ′((a, z)) :=
1

|Z|
σ(z)(a) .

In other words, the policy σ′ chooses an observation z uniformly at random and then an action according to the distribution
σ(z).

The coupling between the blind MDP and the POMDP consists in projecting the dynamic of the blind MDP to those times
where the tuple of action and observation (a, z) is such that z is the observation of the current state. Formally, define a
sequence of random times (τt)t≥0 defined inductively by τ0 := inf{t ≥ 0 : ∃a ∈ A A′

t = (a, o(s0))} and, for t ≥ 1,

τt := inf{t > τt−1 : ∃a ∈ A A′
t = (a, o(St−1))} .

In other words, τt is the t-th time that, in the dynamic of the blind MDP, the second coordinate of the action chosen by
σ′ coincides with the observation of the current state in the original POMDP. These times are almost surely finite since
σ′ chooses an observation uniformly at random at each step. Notice that, after coupling the transitions of σ and σ′ in the
obvious way, (Sτt)t≥0 under σ′ and (St)t≥0 under σ follow the same dynamic. In particular, the probability of reaching the
target is equal in the blind MDP and the POMDP. Therefore, the reachability value of the blind MDP is at least as large as
the reachability value of the POMDP.
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Consider an arbitrary memoryless policy σ′ : Z ′ → ∆(A′) in the blind MDP P ′, or equivalently an element of ∆(A′).
Define the memoryless policy σ : Z → ∆(A) in P by

σ(z)(a) :=
σ′((a, z))∑

ã∈A σ′((ã, z))
.

In other words, for each observation, we consider the conditional distribution of σ′ on the actions that have that observation
as a second coordinate.

Just as before, the same coupling shows (Sτt)t≥0 under σ′ and (St)t≥0 under σ follow the same dynamic. Therefore, the
reachability value of the POMDP is at least as large as the reachability value of the blind MDP. We conclude that both
POMDPs have the same value.

Lemma (Restated, Lemma 2). Consider a blind MDP P = (S,A, δ, s0) and a target state ⊤ ∈ S. Then, P is limit-sure
winning under memoryless policies if and only if the following decision problem for the first-order theory of the reals has a
solution in the real-closed field of Puiseux functions.

∀λ < 1 ∃(σa)a∈A ∃(vs)s∈S such that

• Policy: for all a ∈ A, we have that σa ≥ 0, and
∑

a∈A σa = 1.

• Fixpoint: for all s ∈ S, we have that v satisfies

vs =
∑
s̃∈S

∑
a∈A

σaδ(s, a)(s̃) vs̃ .

• Minimal solution: ∀(us)s∈S , if u satisfies the previous fixpoint equation, then, for all s ∈ S, vs ≤ us.

• Value: vs0 ≥ λ.

Proof. Consider a blind MDP P . Recall that P is limit-sure winning under memoryless policies if and only if

sup
σ∈Σ0

Pσ
s0(Reach(⊤)) = 1 .

In other words, if and only if, for all λ < 1 there exists a policy σλ ∈ Σ0 such that Pσ
s0(Reach(⊤)) ≥ λ. Recall that, since

P is a blind MDP, the set of memoryless policies Σ0 is equivalent to ∆(A), so an element σ ∈ Σ0 is fully determined by
the probability it assigns to each action.

By Theorem 4, a policy σλ ∈ Σ0 is such that Pσλ
s0 (Reach(⊤)) ≥ λ if and only if the corresponding Markov chain has a

value vector such that vs0 = v(s0) ≥ λ. So far, we conclude that P is limit-sure winning under memoryless policies if and
only if the stated decision problem for the first-order theory of the reals has a solution in R. By Theorem 3, since the Puiseux
functions is a real-closed field by Theorem 2 and it contains R, we conclude the proof.

Lemma (Restated, Lemma 3). Consider a Puiseux Markov chain with a set of states S and disjoint communicating classes
B1,B2, . . . ,Bk ⊆ S , with k ≥ 2. We have that B := ⊔i∈[k]Bi is a communicating class if and only if {B1,B2, . . . ,Bk} is a
bottom strongly connected component in the graph with vertices {B1,B2, . . . ,Bk} ⊔ {⊥} and edges

{(Bi,Bj) : ∃s ∈ Bj , s ∈ supp(δ(Bi, ·))} ⊔
{(Bi,⊥) : ∃s ∈ S \ B, s ∈ supp(δ(Bi, ·))} .

Proof. Assume that B is a communicating class. We show that B is a bottom strongly connected component in the graph
of the statement. Consider i ∈ [k] arbitrary. We show that all edges of Bi lead to communicating classes in B, i.e.,
supp(δ(Bi, ·)) ⊆ B. By contradiction, assume that s̃ ∈ supp(δ(Bi, ·)) ∩ S \ B, equivalently, the graph of the statement
contains an edge (Bi,⊥). Because B is a communicating class and k ≥ 2, there exists j ̸= i and Bj such that (Bi,Bj) is an
edge in the graph of the statement. Consider states s ∈ Bi and ˜̃s ∈ Bj where ˜̃s is such that δ(Bi, ˜̃s) > 0. On the one hand,
because B is a communicating class, s̃ is reached starting from s before exiting B, i.e.,

lim
ε→0+

Pε
s(exit(B) < reach(˜̃s)) = 0 .



On the other hand, by definition of exit distribution, there is a positive limit probability to exit Bi through s̃ which is outside
of B, i.e.,

lim
ε→0+

Pε
s(Exit(B, s̃)) ≥ δ(Bi, s̃) > 0 .

This is a contradiction. Therefore, supp(δ(Bi, ·)) ⊆ B. We are left with showing that B is strongly connected in the graph
of the statement.

Consider i ̸= j ∈ [k] arbitrary. We show that Bi is connected to Bj in the graph of the statement. Consider s ∈ Bi and
s̃ ∈ Bj . On the one hand, because B is a communicating class, s̃ is reached starting from s before exiting B. On the other
hand, the set of all reachable states from s before having left B is characterized by the following procedure. Start including
s. First, closure by communicating class, if ˜̃s is reachable from s and ˜̃s ∈ Bℓ with ℓ ∈ [k], then all states in Bℓ are included.
Second, closure by exit distribution, if a state is in the support of the exit distribution of the reachable communicating classes,
then it also is included. Repeat these closures until no more states are included to obtain the set of all reachable states from s
before having left B. In particular, s̃ must be included in one of these two closures, and Bi is connected to Bj through, for
example, a minimal sequence of additions in this process to include s̃ as a reachable state from s before having left B. We
conclude that B is a bottom strongly connected component in the graph of the statement.

Assume that B is a bottom strongly connected component in the graph of the statement. We show that B is a communicating
class. Consider s, s̃ ∈ B. We show that the limit probability of starting at s and reaching s̃ before leaving B is 1. Consider
i, j ∈ [k] such that s ∈ Bi and s̃ ∈ Bj . By definition of communicating classes, transitions within a communicating class
occur before exiting it, so it is sufficient to consider only the transitions exiting communicating classes. Because B is a
bottom strongly connected component in the graph of the statement, the exit distribution of all communicating classes
leads to states in B. In particular, the transitions between the communicating classes are taken infinitely more often than
those exiting B. Therefore, it is enough to show that starting from Bi the probability of having visited Bj after k transitions
between communicating classes is strictly positive. Denote the smallest positive exit probability ν := min{δ(Bℓ, s) : ℓ ∈
[k], s ∈ S, δ(Bℓ, s) > 0} > 0. Because B is strongly connected in the graph of the statement, there is a directed path
between Bi and Bj . Then, starting from Bi the probability of having visited Bj after k transitions between communicating
classes is at least νk > 0. We conclude that B is a communicating class.

Lemma (Restated, Lemma 5). A Puiseux Markov chain, with a set of states S and a reachability objective, is limit-sure
winning starting from s ∈ S if and only if, for all communicating classes B ⊆ S, if {s} is connected to B in the graph of
communicating classes, then B = {⊤} or the support of its exit distribution is not empty, i.e., supp(δ(B, ·)) ̸= ∅.

Proof. Consider a Puiseux Markov chain P and a state s ∈ S . Assume that P is limit-sure winning starting from s. On the
one hand,

lim
ε→0+

Pσ(ε)
s (Reach(⊤)) = 1 > 0 .

In particular, by Lemma 4, {s} is connected to a communicating class B ∋ ⊤. Note that, by definition, B = {⊤} is an
absorbing communicating class. By Lemma 3, the only communicating class containing ⊤ is {⊤}. We conclude that {s} is
connected to {⊤} in the graph of communicating classes. On the other hand, consider a communicating class B such that
{s} is connected to B in the graph of communicating classes. Consider s̃ ∈ B. By Lemma 4,

lim
ε→0+

Pε
s(Reach(s̃)) > 0 .

By contradiction, if B is absorbing, then

lim
ε→0+

Pσ(ε)
s (Reach(⊤)) ≤ 1− lim

ε→0+
Pε
s(Reach(s̃)) < 1 ,

which is a contradiction. We conclude that the support of the exit distribution of B is not empty.

Assume that, for all communicating classes B ⊆ S, if {s} is connected to B in the graph of communicating classes, then
B = {⊤} or the support of its exit distribution is not empty, i.e., supp(δ(B, ·)) ̸= ∅. We show that P is limit-sure winning
starting from s. Note that, starting from s, the dynamic either reaches ⊤ or stays in a subset of S \ {⊤} forever. For a subset
C ⊆ S, denote the time from which the dynamic never leaves C again by

stay(C) := min{n ≥ 0 : ∀ñ ≥ n sñ ∈ C} .

We show that, for all C ⊆ S such that s ∈ C and ⊤ ̸∈ C, the probability of staying in C forever is zero, i.e.,

lim
ε→0+

Pσ(ε)
s (stay(C) < ∞) = 0 .



Fix an arbitrary C ⊆ S such that ⊤ ̸∈ C and

lim
ε→0+

Pσ(ε)
s (Reach(C)) > 0 .

Take s̃ ∈ C such that limε→0+ Pσ(ε)
s (Reach(s̃)) > 0. By Lemma 4, there are communicating classes B, B̃ such that s ∈ B,

s̃ ∈ B̃, and B is connected to B̃ in the graph of communicating classes. If B̃ ̸⊆ C, then, by definition of communicating
classes, the dynamic exits C in finite time and derive the result. By contradiction, assume that all communicating classes
reachable from B are contained in C. Consider the graph of communicating classes restricted to the classes included in
C. Because this is a directed subgraph, it has a bottom strongly connected component reachable from B. Consider B̃ the
union of all states in this bottom strongly connected component. By Lemma 3, B̃ is a communicating class. By construction,
{s0} is connected to B̃. Because B̃ ⊆ C, we have that ⊤ ̸∈ B̃. Therefore, by assumption, the support of its exit distribution
is not empty, i.e., supp(δ(B, ·)) ̸= ∅. But this is a contradiction with being a bottom strongly connected component. We
conclude that, for all C ⊆ S \ {⊤}, if limε→0+ Pσ(ε)

s (Reach(C)) > 0, then limε→0+ Pσ(ε)
s (stay(C) < ∞) = 0. Therefore,

limε→0+ Pσ(ε)
s (Reach(⊤)) = 1 and the Puiseux Markov chain is limit-sure winning.

Lemma (Restated, Lemma 6). Consider a blind MDP P = (S,A, δ, s0) and a target state ⊤. Then, P is limit-sure winning
under memoryless policies if and only if there is a rank policy witness. Moreover, the description of the rank policy is of
polynomial size.

Proof. Consider a blind MDP P = (S,A, δ, s0) and a target state ⊤. By Lemma 2, P is limit-sure winning under
memoryless policies if and only if there is a memoryless Puiseux function policy witness. In turn, by Lemma 5, a policy is
a witness if and only if its graph of communicating classes satisfies some properties. We show that, if there is a Puiseux
function policy whose graph satisfies these properties, then there is another polynomial-size rank policy that induces the
same graph.

Fix a Puiseux policy σ : [0, ε0) → ∆(A) and consider the corresponding Puiseux Markov chain. We claim that the graph of
communicating classes is fully determined by the support of the exit distribution of communicating classes. Indeed, this
graph can be constructed as follows.

• Initialization. Start by considering a communicating class for each singleton state.

• Adding edges. Given the currently considered communicating classes, add all edges given by the support of their exit
distribution.

• Adding new communicating classes. Given the currently considered communicating classes, consider those that are
not contained in another communicating class. With the support of their exit distribution, by Lemma 3, we find larger
communicating classes if there are any.

By repeating the last two items until no other communicating class is found, we obtain the full graph of communicating
classes. Therefore, this graph is fully determined by the support of the exit distribution of communicating classes. By
Theorem 6, the exit distribution of a communicating class is characterized in terms of exit graphs. Indeed, a state s̃ is in the
support of the exit distribution of a communicating class B if and only if there exists a state s ∈ B and an exit graph g in
which s can reach s̃, i.e., g ∈ GB(s → s̃), such that the weight of g is equal to the minimal weight of all exit graphs of B,
i.e., for all g̃ ∈ GB we have that w(g) ≤ w(g̃). We use this characterization to deduce the existence of a rank policy σ̃ that
induces the same graph as the policy σ.

Consider a parameterized function f : A× [0, ε0) → [0, 1], of parameters (i(a))a∈A, given by f(a, ε) = εi(a). This function
induces a policy σ̃(ε)(a) = f(a, ε)/

∑
a∈A f(a, ε), which in turn defines a Puiseux Markov chain with transitions

δε(s, s̃) =
∑
a∈A

σ̃(ε)(a)δ(s, a)(s̃)

=
1∑

a∈A f(a, ε)

∑
a∈A

εi(a)δ(s, a)(s̃) .

We show that there exist parameters (i(a))a∈A such that the corresponding graph of communicating classes of σ̃ coincides
with the one given by σ. Indeed, because the definition of exit distribution depends only on the weight of exit graphs, which



is an asymptotic notion, we have that the weights of the policy σ induce a strategy with the same graph of communicating
classes, i.e., defining

i(a) := inf

{
r ≥ 0 : lim

ε→0+

∑
a∈A σ(ε)(a)δ(s, a)(s̃)

εr

}
we have that σ̃ induces the same graph of communicating classes as σ. We show that the parameters (i(a))a∈A can be
chosen to be integers of polynomial size.

By the previous arguments, for simplicity and without loss of generality consider that the Puiseux policy σ is of the form
σ(ε)(a) = f(a, ε)/

∑
a∈A f(a, ε), where f : A × [0, ε0) → [0, 1] is such that f(a, ε) = εi(a). We construct a system of

linear equations that is solved by (i(a))a∈A and characterizes the induced graph of communicating classes. First, ranking of
actions. Consider (strict) inequalities that characterize the order of (i(a))a∈A, i.e., (strict) inequalities of the form

i(a) < i(ã) or i(a) = i(ã) .

Second, support of exit distributions. Consider states s, s̃ ∈ S and define the set actions that lead to the transition from s to s̃
and are minimal in the ranking, i.e.,

I(s → s̃) := {a ∈ A : δ(s, a)(s̃) > 0, ∀ã ∈ A,

δ(s, a)(s̃) > 0 ⇒ i(a) ≤ i(ã)} .

Also, consider some selection and define i(s → s̃) := i(a), for some a ∈ I(s → s̃). Recalling that a state s̃ is in the support
of the exit distribution of a communicating class B if and only if there exists a state s ∈ B and an exit graph g containing the
edge (s, s̃), i.e., g ∈ GB(s → s̃), such that the weight of g is equal to the minimal weight of all exit graphs of B, i.e., for all
g̃ ∈ GB we have that w(g) ≤ w(g̃). We write these restrictions as (strict) inequalities over (i(a))a∈A by noticing that

w(g) =
∑

(s,s̃)∈g

i(s → s̃) .

Because there are finitely many communicating classes, and each of them has finitely many exit graphs, the graph of
communicating classes induced by the policy σ̃ is fully determined by a finite system of, possibly strict, inequalities over the
variables (i(a))a∈A. These two sets of (strict) inequalities, along with positivity constraints, fully characterize the induced
graph of communicating classes by (i(a))a∈A in the following sense. Every solution of these inequalities (i∗(a))a∈A define
a function f∗ : A× [0, ε0) → [0, 1], which defines a policy σ∗. By the iterative construction of the graph of communicating
class, the policy σ∗ induces the same graph as σ. We show that these inequalities have an integer solution (i∗(a))a∈A of
polynomial size.

For a fixed order over (i(a))a∈A and a selection defining (i(s → s̃))s,s̃∈S , the inequalities considered are of the form

• i(a) ◦ i(ã),

•
∑

(s,s̃)∈g i(s → s̃) ◦
∑

(s,s̃)∈g̃ i(s → s̃), or

• i(a) ≥ 0,

where ◦ ∈ {<,≤}. Because this is a homogeneous system of equations, i.e., if (i∗(a))a∈A is a solution, then, for all λ > 0,
we have that (λ · i∗(a))a∈A is also a solution, we can replace strict inequalities by inequalities that are not strict by adding
+1 to the corresponding side of the inequality. Then, we consider a system of inequalities where ◦ is replaced by ≤ or ≤ 1+.
Finally, we arrived at a system of linear equations constructed from the Puiseux policy σ. Because this system of linear
equations has a solution, it has a solution in the rational. Moreover, the numerators and denominators of a solution can be
bounded by Cramer’s rule so they use polynomial size. Multiplying the rational solution of this system to obtain an integer
solution of the original set of (strict) inequalities we finally conclude the existence of rank policy witnesses.

Lemma (Restated, Lemma 7). There exists a polynomial-time algorithm that, given a blind MDP and a rank policy, decides
whether the rank policy is a witness of limit-sure reachability or not.

Proof. Consider a blind MDP and a rank policy. The algorithm constructs the graph of communicating classes iteratively
and checks whether the only absorbing communicating class reachable from the initial state s0 is {⊤} or not. Concretely,
the algorithm constructs this graph similar to the proof of Lemma 6 as follows.



• Initialization. Start by considering a communicating class for each singleton state.

• Adding edges. Given the currently considered communicating classes, add all edges given by the support of their exit
distribution.

• Adding new communicating classes. Given the currently considered communicating classes, consider those that are
not contained in another communicating class. With the support of their exit distribution, by Lemma 3, we find larger
communicating classes if there are any.

By repeating the last two items until no other communicating class is found, we obtain the full graph of communicating
classes. We show that this algorithm runs in polynomial time.

By Corollary 1, there are at most (2|S| − 1) communicating classes. There are two relevant operations for the algorithm that
computes the graph of communicating classes. First, computing the support of the exit distribution of a communicating
class. Second, checking whether a new communicating class should be added. We show how to perform these operations in
polynomial time.

Fix a communicating class B ⊊ S . We compute the support of its exit distributions, i.e., supp(δ(B, ·)). Consider s̃ ∈ S \ B.
By Theorem 5 and Theorem 6, the state s̃ is in the support of the exit distribution of B if and only if there exists a state
s ∈ S and an exit graph g ∈ GB(s → s̃) whose weight coincides with the smallest weight among all exit graphs in GB, i.e.,
the weight of some exit graph is Gmin

B . We determine this in two steps. First, we compute the weight of some exit graph in
Gmin

B . Second, we compute the minimum weight over all exit graphs in ∪s∈SG
min
B (s → s̃). Comparing these quantities

we determine whether s̃ is in the support of the exit distribution of B. For the first step, collapse all states in (S \ B) into a
single state and compute a minimal directed spanning tree where the weight of an edge is given by the leading power in
the Puiseux power expansion of the corresponding transition. A directed spanning tree in this collapsed graph corresponds
to an exit graph in the Puiseux Markov chain, and their weights coincide. By Gabow et al. [1986], this computation takes
polynomial time in |S|. This determines the weight of some exit graph in Gmin

B . For the second step, for all s ∈ S, we
proceed similarly, i.e., we collapse all states in {s} ∪ (S \ B) into a single state and compute a minimal directed spanning
tree. Then, we add the smallest weight among the transitions from s to s̃. The result corresponds to the weight of an exit
graph in Gmin

B containing the edge (s, s̃). By Gabow et al. [1986], this computation takes at polynomial time in |S|, and
we repeat it at most |B| ≤ |S| times. Taking the minimum over all computed weights while varying s ∈ B, we deduce the
minimum weight of all graphs in ∪s∈SG

min
B (s → s̃). Recall that this weight coincides with the one of an exit graph in Gmin

B
if and only if s̃ is in the support of the exit distribution. Therefore, comparing the weights obtained in the first and second
steps we decide whether s̃ is in the support or not.

Given all communicating classes computed so far and the support of their exit distributions, we check whether we can
add another communicating class. By the characterization in Lemma 3, this corresponds to computing bottom strongly
connected components in a directed graph of at most (2|S| − 1) vertices, which takes linear time by Dijkstra [1976], and is
done at most (|S| − 1) times.

Finally, given the full graph of communicating classes induced by the rank policy, we check whether the policy is a witness
of limit-sure reachability. By the characterization in Lemma 5, we run a depth-first search starting at {s0} and check whether
the only reachable absorbing communicating class from s0 is {⊤}. We conclude that checking whether the rank policy is a
witness of limit-sure reachability or not takes polynomial time.

B PROOFS OF SECTION 3.3

In this section, we provide the detailed proofs of results in Section 3.3.

Proposition (Restated, Proposition 1). For all constants m ≥ 0, the problem of determining whether a POMDP P with
reachability objective is limit-sure winning under memory m policies is NP-hard.

In the rest of the section, for completeness, we give an explicit reduction from 3-SAT [Karp, 1972] that prove Proposition 1.

3-SAT. Consider Boolean variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm where each clause is the disjunction
of three literals from the set {x1, x2, . . . , xn} ∪ {¬x1,¬x2, . . . ,¬xn}. The 3-SAT problem is determining if there is an
assignment of the Boolean variables that satisfies all clauses.



Proof. Consider an instance of 3-SAT given by Boolean variables x1, x2, . . . , xn and clauses C1, C2, . . . , Cm. For j ∈ [m],
denote clause Cj = ℓ(j1) ∨ ℓ(j2) ∨ ℓ(j3), where each literal ℓ ∈ {x1, x2, . . . , xn} ∪ {¬x1,¬x2, . . . ,¬xn}. We construct
the POMDP given as follows.

• S := ⊔j∈[m]{ℓ(j, 1), ℓ(j, 2), ℓ(j, 3)} ∪ {s0,⊤,⊥}, where ℓ(j, k) is a different state for each j ∈ [m] and k ∈ [3] that
represents the k-th Boolean variable of the j-th clause;

• A := {t, f} is the action set which represents assigning a truth value to a variable;

• δ : S ×A → ∆(S) is the transition function given by

δ(s, a) =



1
m

∑
j∈[m]

1[ℓ(j, 1)] s = s0

1[⊤]
a = t, ∃j ∈ [m], k ∈ [3] :

s = ℓ(j, k) = xi

1[⊤]
a = f, ∃j ∈ [m], k ∈ [3] :

s = ℓ(j, k) = ¬xi

1[ℓ(j, k + 1)]
a = f, ∃j ∈ [m], k ∈ [2] :

s = ℓ(j, k) = xi

1[ℓ(j, k + 1)]
a = t,∃j ∈ [m], k ∈ [2] :

s = ℓ(j, k) = ¬xi

1[⊥]
a = f, ∃j ∈ [m] :

s = ℓ(j, 3) = xi

1[⊥]
a = t,∃j ∈ [m] :

s = ℓ(j, 3) = ¬xi

1[s] s ∈ {⊤,⊥}

In other words: s0 moves to the first literal of each clause uniformly independent of the action; each literal moves to
either ⊤ or the next literal in the clause; the terminal states ⊤ and ⊥ are absorbing, i.e., for all actions a ∈ A, we have
that δ((s, a)) = 1[s], for s ∈ {⊤,⊥}.

• Z := {xi : i ∈ [n]} ∪ {s0,⊤,⊥} is the set of observations, one per Boolean variable;

• o : S → Z is the observation function that forces the controller to assign a consistent truth value to the literals and is
given by

o(s) =


s s ∈ {s0,⊤,⊥}

xi
∃i ∈ [n], j ∈ [m], k ∈ [3] :

s = ℓ(j, k) ∈ {xi,¬xi}

• s0 ∈ S is the initial state.

See Figure 3 for an illustration of this reduction. We show that this POMDP has reachability value 1 if and only if the 3-SAT
instance is satisfiable.

Assume the 3-SAT instance is satisfiable with a valuation v : {xi : i ∈ [n]} → {t, f}. Consider the memoryless deterministic
policy for the controller given by any extension of the valuation, for example assigning action t to states that do not represent
a Boolean variable. In other words, consider σ : Z → A given by

σ(s) =

{
v(xi) ∃i ∈ [n] : s = xi

t s ∈ {s0,⊤,⊥}

We show that this policy guarantees a reachability probability of one, and therefore the POMDP has a reachability value of
one.

From the initial state s0, any action leads uniformely to the set {ℓ(j, 1) : j ∈ [m]}. Therefore, it is enough to show that
starting from ℓ(j, 1) we reach ⊤, for an arbitrary j ∈ [m]. Fix j ∈ [m]. Since the clause Cj = ℓ(j1) ∨ ℓ(j2) ∨ ℓ(j3) is
satisfied by the valuation v, we consider three cases depending on the first literal that evaluates to true.
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ℓ(1, 1) = x1

ℓ(1, 2) = ¬x2

ℓ(1, 3) = x4
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ℓ(2, 3) = ¬x4

⊤

⊥
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Figure 3: Example of the reduction from 3-SAT to the limit-sure winning reachability problem in POMDPs for the 3-SAT
instance (x1 ∨ ¬x2 ∨ x4) ∧ (x2 ∨ ¬x3 ∨ ¬x4).

1. Assume v(ℓ(j, 1)) = t and fix i ∈ [n] such that ℓ(j, 1) ∈ {xi,¬xi}. Then, by the definition of σ and δ, we have that
δ(ℓ(j, 1), σ(xi)) = 1[⊤]. In other words, ℓ(j, 1) reaches ⊤ in a single transition.

2. Assume v(ℓ(j, 1)) = f and v(ℓ(j, 2)) = t and fix i1, i2 ∈ [n] such that ℓ(j, k) ∈ {xik ,¬xik} for k ∈ [2]. Then, by
the definition of σ and δ, we have that δ(ℓ(j, 1), σ(xi1)) = 1[ℓ(j, 2)] and δ(ℓ(j, 2), σ(xi2)) = 1[⊤]. In other words,
ℓ(j, 1) reaches ⊤ after two transitions.

3. Assume v(ℓ(j, 1)) = f , v(ℓ(j, 2)) = f , and v(ℓ(j, 3)) = t and fix i1, i2, i3 ∈ [n] such that ℓ(j, k) ∈ {xik ,¬xik} for
k ∈ [3]. Then, by the definition of σ and δ, we have that δ(ℓ(j, 1), σ(xi1)) = 1[ℓ(j, 2)], δ(ℓ(j, 2), σ(xi2)) = 1[ℓ(j, 3)],
and δ(ℓ(j, 3), σ(xi3)) = 1[⊤]. In other words, ℓ(j, 1) reaches ⊤ after three transitions.

Since in all cases, starting from ℓ(j, 1) we reach ⊤, we have proven that σ guarantees a reachability value of one.

Assume the 3-SAT instance is not satisfiable, i.e., for all valuations v : {xi : i ∈ [n]} → {t, f} there exists at least one
clause that evaluates to false. We show that every deterministic memoryless policy leads to a reachability value strictly less
than one and therefore the POMDP does not have a reachability value of one.

Note that the reachability value of our POMDP may consider only deterministic policies. This observation holds POMDPs
with general policies [Feinberg, 1996, Venel and Ziliotto, 2016], and we argue that this holds for our POMDP even when
considering only memoryless policies because there are no loops in the dynamic. Indeed, our POMDP can be seen as an
extended-form game with one player. Moreover, the controller may remember all of their previous actions of the game since,
during the process, no observation is presented twice before reaching the states ⊤ and ⊥, where the outcome is determined.
Therefore, Kuhn’s theorem [Aumann, 1964, Section 5] applies and every memoryless policy induces the same distribution
over outcomes that some distribution over deterministic policies. In other words, the reachability value of our POMDP may
consider only deterministic policies.

Consider a deterministic memoryless policy σ : Z → A. Define the valuation v : {xi : i ∈ [n]} → {t, f} given by
v(xi) = σ(xi). Since the 3-SAT instance is not satisfiable, there exists a clause Cj with j ∈ [m] such that v(Cj) = f .
Therefore, under σ, starting from ℓ(j, 1), the dynamic does not reach ⊤ by a similar argument as before. We conclude that
the reachability probability starting from s0 and following σ is at most 1− 1/m, and therefore the POMDP does not have
value one. This concludes the proof of NP-hardness.



C PROOFS OF SECTION 3.4

In this section, we provide the detailed proofs of results in Section 3.4.

Corollary (Restated, Corollary 2). The problem of determining whether a POMDP P = (S,A, δ,Z, o, s0) with reachability
objective is limit-sure winning under constant memory policies is NP-complete.

Proof. The NP-hardness follows from Proposition 1. The NP upper bound is obtained as follows. Consider an amount of
memory m ≥ 1. Note that an update function σu : [m] × Z × A → [m] is a finite object of polynomial size. Moreover,
fixing an update function σu and considering the product POMDP with states S × [m], memoryless policies in the
product correspond to policies with memory m in the original POMDP. The formal definition of the product POMDP is
Pm :=

(
S × [m],A, δ̃,Z × [m], õ, (s0, 1)

)
where

• the observation function õ is defined as, for all s ∈ S and µ ∈ [m],

õ ((s, µ)) := (o(s), µ) ,

• the transition function δ̃ is given by

δ̃((s, µ), a)((s̃, µ̃)) :=

{
δ(s, a)(s̃) σu(µ, o(s), a) = µ̃

0 ∼

Then, Pm is limit-sure winning under memoryless policies if and only if P is limit-sure winning under memory policies
using memory amount m, which proves the NP upper bound.

Corollary (Restated, Corollary 3). The problem of determining whether a POMDP P with parity objective is limit-sure
winning under constant memory policies is NP-complete.

Proof. The NP-hardness follows from Proposition 1. The NP upper bound is obtained as follows. First, consider memoryless
policies because the proof for constant memory policies follows from the reduction described in the proof of Corollary 2.

Consider a POMDP that is limit-sure winning for the parity objective under memoryless policies. Then, by definition of
the limit-sure winning property, for all ε > 0, there exists a policy σε such that the probability of satisfying the parity
condition is at least 1− ε under this policy. Consider a sequence (εn := 1/n)n≥1 and a corresponding sequence of policies
(σn)n≥1 ⊆ ∆(A)Z . Since the set of all possible supports per observation is finite, up to taking a subsequence, we assume
that, for all z ∈ Z , the support of σn(z) is invariant on n. For a Markov chain, the recurrent classes depend only on the
support of the transition function. Therefore, the recurrent classes of the Markov chains induced by σn do not depend on n.

Note that, in a Markov chain, the parity condition is satisfied if and only if a good recurrent class is reached. Therefore, the
probability of satisfying the parity objective in the POMDP under σn corresponds to the reachability probability to good
recurrent classes (under σn). By guessing the support of a sequence of policies that are witness of the limit-sure property for
the POMDP, we reduce the parity objective to the reachability objective of the corresponding good recurrent classes.

Corollary (Restated, Corollary 4). The problem of determining whether a parametric Markov chain with reachability
objective is limit-sure winning under constant memory policies is NP-complete.

Proof. An extension of the quantitative reachability objective, denoted reach-avoid objective, was considered by [Junges
et al., 2018]. They showed that the quantitative problem for POMDPs and parametric Markov chains (pMCs) for reach-avoid
objectives are equivalent [Junges et al., 2018, Corollary 1]. In particular, they are equivalent for the reachability objective.
Moreover, the reduction from a POMDP to a pMC for a quantitative objective does not depend on the quantitative threshold
used in the objective. Therefore, the problem whether a POMDP is limit-sure winning reduces to the problem whether a
pMC is limit-sure winning. The same occurs with the reduction from a pMC to a POMDP, establishing the equivalence of
both problems.
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