
Under review as submission to TMLR

Response to Reviewers

We greatly appreciate the constructive comments and the opportunity we were given to improve our paper.
Following your comments and advice, we revised our manuscript to include missing details to make our study
more sound and complete. Within the points, we also reviewed all the detailed comments from the reviewers
with our best efforts. We refer to specific locations of each change using Review X-XX . You can click X
(“on page X”) to jump to the modified location. We are currently on revision R2.1.

Reviewer #qSHL: The authors put a lot of emphasis on the fact that it is not required to have
access to the training data to train the early exits. Does that mean that they are initialized
from scratch? Why not pretrain them on the training data ?

For the first question, the main backbone is not initialized from scratch. Instead, we use pre-trained models
(like ResNet50 trained with the CIFAR10 training/validation dataset). We then insert our raw early exit
layers at the selected nodes. For the early exit layers, we do not modify or train the main model; we only
train the early exit layers using the inference part while keeping the main backbone frozen.

Reviewer #qSHL: In section 4.2 the authors explain the test procedure. This is not clear to
me. For example for the CIFAR10 dataset, the authors state that "we only use the test splits"
and "we do not use the labels in these test sets in the training and optimization process".
Does that mean that the early exits are trained using test data ? This seems like an obvious
opportunity for overfitting. In addition, it is stated that the test data is augmented with
flips and rotations which makes it hard to compare to other approaches that just use the
conventional test data.

For the first point, yes, we train the early exits using the test datasets. To avoid overfitting, we split the
test data into two portions: one for training the early exits and the other for testing the whole system. For
example, we split the 10,000 images in CIFAR10 into two separate and independent sets of 5,000 images
each.

For the second question, we use the first portion (augmented using flips and rotations) to train our early
exits. Then we use the second portion to test the other approaches. Thus, only for training the early exits
do we use data augmentation techniques like flips or rotations.

We added additional description of the procedure in this revision to make it more clear.
The content marked with Review 1-1 on page 15 is the location of the change.

Reviewer #qSHL: It is not clear to me how the confidence calibration works. I understand
the need for calibration but how is this performed without ground truth labels ? I suppose you
could use the final model’s outputs as ground truth but then you should probably also take this
model’s confidence into account ?

For the first question, each layer in the model suggests a class at its final softmax layer with an associated
probability. When these layers are not trained, they typically exhibit low confidence. It is important to note
that each layer suggests an output independently of the ground truth. During training, our focus is not on
the ground truth labels but on ensuring that the outputs of our layers mimic the main model’s predictions.

Our novelty lies in eliminating ground truth while training exit layers. This approach makes the training
process unsupervised and independent of the ground truth. In real-world scenarios, we mostly encounter
unlabeled data. However, for testing, we still use ground truth labels. All baselines use ground truth for
testing.

For the second question, while it is possible to use labels during training and compare the results of supervised
training, we believe it is more beneficial to remain unsupervised during the training phase. In real-world
scenarios, when we use a trained model, inference does not have labels. For example, consider pedestrian

1

Under review as submission to TMLR

detection in an autonomous driving system. We can train our early exit models without changing the main
backbone only during the inference of the scene.

Reviewer #qSHL: It is not clear to me how the updating procedure works. Section 3.6 gives
two obvious approaches (update every X samples, update the early exits when the model is
updated). For a paper that claims "online" in the title, I would have expected a more in depth
discussion on the actual online updating procedure. As far as I can see, there is no online
aspect in the provided experiments. I would expect at least a graph that shows the accuracy/
runtime of the model as a function of the observed test samples. This way you can see that
the model becomes more efficient as more samples have been observed.

We would like to provide additional clarification on this point. The update procedure involves fine-tuning
the layer configurations and maintenance. This step enhances the performance of the cache (early exit)
layers without disrupting the online training process.

As explained, the training of cache layers is online. When the main backbone model is trained, we perform
training on our layers as new queries for inference arrive, without using ground truth labels.

We thank the reviewer for this insightful comment. It will justify the advantage of the online method to
observe the performance of the layers after each epoch of training, potentially testing them with a second
split of test data at each phase. Currently, our main contribution is focused on the unsupervised learning
part. While our training process is online, we will consider removing this claim from the title and abstract
to better emphasize our primary goal.

Reviewer #qSHL: I believe the choice of the word "cache" in the title and throughout the paper
is misleading. After reading the abstract, I expected that this paper would introduce some sort
of key value storage in the model that would allow the model to return a prediction early if
the input is similar to a previously processed input, stored in the cache. Instead the authors
propose to add trained early exit classifiers. I suppose you could interpret these classifiers
as implementing some sort of caching mechanism since they are updated at test-time but I
believe that the use of the word "cache" is distracting. Instead, I would encourage the authors
to stick to more conventional terminology (e.g. early exit, adaptive computation, ...). I
believe this would make it easier for potential readers to find this paper.

We have replaced the word “cache” with “early exit” throughout the paper to provide better clarity and a
more accurate description of our method. This change aligns with conventional terminology and helps avoid
any potential confusion.

Reviewer #qSHL: I feel that the paper should include results on the ImageNet dataset as
well. I understand that it is annoying when reviewers ask for additional results on other
datasets, especially since the paper already includes experiments on large datasets such as
CityScape but the ImageNet dataset is still the most commonly used image classification
benchmark and I believe that the large number of classes and the higher resolution makes it a
more interesting benchmark than CIFAR10/CIFAR100. In addition, it is likely that follow up
work will be evaluated on ImageNet and this would allow those authors to compare to this work.

We added ImageNet results to our work as well. Please note that it was not easy to test ImgageNet with
other baselines due to differences in their implementations, which require training from scratch and significant
computational resources. In contrast, we were able to use pretrained models conveniently. Therefore, we
only included ImageNet results in our own experimental evaluations.

2

Under review as submission to TMLR

An Unsupervised Early Exit Mechanism for Deep Neural
Networks

Anonymous authors
Paper under double-blind review

Abstract

Deep Neural Networks (DNNs) have become an essential component in many application
domains, including web-based services. A variety of these services require high throughput
and (close to) real-time features, for instance, to respond or react to users’ requests or to
process a stream of incoming data on time. However, the trend in DNN design is towards
larger models with many layers and parameters to achieve more accurate results. Although
these models are often pre-trained, the computational complexity in such large models can
still be relatively significant, hindering low inference latency. In this paper, we propose
an end-to-end automated early exiting solution to improve the performance of DNN-based
services in terms of computational complexity and inference latency. Our method adopts
the ideas of self-distillation of DNN models and early exits. The proposed solution is an
automated unsupervised early exiting mechanism that allows early exiting of a large model
during inference time if the early exit model in one of the early exits is confident enough for
final prediction. One of the main contributions of this paper is that we have implemented
the idea as an unsupervised early exiting, meaning that the early exit models do not need
access to training data and perform solely based on the incoming data at run-time, making
it suitable for applications using pre-trained models. The results of our experiments on two
downstream tasks (image classification and object detection) show that, on average, early
exiting can reduce the computational complexity of these services up to 58% (in terms of
FLOP count) and improve their inference latency up to 46% with low to zero reduction in
accuracy. Our approach also outperforms existing approaches, particularly when applied
on complex models and larger datasets. It achieves a remarkable reduction in latency of
51.6% and 30.4%, exceeding the Gati and BranchyNet methods for CIFAR100-Resnet50.
This enhancement is accompanied by an increase of 2.92% and 0.87% in the mean precision,
further highlighting the superiority of our approach in demanding scenarios.

1 Introduction

Deep Neural Networks (DNNs) are incorporated in real-world applications used by a wide spectrum of
industry sectors including healthcare (Shorten et al., 2021; Fink et al., 2020), finance (Huang et al., 2020;
Culkin, 2017), self-driving vehicles (Swinney & Woods, 2021), and cybersecurity (Ferrag et al., 2020). These
applications utilize DNNs in various fields such as computer vision (Hassaballah & Awad, 2020; Swinney
& Woods, 2021), audio signal processing (Arakawa et al., 2019; Tashev & Mirsamadi, 2017),and natural
language processing (Otter et al., 2021). Many services in large companies such as Google and Amazon
have DNN-based back-end software (e.g., Google Lens and Amazon Rekognition) with tremendous volume
of queries per second. For instance, Google processes over 99,000 searches every second (Mohsin, 2022) and
spends a substantial amount of computation power and time on the run time of their models (Xiang &
Kim, 2019). These services are often time-sensitive and resource-intensive and require high availability and
reliability.

Now the question is how fast the current state-of-the-art (SOTA) DNN models are at inference time and to
what extent they can provide low-latency responses to queries. The SOTA model depends on the application
domain and the problem at hand. However, the trend in DNN design is indeed toward pre-trained large-scale

3

Under review as submission to TMLR

models due to their reduced training cost (only fine-tuning) while providing dominating results (since they
are huge models trained on an extensive dataset).

One of the downsides of large-scale models (pre-trained or not) is their high inference latency. Although the
inference latency is usually negligible per instance, as discussed, a relatively slow inference can jeopardize a
service’s performance in terms of throughput when the QPS is high.

In general, in a DNN-based software development and deployment pipeline, the inference stage is part of the
so-called “model serving” process, which enables the model to serve inference requests or jobs (Xiang & Kim,
2019) by directly loading the model in the process or by employing serving frameworks such as TensorFlow
Serving (Olston et al., 2017) or Clipper (Crankshaw et al., 2017).

The inference phase is an expensive stage in the life cycle of a deep neural model in terms of time and
computation costs (Desislavov et al., 2021). Therefore, efforts towards decreasing the inference cost in
production have increased rapidly over the past few years.

From a system engineering perspective, caching is a standard practice to improve the performance of software
systems, helping to avoid redundant computations. Caching is the process of storing recently observed
information to be reused when needed in the future, rather than re-computation (Wessels, 2001; Maddah-Ali
& Niesen, 2014). Caching is usually orthogonal to the underlying procedure, meaning that it is applied by
observing the inputs and outputs of the target procedure and does not engage with the internal computations
of the cached function.

Caching effectiveness is best observed when the cached procedure often receives duplicated input while in
a similar internal state, for instance, accessing a particular memory block, loading a web page, or fetching
the books listed in a specific category in a library database. It is also possible to adopt a standard caching
approach with DNNs (e.g., some work caches a DNN’s output solely based on its input values (Crankshaw
et al., 2017)). However, it would most likely provide a meager improvement due to the high dimension and
size of the data (such as images, audios, texts) and low duplication among the requests.

However, due to the feature extraction nature of deep neural networks, we can expect the inputs with similar
outputs (e.g., images of the same person or the same object) to have a pattern in the intermediate layers’
activation values. Therefore, we exploit the opportunity to cache a DNN’s output based on the intermediate
layer activation values. In this way, we can cache the results not by looking at the raw inputs but by
looking at their extracted features in the intermediate layers within the model’s forward-pass.

The intermediate layers often have dimensions even higher than the input data. Therefore, we use shallow
classifiers (Kaya et al., 2019) to replace the classic cache-storing and look-up procedures. A shallow classifier
is a supplementary model attached to an intermediate layer in the base model that uses the intermediate
layer’s activation values to infer a prediction. In the caching method, training a shallow classifier on a set
of samples mimics the procedure of storing those samples in a cache storage, and inferring for a new sample
using the shallow classifier mimics the look-up procedure.

In this paper, we propose early exiting the predictions made by standard classification models using shallow
classifiers trained using the samples and information collected at inference time. We first evaluate the
rationality of our method in our first research question by measuring how it affects the final accuracy of the
given base models and assessing the effectiveness of the parameters we introduce (tolerance and confidence
thresholds) as a knob to control the early exiting certainty. We further evaluate the method in terms of
computational complexity and inference latency improvements in the second and third research questions. We
measure these improvements by comparing the FLOPs count, memory consumption, and inference latency for
the original model vs. the early exit-enabled version that we build throughout this experiment. We observed
a reduction of up to 58% in FLOPs, an acceleration of up to 46% in inference latency while inferring on the
CPU and up to 18% on GPU, with less than 2% drop in accuracy. Our method demonstrates remarkable
performance across a range of models and datasets. For the simplest model and dataset, CIFAR10-resnet50,
it offers a substantial reduction of 52.2% and 32.4% in latency, with only a minor decrease of 6.1% and
0.9% in precision compared to the BranchyNet and Gati methods, respectively. Furthermore, in the case
of the more complex CIFAR100-Resnet50 model and dataset, our method achieves a significant reduction

4

Under review as submission to TMLR

in latency of 51.6% and 30.4%, while simultaneously enhancing the mean accuracy by 2.92% and 0.87%
compared to the Gati and BranchyNet methods.

In summary the contributions of this paper are:

• Proposing a early exiting method for the predictions made by off-the-shelf image classifiers and
object detection models, which only uses unlabelled samples collected at inference time.

• Automating the process of designing the supplementary models used for early exiting and tuning
their parameters used for determining the early exit hits, by AutoML methods.

• Empirically evaluating the proposed early exiting method using six publicly available off-the-shelf
models on five datasets (CIFAR-10, CIFAR-100, LFW, Cityscapes, Criteo), in terms of computa-
tional complexity and inference time reduction.

In the rest of the paper, we discuss the background and related works in section 2, details of the method in
section 3, design and evaluation of the study in section 4, and we conclude the discussions in section 5.

2 Related Works

In this section, we briefly review the topics related to the model inference optimization problem. Following
this, we introduce the techniques used to build the early exiting procedure.

2.1 Inference Optimization

There are two perspectives that address the model inference optimization problem. The first perspective
focuses on optimizing the model deployment platform and covers a broad range of optimization goals (Yu
et al., 2021). These studies often target deployment environments in resource-constrained edge devices
(Liu et al., 2021; Zhao et al., 2018) or resourceful cloud-based devices (Li et al., 2020a). Others focus on
hardware-specific optimizations (Zhu & Jiang, 2018) and inference job scheduling (Wu et al., 2020).

The second perspective is focused on minimizing the model’s inference compute requirements by compressing
the model. Among model compression techniques, model pruning (Han et al., 2015; Zhang et al., 2018; Liu
et al., 2019b), model quantization (Courbariaux et al., 2015; Rastegari et al., 2016; Nagel et al., 2019),
and model distillation (Bucila et al., 2006; Polino et al., 2018; Hinton et al., 2015) are widely used. These
ideas alleviate the model’s computational complexity by pruning the weights, computing the floating-point
calculations at lower precision, and distilling the knowledge from a teacher (more complex) model into a
student (less complex) model, respectively. These techniques modify the original model and often cause a
fixed amount of loss in test accuracy. In (Liu et al., 2019a) and (Li et al., 2020b), the authors use search
algorithms for channel pruning, and they suggest compressed networks with lighter models, which lead to a
lower accuracy but faster inference. In fact, in most cases in these studies, either they offer great computation
(latency), but with poor accuracy, or a reasonable accuracy with poor latency. The main disadvantage of
these methods is that the computation cannot be tuned with any parameters. In practice, though, to what
extent one wants to sacrifice accuracy for faster inference is project dependent and must be tunable.

As we mentioned in the motivation, acceleration inference is crucial for sensitive real-time approaches such
as autonomous vehicles. Most of the methods focus on partitioning and offloading calculations to the edge
((Mohammed et al., 2020)). However, achieving faster decisions for a vehicle to detect a pedestrian requires a
more immediate reaction than outsourcing data to the edge. We have applied our method to state-of-the-art
object detection approaches, such as Mask R-CNN ((He et al., 2017)) using popular urban datasets, showing
a significant improvement even when using unlabeled data.

2.2 Early-Exits in DNNs

“Early exit” generally refers to an alternative path in a DNN model which can be taken by a sample instead
of proceeding to the next layers of the model. Many previous works have used the concept of early exit

5

Under review as submission to TMLR

for different purposes (Xiao et al., 2021; Scardapane et al., 2020; Matsubara et al., 2022; Haseena Rahmath
et al., 2023). (Panda et al., 2016) is one of the early works in this area. They tried to terminate classification
by cascading a linear network of output neurons for each convolutional layer and monitoring the output of
the linear network to decide about the difficulty of input instances and conditionally activate the deeper
layers of the network. But they have not mentioned anything about the inference time and accuracy/time
trade-off issue. BranchyNet ((Teerapittayanon et al., 2016)), (Pacheco et al., 2021) and (Ebrahimi et al.,
2022) also utilize their old observation that features were learned in an early layer of a network to make an
early exit. However, they require labeled data to train their models, rendering them unsuitable for use with
unlabeled data. Shallow Deep Networks (SDN) (Kaya et al., 2019) points out the “overthinkingproblem ” in
deep neural networks. “Overthinking” refers to models spending a fixed amount of computational resources
for any query sample, regardless of their complexity (i.e., how deep the neural network should be to infer the
correct prediction for the sample). Their research proposes attaching shallow classifiers to the intermediate
layers in the model to form the early-exits. Each shallow classifier in SDN provides a prediction based on
the values of the intermediate layer to which it is attached.

On the other hand, (Xiao et al., 2021) incorporates the shallow classifiers to obtain multiple predictions for
each sample. In their method, they use early exits as an ensemble of models to increase the base model’s
accuracy.

The functionality of the shallow classifiers in our proposed method is similar to that of SDN. However,
the SDN method trains the shallow classifier using ground truth data from the training set and ignores the
available knowledge in the original model. This constraint renders the proposed method useless when using a
pre-trained model without access to the original training data, which is commonly the case for practitioners.

2.3 DNN Distillation and Self-distillation

Among machine learning tasks, the classification category is one of the significant use cases where DNNs
have been successful in recent years. Classification is applied to a wide range of data, such as classification
of images (Bharadi et al., 2017; Xia et al., 2021), text (Varghese et al., 2020), audio (Lee et al., 2009), and
time series (Zheng et al., 2014).

Knowledge distillation(KD) (Bucila et al., 2006; Polino et al., 2018; Hinton et al., 2015) is a model compres-
sion method that trains a relatively small (less complex) model known as the student to mimic the behavior
of a larger (more complex) model known as the teacher. Classification models usually provide a probability
distribution (PD) representing the probability of the input belonging to each class. KD trains the student
model to provide similar PDs (i.e., soft labels) to the teacher model rather than training it with just a class
label for each sample (i.e., hard labels). KD uses specialized loss functions in the training process, such as
Kullback-Leibler Divergence (Joyce, 2011) to measure how one PD is different from another.

KD is usually a 2-step process consisting of training a large complex model to achieve high accuracy and
distilling its knowledge into a smaller model. An essential challenge in KD is to choose the right teacher
and student models. Self-distillation (Zhang et al., 2021) addresses this challenge by introducing a single-
step method to train the teacher model along with multiple shallow classifiers. Each shallow classifier in
self-distillation is a candidate student model, which is trained by distilling the knowledge from one or more
of the deeper classifiers. In contrast to SDN, self-distillation utilizes knowledge distillation to train shallow
classifiers. However, it still trains the base model from scratch along with the shallow classifiers, using the
original training set. This training procedure conflicts with our objectives in both aspects. Specifically, we
use a pre-trained model and keep it unchanged throughout the experiment and only use inference data to
train the shallow classifiers.

In (Leontiadis et al., 2021) the authors present a method for enhancing CNN efficiency through early exits.
Using supervision, self-supervision, and self-distillation, you can personalize the device, using both labeled
and unlabeled data. This allows for dynamic adaptation with varying data availability, focusing on training
enhancements. Our work is different by not altering the main model, but instead utilizing early exit layers
updated solely during the inference time. This is done to improve latency, without the need for labeled data
during these updates, which offers a modular solution with minimal modifications to existing systems.

6

Under review as submission to TMLR

Our work modifies and puts the presented methods in SDN and self-distillation in the context of early exiting
the final predictions of pre-trained DNN models. The method trains the shallow classifiers using only the
unlabeled samples collected at run-time and measures the improvement in inference compute costs achieved
by the early exits throughout the forward passes.

2.4 DNN Prediction Early Exiting

Clipper (Crankshaw et al., 2017) is a serving framework that incorporates early exiting DNNs predictions
based on their inputs. Freeze inference (Kumar et al., 2019) investigates the use of traditional ML models
such as K-NN and K-Means to predict based on intermediate layer values. They show that the size and
computation complexity of those ML models grows proportionally with the number of available samples, and
their computational overheads by far exceed any improvement. In Learned Early Exits, (Balasubramanian
et al., 2021) extend Freeze Inference by replacing the ML models with a pair of DNN models. A predictor
model that predicts the results and a binary classifier that predicts whether the result should be used as the
final prediction. Their method uses ground-truth data in the process of training the predictor and selector
models. In contrast, our method 1) only uses unlabeled inference data, 2) automates the process of early
exit-enabling, 3) uses a confidence-based early exit hit determination, and 4) handles batch processing by
batch shrinking.

3 Methodology

In this section, we explain the method to convert a pre-trained deep neural model (which we call the
backbone) to its extended version with our early exiting method (called early exit-enabled model). The
early exiting method adds one or more early-exit paths to the backbone, controlled by the shallow classifiers
(which we call the early exit models), allowing the model to infer a decision faster at run-time for some test
data samples (early exit hits). Faster decisions for some queries will result in a reduced mean response time.

“Early Exit model” is a supplementary model that we attach to an intermediate layer in the backbone, which
given the layer’s values provides a prediction (along with a confidence value) for the backbone’s output. Just
a reminder that as our principal motivation, we assume that the original training data is unavailable for the
user, as is the case for most large-scale pre-trained models used in practice. Therefore, in the rest of the
paper, unless we explicitly mention it, the terms dataset, training set, validation set, and test set all refer to
the whole available data at run-time or a respective subset.

Our procedure for enabling a pre-trained model to early exit is derived primarily from the self-distillation
method (Zhang et al., 2021). However, we adopt the method to early exit-enable pre-trained models using
only their recorded outputs, without access to the ground truth (GT) labels.

The novel aspects of our approach consists of selecting the best early exit model through Neural Architecture
Search (NAS) followed by an inference-time early exit training. This approach helps us refine our early exit
strategy based on performance feedback, with the aim of optimizing both accuracy and inference speed
across all stages of the network. Since we employ early exit models in a sequence, if an early early exit model
wrongly triggers an incorrect early exit, later early exit models will not have a chance to engage even if they
would have been successful. Therefore, an individual early exit model’s accuracy/hit rate does not guarantee
overall good results, since the final outcomes depend on the earlier early exit model’s performance as well.

A step-by-step guide on early exit-enabling an off-the-shelf pre-trained model from a user perspective contains
the following steps:

1. Identify the candidate layers to be early exit This step involves analyzing each selected model
to identify potential positions for early exit layers. Layers whose outputs are independent of other
layers’ states are chosen as candidates, enabling training possibilities.

2. Build a early exit model for each candidate Using Neural Architecture Search (NAS), we
evaluate all possible subsets for these early exit layers. NAS also scores the different architectures
defined for our early exit models.

7

Under review as submission to TMLR

3. Assign confidence thresholds to built models to determine early exit hits Each early exit
model features a softmax as the final layer. In this step, we assign confidence thresholds to the
constructed models to determine early exit hits. The probability value associated with the predicted
output reflects the model’s confidence in its prediction. This confidence level for a given input
determines whether we accept that prediction as a early exit hit or continue processing through the
rest of the backbone model.

4. Evaluate and optimize the early exit-enabled model In this step, we evaluate and optimize
the early exit-enabled model in the inference mode and also present our algorithm to update all
early exit layers.

5. Early-Exit Optimization Implementation In this step, we implement the algorithm and train
all the early exit models designed using the data sets we have mentioned.

6. Update and maintenance In this step, we periodically update early exit models by retraining
them with newly collected inference samples and adjusting their confidence thresholds.

In subsections 3.1 to 3.6, we further discuss the procedure and design decisions in each step outlined above.

Figure 1: Early Exit-enabling procedure, candidate layers, and data paths.

3.1 Identifying candidate layers

Choosing which layers to early exit is the first step towards early exit-enabling a model. A candidate layer
is a layer that we will examine its values’ correlation to the final predictions by training a early exit model
based on them. One can simply list all the layers in the backbone as candidates. However, since we launch a
search for a early exit model per candidate layer in the next step, we suggest narrowing the list by filtering
out some layers with the following criteria:

• Some layers are disabled at inference time, such as dropouts and batch normalizations. These layers
do not modify their input values at inference time. Therefore, we cross them off the candidate list.

8

Under review as submission to TMLR

• Some of the last layers in the model (close to the output layer, such as L15 in Figure 1) might not be
valuable candidates for early exiting, since the remaining layers might not have heavy computations
to reach the output.

• DNN models usually are composed of multiple components (i.e. first-level modules) consisting of
multiple layers such as multiple residual blocks in ResNet models He et al. (2016)). We narrow
down the search space to the outputs layers in those components.

• We only consider the layers, for which, given their activation values, the backbone’s output is
uniquely determined without any other layer’s state involved (i.e., the backbone’s output is a function
of the layer’s output). In other words, a layer with other layers or connections in parallel (such as
L7-L11 and L13 in the Figure 1) is not suitable for early exiting, since the backbone’s output does
not solely depend on the layer’s output.

Having the initial set of the candidate layers, we next build and associate a early exit model to each one.

3.2 Building early exit models

Building a early exit model to be associated with an intermediate layer in the backbone consists of finding
a suitable architecture for the early exit model and training the model with that architecture. The details
of the architecture search (search space, search method, and evaluation method) and the training procedure
(training data extraction and loss function) are discussed in the following two subsections.

3.2.1 Early Exit models architecture

A early exit model can have an architecture of any depth and breadth size, as long as it provides more
computational improvement than its overhead. In other words, it must have substantially less complexity
(i.e., number of parameters and connections) than the rest of the layers in the backbone that come after
the corresponding intermediate layer. The search space for such models would contain architectures with
different numbers and types of layers (e.g., a stack of dense and/or convolution layers). However, all models
in the search space must produce a PD identical to the output of the backbone in terms of size (i.e, the
number of classes) and activation (e.g., SoftMax or LogSoftMax).

In our experiments, the search space consists of architectures with a stack of (up to 2) convolution layers
followed by another stack of (up to 2) linear layers, with multiple choices of kernel and stride sizes for the
convolutions and neuron counts for the linear layers. However, users can modify or expand the search space
according to their specific needs and budget.

The objective of the search is to find a minimal architecture that converges and predicts the backbone’s
output with acceptable accuracy. Note that any accuracy given by a early exit model (better than random)
can be helpful, as we will have a proper selection mechanism later in the process to only use the early exit
predictions that are (most likely) correct, and also to discard the early exit models yielding low computational
improvement.

The user can conduct the search by empirically sampling through the search space or by using a automated
Neural Architecture Search (NAS) tool such as Auto-Keras (Jin et al., 2019), Auto-PyTorch (Zimmer et al.,
2021), Neural Network Intelligence (NNI) (Microsoft, 2022), or NASLib (Ruchte et al., 2020). However, we
used NNI to conduct the search and customized the evaluation process to account for the models’ accuracy
and their computational complexity. We have used the floating point operations (FLOPs) count as the
estimation for the models’ computational complexity in this stage.

Several factors influence the architecture of a early exit model for a given intermediate layer. These factors
include the dimensions of the intermediate target layer, its position in the backbone, and the data set
specifications, such as its number of target classes. For example, the first early exit models in the CIFAR100-
Resnet50 and CIFAR10-Resnet18 experiments (shown as early exit1 in Figure 6) have the same input size,
but since CIFAR100 has more target classes, it reasonably requires a early exit model with more learning

9

Under review as submission to TMLR

capacity. Therefore, using NAS to design the early exit models helps automate the process and alleviate
deep learning expert supervision in designing the early exit models.

NAS tries to minimize the total accuracy no more than the tolerance so for all possible subsets, there will
be a maximum range. This method does not guarantee the best score, but is a good solution. Subsets with
the best score will be selected as our early exit system which will be added inside the model to be trained
individually by the predictions and perform early exits.

Regardless of the search method, evaluating a nominated architecture requires training a model with the
given architecture, of which we discuss the procedure in the next section. Moreover, since the search space is
limited in depth, it is possible that, for some intermediate layers, neither of the early exit models converges
(i.e., the model provides nearly random results). In such cases, we discard the candidate layer as non-suitable
for early exiting.

3.2.2 Training a early exit model

Figure (1) illustrates the schema of a early exit-enabled model consisting of the backbone (the dashed box)
and the associated early exit models. The objective of a early exit model is to predict the output of the
backbone model, given the corresponding intermediate layer’s output, per input sample.

Similarly to the backbone, early exit models are classification models. However, their inputs are the activation
values in the intermediate layers. As suggested in self-distillation (Zhang et al., 2021), training a early exit
model is essentially similar to distilling the knowledge from the backbone (final classifier) into the early exit
model.

Therefore, to distill the knowledge from the backbone into the early exit models, we need a medial data
set (MD) based on the collected inference data (ID). The medial data set for training a early exit model
associated with an intermediate layer L in the backbone B consists of the set of activation values in the layer
L and the PDs given by B per samples in the given ID, formally annotated as follows:

MDL = [i ∈ ID :< BL(i), B(i) >] (1)

where:

MDL : Medial dataset for the early exit model associated with the layer L
ID : The collected inference data consisting of unlabelled samples
BL(i): Activation values in layer L given the sample i to the backbone B
B(i) : The backbone’s PD output for the sample i

Note that the labels in MDs are the backbone’s outputs and not the GT labels, as we assumed the GT
labels to be unavailable. We split the MDL into three splits (MDT rain

L , MDV al
L , MDT est

L) and use them,
respectively, similar to the common deep learning training and test practices.

Similarly to the distillation method (Hinton et al., 2015), we use the Kullback-Leibler divergence (KLDiv)
(Joyce, 2011) loss function in the training procedure. KLDiv measures how different the two given PDs
are. Thus, minimizing the value of the KLDiv loss in MDT rain

L trains the early exit model to estimate the
prediction of the backbone (B(i)).

Unlike self-distillation, where (Zhang et al., 2021) train the backbone and shallow classifiers simultaneously,
in our method, while training a early exit model, it is crucial to freeze the rest of the model including the
backbone and the other early exit models (if any) in the collection, to ensure that the training process does
not modify any parameter not belonging to the current early exit model.

3.3 Assigning confidence threshold

The probability value associated with the predicted class (the one with the highest probability) is known as
the confidence of the model in the prediction. The early exit model’s prediction confidence for a particular

10

Under review as submission to TMLR

input will indicate whether we stick with that prediction (early exit hit) or proceed with the rest of the
backbone to the next — or probably final — exit (early exit miss).

Confidence calibration means enhancing the model to provide accurate confidence. In other words, a well-
calibrated model’s confidence accurately represents the likelihood for that prediction to be correct(Guo
et al. (2017)). An overconfident early exit model will lead the model to prematurely exit for some samples
based on incorrect predictions, whereas an underconfident early exit model will bear a low early exit hit
rate. Therefore, after building a early exit model, we also calibrate its confidence using MDV al

L to better
distinguish the predictions that are more likely to be correct. Several confidence calibration methods are
discussed in (Guo et al., 2017), among which temperature scaling (in the output layer) has been shown to
be practical and easy to implement.

Having the model calibrated, we next assign a confidence threshold value to the model which will be used
at inference time to determine the early exit hits and misses. When a early exit model identifies a early exit
hit, its prediction is considered the final prediction. However, when needed for validation and test purposes,
we obtain the predictions from the early exit model and the backbone.

Confidence calibration involves adjusting the predictive confidence of our early exit models to more accurately
reflect their true performance, particularly how likely they are to be correct. This is crucial for making
reliable decisions during inference, especially when early exits from the model are considered based on these
confidence scores.
To calibrate the confidence levels of our early exit models, we employ a threshold that measures confidence
based on the model’s output during the validation phase. Specifically, each early exit model functions as a
classifier: during both the validation and testing phases, it generates an output that carries an associated
confidence value. This confidence value indicates the probability that the model prediction is correct.

Table 1: Early Exit prediction confusion matrix, C: Early Exit predicted class, B: Backbone’s predicted
class, GT: Ground Truth label

Category B = C B = GT C = GT
BC ✓ ✓ ✓
BC ✓ X X
BC X ✓ X
BC X X ✓
B C X X X

A early exit model’s prediction (C) for an input to the backbone falls into one of the 5 correctness categories
listed in table 1 with respect to the ground truth labels (GT) and the backbone’s prediction (B) for the
input.

Among the cases where the early exit model and the backbone disagree, the BC predictions negatively
affect the final accuracy and on the other hand, the BC predictions positively affect the final accuracy. The
Equation 2 formulates a early exit model’s actual effect on the final accuracy.

F∆(θ) = BC∆(θ)−BC∆(θ) (2)

Where:

∆ : The early exit model
F∆ : The actual accuracy effect ∆ causes given θ as threshold
BC∆ : Ratio of BC predictions by ∆ given θ as threshold
BC∆ : Ratio of BC predictions by ∆ given θ as threshold

However, since we used the unlabeled inference data to form the MDs, we can only estimate an upper bound
for the effect of the early exit model in the final accuracy. The estimation assumes that an incorrect early

11

Under review as submission to TMLR

exit would always lead to an incorrect classification of the sample (BC). We estimate the change in the
accuracy upper bound a early exit model causes given a certain confidence threshold by its hit rate and early
exit accuracy:

F∆(θ) ≤ HR∆(θ)× (1− CA∆(θ)) (3)

Where

∆ : The early exit model
F∆ : The expected accuracy drop ∆ causes given θ as threshold
HR∆ : Hit rate provided by ∆ given θ as threshold
CA∆ : Early Exit accuracy provided by ∆ given θ as threshold

Given the tolerance T for the drop in final accuracy, we assign a confidence threshold to each early exit
model that yields no more than the expected drop in accuracy T/2n% in MDV al

L according to equation 3,
where n is the 1-based index of the early exit model in the setup.

It is important to note that there are alternative methods to distribute the accuracy drop budget among
the early exit models. For example, one can equally distribute the budget. However, as we show in the
evaluations later in section 4.5.1, we find it reasonable to assign more budget to the early exit models
shallower positions in the backbone.

3.4 Evaluation and optimization of the early exit-enabled model

So far, we have a set of early exit layers and their corresponding early exit models ready for deployment. The
algorithm 1 demonstrates a pseudo-implementation of a Python-style inference process for the early exit-
enabled model. When the early exit-enabled model receives a batch of samples, it proceeds layer-by-layer
similar to the standard forward-pass. Once a early exit layer’s activation values are available, it will pass
the values to the corresponding early exit model and obtain an early prediction with a confidence value per
sample in the batch. For each sample, if the corresponding confidence value exceeds the specified threshold,
we consider it a early exit hit. Hence, we have the final prediction for the sample without passing it through
the rest of the backbone. At this point, the prediction can be sent to the procedure awaiting the results
(e.g., an API, a socket connection, a callback). We shrink the batch by discarding the early exit hit items
at each exit and proceed with a smaller batch to the next (or the final) exit.

Algorithm 1 Early Exit-enabled model inference
Require: Backbone ▷ The original model
Require: Early Exit Layers ▷ List of early exit layers
Require: Layer ▷ As part of Backbone, including the associated early exit model and threshold

1: procedure ForwardPass(X, callback) ▷ X: Input batch
2: for Layer in Backbone.Layers do ▷ In order of presence1

3: X ← Layer(X)

4: if Layer in Early Exit Layers then
5: Early Exit ← Layer.Early ExitModel
6: T ← Early Exit.Threshold
7: early exit PDs ← Early Exit(X)
8: confidences ← max(early exit PDs, axis=1)
9: callback(early exit PDs[confidences≥ T]) ▷ Resolve early exit hits

10: X ← X[confidences<T] ▷ Shrink the batch
11: end if
12: end for
13: end procedure

12

Under review as submission to TMLR

So far in the method, we have only evaluated the early exit models individually, but to gain the highest
improvement, we must also evaluate their collaborative performance within the early exit-enabled model.
Once the early exit-enabled model is deployed, each early exit model affects the hit rates of the following early
exit models by narrowing the set of samples for which they will infer. More specifically, even if a early exit
model shows promising hit rate and accuracy in individual evaluation, its performance in the deployment can
be affected due to the previous early exit hits made by the earlier early exit models (connected to shallower
layers in the backbone). Therefore, we need to choose the optimum subset of early exit models to infer the
predictions with the minimum computations.

A brute-force approach to find the optimum subset would require evaluating the early exit-enabled model
with each subset of the early exit models. However, we implement a more efficient method without multiple
executions of the early exit-enabled model.

First, for each early exit model, we record its prediction per sample in the MDV al
L and their confidence values.

We also record two FLOPs counts per early exit model; One is the early exit model’s FLOPs count(C1), and
the other is the fallback FLOPs count which denotes the FLOPs in the remaining layers in the backbone(C2).
For example, for the layer L12 in the Figure 1, C1 is the FLOP count of the corresponding early exit model,
and C2 is the FLOPs count in the layers L13 through L16.

For each subset S, we process the lists of predictions recorded for each model in S to generate the lists of
samples that they actually receive when deployed along with other early exit models in S. The processing
consists of keeping only the samples in each list for which there have been no early exit hits by the previous
early exit models in the subset. Further, we divide each list into two parts according to each early exit
model’s confidence threshold; One consisting of the early exit hits, and the other consisting of the early exit
misses.

Finally, we score each subset using the processed lists and recorded values for each early exit model in S as
follows:

K(S) =
∑
∆∈S

|H∆|× (C2,∆ − C1,∆)− |M∆|× C1,∆ (4)

Where

K : The early exiting score for subset S
∆ : A early exit model in S
H∆ : The generated list of early exit hits for ∆
M∆ : The generated list of early exit misses for ∆
C1,∆ : FLOPs count recorded for ∆
C2,∆ : Fallback FLOPs count recorded for ∆

The score equation accounts for both the improvement a early exit model provides through its early exit
hits within the subset, and the overhead it produces for its early exit misses.

Utilizing additional early exit layers may cause earlier detection of a class with a higher probability (with
using an appropriate confidence for early exit layers) before moving to the next layers, so the total accuracy
would increase with the cost of memory consumption.

Final schemas after applying the method on MobileFaceNet, EfficientNet, ResNet18, and ResNet50 are
discussed in the main text, with detailed illustrations provided in the Appendix (see Figure 6). This figure
demonstrates the chosen subsets and their associated early exit models for each backbone and dataset.

1The loop is to show that each early exit model will receive the early exit layer’s activation values when available, immediately,
before proceeding to the next layer in the base model.

13

Under review as submission to TMLR

3.5 Early-Exit Optimization Implementation

In this section, we present the implementation and application of early-exit models for efficient and timely
predictions in two distinct computer vision tasks: image classification and object detection. We begin by
incorporating our proposed early-exit approach into architectures widely used for image classification tasks
i.e. MobileFaceNet, EfficientNet, ResNet18, and ResNet50 on benchmark datasets i.e. CIFAR10, CIFAR100,
ImageNet and LFW.

Inspired by the promising results obtained in image classification, we further extend our methodology to
address a critical real-world scenario: pedestrian detection in urban environments. For this purpose, we
adopt the state-of-the-art Mask R-CNN model, renowned for its exceptional object detection capabilities.
By integrating our early-exit strategy into Mask R-CNN, we enable the model to detect pedestrians at an
earlier stage during inference, thus significantly reducing the processing time and providing timely warnings
to autonomous vehicles about the presence of pedestrians within a given scene.

The significance of our contributions lies in the potential to enhance the safety and responsiveness of au-
tonomous vehicles in urban settings, where pedestrian detection plays a pivotal role in avoiding accidents and
ensuring seamless interaction between vehicles and pedestrians. In our approach, while prioritizing accuracy,
we forgo an important aspect: the exact coordinates of the detected objects. By implementing early-exit
models triggered upon the detection of pedestrians or humans, we aim to achieve faster processing and re-
sponse times. However, we acknowledge that in certain cases, reacting within the required time window is
of utmost importance. The trade-off between accuracy and response time is a crucial consideration in our
methodology, and we recognize the significance of timely actions, especially in scenarios where immediate
responses are critical for ensuring optimal outcomes.

In the context of the Mask R-CNN model, various options are available to select different backbones and
settings, allowing flexibility in performance evaluation and adaptation to specific tasks. While numerous
configurations are possible, we opted to utilize a publicly available, pre-trained backbone to ensure that
our experiments are standardized and well established. This choice allows us to focus on the effectiveness
of our proposed approach, taking advantage of the robustness and generalization capabilities of the chosen
backbone. Additionally, using a pre-trained model helps to mitigate potential biases in training data and
enables fair comparisons with other methods that have adopted similar backbones. The final schema of the
early exit models for Mask R-CNN with Resnet50 backbone is illustrated in the appendix (see Figure 7). We
extend our early exit classification model to implement pedestrian object detection. The object detection
model scans an input image and detects multiple objects within the image, assigning each detected object a
probability distribution over possible classes.

In object detection, the model’s task is to identify various objects within an image and to provide a probability
distribution for each detected object. The challenge therein lies in determining an effective method for
updating the convolutional dense layer early exits in this context.

Figure 8 presents a detailed illustration of the Deep Learning Recommendation Model (DLRM) architecture,
augmented with the integration of early exit nodes to illustrate the innovative mechanism of our proposed
early exit strategy and the three early exit models as suggested by the Microsoft Neural Architecture Search
(NAS) algorithm.

3.5.1 Updating Early Exits for Pedestrian Detection

In object detection, pedestrians are one of the most common classes. To optimize the performance of our
early exit framework for pedestrian detection, we explore three update strategies for the layers:

• Updating with the most confident pedestrians: In this approach, we selectively update the lay-
ers with features extracted from regions confidently classified as pedestrians. By focusing on the
most confident detections, we aim to enhance the early exit memory’s relevance to crucial features
associated with pedestrians in the scene.

• Updating with the most confident object: We investigate updating the layers with features from
regions classified as the most confident object, regardless of whether it is a person or another class.

14

Under review as submission to TMLR

This strategy is designed to ensure that the early exit memory reflects critical features representative
of the dominant object class in the scene.

• Updating with all detected objects: In this method, we update the layers with features from all
detected objects in the scene. While this approach may provide a broader context, it may introduce
redundancy and bias towards the more prevalent classes.

After testing these three early exit-updating approaches, the results supported updating with the most
confident single object as the best-performing method. Training early exit layers with a sole focus on
individual objects, such as pedestrians, leads to non-convergence and a lack of meaningful learning. Even
prior to testing, it became evident that training layers exclusively with a defined class introduce bias,
impeding effective learning. Meanwhile, training early exit layers using a diverse set of objects results in model
confusion, manifesting itself as reduced accuracy in our testing outcomes. So, our selected approach updates
the model with the most certain detection while avoiding the issues of bias and multi-object confusion.

3.6 Updates and maintenance

Similar to conventional caching, layer early exiting also requires recurring updates to the early exit space to
adapt to the trend in inference data. However, unlike conventional caching, we can not update the early exit
models in real-time. Therefore, to update the early exit models using the extended set of collected inference
samples, we retrain them and re-adjust their confidence thresholds.

Retraining adapts the early exit models to the trend in the incoming queries and maintains their early exit
accuracy. We consider two triggers for the updates: I) When the size of the recently collected data reaches
a threshold (e.g. 20% of the collected samples are new) and II) When the backbone is modified or retrained.
However, users must adapt the recommended triggers to their requirements and budget.

Review 1-1 [[This is our summarized evaluation process:

• Pretraining Models: We use pretrained models, typically trained with both training
and validation data. After pretraining, we integrate our layers (early exits) into the
models. Initially, these new blocks and layers are not trained.

• Test Data Splitting: For testing our method, we split the test dataset into two separate
parts. We then freeze the main model and update the early exit layers by performing
inference on the first portion of the test data. During this phase, the main model
weights are not updated, only the new cache layers are trained. Importantly, we do not
use the labels from the test data for training or optimization, thus avoiding overfitting
concerns.

• Performance Evaluation: After training the cache layers, we test the performance of
the entire model using the remaining part of the test dataset. This approach may result
in a slight loss of accuracy, but it significantly reduces the total inference time due to
the early exits.

]]

4 Empirical Evaluation

In this section, we explain the objective of our experiment, the research questions, the implementation of
the tool and the design of the experiment including the backbones and data sets, the evaluation metrics,
and the configuration of the environment.

4.1 Objectives and research questions

The high-level objective of this experiment is to assess the ability of the automated layer early exiting
mechanism to improve compute requirements and inference time for DNN-based services.

15

Under review as submission to TMLR

To address the above objective, we designed the following research questions (RQ):

RQ1 To what extent the early exit models can accurately predict the backbone’s output and the ground
truth data?
This RQ investigates the core idea of early exiting as a mechanism to estimate the final output earlier
in the model. The assessments in this RQ consider the early exit models’ accuracy in predicting the
backbone’s output (early exit accuracy) and predicting the correct labels (GT accuracy).

RQ2 To what extent can early exit-enabling improve compute requirements?
In this RQ, we are interested in how early exit-enabling affects the models’ computation requirements.
In these measurements, we measure the FLOPs counts and memory usage as metrics for the models’
compute consumption.

RQ3 How much acceleration does early exit-enabling provide on CPU/GPU?
In this RQ, we are interested in the actual amount of end-to-end speed-up that a early exit-enabled
model can achieve. We break this result down to CPU and GPU accelerations, since they address
different types of computation during the inference phase and thus may have been differently affected.

RQ4 How does the early exit-enabled model’s accuracy/latency trade-off compare with other early exit
methods?
In this research question, our aim is to assess and compare the performance of your early exit-
enabled model against other existing early exit methods concerning the trade-off between accuracy
and latency in practical, real-world scenarios.

4.2 Tasks and datasets

Among the diverse set of real-world classification tasks that are implemented by solutions using DNN mod-
els, we have selected two representatives: face recognition and object classification. Both tasks are quite
commonly addressed by DNNs and often used in large-scale services that have non-functional requirements
such as: high throughput (due to the nature of the service and the large volume of input data) and are
time-sensitive.

Face recognition models are originally trained on larger datasets such as MS-Celeb-1M (Guo et al., 2016) and
are usually tested with different — and smaller — datasets such as LFW (Huang et al., 2008), CPLFW (Zheng
et al., 2017), RFW (Wang et al., 2019), AgeDB30 (Moschoglou et al., 2017), and MegaFace (Kemelmacher-
Shlizerman et al., 2016) to test the models against specific challenges, such as age/ethnic biases, and recog-
nizing mask-covered faces.

We used the Labeled Faces in the Wild (LFW) dataset for face recognition, which contains 13,233 images
of 5,749 individuals. We used the images of 127 identities who have at least 11 images in the set so we can
split them for training, validation, and testing.

We also used CIFAR10, CIFAR100, and ImageNet test sets (Krizhevsky, 2009; Russakovsky et al., 2015) for
object classification, each containing 10,000 images distributed equally among 10 and 100 classes for CIFARs
and 100,000 images among 1,000 classes for ImageNet. CIFARs have a size of 32 × 32 pixels, while the
ImageNet dataset originally contains images of different sizes. To standardize the input size for ImageNet,
we used a common method of resizing images to 256×256 pixels and then cropping them to 224×224 pixels.

Reminder that we do not use the training data, rather we only use the test sets to simulate incoming queries
at run-time. Specifically, we used only the test splits of the CIFARs and ImageNet datasets. However, we
used the whole LFW data as it has not been used to train the face recognition models. Moreover, we do
not use the labels in these test sets in the training and optimization process, rather we only use them in the
evaluation step to provide GT accuracy statistics.

Each dataset mentioned above represents an inference workload for the models. Thus, we split each one
into training, validation and test partitions with 50%, 20%, and 30% proportionality, respectively. However,
we augmented the test sets using flips and rotations to improve the statistical significance of our testing
measurements.

16

Under review as submission to TMLR

We used the CityScape dataset to assess the presence of pedestrians ((Cordts et al., 2016)). This data set is
valuable for our research on the comprehension of urban scenes, as it offers meticulously annotated images,
with pixel-level labels, depicting various urban environments from the perspective of a vehicle. To evaluate
the accuracy of our model, we needed labeled data for testing purposes. Upon observing that the test dataset
within the CityScape dataset contained dummy labels, we opted to utilize the validation subset instead.

To demonstrate the applicability of our early exit model on other non-image based tasks, we integrated it into
a recommendation system. The data set we use is from the Criteo dataset on Kaggle (Jean-Baptiste Tien,
2014), used for the Display Advertising Challenge, which is a comprehensive resource designed to benchmark
click-through rate (CTR) prediction algorithms. It includes data collected over a seven-day period, consisting
of feature values and click feedback for millions of display ads. The dataset is divided into training and
testing parts, with each part containing both clicked and non-clicked examples that have been sub-sampled
to manage dataset size. The dataset consists of 39 features per sample: 13 integer features, primarily count
data, and 26 hashed categorical features for anonymization. The details of these features are not disclosed
and may include missing values. This application can show the ability of the model to significantly improve
inference speed while managing large-scale data structures.

4.3 Backbones and Models

The proposed early exit enabler method is applicable to any deep classifier model. However, the results will
vary for different models depending on their complexity.

Among the available face recognition models, we have chosen the well-known MobileFaceNet and EfficientNet
models to evaluate the method, and we experiment with ResNet18 and ResNet50 for object classification.

The object classification models are typical classifier models out-of-the-box. However, face recognition models
are feature extractors that provide embedding vectors for each image based on the face / location features.
They can still be used to classify a face-identity dataset. Therefore, we attached a classifier block to these
models and trained them (with the feature extractor layers frozen) to classify the images of the 127 identities
with the highest number of images in the LFW dataset (above 10). It is important to note that since the
added classifier block is a part of the pre-trained model under study, we discarded the data portion used
to train the classifier block to ensure we still hold on to the constraint of working with pre-trained models
without access to the original training dataset.

As stated previously, our pedestrian detection approach required the selection of an object detection technique
capable of identifying pedestrians within images. We adopted the Mask R-CNN framework. This method
encompasses a backbone component (for which we employed ResNet50) and two additional sections that
consume significant time and memory resources.

However, for our specific use case of providing early warnings to autonomous vehicles regarding the presence
of pedestrians, the precise localization of pedestrians is not essential. Consequently, we chose to disregard
the other resource-intensive sections, resulting in substantial time savings while still achieving the necessary
level of awareness of pedestrian presence.

The Deep Learning Recommendation Model (DLRM (Naumov et al., 2019)) is a neural network architecture
designed for use in recommendation systems. It efficiently handles categorical and numerical data, making
it highly effective for personalized recommendation tasks. DLRM uses a combination of embedding tables
for categorical features and multi-layer perceptrons (MLPs) for numerical features. These components are
then interacted with through a specialized dot product interaction operation, which enables the model to
learn and predict complex patterns from user-item interactions.

4.4 Metrics and measurements

Our evaluation metrics for RQ1 are ground truth (GT) accuracy and early exit accuracy. Early Exit accuracy
measures how accurately a early exit model predicts the backbone’s output (regardless of correctness). The
GT accuracy applies to both the early exit-enabled model and each individual early exit model. However,
early exit accuracy only applies to early exit models.

17

Under review as submission to TMLR

In RQ2, we compare the original models and their early exit-enabled version in terms of the average FLOPs
count occurring for inference and their memory usage. We only measure the resources used in the inference.
Specifically, we exclude the training-specific layers (e.g. batch normalization and dropout) and computations
(e.g. gradient operations) in the analysis.

FLOPs count takes into account the model architecture and input size and estimates the computations
required by the model to infer the input (Desislavov et al., 2021). In other words, the fewer FLOPs used for
inference, the more efficient the model is in terms of compute and energy consumption.

On the other hand, we report two aspects of memory usage for the models. The first is the total space used
to load the models in the memory (i.e, model size). This metric is essentially agnostic to the performance of
early exit models and only considers the memory cost of loading them along with the backbone.

In addition to the memory required for their weights, DNNs also allocate a sizeable amount of temporary
memory for buffers (also referred to as tensors) that correspond to intermediate results produced during
the evaluation of the DNN’s layers Levental (2022). Therefore, our second metric is the live tensor memory
allocations (LTMAs) during inference. LTMA measures the total memory allocated to load, move, and
transform the input tensor through the model’s layers to form the output tensor while executing the model.

In RQ3, we compare the average inference latency of the original model with its early exit-enabled counter-
part. Inference latency measures the time spent from passing the input to the model till it exits the model (by
either an early-exit or the final classifier in the backbone). Various factors affect inference latency including
hardware-specific optimizations (e.g., asynchronous computation), framework, and model implementation.
In our measurements, the framework and model implementations are fixed as discussed in the Appendix
.1. However, to account for other factors, we repeat each measurement 100 times and report the average
inference latency recorded for each experiment. Further, to also account for the effects of asynchronous
computations in GPU inference latency, we repeated experiments with different batch sizes.

Please refer to Appendix 5 for details of implementation and setup.

RQ4 aims to evaluate the trade-offs between accuracy, latency, and computational cost of a early exit-enabled
model compared to other early exit methods. This inquiry is crucial to understanding the efficiency and
effectiveness of different approaches.

To address this question, we have selected two prominent and easy-to-implement early exit methods for
comparison. These methods are evaluated using classification tasks in ResNet18, ResNet50, and the CIFAR
datasets.

4.5 Experiment results

In this sub-section, we evaluate the results of applying the method on the baseline backbones and discuss the
answers to the RQs. For a more comprehensive understanding, further details about our implementation,
including access to the code repository, are provided in the Appendix 5.

4.5.1 RQ1. How accurate are the early exit models in predicting the backbone output and the
ground truth labels?

In this RQ, we are interested in the built early exit models’ performance in terms of their hit rate, GT
accuracy, and early exit accuracy. We break down the measurements into two parts. The first part covers
the individual performance of the early exit models over the whole test set without any other early exit
model involved. The second part covers their collaborative performance within the early exit-enabled model.

4.5.2 Early Exit models’ individual performance

Figure 2 portrays each early exit model’s individual performance against any confidence threshold value in
CIFAR100-Resnet50 experiment. Figures demonstrating the same measurements for other experiments are
available in the Appendix .2.

18

Under review as submission to TMLR

0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra

cy
 %

Cache 1 Cache 2 Cache 3 Cache 4

0

20

40

60

80

100

GT
 A

cc
ur

ac
y

%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e

%

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

Cifar100-Resnet50

Figure 2: Individual accuracy and hit rate of the early exit models vs. confidence threshold per early exit
model in CIFAR100 - Resnet50 experiment

19

Under review as submission to TMLR

We make three key observations here. First, deeper early exit models are more confident and accurate in
their predictions. For example, early exit 1 in Figure 2 has 33.36% GT accuracy and 35.74% early exit
accuracy, while these metrics increase to 78.60% and 95.38% for early exit 3, respectively. This observation
agrees with the generally acknowledged feature extraction pattern in the DNNs – deeper layers convey more
detailed information.

The second key observation is the inverse correlation between the early exit models’ accuracy (both GT
and early exit) and their hit rates. This observation highlights the reliability of confidence thresholds in
distinguishing predictions that are more likely to be correct. For example, early exit 1 in Figure 2, with
a confidence threshold 20%, produces a hit rate of 35.24% but also a drop of 8.99% in the final accuracy.
However, with a confidence threshold 60%, it produces a hit rate 4% and does not reduce the final precision
by more than 0.1%.

The third observation is that the early exit accuracy is higher than the GT accuracy in all cases. This
difference is because we have trained the early exit models to mimic the backbone only by observing its
activation values in the intermediate layers and outputs. Since we have not assumed access to the GT
labels (which is the case for inference data collected at run-time) while training the early exit models, they
have learned to make correct predictions only through predicting the backbone’s output, which might have
been incorrect in the first place. On the other hand, we observed that the early exit models predict the
correct labels for a portion of the samples for which the backbone misclassifies. For example, for 0.92%
of the samples, early exit 3 (in Figure 2) correctly predicted the GT labels while the backbone failed (BC
predictions). This shows the potential of the early exit models to partially compensate for their incorrect
early exits (BC predictions) by correcting the backbone predictions for some samples (BC). This agrees
with the overthinking concept in SDN (as discussed in 2.3), since for this set of samples, the early exit models
have been able to predict correctly in the shallower layers of the backbone.

4.5.3 Early Exit models’ collaborative performance

Table 2 describes the collaborative performance of the early exit models within the early exit-enabled model
per experiment. In the table, we also report how each early exit model’s early exit hits have affected the
final accuracy.

Here, we observe that while evaluating the early exit models on the subset of samples, which were missed by
the previous early exit models (the relatively more complex ones), the measured hit rate and GT accuracy
are substantially lower compared to the evaluation on the whole dataset. This is in fact due to the fact that
the simpler samples (less detailed and easier to classify) are resolved earlier in the model. More specifically,
the hit rate decreases since the early exit models are less confident in their prediction for the more complex
samples, and the GT accuracy also decreases since the backbone is also less accurate for such samples.
However, we observe that the early exit models still have high early exit accuracy, with a low impact on
the overall accuracy. This observation shows how the confidence-based early exiting method has effectively
enabled the early exit models to provide early predictions and keep the overall accuracy drop within the
given tolerance.

Summary for RQ1

Early Exit models show lower hit rates and GT accuracy for complex samples, but maintain overall
accuracy thanks to the effective use of a confidence-based early exiting method.

4.5.4 RQ2. To what extent can early exit-enabling improve compute requirements?

In this RQ, we showcase the amount of computation early exiting can save in terms of FLOPs count and
analyze the memory usage of the models. They must be comprised of accuracy drop data

Table 3 shows the average amount of FLOPs computed for inference per sample. Here we observe that
shrinking the batches proportionally decreases the FLOPs count required for inference.

20

Under review as submission to TMLR

Table 2: Early Exit models’ collaborative performance in terms of hit rate(HR), early exit accuracy
(Aearly exit), GT accuracy (AGT), and their effect on the final accuracy(↓Aeffect). LFW: Labeled Faces
in the Wild, MFN: MobileFaceNet, EFN: EfficientNet

Data Model Final accuracy Exit# HR Aearly exit AGT ↓ AeffectBase Early Exit-enabled

C
IF

A
R

10 R
es

ne
t1

8

88.71% 86.49%

1 67.21% 92.29% 88.91% 01.31%
2 10.33% 89.76% 76.63% 0.56%
3 11.24% 85.71% 51.43% 0.25%
4 8.32% 91.37% 35.71% 0.1 %

R
es

ne
t5

0

87.92% 85.88%

1 61.41% 89.12% 86.19% 1.12%
2 15.73% 93.01% 77.84% 0.58%
3 10.29% 82.22% 53.33% 0.3%
4 6.1% 97.47% 42.65% 0.04%

C
IF

A
R

10
0

R
es

ne
t1

8

75.92% 74.47%

1 11.96% 99.29% 82.11% 0.94%
2 58.26% 99.62% 85.41% 0.1%
3 7.26 % 93.81% 59.29% 0.3%
4 5.36% 55.56% 38.89% 0.11%

R
es

ne
t5

0

78.98% 77.04%

1 11.92% 76.34% 80.2% 1.32%
2 61.98% 98.56% 84.55% 0.34%
3 11.5% 97.85% 63.69% 0.27%
4 7.38% 73.68% 52.63% 0.1%

Im
ag

eN
et

R
es

ne
t1

8

69.76% 68.12%

1 8.21% 93.55% 76.42% 0.59%
2 14.09% 93.24% 84.23% 1.1%
3 38.13% 83.53% 88.76% 1.13%
4 8.78% 75.23% 79.72% 0.61%

R
es

ne
t5

0

76.13% 74.09%

1 9.13% 91.41% 92.19% 0.48%
2 13.89% 84.78% 81.77% 0.89%
3 42.65% 78.58% 72.03% 1.37%
4 3.14% 73.12% 71.12% 0.19%

LF
W M

FN 97.78% 96.91%
1 37.35% 98.63% 97.88% 0.51%
2 41.02% 99.71% 99.71% 0%
3 55.95% 93.44% 96.18% 0.24%

EF
N 97.29% 95.35% 1 63.73% 96.82% 96.24% 1.67%

2 14.52% 99.12% 98.76% 0.02%

C
ity

Sc
ap

e

M
as

k
R

C
N

N

91.0% 83.4%

1 34.3% 58.3% 57.9% 0.1%

2 36.34% 79.2% 79.1% 0.24%

3 21.12% 87.31% 86.16% 0.81%

C
rit

eo

D
LR

M

78.88% 73.54%

1 12.3% 74.3% 70.9% 0.4%

2 14.3% 69.5% 69.3% 0.23%

3 25.41% 94.31% 90.70% 0.51%

21

Under review as submission to TMLR

Table 3: Original and early exit-enabled models FLOPs (M:Mega - 106)

Dataset(input size) Model FLOPs ↓ Ratio ↓ AccuracyOriginal Early Exit-enabled

CIFAR10(3× 32× 32) Resnet18 765M 414M 45.88% 2.51%
Resnet50 1303M 601M 53.87% 2.32%

CIFAR100(3× 32× 32) Resnet18 766M 374M 51.17% 1.91%
Resnet50 1304M 547M 58.05% 2.46%

ImageNet(3× 224× 224) Resnet18 2343M 1673M 28.6% 2.35%
Resnet50 2783M 2020M 27.4% 2.68%

LFW(3× 112× 112) MobileFaceNet 474M 296M 37.55% 0.91%
EfficientNet 272M 182M 33.08% 1.99%

CityScape(3× 2048× 1024) Mask R-CNN 4950M 2730M 44.84% 8.61%
Criteo(39) DLRM 153M 99M 35.29% 6.52%

Table 4: Original and early exit-enabled models memory usage

Dataset(input size) Model
Original Early Exit-enabled

↓AccuracyModel Size LTMA Model Size LTMA

CIFAR10(3× 32× 32) Resnet18 43MB 102MB 97MB 88MB 2.51%
Resnet50 91MB 235MB 243MB 201MB 2.32%

CIFAR100(3× 32× 32) Resnet18 43MB 104MB 383MB 93MB 1.91%
Resnet50 91MB 235MB 552MB 189MB 2.46%

ImageNet(3× 224× 224) Resnet18 43MB 110MB 403MB 101MB 2.35%
Resnet50 91MB 237MB 572MB 198MB 2.68%

LFW(3× 112× 112) MobileFaceNet 286MB 567MB 350MB 515MB 0.91%
EfficientNet 147MB 371MB 297MB 349MB 1.99%

CityScape(3× 2048× 1024) Mask R-CNN 3680MB 3925MB 4171MB 4216MB 8.61%
Criteo(39) DLRM 320MB 450MB 332MB 411MB 6.52%

22

Under review as submission to TMLR

In addition, Table 4 shows the memory used to load the models (i.e, the model size) and the total LTMA
during inference while inferring for the test set. As expected, the size of the early exit-enabled models
is larger than the original model in all cases since they include the backbone and the additional early
exit models. However, the decrease in LTMA in all cases shows a reduced amount of memory allocations
during the inference time. Generally, lower LTMA indicates smaller tensor dimensions (e.g., batch size,
input and operator dimensions) (Ren et al., 2021). However, in our case, since we do not change either of
the dimensions, the lower LTMA is due to avoiding the computations in the remaining layers after early
exit hits which require further memory allocations. A noteworthy observation from this table highlights
the substantial memory usage of our object detection approach due to the sizeable model employed. This
underscores the notion that implementing early exiting for this purpose does not significantly amplify the
memory requirements.

Although the FLOPs count and memory usage indicate the model’s inference computational requirements,
the decreased amount of FLOPs and LTMA does not necessarily lead to proportional reduction in the models’
inference latency, which we further investigate in the next RQ.

Summary for RQ2

Early Exit-enabled models are larger due to additional early exit layers, but reduce memory use during
inference by avoiding computations after early exit hits, demonstrating efficient memory management
without significantly increasing overall memory requirements.

4.5.5 RQ3. How much acceleration does early exit enablement provide on the CPU/GPU?

In this RQ, we investigate the end-to-end improvement that early exit enablement offers. The results of
this measurement clearly depend on multiple deployment factors, such as the underlying hardware and
framework, and, as we discuss later in the section, their asynchronous computation capabilities.

Table 5: end-to-end evaluation of early exit-enabled models improvement in average inference latency, batch
size = 32, MFN: MobileFaceNet, EFN: EfficientNet

Dataset Model Original latency Early Exit-enabled latency ↓ Ratio
CPU GPU CPU GPU CPU GPU

CIFAR10 Resnet18 13.4 ms 1.08 ms 10.11 ms 0.98 ms 24.55% 10.2%
Resnet50 18.73 ms 1.81 ms 14.62 ms 1.51 ms 31.08% 16.57%

CIFAR100 Resnet18 14.23 ms 1.39 ms 9.39 ms 1.25 ms 34.01% 10.08%
Resnet50 19.59 ms 2.05 ms 9.02 ms 1.84 ms 46.08% 16.75%

ImageNet Resnet18 38.19 ms 3.26 ms 30.23 ms 2.79 ms 20.84% 14.42%
Resnet50 47.21 ms 3.49 ms 38.74 ms 2.42 ms 17.94% 30.65%

LFW MFN 25.34 ms 8.22 ms 16.91 ms 7.30 ms 33.23% 11.19%
EFN 39.41 ms 17.63 ms 27.98 ms 14.38 ms 29.01% 18.44%

CityScape Mask R-CNN 895 ms 145.2 ms 562.3 ms 108.7 ms 45.12% 35.32%
Criteo DLRM 9.0 ms 1.7 ms 7.67 ms 1.38 ms 14.7% 18.82%

Table (5) shows the average latency for the base models on CPU and GPU, vs. their early exit-enabled
counterparts, evaluated on the test set.

The first key observation here is the improvements on the CPU. This improvement is due to the low par-
allelism in the CPU architecture. Essentially, the computation volume on the CPU is proportional to the
number of samples. Therefore, when a sample takes an early exit, the remaining computation required to
finish the tasks for the batch proportionally decreases.

The FLOPs of all our early exit models, utilized by each input in the batch, are aggregated, resulting in
latency being dictated by the longest time observed in the batch. Consequently, a larger batch size tends to
worsen latency, as it may lead to more frequent early exit misses.

23

Under review as submission to TMLR

The second observation is the relatively lower latency improvement in the GPU. This observation shows
that shrinking a batch does not proportionally reduce the inference time on GPU, which is due to the high
parallelism in the hardware. Shrinking the batch on GPU provides a certain overhead since it interrupts
the on-chip parallelism and hardware optimizations. This interruption forces the hardware to re-plan its
computations, which can be time consuming. Thus, batch-scanning improvements can be insignificant on
GPU. The third observation pertains to the time savings related to pedestrian detection, in contrast to the
primary model. This significant gain in efficiency is attributed to disregarding the additional layers of Mask
R-CNN through our early exit strategy.

Table 6: Inference latency improvement on GPU vs. batch size in Resnet18 and Resnet50 trained on
CIFAR100

Model Batch Size Original Latency Early Exit-enabled Latency ↓ Ratio

Resnet18

16 1.34 ms 1.18 ms 11.83%
32 1.39 ms 1.25 ms 10.08%
64 1.43 ms 1.77 ms -24.28%
128 1.61 ms 2.11 ms -31.05%

Resnet50

16 1.98 ms 1.71 ms 13.68%
32 2.05 ms 1.84 ms 16.75%
64 2.19 ms 1.98 ms 9.21%
128 2.7 ms 3.22 ms -19.43%

Table 6 further demonstrates how the batch size affects the improvement provided by early exiting. The key
observation here is that increasing the batch size can negate the early exiting effect on the inference latency,
which, as discussed, is due to fewer batches that are fully resolved through the early exit models and do not
reach the last layers. In conclusion, the latency improvement here highly depends on the hardware used in
inference and must be specifically analyzed per hardware environment and computation parameters such as
batch size. However, the method can still be useful when the model is not performing batch inferences (batch
size = 1). One can also use the tool and get the best prediction so far within the forward-pass process by
disabling batch shrinking. Doing so will generate multiple predictions per input sample, one per exit (early
and final).

Summary for RQ3

Increasing batch size in early exit models can worsen latency due to more frequent early exit misses and
does not proportionally reduce inference time on GPUs due to the disruption of hardware parallelism.
In particular, significant time savings are achieved in pedestrian detection by bypassing extra layers
with an early exit strategy, although the benefits of early exiting on latency heavily depend on the
specific hardware and batch size used.

4.5.6 RQ4. How does the early exit-enabled model accuracy / latency and computational cost
trade-off compare with other early exit methods?

In this RQ, we conducted a comprehensive evaluation of three distinct methods, including
BranchyNet(Teerapittayanon et al., 2016), Gati(Balasubramanian et al., 2021), and our proposed method in
the same system configuration. This evaluation included two different Resnets with two different data sets
to thoroughly assess the performance of each method.

Figures 3 and 4 demonstrate a comprehensive analysis of the accuracy / latency / computational cost trade-
off at various confidence levels for all methods evaluated for CIFAR10 and CIFAR100. Our findings reveal a
remarkable adaptability of our proposed method to different confidence levels, particularly excelling in low-
confidence scenarios. This adaptability underscores the effectiveness of our approach’s training, showcasing
its ability to perform exceptionally well in situations where traditional methods might falter. In contrast,

24

Under review as submission to TMLR

25 50 75 100
70

80

90

100
Ac

cu
ra

cy
 (%

)
Resnet-18

25 50 75 100
70

80

90

100
Resnet-50

Our Method
BranchyNet
Gati

25 50 75 100
0

10

20

30

La
te
nc
y
(m

s)

25 50 75 100
0

10

20

30

Our Method
BranchyNet
Gati

25 50 75 100
Confidence %

0

200

400

600

800

FL
OP

S
(M
)

25 50 75 100
Confidence %

0

200

400

600

800

Our Method
BranchyNet
Gati

Figure 3: CIFAR10 Accuracy/latency/computational cost comparison between the approaches with different
confidence.

25 50 75 100
60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Resnet-18

25 50 75 100
60

70

80

90

100
Resnet-50

Our Method
BranchyNet
Gati

25 50 75 100
0

10
20
30
40
50
60
70
80

La
te
nc
y
(m

s)

25 50 75 100
0

10
20
30
40
50
60
70
80

Our Method
BranchyNet
Gati

25 50 75 100
Confidence %

0

200

400

600

800

1000

FL
OP

S
(M
)

25 50 75 100
Confidence %

0

200

400

600

800

1000

Our Method
BranchyNet
Gati

Figure 4: CIFAR100 Accuracy/latency/computational cost comparison between the approaches with differ-
ent confidence.

25

Under review as submission to TMLR

as confidence levels increase, our method exhibits a slight latency increase, reflecting its ability to fine-
tune confidence settings to suit various application requirements. This feature demonstrates the method’s
adaptability and its potential for accommodating diverse use cases.

The primary observation is that our method exhibits the best latencies in various methods at different
confidence levels. Another significant observation is that our method’s performance scales positively with the
complexity of the model or dataset, leading to superior outcomes in terms of both accuracy and latency. As
we add some lightweight layers for each model, it becomes evident that Resnet50 exhibits more pronounced
improvements in our research. This observation is also shown in Figure 3. For the simplest model and
dataset, namely CIFAR10-Resnet18, we achieved a substantial 52.2% and 32.4% reduction in latencies,
with a modest 6.1% and 0.9% decrease in mean accuracy when compared to the BranchyNet and Gati
methods, respectively, while improving computational costs by 7.1% and 0.5%. In the case of a more
complex model and dataset, such as CIFAR100-Resnet50, we achieved a substantial reduction in latency
of 51.6% and 30.4% while simultaneously improving the mean accuracy by 2.92% and 0.87% compared to
the Gati and BranchyNet methods, respectively, while improving computational costs by 14.3% and 8.2%.
BranchyNet, on the other hand, exhibits relatively consistent results at different confidence levels. Although
this stability might be desirable in some scenarios, it lacks the adaptability and dynamic response that our
method offers. Gati, while showing learned early exits, is marked by the complexity of its training process,
which can be challenging to implement effectively. Moreover, Gati consumes more memory resources during
implementation, in contrast to the efficiency of our approach.

Indeed, our method stands out as a dynamic and adaptable solution, requiring less extensive data and
model preparation compared to approaches such as Gati. The ability to configure confidence levels further
underscores its versatility for a broad spectrum of applications. However, it should be noted that for simpler
models and datasets, our method may not demonstrate a marked improvement over others, as they employ
additional dense layers for early exiting, which can provide competitive results. Crucially, the most significant
aspect of our work lies in the capability to update the early exit layers effectively without reliance on ground-
truth labels, offering a substantial advantage in practical applications where such labels may not be readily
available.

Summary for RQ4

Our method demonstrates exceptional adaptability across different confidence levels, particularly
excelling in low-confidence scenarios, which highlights its robust training and ability to fine-tune
settings for varied applications. It achieves the best latencies and scales positively with the complexity
of the model or dataset, showing substantial improvements in both accuracy and computational costs,
particularly with complex configurations like CIFAR100-Resnet50.

To evaluate the impact of implementing NAS and varying model depths, we conducted an ablation study,
detailed in Appendix .2.

4.6 Limitation and future directions

The first limitation of this study is that the proposed method is limited to classification models, since it
would be more complicated for early exit models to predict the output of a regression model due to their
continuous values. This limitation is strongly tied to the effectiveness of knowledge distillation in the case
of regression models.

The method also does not take the internal state of the backbone (if any) into account, such as the hidden
states in recurrent neural networks. Therefore, the effectiveness of the method for such models still needs to
be further assessed.

Moreover, practitioners should take the underlying hardware and the backbone structure into account, as
they directly affect the final performance. On this note, as shown in Section 4.5.5, different models provide
different performances in terms of inference latency in the first place; therefore, choosing the right model for
the task comes first, and early exiting can be helpful in improving the performance.

26

Under review as submission to TMLR

While our current comparison has yielded valuable results, we can explore the applicability of our approach to
other large models, particularly in non-vision-based datasets, to assess its effectiveness in different domains.
Given the growing importance of reducing latency and inference time, especially in Large Language Models
(LLMs), our future research can focus on methods to further optimize and reduce costs for large-scale
industries."

5 Conclusion

In this paper, we have shown that our automated early exiting approach is able to extend a pretrained
classification DNN to a early exit-enabled version using a relatively small and unlabeled dataset. The
required training data sets for early exiting models are collected just by recording the input items and their
corresponding backbone outputs at the inference time. We have also shown that the early exiting method can
introduce significant improvement in the model’s computing requirements and inference latency, especially
when the inference is performed on the CPU.

We discussed the parameters, design choices, and the procedure of early exit-enabling a pre-trained off-the-
shelf model, and the required updates and maintenance.

In conclusion, while traditional early exiting might not be beneficial for DNN models due to the diversity,
size, and dimensions of the inputs, early exiting the features in the hidden layers of the DNNs using the
early exit models can achieve significant improvement in the model’s inference computational complexity
and latency. As shown in sections 4.5.4 and 4.5.5, early exiting reduces the average inference FLOPs by
up to 58% and the latency by up to 46.09% on CPU and 18.44% on GPU for classification purposes. For
pedestrian detection, we could reduce latency up to 45.1% on CPU and 35.32% on GPU. In summary, our
method consistently outperforms alternative approaches in different models and datasets. In the case of
the simplest model, CIFAR10-Resnet50, we observe a remarkable reduction of 52.2% and 32.4% in latency,
with accuracy only experiencing a minor decrease of 6.1% and 0.9% compared to the BranchyNet and Gati
methods, respectively. For the more intricate CIFAR100-Resnet50 model and dataset, our method excels
with a significant 51.6% and 30.4% reduction in latency, and a notable 2.92% and 0.87% improvement in
mean accuracy compared to the Gati and BranchyNet methods. These findings underscore the adaptability
and superior performance of our method in diverse and complex scenarios.

References
Riku Arakawa, Shinnosuke Takamichi, and Hiroshi Saruwatari. Implementation of dnn-based real-time

voice conversion and its improvements by audio data augmentation and mask-shaped device. 10th ISCA
Workshop on Speech Synthesis (SSW 10), 2019.

Arjun Balasubramanian, Adarsh Kumar, Yuhan Liu, Han K. Cao, Shivaram Venkataraman, and Aditya
Akella. Accelerating deep learning inference via learned caches. ArXiv, abs/2101.07344, 2021.

Vinayak Ashok Bharadi, Arusa Irfan Mukadam, Misbah N Panchbhai, and Nikita N Rode. Image classifi-
cation using deep learning. International journal of engineering research and technology, 6, 2017.

Nandita Bhaskhar. Intermediate activations — the forward hook. Blog: Roots of my Equa-
tion (web.stanford.edu/ nanbhas/blog/), 2020. URL https://web.stanford.edu/~nanbhas/blog/
forward-hooks-pytorch/.

Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In KDD ’06, 2006.

Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on target task and
hardware. ArXiv, abs/1812.00332, 2019.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic urban scene understand-
ing. In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

27

https://web.stanford.edu/~nanbhas/blog/forward-hooks-pytorch/
https://web.stanford.edu/~nanbhas/blog/forward-hooks-pytorch/

Under review as submission to TMLR

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural net-
works with binary weights during propagations. In NIPS, 2015.

Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and Ion Stoica. Clipper:
A low-latency online prediction serving system. In NSDI, 2017.

Robbie Culkin. Machine learning in finance : The case of deep learning for option pricing. 2017.

Radosvet Desislavov, Fernando Mart’inez-Plumed, and Jos’e Hern’andez-Orallo. Compute and energy con-
sumption trends in deep learning inference. ArXiv, abs/2109.05472, 2021.

Maryam Ebrahimi, Alexandre da Silva Veith, Moshe Gabel, and Eyal de Lara. Combining dnn partition-
ing and early exit. In Proceedings of the 5th International Workshop on Edge Systems, Analytics and
Networking, pp. 25–30, 2022.

Mohamed Amine Ferrag, L. Maglaras, Sotiris K. Moschoyiannis, and Helge Janicke. Deep learning for cyber
security intrusion detection: Approaches, datasets, and comparative study. J. Inf. Secur. Appl., 50, 2020.

Olga Fink, Qin Wang, Markus Svens’en, Pierre Dersin, Wan-Jui Lee, and Mélanie Ducoffe. Potential,
challenges and future directions for deep learning in prognostics and health management applications.
Eng. Appl. Artif. Intell., 92:103678, 2020.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On calibration of modern neural networks.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1321–1330. PMLR, 06–11 Aug
2017. URL https://proceedings.mlr.press/v70/guo17a.html.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1m: A dataset and
benchmark for large-scale face recognition. In ECCV, 2016.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

P Haseena Rahmath, Vishal Srivastava, and Kuldeep Chaurasia. A strategy to accelerate the inference of
a complex deep neural network. In Proceedings of Data Analytics and Management: ICDAM 2022, pp.
57–68. Springer, 2023.

M. Hassaballah and Ali Ismail Awad. Deep learning in computer vision. 2020.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
international conference on computer vision, pp. 2961–2969, 2017.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. ArXiv,
abs/1503.02531, 2015.

Gary B. Huang, Marwan A. Mattar, Tamara L. Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. 2008.

Jian Huang, Junyi Chai, and Stella Cho. Deep learning in finance and banking: A literature review and
classification. Frontiers of Business Research in China, 14:1–24, 2020.

Olivier Chapelle Jean-Baptiste Tien, joycenv. Display advertising challenge, 2014. URL https://kaggle.
com/competitions/criteo-display-ad-challenge.

Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search system.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019.

28

https://proceedings.mlr.press/v70/guo17a.html
https://kaggle.com/competitions/criteo-display-ad-challenge
https://kaggle.com/competitions/criteo-display-ad-challenge

Under review as submission to TMLR

James M. Joyce. Kullback-Leibler Divergence, pp. 720–722. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. ISBN 978-3-642-04898-2. doi: 10.1007/978-3-642-04898-2_327. URL https://doi.org/10.1007/
978-3-642-04898-2_327.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-deep networks: Understanding and mitigating
network overthinking. In ICML, 2019.

Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard. The megaface benchmark:
1 million faces for recognition at scale. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 4873–4882, 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Adarsh Kumar, Arjun Balasubramanian, Shivaram Venkataraman, and Aditya Akella. Accelerating deep
learning inference via freezing. ArXiv, abs/2002.02645, 2019.

Honglak Lee, Peter T. Pham, Yan Largman, and A. Ng. Unsupervised feature learning for audio classification
using convolutional deep belief networks. In NIPS, 2009.

Ilias Leontiadis, Stefanos Laskaridis, Stylianos I Venieris, and Nicholas D Lane. It’s always personal: Using
early exits for efficient on-device cnn personalisation. In Proceedings of the 22nd International Workshop
on Mobile Computing Systems and Applications, pp. 15–21, 2021.

Maksim Levental. Memory planning for deep neural networks. ArXiv, abs/2203.00448, 2022.

Y. Li, Zhenhua Han, Quanlu Zhang, Zhenhua Li, and Haisheng Tan. Automating cloud deployment for deep
learning inference of real-time online services. IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, pp. 1668–1677, 2020a.

Yawei Li, Shuhang Gu, Kai Zhang, Luc Van Gool, and Radu Timofte. Dhp: Differentiable meta pruning
via hypernetworks. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part VIII 16, pp. 608–624. Springer, 2020b.

Renju Liu, Luis Garcia, Zaoxing Liu, Botong Ou, and Mani B. Srivastava. Secdeep: Secure and performant
on-device deep learning inference framework for mobile and iot devices. Proceedings of the International
Conference on Internet-of-Things Design and Implementation, 2021.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian Sun.
Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 3296–3305, 2019a.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network
pruning. ArXiv, abs/1810.05270, 2019b.

Mohammad Ali Maddah-Ali and Urs Niesen. Fundamental limits of caching. IEEE Transactions on Infor-
mation Theory, 60(5):2856–2867, 2014. doi: 10.1109/TIT.2014.2306938.

TorchVision maintainers and contributors. Torchvision: Pytorch’s computer vision library. https://github.
com/pytorch/vision, 2016.

Sebastien Marcel and Yann Rodriguez. Torchvision the machine-vision package of torch. Proceedings of the
18th ACM international conference on Multimedia, 2010.

Yoshitomo Matsubara, Marco Levorato, and Francesco Restuccia. Split computing and early exiting for deep
learning applications: Survey and research challenges. ACM Computing Surveys (CSUR), 2022.

Microsoft. Neural Network Intelligence, 1 2022. URL https://github.com/microsoft/nni.

Thaha Mohammed, Carlee Joe-Wong, Rohit Babbar, and Mario Di Francesco. Distributed inference accel-
eration with adaptive dnn partitioning and offloading. In IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pp. 854–863. IEEE, 2020.

29

https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://github.com/microsoft/nni

Under review as submission to TMLR

Maryam Mohsin. 10 google search statistics you need to know in 2022, Feb 2022. URL https://www.
oberlo.ca/blog/google-search-statistics.

Stylianos Moschoglou, A. Papaioannou, Christos Sagonas, Jiankang Deng, Irene Kotsia, and Stefanos
Zafeiriou. Agedb: The first manually collected, in-the-wild age database. 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1997–2005, 2017.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through
weight equalization and bias correction. 2019 IEEE/CVF International Conference on Computer Vision
(ICCV), pp. 1325–1334, 2019.

Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jong-
soo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. Deep learning rec-
ommendation model for personalization and recommendation systems. arXiv preprint arXiv:1906.00091,
2019.

Christopher Olston, Noah Fiedel, Kiril Gorovoy, Jeremiah Harmsen, Li Lao, Fangwei Li, Vinu Rajashekhar,
Sukriti Ramesh, and Jordan Soyke. Tensorflow-serving: Flexible, high-performance ml serving. ArXiv,
abs/1712.06139, 2017.

Dan Otter, Julian Richard Medina, and Jugal Kumar Kalita. A survey of the usages of deep learning for
natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32:604–624,
2021.

Roberto G Pacheco, Kaylani Bochie, Mateus S Gilbert, Rodrigo S Couto, and Miguel Elias M Campista.
Towards edge computing using early-exit convolutional neural networks. Information, 12(10):431, 2021.

Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for energy-efficient
and enhanced pattern recognition. In 2016 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 475–480. IEEE, 2016.

Huy Phan. huyvnphan/pytorch_cifar10, January 2021. URL https://doi.org/10.5281/zenodo.4431043.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and quantization.
ArXiv, abs/1802.05668, 2018.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet classification
using binary convolutional neural networks. In ECCV, 2016.

Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, and Hyeran Jeon. Sentinel: Efficient tensor migration and
allocation on heterogeneous memory systems for deep learning. 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pp. 598–611, 2021.

Michael Ruchte, Arber Zela, Julien Siems, Josif Grabocka, and Frank Hutter. Naslib: A modular and flexible
neural architecture search library. https://github.com/automl/NASLib, 2020.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252, 2015.
doi: 10.1007/s11263-015-0816-y.

Simone Scardapane, Michele Scarpiniti, Enzo Baccarelli, and Aurelio Uncini. Why should we add early exits
to neural networks? Cognitive Computation, pp. 1–13, 2020.

Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. Deep learning applications for covid-19. Journal
of Big Data, 8, 2021.

Carolyn J. Swinney and John O. Woods. Unmanned aerial vehicle operating mode classification using deep
residual learning feature extraction. 2021.

30

https://www.oberlo.ca/blog/google-search-statistics
https://www.oberlo.ca/blog/google-search-statistics
https://doi.org/10.5281/zenodo.4431043
https://github.com/automl/NASLib

Under review as submission to TMLR

Ivan Tashev and Seyedmahdad Mirsamadi. Dnn-based causal voice activity detector. 2017.

Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In 2016 23rd international conference on pattern recognition (ICPR),
pp. 2464–2469. IEEE, 2016.

Arun Varghese, George Agyeman-Badu, and Michelle Cawley. Deep learning in automated text classification:
a case study using toxicological abstracts. Environment Systems and Decisions, pp. 1–15, 2020.

Jun Wang, Yinglu Liu, Yibo Hu, Hailin Shi, and Tao Mei. Facex-zoo: A pytorch toolbox for face recognition.
Proceedings of the 29th ACM International Conference on Multimedia, 2021.

Mei Wang, Weihong Deng, Jiani Hu, Xunqiang Tao, and Yaohai Huang. Racial faces in the wild: Reducing
racial bias by information maximization adaptation network. 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 692–702, 2019.

Weiaicunzai. Practice on cifar-100 using pytorch. https://github.com/weiaicunzai/pytorch-cifar100,
2020.

Duane Wessels. Web caching. " O’Reilly Media, Inc.", 2001.

Xiaorui Wu, Hong Xu, and Yi Wang. Irina: Accelerating dnn inference with efficient online scheduling. 4th
Asia-Pacific Workshop on Networking, 2020.

Wenhan Xia, Hongxu Yin, Xiaoliang Dai, and Niraj K Jha. Fully dynamic inference with deep neural
networks. IEEE Transactions on Emerging Topics in Computing, 10(2):962–972, 2021.

Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu scheduling for multi-dnn real-time
inference. 2019 IEEE Real-Time Systems Symposium (RTSS), pp. 392–405, 2019.

Yan Xiao, Ivan Beschastnikh, David S. Rosenblum, Changsheng Sun, Sebastian G. Elbaum, Yun Lin, and
Jin Song Dong. Self-checking deep neural networks in deployment. 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), pp. 372–384, 2021.

Fuxun Yu, Di Wang, Longfei Shangguan, Minjia Zhang, Xulong Tang, Chenchen Liu, and Xiang Chen. A
survey of large-scale deep learning serving system optimization: Challenges and opportunities. ArXiv,
abs/2111.14247, 2021.

Linfeng Zhang, Chenglong Bao, and Kaisheng Ma. Self-distillation: Towards efficient and compact neural
networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP:1–1, 03 2021. doi:
10.1109/TPAMI.2021.3067100.

Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad, and Yanzhi Wang. A
systematic dnn weight pruning framework using alternating direction method of multipliers. In ECCV,
2018.

Zhuoran Zhao, Kamyar Mirzazad Barijough, and Andreas Gerstlauer. Deepthings: Distributed adaptive
deep learning inference on resource-constrained iot edge clusters. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37:2348–2359, 2018.

Tianyue Zheng, Weihong Deng, and Jiani Hu. Cross-age lfw: A database for studying cross-age face recog-
nition in unconstrained environments. ArXiv, abs/1708.08197, 2017.

Yi Zheng, Qi Liu, Enhong Chen, Yong Ge, and J. Leon Zhao. Time series classification using multi-channels
deep convolutional neural networks. In WAIM, 2014.

Keqian Zhu and Jingfei Jiang. Research on parallel acceleration for deep learning inference based on many-
core arm platform. In ACA, 2018.

Lucas Zimmer, Marius Thomas Lindauer, and Frank Hutter. Auto-pytorch: Multi-fidelity metalearning
for efficient and robust autodl. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43:
3079–3090, 2021.

31

https://github.com/weiaicunzai/pytorch-cifar100

Under review as submission to TMLR

Appendix A. Implementation

.1 Implementation details

We developed the early exiting tool using PyTorch, which is accessible through the GitHub repository2.
Figure 5 shows the overall system design. The tool provides a NAS module, an optimizer module, and a
deployment module. The NAS module provides the architectures to be used per early exit model. The
optimizer assigns the confidence thresholds, finds the best subset of the early exit models, and provides
evaluation reports. Lastly, the deployment module launches a Web server with the early exit-enabled model
ready to serve queries.

Figure 5: Early Exiting system overall framework

.1.1 NAS Module

Existing NAS tools typically define different search spaces according to different tasks, which constrains their
applicability to certain input types and sizes. Using such tools with input constraints defeats our method’s
generalization and automation purpose, since the early exit models’ inputs can have any dimension and size.
For example, ProxylessNAS (Cai et al., 2019) specializes in optimizing the performance of neural architecture
for a target hardware. However, it is only applicable for image classification tasks and requires certain input
specifications (e.g., 3xHxW images normalized using given values). Similarly, Auto-PyTorch (Zimmer et al.,
2021) and Auto-Keras are only applicable to tabular data sets, text, and images.

We chose NNI from Microsoft (Microsoft, 2022) as it does not constrain the input of the model in terms
of type, size, and dimensions. NNI also provides an extensible search space definition with support for
variable number of layers and nested choices (e.g., choosing among different layer types, each with different
layer-specific parameters).

Given the backbone implementation, the dataset and the search space, the module launches an NNI exper-
iment per candidate layer to find an optimum early exit model for the layer. Each experiment launches a
web GUI for progress reports and results.

We aim for end-to-end automation in the tool. However, currently, the user still needs to manually export
the architecture specifications when using the NAS module and convert them to a proper Python imple-
mentation (i.e., a PyTorch module implementing the architecture). The specifications are available to the
user through the experiments web GUI and also in the trial output files. This shortcoming is due to the

2https://anonymous.4open.science/r/AutoCacheLayer-CBB4/

32

Under review as submission to TMLR

NNI implementation, which does not currently provide access to the model objects within the experiments.
We have created an enhancement suggestion on the NNI repository to support model object access (issue
#4910).

.1.2 Optimizer and deployment modules

Given the implementation of the backbone and the early exit models, the optimizer evaluates the early exit
models, assigns their confidence thresholds, finds the best subset of the early exit models, and disables the
rest, and finally reports the relevant performance metrics for the early exit-enabled model and each early
exit model. We used the DeepSpeed by Microsoft and the PyTorch profiler to profile the FLOP counts,
memory usage, and latency values for the early exit models and the backbones.

The user can use each module independently. Specifically, the user can skip the architecture search via the
NAS module and provide the architectures manually to the optimizer, and the module trains them before
proceeding to the evaluation.

The tool also offers an extensive set of configurations. More specifically, the user can configure the tool to
use one device (e.g., GPU) for training processes and the other (e.g., CPU) for evaluation and deployment.

The deployment module launches a web server and exposes a WebSocket API to the early exit-enabled
model. The query batches passed to the socket will receive one response per item, as soon as the prediction
is available through either of the (early or final) exits.

.1.3 Backbone Implementation

We used the backbone implementations and weights provided by the FaceX-Zoo (Wang et al., 2021) repository
to conduct the experiments with LWF data set on the MobileFaceNet and EfficientNet models.

For experimenting with CIFAR10 and CIFAR100, we used the implementations provided by torchvision
(Marcel & Rodriguez, 2010) and the weights provided by (Phan, 2021) and (Weiaicunzai, 2020). For Ima-
geNet pre-trained weights for ResNets we used new torchvision version as well (maintainers & contributors,
2016). All backbone implementations were modified to implement an interface that handles the interactions
with the early exit models, controls the exits (early exit hits and misses), and provides the relevant reports
and metrics. We document the use of the interface in the repository, so that users can experiment with new
backbones and datasets. We refer interested readers to a blog post on how to extract intermediate activations
in PyTorch (Bhaskhar, 2020) which introduces three methods to access the activation values. The introduced
forward hooks method in PyTorch is very convenient for read-only purposes. However, our method requires
performing actions based on the activation values, specifically, early exit lookup and batch shrinking, and
avoiding further computation through the next layers. Therefore, we used the so-called “hacker” method
to access the activation values and perform these actions and provided the interface for easy replication on
different backbones.

.2 Environment setup

The hardware used for inference substantially affects the results due to the hardware-specific optimizations
such as computation parallelism. In our experiments, we have used an “Intel(R) Core(TM) i7-10700K CPU
@ 3.80GH” to measure on-CPU inference times and an “NVIDIA GeForce RTX 3070” GPU to measure
on-GPU inference time.

Appendix B. Final schema of early exit models

This appendix shows key figures that provide a deeper visual understanding of the methodologies and results
highlighted in the main text.

Figure 6 illustrates the final schema of the early exit models used in our experiments with CIFAR10-Resnet18,
CIFAR100-Resnet50, LWF-EfficientNet, and LFW-MobileFaceNet.

33

Under review as submission to TMLR

Figure 7 presents the final schema of the early exit models specifically designed for our CityScapes experi-
ments using the Mask R-CNN framework.

Figure 8 shows the final schema of the early exit models designed for our recommendation experiments with
the Criteto data set using DLRM.

Figure 6: Final schema of the early exit models, for the experiments CIFAR10-Resnet18, CIFAR100-
Resnet50, LWF-EfficientNet, and LFW-MobileFaceNet

34

Under review as submission to TMLR

Image

Cache 1

Conv2D(k=3,
s=8)

FC(81) +
SoftMax

FC(256) +
Relu

Mask R-CNNInput

Conv2D

MaxPool

3X
Residual

Bottlenec

k

AvgPool

CityScapes - Backbone Resnet50

4X
Residual

Bottlenec

k

6X
Residual

Bottlenec

k

3X
Residual

Bottlenec

k

Cache 2

Conv2D(k=3,
s=4)

FC(81) +
SoftMax

FC(256) +
Relu

Cache 3

Conv2D(k=3,
s=4)

FC(81) +
SoftMax

FC(256) +
Relu

Backbone

RoIAlign

Object
Detection

Mask
Generation

Class and
Box

Mask

Figure 7: Final schema of the early exit models, for the experiments CityScapes - Mask RCNN

Figure 8: Final schema of the early exit models, for the experiments Criteo - DLRM

35

Under review as submission to TMLR

Appendix C. Early Exit models’ individual performance for all experimenst

The following figures demonstrate the hit rate, GT accuracy, and early exit accuracy of each early exit model
vs. the confidence threshold, per experiment dataset and backbone.

0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra

cy
 %

Cache 1 Cache 2 Cache 3 Cache 4

0

20

40

60

80

100

GT
 A

cc
ur

ac
y

%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e

%

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

Cifar10-Resnet18

Figure 9: Experiment: CIFAR10-Resnet18

36

Under review as submission to TMLR

0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra

cy
 %

Cache 1 Cache 2 Cache 3 Cache 4

0

20

40

60

80

100

GT
 A

cc
ur

ac
y

%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e

%

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

Cifar10-Resnet50

Figure 10: Experiment: CIFAR10-Resnet50

37

Under review as submission to TMLR

0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra

cy
 %

Cache 1 Cache 2 Cache 3 Cache 4

0

20

40

60

80

100

GT
 A

cc
ur

ac
y

%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e

%

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

Cifar100-Resnet18

Figure 11: Experiment: CIFAR100-Resnet18

38

Under review as submission to TMLR

0 25 50 75 100
0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra
cy

 %

Cache 1

0 25 50 75 100
0

20

40

60

80

100
Cache 2

0 25 50 75 100
0

20

40

60

80

100
Cache 3

0 25 50 75 100
0

20

40

60

80

100
Cache 4

0 25 50 75 100
0

20

40

60

80

100

GT
 A
cc

ur
ac

y
%

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e
%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

ImageNet-Resnet18

Figure 12: Experiment: ImageNet-Resnet18

39

Under review as submission to TMLR

0 25 50 75 100
0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra
cy

 %

Cache 1

0 25 50 75 100
0

20

40

60

80

100
Cache 2

0 25 50 75 100
0

20

40

60

80

100
Cache 3

0 25 50 75 100
0

20

40

60

80

100
Cache 4

0 25 50 75 100
0

20

40

60

80

100

GT
 A
cc

ur
ac

y
%

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e
%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

ImageNet-Resnet50

Figure 13: Experiment: ImageNet-Resnet50

40

Under review as submission to TMLR

0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra

cy
 %

Cache 1 Cache 2 Cache 3

0

20

40

60

80

100

GT
 A
cc
ur
ac
y
%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e
%

0 25 50 75 100
Confidence %

0 25 50 75 100
Confidence %

LFW-MobileFaceNet

Figure 14: Experiment: LFW-MobileFaceNet

41

Under review as submission to TMLR

0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra
cy
 %

Cache 1 Cache 2

0

20

40

60

80

100

GT
 A
cc
ur
ac
y
%

0 20 40 60 80 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e
%

0 20 40 60 80 100
Confidence %

LFW-EfficientNet

Figure 15: Experiment: LFW-EfficientNet

42

Under review as submission to TMLR

0 25 50 75 100
0

20

40

60

80

100

Ca
ch

e
Ac

cu
ra

cy
 %

Cache 1

0 25 50 75 100
0

20

40

60

80

100
Cache 2

0 25 50 75 100
0

20

40

60

80

100
Cache 3

0 25 50 75 100
0

20

40

60

80

100

GT
 A

cc
ur

ac
y

%

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e

%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Mask RCNN-CityScape

Figure 16: Experiment: Mask RCNN-CityScape

43

Under review as submission to TMLR

0 25 50 75 100
0

20

40

60

80

100

Ca
ch
e
Ac

cu
ra
cy
 %

Cache 1

0 25 50 75 100
0

20

40

60

80

100
Cache 2

0 25 50 75 100
0

20

40

60

80

100
Cache 3

0 25 50 75 100
0

20

40

60

80

100

GT
 A
cc
ur
ac
y
%

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

Hi
t R

at
e
%

0 25 50 75 100
Confidence %

0

20

40

60

80

100

0 25 50 75 100
Confidence %

0

20

40

60

80

100

DLRM Criteo

Figure 17: Experiment: DLRM-Criteo

44

Under review as submission to TMLR

Appendix D. Ablation Study

To investigate the need for using NAS in our work, we run an ablation study. The alternative to use NAS is
inserting early exit models at every possible node, which can be memory-intensive and may even degrade the
final performance and accuracy. Additionally, the number of early exit layers may also impact the results.
Our default setup uses 2 dense layers per early exit model. This part of the ablation study assesses the
impact of increasing this number to 3, 4, and 5 dense layers. The following tables compare latency (GPU
and CPU), accuracy, model size and FLOPs across these modes.

Table 7: Different early exit models accuracy, MFN: MobileFaceNet, EFN: EfficientNet, R18: Resnet18,
R50: Resnet50, C10: CIFAR10, C100: CIFAR100, IN: ImageNet, CityScapes: CS, Mask RCNN: MRCNN

Model Type R18-C10 R50-C10 R18-C100 R50-C100 R18-IN R50-IN MFN-LFW EFN-LFW MRCNN-CS DLRM-Criteo
With NAS 86.49% 85.88% 74.47% 77.04% 68.12% 74.09% 96.91% 95.35% 83.4% 73.54%

Without NAS 86.79% 85.16% 74.32% 77.19% 67.31% 72.91% 96.19% 95.71% 83.14% 73.96%
1 more layer 87.15% 86.12% 74.29% 77.72% 67.56% 73.19% 96.07% 95.92% 83.89% 73.91%
2 more layers 86.20% 86.09% 74.82% 77.02% 67.61% 73.21% 95.42% 95.14% 83.01% 73.62%
3 more layers 86.17% 86.01% 74.78% 77.03% 67.60% 73.31% 95.43% 95.14% 82.99% 73.48%

Table 8: Different early exit models latency on GPU, MFN: MobileFaceNet, EFN: EfficientNet, R18:
Resnet18, R50: Resnet50, C10: CIFAR10, C100: CIFAR100, IN: ImageNet, CityScapes: CS, Mask RCNN:
MRCNN

Model Type R18-C10 R50-C10 R18-C100 R50-C100 R18-IN R50-IN MFN-LFW EFN-LFW MRCNN-CS DLRM-Criteo
With NAS 0.98 ms 1.51 ms 1.25 ms 1.84 ms 2.79 ms 2.42 ms 7.30 ms 14.38 ms 108.7 ms 1.38 ms

Without NAS 1.29 ms 1.75 ms 1.47 ms 2.27 ms 3.91 ms 3.64 ms 9.26 ms 17.87 ms 153.1 ms 1.89 ms
1 more layer 1.11 ms 1.63 ms 1.32 ms 2.19 ms 3.27 ms 3.33 ms 7.91 ms 16.10 ms 123.1 ms 1.52 ms
2 more layers 1.21 ms 1.71 ms 1.39 ms 2.26 ms 3.34 ms 3.37 ms 7.97 ms 16.70 ms 131.27 ms 1.69 ms
3 more layers 1.27 ms 1.81 ms 1.48 ms 2.37 ms 3.61 ms 3.47 ms 8.83 ms 17.51 ms 138.27 ms 1.74 ms

Table 9: Different early exit models latency on CPU, MFN: MobileFaceNet, EFN: EfficientNet, R18:
Resnet18, R50: Resnet50, C10: CIFAR10, C100: CIFAR100, IN: ImageNet, CityScapes: CS, Mask RCNN:
MRCNN

Model Type R18-C10 R50-C10 R18-C100 R50-C100 R18-IN R50-IN MFN-LFW EFN-LFW MRCNN-CS DLRM-Criteo
With NAS 10.11 ms 14.62 ms 9.39 ms 9.02 ms 30.23 ms 38.74 ms 16.91 ms 27.98 ms 562.3 ms 7.67 ms

Without NAS 13.53 ms 19.17 ms 13.19 ms 13.01 ms 41.29 ms 51.04 ms 22.53 ms 38.77 ms 724.42 ms 11.89 ms
1 more layer 11.87 ms 18.12 ms 12.19 ms 12.12 ms 33.31 ms 45.41 ms 21.25 ms 34.68 ms 689.11 ms 10.63 ms
2 more layers 12.84 ms 19.32 ms 14.01 ms 13.89 ms 34.91 ms 47.02 ms 25.94 ms 35.78 ms 713.71 ms 11.93 ms
3 more layers 13.17 ms 22.12 ms 16.71 ms 15.89 ms 36.06 ms 48.68 ms 26.41 ms 37.52 ms 743.71 ms 13.31 ms

Table 10: Different early exit models FLOPs, MFN: MobileFaceNet, EFN: EfficientNet, R18: Resnet18,
R50: Resnet50, C10: CIFAR10, C100: CIFAR100, IN: ImageNet, CityScapes: CS, Mask RCNN: MRCNN

Model Type R18-C10 R50-C10 R18-C100 R50-C100 R18-IN R50-IN MFN-LFW EFN-LFW MRCNN-CS DLRM-Criteo
With NAS 414M 601M 374M 547M 1673M 2020M 296M 182M 2730M 99M

Without NAS 671M 942M 545M 719M 1941M 2430M 371M 282M 3211M 128M
1 more layer 614M 921M 534M 643M 1897M 2321M 351M 261M 3139M 121M
2 more layers 701M 1011M 709M 773M 1970M 2410M 404M 290M 3310M 138M
3 more layers 791M 1125M 771M 823M 2018M 2512M 514M 368M 3589M 153M

Regarding NAS use, the results indicate that there is an average increase in accuracy of less than 2%, while
latency, FLOPs, and model sizes increased by an average of 16%. When using additional dense layers, the
results showed an increase in accuracy of less than 1%, but resulted in approximately 24% worse results in
latency and model size and about 30% increase in FLOPs usage on average.

Ablation experiments indicate that using additional dense layers or ignoring NAS and inserting and training
all possible early exit layers, may result in slightly better accuracy. However, this is accompanied by increased

45

Under review as submission to TMLR

Table 11: Different early exit models size (Mega Byte), MFN: MobileFaceNet, EFN: EfficientNet, R18:
Resnet18, R50: Resnet50, C10: CIFAR10, C100: CIFAR100, IN: ImageNet, CityScapes: CS, Mask RCNN:
MRCNN

Model Type R18-C10 R50-C10 R18-C100 R50-C100 R18-IN R50-IN MFN-LFW EFN-LFW MRCNN-CS DLRM-Criteo
With NAS 97MB 243MB 383MB 552MB 403MB 572MB 350MB 297MB 4171MB 332MB

Without NAS 137MB 324MB 442MB 822MB 731MB 801MB 514MB 411MB 5231MB 451MB
1 more layer 113MB 273MB 401MB 622MB 591MB 609MB 372MB 320MB 4319MB 362MB
2 more layers 130MB 301MB 420MB 691MB 682MB 725MB 395MB 351MB 4480MB 390MB
3 more layers 159MB 340MB 451MB 751MB 705MB 789MB 421MB 393MB 4680MB 427MB

latency and, in some cases, performance is worse than the original model without early exits. This is because
having, for example, 10 early exit layers and processing all batches through them significantly increases the
time required and also enlarges the model size. In addition, memory consumption is negatively affected.

46

	Introduction
	Related Works
	Inference Optimization
	Early-Exits in DNNs
	DNN Distillation and Self-distillation
	DNN Prediction Early Exiting

	Methodology
	Identifying candidate layers
	Building early exit models
	Early Exit models architecture
	Training a early exit model

	Assigning confidence threshold
	Evaluation and optimization of the early exit-enabled model
	Early-Exit Optimization Implementation
	Updating Early Exits for Pedestrian Detection

	Updates and maintenance

	Empirical Evaluation
	Objectives and research questions
	Tasks and datasets
	Backbones and Models
	Metrics and measurements
	Experiment results
	RQ1. How accurate are the early exit models in predicting the backbone output and the ground truth labels?
	Early Exit models' individual performance
	Early Exit models' collaborative performance
	RQ2. To what extent can early exit-enabling improve compute requirements?
	RQ3. How much acceleration does early exit enablement provide on the CPU/GPU?
	RQ4. How does the early exit-enabled model accuracy / latency and computational cost trade-off compare with other early exit methods?

	Limitation and future directions

	Conclusion
	Implementation details
	NAS Module
	Optimizer and deployment modules
	Backbone Implementation

	Environment setup

