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Abstract

Background and Objectives: Post‐discharge oncologic surgical complications are

costly for patients, families, and healthcare systems. The capacity to predict com-

plications and early intervention can improve postoperative outcomes. In this proof‐
of‐concept study, we used a machine learning approach to explore the potential

added value of patient‐reported outcomes (PROs) and patient‐generated health

data (PGHD) in predicting post‐discharge complications for gastrointestinal (GI) and

lung cancer surgery patients.

Methods: We formulated post‐discharge complication prediction as a binary clas-

sification task. Features were extracted from clinical variables, PROs (MD Anderson

Symptom Inventory [MDASI]), and PGHD (VivoFit) from a cohort of 52 patients with

134 temporal observation points pre‐ and post‐discharge that were collected from

two pilot studies. We trained and evaluated supervised learning classifiers via

nested cross‐validation.
Results: A logistic regression model with L2 regularization trained with clinical data,

PROs and PGHD from wearable pedometers achieved an area under the receiver

operating characteristic of 0.74.

Conclusions: PROs and PGHDs captured through remote patient telemonitoring

approaches have the potential to improve prediction performance for postoperative

complications.
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1 | INTRODUCTION

Many cancer surgeries have a high risk of post‐discharge complications

that may result in undesirable healthcare resource use such as hospital

readmissions. Postoperative complications and readmissions are costly

and burdensome for the patients, their families, and the healthcare sys-

tem. Postoperative complications and readmissions are important surgi-

cal outcomes that are often used as quality metrics in surgical oncology.

The ability to predict postoperative complications is critical for

improving the quality and value of surgical care. The predictive ability

can assist with identifying patients that are at higher risk for post-

operative morbidities early and allocate healthcare resources appro-

priately to improve postoperative recovery. Complications may also

be caused by events occurring after discharge, and therefore, not

observable by prediction approaches based on traditional EHR data.

Patient‐generated health data (PGHD), including wearable activity
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trackers and electronic patient‐reported outcomes (ePROs) can be

feasibly obtained while patients are at home and in their communities.

These data, particularly ePROs (symptoms, quality of life), provide the

patient's lived experience away from the hospital, and have been

shown to improve survival in patients with advanced cancer.1 Perio-

perative telemonitoring technologies through wearable and web‐
based applications may enable real‐time remote patient observations

and complement traditional clinical, surgical, and disease‐specific data

to improve the prediction of negative outcomes and prevent un-

desirable healthcare resource use. In addition, policy and reimburse-

ment barriers related to telehealth and telemonitoring have been

temporarily removed to enable their rapid uptake and use during the

COVID‐19 pandemic. However, PGHDs and ePROs are not routinely

captured in surgical oncology. Furthermore, there is a dearth in the

current literature on understanding the meaning and potential clinical

benefits of PGHD and ePROs in surgical oncology. As for PGHDs, Bae

et al.2 used features from step counts to predict 30‐day unplanned

readmission for a cohort of 25 postsurgical cancer inpatients. Doryab

et al.3 used step and heart rate data collected from smartwatches to

extract bio‐behavioural rhythm figures to predict complication risk for

a cohort of 52 pancreatic surgery patients (82% cancer). To the best of

our knowledge, there is no work using ePROs to predict postsurgical

outcomes for oncology patients. In this proof‐of‐concept study, we

used a machine learning approach to explore the potential added

value of functional recovery PGHD (as daily steps measured by

wristband pedometers) and ePROs (symptoms) for predicting post-

operative complications. Specifically, we were interested in the fol-

lowing research questions. First, does functional recovery PGHD (as

measured by daily steps) bring added value to postoperative compli-

cations predictive models that also include traditional clinical/surgical/

disease‐related variables? The second question we aimed to address

was do ePROs (symptoms) bring added value to postoperative com-

plications predictive models that also include traditional clinical/

surgical/disease‐related variables?

2 | MATERIALS AND METHODS

2.1 | Data source

PGHD and ePRO data from two telehealth/telemonitoring pilot studies

were accessed for this analysis (n=52). The first study was a proof‐of‐
concept pilot to explore the feasibility and acceptability of remote

wireless perioperative telemonitoring in patients undergoing surgery for

the treatment of gastrointestinal (GI) cancers (n=20).4 The second study

was a feasibility trial of a telehealth perioperative physical activity in-

tervention in older adults with lung and GI cancer (n=32).5 In both

studies, patients wore wristband pedometers (VivoFit™) to assess func-

tional recovery (as measured by daily steps) and completed ePROs (MD

Anderson Symptom Inventory [MDASI]) to assess symptoms. Tele-

monitoring for both studies began before surgery and continued up to

4 weeks post‐discharge. Daily steps data were captured continuously,

while ePROs were collected intermittently (before surgery, at

discharge, and at 1, 2, and 4 weeks post‐discharge. Surgical outcomes

(postoperative complications, hospital readmissions) were captured via

electronic health records (EHRs).

Functional recovery PGHD was captured using the VivoFit

(Garmin Company). This device is a commercially available tracking

wristband pedometer. It continuously monitors daily step progress

without requiring battery change for one year. It is also waterproof

and can be worn in the shower. VivoFit stores daily steps count right

on the device and can be wirelessly synced for free to supported

smartphones and computers. A systematic review of 22 studies

concluded that the validity and reliability of wearable pedometers

were generally high for measuring daily steps.6

Symptoms were assessed using the MDASI. This is a brief, well‐
validated measure of 13 common cancer‐related symptoms: pain,

fatigue, nausea, sleep, distress/anxiety, shortness of breath, memory,

appetite, dry mouth, drowsiness, sadness, vomiting, and numbness/

tingling. Each symptom's severity is rated on a 10‐point scale. A

score of 1–3 indicates mild intensity, and 4–10 indicates moderate‐
to‐severe intensity. Patients also rate how much their symptoms

interfered with six common functional domains: walking, activity,

working/housework, social relationships, enjoyment of life, and

mood. The MDASI applies broadly across cancer types and treat-

ments and is easy for patients to complete. A movement of 1.2 points

is clinically meaningful and cut‐off scores for indication of clinical

deficits have been defined by the tool authors. The MDASI has been

validated in surgical populations; Cronbach's α reliability ranges

from .82 to .94.7,8

Out of the 52 patients enrolled, 47 participants submitted an-

swers MDASI (ePROs) at least once. Forty of the 47 patients wore

the VivoFit pedometer at least once. The numbers of male and fe-

male patients were 25 and 27, respectively. Age ranged between 22

and 84 years, with a median of 68 years. Complications were re-

corded for up to 30 days after discharge. The overall post‐discharge
complication rate for the 52 patients was 21.1%. The length of stay

(LOS) ranged between 1 and 13 days with a median of 6 days. In

total, 36 and 16 patients underwent surgeries for treatment of GI

and lung cancers, respectively.

2.2 | Temporal segmentation of the data

From the standpoint of data collection, there are three distinct types

of temporal segments for each patient—T1: a period of 3–14 days

preceding admission, days, used to collect baseline PRO and step

data; T2: hospital visit for the surgery (median LOS = 6 days); and T3:

2–4 weeks following hospital discharge.

Patients were asked to submit ePROs at the end of periods T1

and T2 and the end of each week after discharge (T3). Similarly,

patients were asked to wear the VivoFit pedometers throughout the

above periods. For consistency across the pilots, we considered ob-

servations up to the second week after discharge, treating each week

as a distinct observation. Hence, after the exclusion of the periods

before admission, there were up to three temporal observations for
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each patient: hospital visit, first, and the second week after dis-

charge. We pointed out the partial compliance of patients with

ePROs and pedometers. We obtained 99 observations with at least

partial compliance to VivoFit pedometers (63 post‐discharge weeks)

and 129 observations with compliance to MDASI questionnaires (85

post‐discharge weeks). We included observations associated with

hospital visits of patients noncompliant to MDASI questionnaires or

VivoFit pedometers. We removed post‐discharge observations en-

compassing or following readmission or complication events to avoid

leakage.

2.3 | Problem formulation

We considered the periods up to admission only to extract baselines

about the patients (e.g., median daily steps before surgery). In this

case, we have between one and three temporal segments marked by

discharge and/or the completion of the MDASI ePRO questionnaire.

Our goal was to predict unplanned readmission and serious compli-

cations within 30 days from discharge at discharge and/or at each

time of PRO the data available for the associated segment. There-

fore, for each patient with at least partially compliant ePRO sub-

missions, we performed predictions at up to three distinct times. We

framed the complication prediction task as a binary classification

problem (complication, yes or no), where a score between 0 and 1 is

produced. A score close to 1 means a high risk of complication/

unplanned readmission.

2.4 | Features

We selected sets of variables shared by both pilots based on clinical

domain knowledge and with the goal to evaluate the predictive po-

tential for ePRO and PGHD in the form of steps collected via

wearable devices. From the variables, we extracted features to train

machine learning models. The small sample size limits the number of

variables that can be considered. For this reason, we did not include

immediate discharge labs, although potentially predictive of the risk

of readmission in larger cohorts. The features used are listed in

Table 1. They were computed for the temporal period of the hospital

visit and for Weeks 1 and 2 after discharge (dsc): for example, min

(daily steps) = the minimum number of daily steps for Week 1 after

discharge. The nonlinear transformation of the body mass index

(BMI) is motivated by the use of a linear model. The MDASI features

range from 0 to 10, according to the level of self‐assessed dis-

comfort. “Pain vs. baseline” is the difference between the pain levels

reported at, for example, discharge and before admission.

For the purpose of feature extraction, most of the variables did not

need processing (e.g., the answers to the MDASI questionnaires consist

of scores between 0 and 10). MDASI PRO variables for drowsiness,

numbness, and vomiting were excluded based on domain expert as-

sessments. We defined the feature pain with respect to the baseline as

pain(T1)−pain(Tk), where T1 is the observation period before admission

(to collect patient's baseline data) and Tk is either the hospital visit or one

of the post‐discharge weeks. We introduced an indicator feature to ex-

press compliance for MDASI questionnaires—MDASI compliance.

We performed a quadratic transformation on the BMI and ex-

tracted its square root to express it as the distance from a normal

range. We imputed missing values only for the American Society of

Anesthesiologists (ASA) physical status score with 3, the value the

majority class. When considering observation periods, after dis-

charge, we used the ASA score assessed during the hospital visit. We

excluded age, because the largest of the pilots (n = 32) focused ex-

clusively on elderly patients.

The VivoFit devices recorded the daily steps. From the daily

steps over an observation period, we extracted minimum, maximum,

median counts of steps, standard deviation of steps, slope and in-

tercept of the linear interpolation, differences with respect to

baseline, and the fraction of days the patients wore pedometer

during an observation period. The latter also played as an indicator

feature for observation periods without pedometers.

2.5 | Training and evaluation

As mentioned, for each patient, we considered hospital visit, Weeks

1 and 2 post‐discharge as separate observations (n = 134), to predict

complications within 30 days from discharge. Temporal segments

encompassing or following complications were removed to avoid

leakage. We trained logistic regression classifiers via nested

TABLE 1 Model features grouped by category

Clinical charts MDASI ePROs Pedometer PGHD

ASA score Pain vs. baseline Total steps

Number complications

before discharge

Pain Min (daily steps)

Length of stay Fatigue Max (daily steps)

Zubrod score Nausea Median (daily steps)

(BMI‐21.7)2 Sleep Total steps versus

baseline

Weeks since discharge Distress Linear trend (daily

steps)

Breath Fraction of days with

pedomter

Memory

Appetite

Dry mouth

Sadness

MDASI

compliance

Note: The MDASI features range from 0 to 10, according to the level of

self‐assessed discomfort.

Abbreviations: ASA, American Society of Anesthesiologists; BMI, body

mass index; ePRO, electronic patient‐reported outcome; MDASI, MD

Anderson Symptom Inventory; PGHD, patient‐generated health data.
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cross‐validation with L1 or L2 regularization, using the scikit‐learn
Python library.9 Regularization is used to reduce the sensitivity of

the coefficients of the model, and therefore, to prevent learning from

noise in the data. The feature values were standardized to zero mean

and unit variance to facilitate convergence during training. We tuned

the model with randomized hyperparameter search via 4‐fold
patient‐cross‐validation (inner loop). With this kind of group cross‐
validation, the observations from a patient are always in a fold. The

tuning parameters were the regularization coefficient and the type of

regularization (L1 or L2). We evaluated the model via leave‐one‐
patient‐out cross‐validation (outer loop). In both cross‐validation
loops, all the feature vectors associated with the same patient were

either in the same fold, to avoid having segments of the same patient

split between training and testing. Cross‐validation is a procedure to

train and test machine learning models when the number of ob-

servations is limited: Every observation is in turn used for both

training and testing. The number of folks, K, is the number of groups

the observations are split into. We considered the following subsets

of data: clinical data (n = 52), clinical +MDASI data (n = 134), clin-

ical + steps data (n = 111), and clinical + steps +MDASI data (n = 134).

We analyzed the contributions of the features toward the pre-

diction score via the Python shap package.10 The SHapley Additive

exPlanations (SHAP) are a measure of the contribution of each feature

toward a prediction and are obtained via a game theory approach.

3 | RESULTS

We evaluated the performance of the models with the receiver op-

erating characteristic (ROC) and its underlying area (AUROC). The

ROC shows the true positive rate of the model as a function of the

false positive rate for the possible decision thresholds. The AUROC

can be interpreted as the probability that an observation in the po-

sitive class (i.e., readmission/complication) has a risk score higher than

an observation in the negative class. An AUROC = 0.5 means random

guessing, while AUROC = 1 means 100% correct predictions. We also

computed the area under the precision–recall curve (AUPRC). The PR‐
curve shows the precision–recall trade‐offs. Precision and recall are

also indicated as positive predictive value and sensitivity, respectively.

The AUPRC depends on the quality of the model and the prevalence.

The model combining clinical, MDASI PROs, and step features

(n=134) yielded a 0.74 AUROC. When daily step data were removed,

the AUROCwas 0.70 (n=134). The AUROCwas 0.72 for the model with

daily step data, but without ePRO symptoms (n=111). For the baseline

model, solely based on clinical features and observation until discharge,

the AUROC was 0.62 (n=52). The performances are summarized in

Table 2. The ROCs of each model are plotted in Figure 1. Table 3 shows

the stratified performance of the model for different prediction times: at

discharge, 1, and 2 weeks after discharge.

The performances for the models using ePROs and/or PGHDSs are

close (AUROC: 0.70–0.74), while the AUROC of the model based only on

clinical factors collected before discharge is 0.62. The former models

benefit from a larger number of training samples because they include

observations from the data collected in the first two weeks after dis-

charge from telemonitoring via MDASI ePROs and VivoFit pedometers.

The relatively high value of the AUPRC for the baseline model depends

on the higher prevalence. Due to the different values of prevalence for

the above models, we chose AUROC for performance comparisons.

Figure 2 shows the global feature importance for the model

using clinical, MDASI, and step data. Figure 3 displays the impact on

the prediction score based on the values of the features and it is

obtained from the SHAP explanations associated with the prediction

of the trained model. The blue and red colors are associated, re-

spectively, with the low and high values of a feature. Dots to the left

and right of the vertical axis indicate low‐ and high‐risk scores, re-

spectively. The figure confirms several clinical intuitions. The two

most predictive features are the number of complications before dis-

charge and LOS, with high values associated with a high risk of

readmission/complication. Moreover, a low (i.e., 0) functional

TABLE 2 Counts of observation and features, complication
rates, and performance metrics for the models

N

No. of

features

Complication

rate (%) AUROC AUPRC

Baseline 52 5 21.1 0.62 0.43

MDASI 134 18 14.2 0.70 0.27

Steps 111 13 14.4 0.72 0.28

MDASI + steps 134 25 14.2 0.74 0.28

Abbreviations: AUROC, area under the receiver operating characteristic;

AUPRC, area under the precision–recall curve; MDASI, MD Anderson

Symptom Inventory.

F IGURE 1 Receiver operating characteristic curves for the
evaluated models. The one trained with clinical, MDASI ePRO, and
step PGHD performs best (AUROC = 0.74). AUROC, area under the
receiver operating characteristic; ePRO, electronic patient‐reported
outcome; FPR, false positive rate; MDASI, MD Anderson Symptom
Inventory; TPR, true positive rate [Color figure can be viewed at
wileyonlinelibrary.com]
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(Zubrod) score is associated with a low risk of readmission/compli-

cations. We also observed that the risk of complication decreases as

time progresses (measured via weeks since discharge).

The most predictive among PGHD‐related features were the total

steps versus the baseline and the linear trend of the daily steps (i.e.,

the slope of the linear interpolation). The plot suggests that a large

decrement of physical activity with respect to the baseline period and/

or a sharp increase in the physical activity levels (measured via the

slope of the linear interpolation of the daily step counts) are asso-

ciated with a higher risk of complications. Similarly, Bae et al.,2 who

used Fitbit data to predict readmission for 25 postsurgical cancer

patients, observed that more intense activity by the readmitted group

could be risky behavior and deserves more exploration.

In regard to the MDASI ePROs, high levels of reported discomfort

for pain (with respect to the baseline as well as absolute values) sleep

and appetite imply a higher risk of post‐discharge complications.

Overall, MDASI ePROs seems less predictive than wearable ped-

ometer PGHD. As a matter of fact, the model based on PGHD features

outperformed slightly the one based on ePRO features (AUROC: 0.72

vs. 0.70). Both shared highly predictive clinical features.

Figure 4 shows the top features for an observation of a read-

mitted patient: 897 steps/day slope, 13 day LOS, and two complica-

tions before discharge increased the predicted risk score, while a

Zubrod score of 0 was the major factor decreasing the risk score.

Post hoc t‐tests showed significant differences over the ob-

servations for a number of complications before discharge: no com-

plications (µ = 0.16, σ = 0.36), complications (µ = 0.6, σ = 0.8) with t

(134) = 2.7, p = .015; LOS: no complications (µ = 5.6, σ = 3.0), compli-

cations (µ = 8.1, σ = 3.3) with t(134) = 3.1, p = .005; Zubrod score: no

complications (µ = 0.79, σ = 0.41), complications (µ = 0.95, σ = 0.23)

with t(134) = 2.4, p = .021.

4 | DISCUSSION

We proposed and evaluated an approach that uses clinical, ePROs, and

wearable PGHDs to predict 30‐day post‐discharge complications and

unplanned readmission for a cohort of 52 GI and lung surgical oncology

TABLE 3 The area under the received operating characteristic
at different observation points for the model based on clinical,
MDASI, and step data

Week since dsc. N AUROC

0 49 0.72

1 44 0.70

2 41 0.69

Abbreviations: AUROC, area under the receiver operating characteristic;

dsc., discharge; MDASI, MD Anderson Symptom Inventory.

F IGURE 2 The global feature importance
for the logistic regression model using clinical,
MDASI ePRO, and step PGHD. ASA, American
Society of Anesthesiologists; dsc., discharge;
ePRO, electronic patient‐reported outcome;
LOS, length of stay; MDASI, MD
Anderson Symptom Inventory; PGHD,
patient‐generated health data; SHAP, SHapley
Additive exPlanations [Color figure can be
viewed at wileyonlinelibrary.com]
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patients. As ePROs and PGHDs were monitored also after discharge to

the best of the patients' compliance, our approach updated predictions

outside hospital settings, increasing the ability to predict complications.

To date, there is limited work on perioperative complication prediction

models based on the aforementioned types of data.

The prediction of unplanned hospital readmission is a classic task in

machine learning for health care. With this goal, Rajikomar et al.11 pro-

posed a deep learning approach for tasks such a readmission prediction,

outperforming a logistic regression baseline by about 1%. Liu et al.12

applied an artificial neural network to features from embeddings of di-

agnosis codes and the EHR. There are few studies focused on the pre-

diction of post‐discharge complications and unplanned readmissions for

surgical patients. For instance, Kalagara et al.13 proposed a gradient

boosting approach to predict readmission for patients subject to lumbar

laminectomy. Bolourani et al.14 focused on predicting readmission for

patients who underwent esophagectomy. Corey et al.15 evaluated

different classifiers in predicting patients at risk of complications before

the time of surgery.

PGHD is typically obtained via wearable devices. A limitation of prior

studies on the prediction of postsurgical complications is that the in‐
hospital clinical data used to make predictions are only available until the

time of discharge. Critical changes in the patient's condition were not

detectable if occurred after discharge. The main advantage to monitor

patients remotely via wearables is the capacity to unobtrusively observe

proxies of their condition after discharge. There are studies on the ap-

plication of wearable accelerometers to monitor the recovery of stroke

patients.16 The number of studies using PGHD for predicting outcomes

for surgical oncology patients is even more limited.2,3 Additionally, we

could not find any studies using ePROs to predict post‐discharge out-

comes for surgical patients. To the best of our knowledge, ours is the first

work to combine clinical data with both PROs and PGHD to predict post‐
discharge surgical complications for cancer patients.

F IGURE 3 The contributions of the features based on their values for the model using clinical, MDASI ePRO, and step PGHD. ASA,
American Society of Anesthesiologists; dsc., discharge; ePRO, electronic patient‐reported outcome; LOS, length of stay; MDASI, MD Anderson
Symptom Inventory; PGHD, patient‐generated health data; SHAP, SHapley Additive exPlanations [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 4 Top contributing features to the predicted risk for an observation associated with readmission [Color figure can be viewed at
wileyonlinelibrary.com]
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In general, it may be challenging to recruit large numbers of

patients in studies involving wearable devices. For instance, the

number of participants in the aforementioned works using PGHD

varied from 24 to 52. Similarly, our study relied on data from

52 patients (for which we considered up to 134 temporal

observations). Under these constraints, there were not enough

observations for a testing set separated from the training, and we

trained/evaluated our models via nested group (patient) cross‐
validation. Nested cross‐validation is a recommended approach to

train and evaluate models when the sample size is small.17

There was an inherent risk of overfitting due to limited sample

size, hence overestimating the predictive power of some features.

Consequently, the small number of observations also limited the

number of features that the model could have. For this reason, we

chose to use a linear classifier (logistic regression), as nonlinear

classification methods generally do not perform as well for low

numbers of observations relative to the dimensionality of the pro-

blem. A larger cohort prospective study should include features from

immediate discharge labs (e.g., markers of inflammation such as

white blood cell count and C‐reactive protein, markers of metabolic

in‐equilibrium, morning glucose, and creatinine).

Other limitations of our study include the fact that our dataset

originated from two pilots not designed for machine learning appli-

cations and designed with different inclusion criteria. The first pilot

enrolled adults (median age = 55), while the second pilot targeted

only elderly patients (age > 65) with a median of 75 years. The first

pilot enrolled only GI cancer patients, while the second pilot also

included lung cancer patients. Finally, steps data in the first pilot

were entered manually with the potential risk of errors. Despite

these limitations, we believe the data and approach presented here

to be novel and have added value to the available literature.

5 | CONCLUSIONS

We trained supervised learning models based only on clinical data

collected up to discharge, with ePROs and wearable PGHDs col-

lected during and after visits. Our results suggest that both PGHD

and ePROs from patient telemonitoring have the potential to enable

predictions to be performed after discharge and to improve overall

prediction accuracy. Patient‐centered outcomes obtained via wear-

able and web‐based technologies may complement clinical data to

predict postoperative complications. They seemed particularly useful

to update risk prediction once a patient is discharged from the

hospital. From our analysis on the impact of each feature, the find-

ings suggest that a high risk of complications was associated with

long lenght of stay, a precipitous increase of physical activity, as

measured via linear trend in daily steps, and also high levels of

symptom discomfort (i.e., pain, sleep, appetite). Future large‐scale
studies are needed to definitively establish the added predictive

value of patient‐centered outcomes in surgical oncology to inform

treatment decision‐making, postoperative care, and postoperative

recovery trajectories.
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