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ABSTRACT

Optimal resource scheduling aims to cover resource demand with minimum eco-
nomic cost, which is far from model-based constraint optimization or data-driven
prediction based scheduling process. To address this model-free constraint opti-
mization issue, a sparse system identification framework with quantile regression
and QR orthogonal decomposition (iQR) is proposed for complex systems ranging
from small to large scales. It leverages quantile optimization with L1-norm to
construct a business-driven strategy to reach the proportion of meeting resource
demand. It also involves a complete-mapping Fourier Transformation process and
an orthogonal least squares technique to select basis vectors in advance to achieve
fast regression with sparse mathematical expression, which reduces the number
of basis functions from thousands to hundreds and to dozens. iQR represents a
specific expectation for single time series prediction, which only achieves predic-
tions that deviate from the true values as little as possible, but aims for predictions
consistently higher than the actual values of real demand. Numerical experiments
was conducted on eight datasets, including commonly used time series and real-
world CPU resource data. The results indicate that most neural network-based
methods fail to balance both resource demands and prediction accuracy effectively.
In contrast, iQR can achieve optimal scheduling with the minimum economic cost
and it is easier to satisfy the business constraints with quantile tuning. Notably,
iQR is lightweight with a training speed in seconds and does not rely on the support
of computing power of GPU resources. This study may provide new insight into
investigations on resource scheduling optimization issues.

1 INTRODUCTION

Optimal resource scheduling seeks to meet demand with minimal cost, which is essential across
various industries such as services, energy, and communications due to its substantial economic
benefits (He et al., 2012; Zhang et al., 2018). Such constraint optimization problems often lack explicit
formulas and is typically solved by either model-based planning methods or data-driven prediction
based approaches. However, both of them have significant shortcomings with little consideration of
empirical modeling errors or business constraints. Recently, numerous methods have been proposed
to tackle this issue. Firstly, model-based optimization techniques are applied in resource scheduling,
such as NFS (Jones & Peet, 2021), STS (Wang et al., 2021), and DD-TMPC (Zhao et al., 2024).
Despite their utility, these methods struggle to capture the complexities of dynamic environments and
incur significant computational costs for model maintenance and updates. Secondly, prediction-based
scheduling solutions are also prevalent. Contemporary neural network approaches for time series
forecasting include models like iTransformer (Liu et al., 2023), FITS (Xu et al., 2024), PatchTST (Nie
et al., 2023), and TimesNet (Wu et al., 2023). These models are capable of providing long-term
forecasts for a variety of multivariate data types, including electricity, exchange rates, weather, and
disease data (Zhou et al., 2022; Zhang & Yan, 2022; Zeng et al., 2023; Bi et al., 2023; Zhou et al.,
2024). However, these methods fall short of adequately meeting business requirements, even when
the objective function is simply modified to quantile regression to provide a confidence of forecasting.
Additionally, they necessitate GPU resources, which are not accessible to some smaller laboratories.
Thirdly, direct application of quantile regression for scheduling is another approach. These methods
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provide good interpretability and aligns well with business requirements (Zarnani et al., 2019; Zhang
et al., 2018). Nonetheless, due to the inherent complexity of time series data, these methods often
require extensive running time, which exceeds practical tolerance limits. In light of these challenges,
we aim to develop a lightweight, business-oriented, more interpretable (with explicit formulas)
framework for resource scheduling problems. This framework will be specifically designed to meet
business requirements and deliver accurate and rapid predictions without relying on complex neural
network models or extensive pre-training process.

Thus, we propose a sparse system identification framework with quantile regression and QR orthog-
onal decomposition (iQR) for optimal resource scheduling. Specifically, iQR applies the Fourier
transform to time series, selecting the most influential basis vectors to build a basis vectors library.
Additionally, we apply Seasonal-Trend decomposition using LOESS (STL) decomposition (Cleve-
land et al., 1990) to the input sequence, allowing individual identification for different time series
and improving the precision of long-term scheduling. To enhance efficiency, we initially screen
the basis vectors before incorporating business constraints. We design the Stepwise Orthogonal
Regression (SOR) algorithm to retain only the most important basis vectors for training. Subsequently,
we employ L1-norm optimization with quantile regression to solve the business-driven problem. The
main contributions of iQR can be summarized as follows:

• A novel business-driven identification-prediction framework has been introduced, offering
remarkable flexibility by enabling the customization of the objective function according
to specific business satisfaction levels. It enables rapid, cost-effective scheduling across
various scenarios, offering new insights for future resource scheduling applications.

• By incorporating global information in the form of Fourier bases into local identifications
and leveraging STL decomposition to differentiate identifications, iQR enables long-term
and comprehensive identifications for time series. This innovative approach combines data-
driven techniques with explicit mathematical expressions, enhancing both interpretability
and scheduling capabilities.

• The specially designed SOR algorithm for the further selection of basis vectors and the
utilization of quantile optimization accelerate the optimization process with sparse mathe-
matical expression, which reduces the number of basis functions from thousands to hundreds
and even to dozens. This contributes to the investigation of regression acceleration, and
enables the iQR framework to be swiftly applied in business-driven scheduling scenarios.

• Impressive scheduling accuracy was achieved on eight benchmark datasets, surpassing
current state-of-the-art (SOTA) outcomes. Our method is more effective in satisfying
scheduling demands, and when constraints are met, it incurs significantly lower economic
costs. Notably, iQR is lightweight and does not rely on GPU computing power support
during the training process compared with neural network based methods.

2 RELATED WORK

Model-based Optimization for Scheduling Model-based scheduling optimization methods utilize
explicit empirical models of the environment to optimize schedules. Based on the well-designed
model, many works have been proposed to address the resource scheduling issues with convex or
non-convex optimization solving approaches, including NFS (Jones & Peet, 2021), STS (Wang et al.,
2021), DD-TMPC (Zhao et al., 2024). However, several drawbacks exist in these methods, e.g., the
difficulty of accurately modelling complex dynamics and the high computational cost on updating
models. Model-free methods are increasingly gaining attention due to their enhanced adaptability
and capability of handling complex dynamics behind the data. Latest works develop the model-free
scheduling policy for optimization, involving Zhao et al. (2023); Zhang et al. (2024). Model-free
optimization strategies directly learn optimal policies from interactions without explicit environmental
models, and are more robust to changes in the dynamical process.

Prediction-based Scheduling Recently, methods for time series prediction using neural networks
have gained widespread attention. Transformer-based methods aim to continuously reduce the time
complexity of the model while improving accuracy. These methods include Timemixer (Wang et al.,
2024), TimesNet (Wu et al., 2023), Basisformer (Ni et al., 2023), iTansformer (Liu et al., 2023),
PatchTST (Nie et al., 2023), FEDformer (Zhou et al., 2022), FITS (Xu et al., 2024), and others.
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Despite the significant advancements of Transformer-based methods, their accuracy and training
speed can still be unsatisfactory in some cases. As a result, two optimization approaches have
emerged. The first approach involves leveraging larger models (Zhou et al., 2024; Cao et al., 2024)
to further enhance accuracy, but this leads to slower total times. The second approach involves
abandoning the Transformer-based framework and instead implementing plain neural networks (Zeng
et al., 2023; Xu et al., 2024; Das et al., 2023) for time series prediction. Unfortunately, these deep
learning methods often excel at solving a specific tasks, and their performance may decline when
prediction requirements change or business constraints are introduced.

Quantile Regression-based scheduling Common quantile regression include FLM (Zarnani et al.,
2019), NWPs (Zarnani et al., 2019) or traditional model TRMF (Yu et al., 2016), SINDy (Brunton
et al., 2016), TSM (Gao & Yan, 2022) with quantile regression. These models can achieve quantile
regression by utilizing their own basis function library without relying on the backpropagation
process of the support of GPU. Moreover, there are existing methods that can handle business-driven
problems (Dai, 2023; Wang & He, 2024; Li & Zhu, 2008). However, most of these methods lack open-
source code, which limits their accessibility. Compared to data-driven approaches, these methods may
face challenges in making long-term scheduling, and the prediction accuracy may not be as high as
that of neural network-based methods. Besides, when incorporating business-driven constraints into
them, although they can be solved in a CPU environment, the execution speed becomes significantly
slower, especially when dealing with large basis function libraries. This poses a challenge in meeting
the speed requirements of resource scheduling.

3 METHODOLOGY

This section details the framework and modules of iQR. Firstly, the overall structure of iQR is
presented in Section 3.1, as well as the roles of the key components if iQR. Then, the two-phase iden-
tification process including the global-local coordination mechanism is comprehensively introduced
in Section 3.2 and 3.3. Moreover, the theoretical description regarding the key basis vectors selection
algorithm, Stepwise Orthogonal Regression (SOR), is presented in Section 3.4.

Problem Definition Given the historical sequence representing the resource demand at timestamp t,
referred to Xt = [Xt−H+1, Xt−H+2, . . . , Xt] ∈ RH×dx of length H , the task is to generate
a future sequence Ŷt = [Ŷt+1, Ŷt+2, . . . , Ŷt+P ] of length P . Its values exceed the ground truth
Yt = [Yt+1, Yt+2, . . . , Yt+P ] ∈ RP×dy while minimizing the gap between them, ensuring efficient
resource allocation. Here, dx and dy denote the dimensions of input and output features, respectively.
The problem is denoted as

min
(
Ŷt −Yt

)
· I
(
Ŷt ≥ Yt

)
,

s.t. I
(
Ŷt ≥ Yt

)
≥ τ,

(1)

where I(u) is the indicator function, equals to 1 if u ≥ 0 and 0 otherwise. The quantile τ ∈ [0, 1]
represents the percentage of identification results that are greater than or equal to the true values.
For further visualization and better understanding, please refer to Appendix B. Note that Eq. (1)
established in a resource-constrained environment, e.g., CPU resource scheduling in cloud networks,
is the focal issue in this study, which is far from a single prediction problem with no business
constraint here. One must first satisfy the constraint, then address the optimization.

3.1 IQR FRAMEWORK

iQR is a business-driven framework based on system identification, combining basis selection strategy
and quantile regression. As shown in Figure 1, it consists of two main phases: global identification
and local identification. The two-phase identification (Liu et al., 2024) process is adopted to capture
macroscopic and microscopic trends, respectively. Each channel of iQR contains only one univariate
sequence, and each sequence is modeled separately. For channel i, the sequence Xi is split into a
training set Xi

train and a test set Xi
test. Concretely, the Fast Fourier Transform (FFT) is employed

to extract periods T in the series, which are used to construct the basis vectors library Θ. Stepwise
Orthogonal Regression (SOR) eliminates independent basis vectors and yields significant ones Θ̂,
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which plays the role of second basis selection. The L1-norm Quantile Regression (L1QR) ensures
output Ŷ exceeds the ground truth Y , controlling the lower bound of output results.

Train Data

Test Data

Test Batch

FFT

𝐗

Channel 𝑖

Batch 𝑏 FFT

Phase Ⅱ : Local Identification
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Figure 1: The overall framework of iQR. Global identification captures macroscopic changes. Local
identification utilizes macro trends and investigates micro variations to achieve rolling predictions.

The roles of the key components of iQR are described as follows:

Global-Local Coordination The coordination identification strategy aims at dynamic analysis of
input series. The global identification focus on the pivotal trends, whereas the local identification
leverages the macro information provided by its global counterpart, digs micro sensitive variations.

FFT The Fourier transform is used to reveal the complete description in frequency domain, since
mostly-adopted polynomial basis vectors inspired by the Taylor’s formula can only denote the
spontaneous feature of a single point with even known nonlinear function of the signal.

SOR SOR is the key selection method of basis vectors suited for sequence identification. It selects
the influential ones that contributes most to the model, and ensures the selection at each step is
independent and valid by orthogonal projection. The basis vectors are then input into L1QR for
identification.

L1QR To facilitate sparsity among model coefficients, the LASSO penalty term is introduced into
the loss function. L1-norm Quantile Regression effectively shrinks unimportant or irrelevant feature
weights to zero, thereby generates a robust, compact, and interpretable model structure.

3.2 GLOBAL IDENTIFICATION

In the global identification phase, the primary objective is to extract meaningful patterns and trends
from historical data that can serve as the foundation for subsequent local identification.

Concretely, global identification applies FFT to the training data. This mathematical operation
transforms the time-domain signal into its frequency-domain representation, revealing the underlying
frequency components f = FFT(X). Then, we identify the most salient frequencies, typically
those with the highest amplitudes. Using the frequency-period relationship f = 1/T , we convert
these significant frequencies into their corresponding periods Ti = [T i

1, T
i
2, . . . , T

i
n]. These periods

present the characteristic timescales or cyclic behaviors that are influential in shaping the time series
dynamics. Based on the representative periods, the global basis vectors is presented as:

Θi
g =

[
(ti)n, log(ti), exp(ti), sin

(
2πti

Ti

)
, cos

(
2πti

Ti

)]
, (2)

where n ∈ {0, 1, . . . }, the timestamp set ti is [0, 1, . . . , Ltrain], and Ltrain is the length of the
training set.
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Rather than employing a fixed set of basis vectors, we utilize SOR to dynamically select the most
informative and relevant basis vectors from the initial basis set identified in the previous phase, the
basis vectors are Θ̂i

g , the sparse system identification process with L1QR can be represented as

argmin
βi
g

n∑
i=1

ρτ
(
Y i −Xiβi

g

)
+ λ||βi

g||1. (3)

Given the coefficients βi
g, the global identification is calculated by Ŷ i

g = Xiβi
g. Different from

methods based on neural networks, the global identification phase utilizes the entire training set for
identification, thus reducing the likelihood of accumulated errors propagating into future outputs.

3.3 LOCAL IDENTIFICATION

The local identification phase builds upon the knowledge of global identification and focuses on the
accurate rolling output on the test set.

Concretely, the overall architecture of local identification is similar to global identification phase,
and the pivotal distinction lies in the segmentation of the test dataset into numerous batches, denoted
as Bb, for i ranging from 1 to N . Conventional regression methods and advanced deep learning
frameworks customarily generate subsequent sequence directly from the test sequence. However, the
neglect of global trends significantly decrease the prediction accuracy. Consequently, a knowledge
fusion technique is introduced, which is accomplished via a weighted mean strategy that synthesizes
the global inferred sequence Y i

g with the local entries Xi, formalized as follows:

X̂i = wXi + (1−w)Ŷ i
g , (4)

where w is a vector constructed by generating Lbatch equally spaced points on the interval
[α1/γ , ξ1/γ ], and then raising each of these points to the power of 1/γ. Formally, wi = (α1/γ+b∆)γ ,
for b = 0, . . . , Lbatch−1 and ∆ = (ξ1/γ −α1/γ)/(Lbatch−1) defines the uniform spacing between
consecutive points. The weighted coefficient w balances the influence of overarching tendencies
against localized fluctuations. Applying the strategy to Bb yields the refined inputs.

FFT is used to extract an initial set of basis vectors. For a test batch Bb, the local basis vectors are

Θi
lb,t

=

[
(tilb,t)

n, log(tilb,t), exp(t
i
lb,t

), sin

(
2πtilb,t
Ti

lb,t

)
, cos

(
2πtilb,t
Ti

lb,t

)]
, (5)

where tilb,t uniformly samples from 0 to the length of the training part in test batch Bb and Ti
lb,t

defines the representative periods. To refine and emphasize higher frequency constituents, the SOR
algorithm is invoked, leading to the optimized local basis vectors Θ̂i

lb,t
. Before applying the selected

basis vectors for identification, the local time series is enhanced by performing STL decomposition.
STL decomposes the data into seasonal, trend, and residual components, enabling isolate and adjust
for any seasonality presented in the test data. The resulting adjusted series serves as the input for the
next step. After the LASSO identification, the input sequence is

X̃i
lb,t

= LASSO(Si
lb,t

) + LASSO(T i
lb,t

) +Ri
lb,t

. (6)

For the input series X̃i
lb,t

, the objective function of L1QR is

argmin
βi
lb,t

n∑
i=1

ρτ (Y
i
lb,t

− X̃i
lb,t

βi
lb,t

) + λ||βi
lb,t

||1. (7)

Utilizing the fitted model, we perform local rolling predictions by iteratively updating the model with
new observations. This process continually adapts the model to the most recent data, capturing local
fluctuations while maintaining the global context provided by the global identification.

3.4 THE KEY MODULE OF IQR FRAMEWORK: SOR

To identify significant basis vectors and further eliminate irrelevant ones, the key module of iQR,
Stepwise Orthogonal Regression (SOR), has been proposed. The detail theory is shown as follows.

Given the initial set of basis vectors Θ = {θ1, θ2, . . . , θp}, we employ the following Lemma 1 to
ensure orthogonality among basis vectors.
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Lemma 1. (QR Decomposition (Golub & Van Loan, 2013)) Given a real n × n square matrix A,
there exist n× n orthogonal matrix Q and upper triangular matrix R such that A = QR.

Then, the Lemma 1 is extended to a general scenario, that is, matrices of arbitrary dimensions.

Corollary 1. Any real m× n matrix A can be decomposed into the product of an m× n orthogonal
matrix Q, whose columns are mutually orthogonal, and an n× n upper triangular matrix R.

Corollary 2. Any real m× n matrix A can be factorized into the product A = V R, where V is an
orthogonal matrix with its columns being pairwise orthogonal, and R is an upper triangular matrix
with diagonal entries equal to 1.

According to Corollary 2, the basis vectors Θ is orthogonalised to filter the insignificant basis vectors,
and sbsequently serve for the later lemma. The following lemmas show a stepwise regression strategy
to efficiently select the optimal subset of basis vectors.

Lemma 2. (Orthogonality Principle) For an unbiased optimal estimator (i.e., the least squares
estimation), if the basis vectors are orthogonal, then the error is orthogonal to any basis vector.

Lemma 3. (Orthogonal Greedy Optimality) If the basis vectors are orthogonal, then a greedy
stepwise optimal selection of basis vectors will yield the same result as the global optimal solution.

Remark 1. Since the basis vectors are orthogonal, the contribution of each function to the model
can be evaluated independently of the others. At each step of the greedy algorithm, the basis vector
that minimizes the sum of squares of the residuals is selected. Due to orthogonality, this incremental
selection is equivalent to evaluating the contributions of all possible subsets of vectors at the same
time, ensuring that the greedy selection is consistent with the global optimum. Then, we have the
following the key theorem of SOR, which plays the role of the second filtering strategy of basis vectors,
and ensuring obtaining the optimal basis vectors.

Theorem 1. (Stepwise Orthogonal Regression) If the set of basis vectors {θ∗1 , θ∗2 , . . . , θ∗n} is orthog-
onal, then the greedy stepwise optimal selection of basis vectors will yield the same result as the
global optimal solution.

Remark 2. SOR obtains the same result as the global optimum by sequentially selecting orthogonal
basis vectors. It independently evaluate the contribution of each basis vectors to the model at each
step of the greedy algorithm, selecting the basis vectors that minimizes the sum of squared residuals.
The orthogonality ensures that this incremental selection is equivalent to simultaneously evaluating
the contributions of all possible subsets of vectors, thus guaranteeing consistency with the global
optimum. The insight is to use Stepwise Orthogonal Regression to filter out significant basis vectors
from the initial set and eliminate irrelevant ones, ultimately obtaining the optimal basis vectors.

The proof of Lemma 2, Lemma 3, and Theorem 1 are present in Appendix F.1, Appendix F.2, and
Appendix F.3, separately. Thus, the stepwise optimal basis vectors selection is feasible.

4 EXPERIMENTS

To evaluate the performance of iQR, especially the demand satisfaction rate on resource scheduling
tasks, we conduct extensive experiments on eight real-world time series benchmarks, and compare
the performance with recent state-of-the-art (SOTA) methods.

Datasets Experiments are performed on various domains of datasets, covering electricity, energy,
exchange and resource. All datasets are split into training, validation and test set chronologically with
the ratio 7 : 1 : 2. For fair comparison, the datasets are normalized with the z-score normalization.
The details regarding datasets and experimental settings are provided in Appendix D.1.

Baselines A comprehensive comparison of effectiveness is performed against 7 baselines, including
the SOTA long-term forecasting models TimeMixer (Wang et al., 2024) and PatchTST (Nie et al.,
2023), the SOTA short-term forecasting models TimesNet (Wu et al., 2023) and FEDformer (Zhou
et al., 2022), as well as other representative and competitive models, i.e., BasisFormer (Ni et al.,
2023), iTransformer (Liu et al., 2023) and DLinear (Zeng et al., 2023). Please refer to Appendix D.2
for additional implementation details of baselines.

6
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Implementation Details iQR is implemented in Python on a CPU environment, yet other exper-
iments are performed with a single NVIDIA RTX A6000 GPU using PyTorch. All baselines
are trained with a learning rate of 10−4 and the same quantile loss. We take Positive Mean
Squared Errors (PMSE =

∑N
i=1(ŷ − y)2 · I(ŷ ≥ y)), Positive Mean Absolute Errors (PMAE =∑N

i=1 |ŷ − y| · I(ŷ ≥ y)), and Quantile Regression Errors (QRE = 1
N

∑N
i=1 I(ŷ ≥ y)) as the

evaluation metrics. For more evaluation details, please refer to Appendix D.3 and Appendix D.4.

4.1 MAIN RESULTS

Resource scheduling is crucial in electricity, weather, and exchange rates as it optimizes resource
allocation, and ensures system reliability. Resource datasets are usually multivariate time series and
are considered as multichannel signals. PatchTST (Nie et al., 2023) has shown the effectiveness of
channel-independent models. The experiments of iQR are conducted individually on each channel.
For a better comparison, we follow the experimental setups in TimeMixer (Wang et al., 2024).

To assess the satisfaction rate in business demand, we conduct extensive resource scheduling experi-
ments on eight datasets. Primary evaluation metric is the proportion of predictions exceeding the
ground truth, also known as QRE. As shown in Table 1, iQR achieves the SOTA performance on all
benchmarks, involving various time series with different frequencies and domains. Notably, iQR
surpasses the latest model TimeMixer with an average QRE improvement of 3.53%. Specifically,
iQR significantly outperforms the top-performing model Basisformer, with an 6.13% QRE increase
in the weather dataset and a 3.52% QRE increase in the CPU dataset.

Additionally, scheduling CPU resources in advance is crucial for network services in parks. To meet
the requirements of daily tasks, the allocated CPU resources must exceed the potential demand. As
shown in Table 1, iQR achieves a higher satisfaction rate than TimeMixer on the CPU dataset, with an
average increase of 3.98%. Note that iQR always meets the demands under different quantile setups.
This further demonstrates the effectiveness of iQR, particularly in resource scheduling scenarios. The
visualization results on three datasets are depicted in Figure 2. The local identification results shows
the effectiveness of our scheduling strategy.

Table 1: QRE results for resource scheduling on eight datasets with historical length H = 96 and
prediction length P ∈ {96, 192, 336, 720}. The historical and prediction length are set to H = 36
and P ∈ {24, 36, 48, 60} for ILI. The ratio presents satisfaction rate of business demands. The best
result are highlighted in red bold, and the second best results are marked with a blue underline.

Methods IMP. Ours TimeMixer TimesNet Basisformer iTransformer PatchTST Dlinear FEDformer

τ 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1 0.9 0.95 1

E
T

T
h 1

96 0.3% 0.4% 0.2% 0.904 0.953 1.0 0.884 0.938 1.0 0.884 0.938 0.972 0.901 0.949 1.0 0.887 0.943 0.998 0.874 0.929 1.0 0.66 0.678 0.674 0.771 0.867 1.0
192 1.5% 0.7% 0.3% 0.904 0.955 1.0 0.872 0.938 1.0 0.885 0.928 0.95 0.891 0.948 1.0 0.887 0.941 0.997 0.876 0.933 1.0 0.639 0.662 0.658 0.793 0.889 1.0
336 1.8% 0.3% 0.5% 0.9 0.957 1.0 0.875 0.938 1.0 0.849 0.907 0.941 0.884 0.954 1.0 0.883 0.939 0.995 0.864 0.93 1.0 0.604 0.641 0.637 0.866 0.926 1.0
720 1.9% −0.2% 1.4% 0.902 0.95 1.0 0.852 0.919 1.0 0.786 0.87 0.918 0.885 0.952 1.0 0.846 0.917 0.986 0.827 0.896 1.0 0.676 0.605 0.601 0.852 0.914 1.0

E
T

T
h 2

96 6.2% 1.1% 0.3% 0.955 0.954 1.0 0.82 0.933 1.0 0.831 0.921 0.949 0.899 0.943 1.0 0.889 0.941 0.997 0.872 0.941 1.0 0.741 0.765 0.761 0.878 0.944 1.0
192 6.9% 0.6% 0.5% 0.949 0.965 1.0 0.846 0.933 1.0 0.82 0.909 0.933 0.884 0.928 1.0 0.883 0.938 0.995 0.873 0.921 1.0 0.729 0.745 0.741 0.888 0.959 1.0
336 7.7% 0.4% 0.6% 0.961 0.953 1.0 0.786 0.943 1.0 0.822 0.893 0.914 0.888 0.901 1.0 0.876 0.93 0.994 0.838 0.915 1.0 0.723 0.732 0.728 0.892 0.949 1.0
720 8.0% 4.1% 0.8% 0.967 0.99 1.0 0.804 0.923 1.0 0.845 0.894 0.913 0.857 0.924 1.0 0.871 0.934 0.992 0.892 0.931 1.0 0.76 0.722 0.712 0.895 0.951 1.0

E
T

T
m

1

96 3.0% 1.0% 0.1% 0.901 0.951 1.0 0.851 0.925 1.0 0.808 0.893 0.998 0.875 0.942 1.0 0.864 0.928 0.999 0.866 0.925 1.0 0.86 0.892 0.9 0.844 0.905 1.0
192 1.9% 0.1% 0.1% 0.907 0.951 1.0 0.866 0.932 1.0 0.832 0.909 0.996 0.89 0.95 1.0 0.868 0.93 0.999 0.842 0.925 1.0 0.854 0.885 0.892 0.845 0.908 1.0
336 0.4% 0.7% 0.1% 0.907 0.955 1.0 0.856 0.922 1.0 0.861 0.915 0.995 0.903 0.948 1.0 0.868 0.927 0.999 0.856 0.918 1.0 0.843 0.876 0.881 0.846 0.922 1.0
720 2.4% 0.7% 0.1% 0.907 0.956 1.0 0.866 0.936 1.0 0.87 0.93 0.993 0.886 0.949 1.0 0.868 0.926 0.999 0.85 0.925 1.0 0.865 0.862 0.864 0.82 0.893 1.0

E
T

T
m

2

96 3.0% 0.9% 0.1% 0.927 0.967 1.0 0.852 0.92 1.0 0.87 0.93 0.991 0.9 0.946 1.0 0.888 0.939 0.998 0.852 0.931 0.999 0.881 0.955 0.971 0.771 0.958 1.0
192 3.9% 0.5% 0.1% 0.935 0.96 1.0 0.887 0.93 1.0 0.873 0.926 0.989 0.9 0.939 1.0 0.883 0.935 0.997 0.856 0.931 0.999 0.893 0.955 0.967 0.793 0.96 1.0
336 4.3% −0.7% 0.1% 0.94 0.961 1.0 0.864 0.925 1.0 0.863 0.926 0.987 0.901 0.943 1.0 0.881 0.933 0.997 0.877 0.936 0.999 0.891 0.954 0.964 0.866 0.968 1.0
720 8.1% 1.6% 0.1% 0.959 0.982 1.0 0.861 0.947 1.0 0.87 0.916 0.984 0.886 0.929 1.0 0.886 0.937 0.996 0.85 0.925 0.999 0.887 0.947 0.954 0.852 0.967 1.0

E
xc

ha
ng

e 96 −4.3% −2.2% 1.6% 0.9 0.956 1.0 0.917 0.969 1.0 0.872 0.805 0.81 0.949 0.973 1.0 0.917 0.96 0.984 0.907 0.968 1.0 0.598 0.652 0.65 0.99 0.994 1.0
192 −3.3% −1.9% 2.9% 0.91 0.977 1.0 0.906 0.944 1.0 0.873 0.739 0.745 0.957 0.966 1.0 0.916 0.951 0.972 0.93 0.965 1.0 0.53 0.596 0.593 0.989 0.996 1.0
336 −3.0% −1.6% 4.0% 0.914 0.956 1.0 0.932 0.983 1.0 0.83 0.837 0.836 0.965 0.979 1.0 0.925 0.951 0.962 0.928 0.968 1.0 0.363 0.524 0.519 0.994 0.999 1.0
720 −2.0% −0.5% 2.9% 0.913 0.953 1.0 0.965 0.981 1.0 0.862 0.852 0.851 0.978 0.994 1.0 0.961 0.97 0.972 0.965 0.99 1.0 0.652 0.353 0.343 0.998 0.999 1.0

W
ea

th
er

96 0.1% 3.4% 0.2% 0.905 0.966 1.0 0.83 0.889 1.0 0.817 0.857 0.955 0.832 0.912 1.0 0.838 0.905 0.991 0.864 0.913 0.998 0.904 0.934 0.936 0.894 0.856 1.0
192 2.6% 2.8% 0.2% 0.92 0.951 1.0 0.837 0.907 1.0 0.725 0.835 0.944 0.836 0.898 1.0 0.835 0.899 0.99 0.855 0.901 0.998 0.897 0.925 0.926 0.859 0.845 1.0
336 0.6% 4.5% 0.2% 0.904 0.958 1.0 0.825 0.882 1.0 0.708 0.839 0.934 0.83 0.897 1.0 0.835 0.887 0.989 0.825 0.907 0.998 0.899 0.917 0.917 0.854 0.906 1.0
720 −1.3% 1.9% 0.3% 0.909 0.952 1.0 0.833 0.899 1.0 0.737 0.812 0.917 0.839 0.898 1.0 0.831 0.888 0.987 0.844 0.905 0.997 0.921 0.906 0.905 0.827 0.934 1.0

IL
I

24 9.7% 9.8% 1.1% 0.905 0.967 1.0 0.805 0.876 1.0 0.807 0.566 0.596 0.818 0.881 1.0 0.658 0.567 0.698 0.825 0.877 0.989 0.486 0.44 0.488 0.753 0.77 0.963
36 10.3% 3.6% 1.0% 0.901 0.956 1.0 0.807 0.923 1.0 0.776 0.603 0.611 0.817 0.89 1.0 0.623 0.619 0.682 0.789 0.902 0.99 0.477 0.461 0.482 0.741 0.793 0.967
48 7.8% 3.9% 1.2% 0.902 0.95 1.0 0.779 0.898 1.0 0.837 0.592 0.589 0.742 0.9 1.0 0.633 0.676 0.628 0.824 0.914 0.988 0.461 0.477 0.461 0.729 0.824 0.97
60 15.3% 2.9% 1.9% 0.912 0.95 1.0 0.789 0.923 1.0 0.764 0.61 0.566 0.791 0.923 1.0 0.553 0.685 0.578 0.775 0.911 0.981 0.44 0.487 0.44 0.673 0.829 0.964

C
PU

96 2.4% 1.7% 0.3% 0.906 0.952 1.0 0.849 0.929 1.0 0.877 0.911 0.979 0.885 0.936 1.0 0.824 0.889 0.997 0.864 0.914 1.0 0.711 0.741 0.738 0.841 0.846 1.0
192 5.5% 3.4% 0.2% 0.905 0.953 1.0 0.848 0.916 1.0 0.858 0.922 0.971 0.857 0.915 1.0 0.82 0.856 0.998 0.857 0.91 1.0 0.67 0.714 0.712 0.842 0.876 1.0
336 5.1% 1.9% 0.2% 0.907 0.955 1.0 0.812 0.926 1.0 0.863 0.937 0.97 0.836 0.895 1.0 0.779 0.804 0.998 0.81 0.888 1.0 0.566 0.672 0.671 0.825 0.839 1.0
720 7.9% 7.1% 0.1% 0.912 0.981 1.0 0.833 0.916 1.0 0.845 0.886 0.929 0.845 0.907 1.0 0.742 0.762 0.999 0.813 0.886 1.0 0.736 0.569 0.566 0.778 0.834 1.0

Ratio - 100% 100% 100% 12.5% 9.4% 100% 0% 0% 0% 28.1% 21.9% 100% 12.5% 12.5% 0% 12.5% 12.5% 62.5% 6.3% 12.5% 0% 0.1% 31.3% 87.5%

Count - 89 36 6 65 20 34 9 48
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(a) Global identification on ETTm1. (b) Global identification on ILI. (c) Global identification on CPU.

(d) Local identification on ETTm1. (e) Local identification on ILI. (f) Local identification on CPU.

Figure 2: Visualization of identifications on three datasets. The historical and future sequence length
are set to 96 for ETTm1 and CPU dataset, while 36 for ILI dataset. The quantile τ is 0.9, indicating
that over 90% of the identifications are expected to exceed the ground truth.

Furthermore, we have conducted an evaluation of the performance across various quantiles, and the
comprehensive results of this analysis can be accessed in Appendix D.5. The findings indicate that
iQR is adept at fulfilling business demands while incurring significantly lower costs.

4.2 MODEL ANALYSIS

Table 2: Ablation studies on the ETTh1 dataset with
H = 96, P = 96, and τ = 0.9. The best result are
highlighted in red bold, and the second best results
are marked with a blue underline.

Tasks iQR iQR-R iQR-S iQR-K iQR-L iQR-Q

PMSE 1.185 1.191 1.19 0.909 0.561 0.558
PMAE 0.782 0.787 0.785 0.697 0.574 0.465
QRE 0.904 0.901 0.9 0.845 0.736 0.455

Ablation Studies To verify the design of
each component in the scheduling framework
iQR, we conducted a comprehensive ablation
study. The purpose is systematically isolat-
ing and evaluating the contribution of the
basis vectors selection SOR, the STL, the
knowledge fusion technology, and the lasso
penalized quantile regression.

Five modified versions are presented, each
lacking a key element: (1) model without SOR, denoted as iQR-R, (2) model excludes the STL,
marked as iQR-S, (3) model omits the knowledge fusion technology, represented as iQR-K, (4) model
without the lasso penalty, termed as iQR-L, and (5) model replaces quantile regression with linear
regression, labeled as iQR-Q. The experiments are conducted on ETTh1 dataset.

Table 2 illustrates the performance among variants. iQR outperforms other baselines on all three
evaluation metrics, suggesting that it is effective for resource scheduling tasks.

iQR vs. Maximum Value Baseline We employ a simple and intuitive evaluation method, the
maximum value baseline. Reference line are plotted based on the maximum value observed in the
training dataset. The lines symbolize an ideal state where future ground truth is always lower than
the maximum values. As shown in Table 3, iQR achieves significant improvement in performance,
with an average reduction of 80.49% in PMSE and 65.55% in PMAE.

4.3 EFFICIENCY ANALYSIS

Complexity Analysis The spatial complexity is O(t · dy), and the temporal complexity is O((2n+
3n ·nbatch) ·dy), where t is the timestamps, dy is the number of features, and nbatch is the number of
batches in testing phase. Due to channel independence, the model identifies and predicts each feature
separately. Specifically, if the dataset contains only one feature, the time complexity of constructing
the global basis vectors during the training phase is O(2K2), which is omitted since K ≪ t; the

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Resource scheduling results for iQR and Maximum Value Baseline on ETTh1 datasets with
historical length H = 96 and prediction length P ∈ {96, 192, 336, 720}. The improvement is noted
as IMP. and is displayed in the end of the table.

Length 96 192 336 720
Metrics PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE

ours 2.348 1.282 1.0 2.311 1.279 1.0 2.46 1.309 1.0 2.579 1.348 1.0
Maximum Value 12.412 3.316 1.0 12.198 3.275 1.0 12.436 3.304 1.0 12.654 3.343 1.0

IMP. 81.08% 61.34% 0% 81.05% 60.95% 0% 80.22% 60.38% 0% 79.62% 59.68% 0%

time complexity of the L1QR and SOR algorithms are O(n). During the testing phase, both the STL
algorithm, the SOR algorithm, and the L1QR algorithm have a time complexity of O(n), and the
time complexity of constructing local basis vectors can be omitted. Thus, the total time complexity
during testing is O(3n). Additionally, the model has fewer parameters due to the absence of neural
networks, and the spatial complexity can be approximated as the data scale t · dy .

Memory Cost and Running Time We compare the GPU memory cost and running time against the
current SOTA baselines, covering MLP-based TimeMixer (Wang et al., 2024) and Transformer-based
iTransformer (Liu et al., 2023), etc. In Figure 3, iQR outperforms other baselines in terms of running
time and memory usage. Specifically, iQR is much faster for various historical sequence length H
from 96 to 2880, with the prediction sequence length is fixed at 96. Moreover, Figure 3(b) show that
iQR is lightweight. This further demonstrates the advantages of iQR in terms of resource utilization
and time efficiency. Additional efficiency analysis results are presented in Appendix D.8.

(a) Training duration efficiency analysis. (b) Memory Efficiency Analysis.

Figure 3: Efficiency analysis of eight algorithms. The results are derived from the experiments on the
ETTh1 dataset, and we report the average result from ten experiments.

5 CONCLUSION REMARKS

In this study, we address the crucial issue of resource scheduling across diverse industrial contexts by
introducing a novel framework, termed iQR, which leverages sparse system identification techniques.
This framework deviates significantly from conventional model-based or prediction-based scheduling
approaches, adopting instead a global-local coordination strategy to bolster identification perfor-
mance. Specifically, we first utilize Fast Fourier Transform (FFT) to comprehensively extract vital
features from a frequency domain perspective. Furthermore, iQR incorporates Stepwise Orthogonal
Regression (SOR) to derive more prominent basis vectors and employs L1-norm Quantile Regres-
sion (L1QR) to ensure precise scheduling across various quantile levels. The deployment of L1QR
for resource scheduling not only fulfills resource demands with high confidence but also minimizes
resource allocation costs. Rigorous experiments conducted on eight datasets demonstrate that iQR
attains state-of-the-art (SOTA) performance, characterized by a higher satisfaction rate and reduced
economic cost, compared to recent deep learning-based prediction methods incorporating quantile
regression. Notably, iQR is lightweight, with training durations measured in seconds, and operates
efficiently without the need for GPU resources. Looking ahead, we aim to broaden the applicability
of iQR to a wider range of scheduling scenarios and explore more potent and efficient solutions for
time series analysis in resource-constrained environments.

9
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A NOTATIONS

A comprehensive table of all notations used in this work is provided here. The following tables serve
as a reference to clarify the meaning and usage of each symbol throughout this study.

Numbers and Arrays

x A scalar

X A vector

X A matrix

diag(a) A square, diagonal matrix with diagonal entries given by a

β The vector of regression coefficients to be estimated

λ The regularization parameter. A sparse solution is obtained
when λ is large; otherwise, more features are retained

τ The quantile τ denotes the ratio that 100×τ% of predictions
are greater than the ground truth, τ ∈ [0, 1]

w The weighted vector, wi = (α1/γ + b∆)γ , for b =
0, . . . , Lbatch − 1 and ∆ = (ξ1/γ − α1/γ)/(Lbatch − 1)

T The significant periods for global identification, T =
[T1, T2, . . . , Tn]

Sets

R The set of real numbers

Θ The set of basis vectors

{0, 1, 2, 3} The set containing 0, 1, 2, and 3

Indexing

Bb The bth test batch, the test dataset is split into batches

Xi The values of X at feature dimension i

X̂i The input sequence after elimination of outliers by knowl-
edge fusion strategy, X̂i = wXi + (1−w)Ŷ gi

X̃i
lb,t

The output sequence for the bth test batch Bb at feature
dimension i derived by STL

Xt The historical sequence with a look back window of H ,
Xt = [Xt−H+1, Xt−H+2, . . . , Xt] ∈ RH×dx

Y i The values of Y at feature dimension i

Yt The multivariate values of dy distinct series at timestamp t,
Yt ∈ Rdy

Y i
g The global identification at feature dimension i

Y i
lb,t

The local identification for the bth test batch Bb at feature
dimension i

Yt The future sequence with a horizon window of P , Yt =
[Yt+1, Yt+2, . . . , Yt+P ] ∈ RP×dy
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Ŷt The prediction sequence with a horizon window of P , Ŷt =

[Ŷt+1, Ŷt+2, . . . , Ŷt+P ] ∈ RP×dy

Ti
lb,t

The significant periods at feature dimension i for a test batch

Θi
g The global basis vectors Θi

g = [sin( 2πt
i

Ti ), cos( 2πt
i

Ti )]

Θ̂i
g The significant global basis vectors at feature dimension i

obtained by SOR filtering method

Θi
lb,t

The local basis vectors at feature dimension i for the bth test
batch Bb, Θi

lb,t
= [sin(

2πtilb,t
Ti

lb,t

), cos(
2πtilb,t
Ti

lb,t

)]

Θ̂i
lb,t

The significant local basis vectors for the bth test batch Bb

at feature dimension i obtained by SOR filtering method

βi
g The global regression coefficients vector at feature dimen-

sion i to be estimated

βi
lb,t

The local regression coefficients vector at feature dimension
i to be estimated

Functions

||x||1 L1 norm of x

I(condition) is 1 if the condition is true, 0 otherwise

ρτ (u) The Koenker and Bassett check function, ρτ (u) = u(τ −
I(u < 0))

B PROBLEM VISUALIZATION AND PERFORMANCE ANALYSIS

To visually illustrate the problem, we set the quantile τ = 1 and explain the following three figures.
The grey-shaded areas present the difference between the prediction and the ground truth, also known
as economic cost.
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(a) Curve 1.
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(c) Curve 3.

Figure 4: Comparison of three predictive model performance.

Figure 4(a) shows that 50% of the predicted values exceed the ground truth. This model is difficult to
meet practical demands as it cannot guarantee that all predicted values will be greater than the actual
demand, potentially leading to insufficient resources.

Figure 4(b) shows that 100% of the predicted values exceed the ground truth, which meets the
requirements for resource scheduling. It effectively prevents task failure by ensuring adequate
resource allocation. Therefore, the results in Figure 4(b) are better than in Figure 4(a).

Figure 4(c) shows another prediction curve. The grey area is smaller, indicating that the additional cost
brought by the model, after meeting the requirements, is lower, meaning higher resource utilization
efficiency. Thus, the results in Figure 4(c) are better than in Figure 4(a) and Figure 4(b).
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C INTRODUCTION TO THE KEY COMPONENTS

Sparse System Identification Sparse System Identification (SSI) (Brunton et al., 2016; Wilms
et al., 2023; Fasel et al., 2022) infers the underlying dynamics and the algebraic representation of a
control system from observed data. This methodology is rooted in the principle of parsimony, seeking
to disentangle the most concise and informative representation of system behavior by selecting a
minimal set of relevant basis vectors from a predefined library.

SSI is inherently characterized by the basis function library, which commonly encompasses polyno-
mial series, trigonometric functions, and other suitable functional forms. Given this library, we are
able to identify a sparse combination of basis vectors that best approximates the system dynamics.
This is achieved by minimizing a sparsity-promoting penalty term within the optimization framework.
SSI eliminates superfluous terms, thereby yielding compact and interpretable dynamical models.

SSI has demonstrated remarkable progress in revealing hidden system dynamics within data, resulting
in highly accurate predictions in various contexts (Liu et al., 2024). However, the efficacy of SSI for
business-driven identification prediction is not without challenges. Direct application of the method
without tailored strategies for basis vectors design may lead to accumulation of errors over extended
prediction horizons, compromising its suitability for long-range predictions.

L1-norm Quantile Regression Traditional regression analysis focuses on the relationship between
covariates and the conditional expectation of the response variable. Models derived from such
analyses, such as linear or generalized linear regressions, aim to construct a function that predicts the
conditional mean of the response given observed covariate values. While these methods effectively
capture the central tendency of the response distribution in many instances, they provide a single-
dimensional view and can be susceptible to outliers or data heterogeneity. To address these limitations,
Quantile Regression (QR) has emerged as an alternative approach, particularly when interest lies in
other aspects of the response distribution.

Quantile regression extends the scope of conventional regression by investigating the association
between covariates and conditional quantiles of the response variable rather than solely its condi-
tional expectation. Specifically, quantile regression models estimate the conditional quantile of the
dependent variable given the value of the independent variable. QR offers a comprehensive portrayal
of the response distribution across different quantiles, encompassing tail behavior, asymmetry, and
potential non-linear effects.

Recently, L1-norm Quantile Regression (L1QR) has been proposed as a robust and flexible approach
for modeling conditional quantiles (Li & Zhu, 2008; Shang & Kong, 2021). L1QR employs a
penalty term based on the absolute values of the regression coefficients, thereby promoting sparsity
in the model. Unlike the L2-norm, some regression coefficients derived by the L1-norm likely to be
estimated as zero. This facilitates variable selection, particularly in high-dimensional settings, by
identifying a subset of key covariates with significant influence on specific quantiles. For a given
quantile τ , the objective function of L1QR is formulated as:

min
β

n∑
i=1

ρτ (Y
i −Xiβ) + λ||β||1,

where yi is the is the response value for the ith observation, Xi represents the corresponding covariate
values, β is the vector of regression coefficients to be estimated, and ρτ (u) is the Koenker and Bassett
check function (Koenker & Bassett Jr, 1978), that is

ρτ (u) =

{
τ · u if u > 0,

−(1− τ) · u otherwise.

Fourier Transformation The Fourier transform (FT) is a mathematical tool used to convert signals
from the time domain to the frequency domain, revealing the underlying periodic components in a
signal. Mathematically, the Fourier transform of f(t) is given by:

F (ω) =

∫ ∞

−∞
f(t)e−jωtdt,
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where ω is the angular frequency, j is the imaginary unit, and e is the base of the natural logarithm.
The transformed function F (ω) represents the amplitude and phase of each frequency component in
the original signal, enabling the identification of dominant frequencies and their relative contributions
to the overall signal structure. For digital signals or sampled time series data, the continuous-time
Fourier transform is replaced by the Discrete Fourier Transform (DFT). The DFT computes the
frequency-domain representation of a finite-length discrete-time signal xn:

Xk =

N−1∑
n=0

xne
−j2πkn/N , k = 0, 1, . . . , N − 1,

where Xk represents the amplitude and phase of the kth frequency component in the discrete signal,
and the angular frequency ω = 2πk/N corresponds to the kth harmonic of the fundamental frequency
ω0 = 2π/N .

While the DFT is a powerful tool for frequency analysis, its computational complexity is O(n2),
which can become prohibitively expensive for large datasets. The Fast Fourier Transform (FFT) is
an algorithmic innovation that significantly reduces the computational cost of computing the DFT,
achieving a time complexity of O(n log n). All waveforms are actually just the sum of simple
sinusoids of different frequencies. The FFT exploits the symmetries and periodicity inherent in the
DFT formula to compute the transform more efficiently, making it the preferred choice for practical
applications involving large time series datasets.

Stepwise Orthogonal Regression Stepwise Orthogonal Regression (SOR) is a sequential feature
selection algorithm specifically tailored for model building in the context of time series analysis
and forecasting. SOR combines the principles of forward selection and orthogonal least squares to
efficiently identify and incorporate the most influential variables into a model.

The SOR algorithm proceeds in a stepwise manner, iteratively adding one predictor at a time to an
initially empty model. At each iteration, the algorithm selects the variable that maximally improves
the model fit while minimizing collinearity issues through the use of orthogonal projections. The
improvement in model fit is typically assessed via a goodness-of-fit criterion, such as the reduction
in the sum of squared errors or the increase in the coefficient of determination. Once a variable is
added, its contribution is made orthogonal to the existing model terms, ensuring that subsequent
selections are independent and do not merely replicate previously captured information. This process
continues until a stopping criterion is met, which could be based on a predefined maximum number
of predictors, a threshold for the improvement in model fit, or a desired level of explained variance.

In the realm of quantile regression for time series forecasting, SOR can be employed to select the most
relevant predictors for each quantile level of interest. Given the potential heterogeneity in the effects
of different variables across different quantiles, SOR enables the construction of separate, tailored
models for each quantile, ensuring that each model includes only the most influential predictors for
that specific quantile. As a result, SOR-enhanced quantile regression models provide more accurate
and reliable forecasts across the entire conditional distribution of the time series.

Seasonal-Trend decomposition using LOESS Seasonal-Trend decomposition using LOESS (STL)
is a nonparametric filtering procedure, proposed by Cleveland (Cleveland et al., 1990), with LOcally
Estimated Scatterplot Smoothing (LOESS) used for estimating nonlinear relationships. STL has
gained popularity due to its ability to handle diverse types of time series data, including those
exhibiting irregular seasonal patterns and time-varying trends. The simplicity of STL allows fast
computation for long sequence. STL decomposes time series X into three additive components,
namely trend T , seasonal S, and residual R.

X = T + S +R,

in which the trend component T captures the long-term behavior of a time series, embodying its
overall direction and pattern over time. Seasonality S refers to recurring patterns or cycles occurring
within fixed time frames, such as daily, weekly, or annual patterns. The residual component R,
also known as the remainder or irregular component, represents unexplained time series variations
after removing the trend and seasonal components. It encapsulates random fluctuations, noise, or
irregularities not accounted for by the trend and seasonal patterns.
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STL decomposition serves as a critical preprocessing step in time series forecasting models. By
decomposing the raw time series into its constituent parts, we gain deeper insights into the underlying
structure and identify potential patterns and anomalies. This decomposition facilitates the develop-
ment of more accurate prediction models by modeling each component separately and incorporate
relevant features into the forecasting framework.

D EXPERIMENTAL DETAILS

In this section, we provide a comprehensive introduction of experiments, including 8 real-world
datasets, 7 baselines and 3 evaluation metrics.

D.1 DATASETS

To evaluate the performance of prediction models, the experiments are conducted on 8 well-established
datasets, involving Electricity, Exchange rate, Weather, Illness and CPU usage. The detailed descrip-
tion is presented in Table 4.

Electricity Transformer Temperature (ETT) (Zhou et al., 2021) It contains data from 2 power
transformers in two regions of a province in China, recorded every minute (ETTm). Hourly data
(ETTh) is also available. The data includes 8 characteristics, including date, target predicted value
“oil temperature” and 6 different types of external power load characteristics 1.

Exchange (Lai et al., 2018) It contains exchange rate data from 8 countries (Australia, British,
Canada, China, Japan, New Zealand, Singapore, and Switzerland), recorded every day ranging from
1990 to 2016 2.

Weather From a weather station of the Max Planck Biogeochemistry Institute in German, it
aggregates 21 meteorological variables including humidity and temperature, sampled every 10
minutes throughout 2020 3.

ILI It illustrates the ratio of patients presenting with influenza-like illness relative to the total patient
population. The dataset encompasses weekly data sourced from the Centers for Disease Control and
Prevention (CDC) of the United States, spanning from 2002 through 2021 4.

CPU It collects the CPU usage from a park of Huawei Technologies Co., Ltd. The sampling interval
is 1 minute, and the dataset spans from May 8th to May 27th, 2023.

Table 4: Summary of real-world datasets.

Dataset Frequency Dim. Series Length Dataset Size Information

ETTh1 Hourly 7 {96, 192, 336, 720} (10080, 1440, 2880) Electricity
ETTh2 Hourly 7 {96, 192, 336, 720} (10080, 1440, 2880) Electricity
ETTm1 15min 7 {96, 192, 336, 720} (40320, 5760, 11520) Electricity
ETTm1 15min 7 {96, 192, 336, 720} (40320, 5760, 11520) Electricity

Exchange Daily 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate
Weather 10min 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather

ILI Weekly 7 {24, 36, 48, 60} (617, 74, 170) National illness
CPU 1min 1 {96, 192, 336, 720} (20160, 2880, 5760) CPU usage

1https://github.com/zhouhaoyi/ETDataset
2https://github.com/laiguokun/multivariate-time-series-data
3https://www.bgc-jena.mpg.de/wetter/
4https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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D.2 BASELINES

Time series forecasting modeling is a long-standing research problem. From early statistical models
to later deep models, many new models have been proposed for sequence modeling and time series
forecasting. However, long-term forecasting still suffers from a lack of accuracy. Considering the
challenges of traditional statistical methods in long-term forecasting, the baselines we compare
are mainly neural network methods. Specifically, we consider the latest time series forecasting
methods, including TimeMixer (Wang et al., 2024), TimesNet (Wu et al., 2023), Basisformer (Ni
et al., 2023), iTransformer (Liu et al., 2023), PatchTST (Nie et al., 2023), Dlinear (Zeng et al., 2023),
and FEDformer (Zhou et al., 2022). The details are introduced as follows

TimeMixer TimeMixer is an architecture based entirely on multilayer perceptual machines. It
consists of past decoupled mixing and future multi-predictor mixing modules, which decompose multi-
scale sequences and integrate multiple predictors for prediction, respectively.TimeMixer provides
insights, that is, time series exhibit different patterns at different sampling scales. Its scheduling
implementation is public available at https://github.com/kwuking/TimeMixer.

TimesNet TimesNet is an innovative time series analysis method that converts a one-dimensional
series into a multi-periodic two-dimensional tensor, which maps the time series into a two-
dimensional space and enhances the representation of periodic features. It decomposes com-
plex temporal dynamics into intra-periodic fluctuations and inter-periodic trends, and thus per-
forms better on datasets with significant periodic structure. Code is available at the repository
https://github.com/thuml/Time-Series-Library.

Basisformer BasisFormer is an end-to-end time series forecasting architecture that designs learn-
able and interpretable substrates for forecasting. It consists of three core components: acquiring the
substrate through adaptive self-supervised learning; computing the similarity coefficients between the
time series and the substrate in historical perspective through a two-way cross-attention mechanism;
and selecting the substrate based on the similarity coefficients to generate accurate future forecasts.
The source code can be found at https://github.com/nzl5116190/Basisformer.

iTransformer iTransformer is an advanced model designed for time series forecasting. Utilizing an
“inverted Transformer” architecture, iTransformer has demonstrated great effectiveness in forecasting
time series data, especially for long term forecasting problems with complex periodicity, trends, and
non-stationarity. The source code is available at the repository https://github.com/thuml/
iTransformer.

PatchTST PatchTST is a powerful Transformer-based model specialized in multivariate time
series prediction and self-supervised representation learning. There are two core components: (i)
segmentation of the time series into subsequence patches, which are then provided to the Transformer;
and (ii) channel independence, where each channel represents a univariate time series with shared
embeddings and Transformer weights for all series.The components in PatchTST greatly improve the
accuracy of long-term forecasts. Code of PatchTST is present at the repositry https://github.
com/yuqinie98/PatchTST.

Dlinear DLinear represents a straightforward neural network prediction model that ingeniously
integrates time series decomposition with linear layers, unlike Tranformer-based models. The
essence of DLinear lies in its direct multi-step forecasting approach, decomposing historical time
series data into trend and remainder components, each modeled through separate single-layer linear
networks to achieve predictive outputs. The source code for DLinear is openly accessible at https:
//github.com/cure-lab/LTSF-Linear.

FEDformer FEDformer is a Transformer-based model that is designed to tackle the long-term time
series prediction issue by incorporating Fourier transforms and wavelet basis vectors to enhance the
effectiveness of the model. The time complexity of FEDformer is O(L), where L is the length of
the sequence, which means that FEDformer can significantly improve the computational efficiency
when dealing with long sequences compared to traditional methods. Its implementation is provided
in https://github.com/MAZiqing/FEDformer.
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D.3 EVALUATION METRICS

Due to the practical need of specific task, the business-driven identification prediction, we adopt three
metrics in the experiments, including PMSE (Positive Mean Square Error), PMAE (Positive Mean
Absolute Error), and QRE (Qutantile regression Error).

Concretely, given the ground truth of future sequence Yi
t = [Y i

t+1, Y
i
t+2, . . . , Y

i
t+P ] with Y i

t =

[Y i
t+1, Y

i
t+2, . . . , Y

i
t+P ], and the prediction sequence Ŷi

t = [Ŷ i
t+1, Ŷ

i
t+2, . . . , Ŷ

i
t+P ] with Ŷ i

t =

[Ŷ i
t+1, Ŷ

i
t+2, . . . , Ŷ

i
t+P ], the metrics are given as follows

PMSE =

dy∑
i=1

t+P∑
j=t+1

(Ŷ i
j − Y i

j )
2 · I(Ŷ i

j ≥ Y i
j ),

PMAE =

dy∑
i=1

t+P∑
j=t+1

|Ŷ i
j − Y i

j | · I(Ŷ i
j ≥ Y i

j ),

QRE =
1

dy × P

dy∑
i=1

t+P∑
j=t+1

I(Ŷ i
j ≥ Y i

j ).

(8)

D.4 IMPLEMENTATION DETAILS

All baselines models are trained with the QRE loss, using Adam optimizer with an initial learning
rate of 10−4. Batchsize is set to 32 as default. If no reduction in validation loss is observed, training
is stopped prematurely after 3 epochs. Then, the model with least validation loss is saved for further
evaluation.

For fair comparison, we assign the same search space to the common parameters in each model.
And the best performance under the search space is reported. The seed equals to 2024. The data
segmentation ratio is 7:1:2, and since the validation set data is often used in the model training
stage and there is no validation stage in our algorithm, it is 8:2 for our identification algorithm,
shown in Figure 5. In this study, the adaptive sparse group lasso (asgl) Python package developed
by Mendez-Civieta et al. (2021), is adopted for quantile regression analysis.

Figure 5: Data division and iterative identification schematic diagram.

Concretely, we adopted a uniform strategy in our experimental design, where the 6 meth-
ods (TimeMixer, TimesNet, iTransformer, PatchTST, DLinear, and FEDformer) employees the tools
provided by the Python library Time Series Library (TSlib)5 to perform the time series
forecasting task. Moreover, the Basisformer model is performed with its official implementation.

D.5 DETAILED RESULTS

For the resource scheduling task, we design an innovative approach, also known as iQR, that
focuses on the Quantile Regression Error (QRE) as a pivotal performance metric. In order to
investigate the model performance under different parameter settings, the loss function is set with
different quantiles (τ = 1.0, 0.95, 0.9). The primary goal is to evaluate whether the identified values
consistently exceed the ground truth. The Positive Mean Square Error (PMSE) and Positive Mean
Absolute Error (PMAE) of these predictions are then minimized under this constraint.

5https://github.com/thuml/Time-Series-Library
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Under the tightest constraint, i.e., all predictions must exceed the actual values, our model iQR
performs well. In several datasets such as ETT, Exchange, and Weather, there is still a low PMSE and
PMAE for a QRE of 1. This suggests that not only are the predictions generally higher than the true
values, but the error in these over-valued predictions (measured in terms of the PMSE and PMAE)
is also minimized. For example, as shown in Table 5, in a dataset with a history length of 96 and
predicted lengths varying from 96 to 720, the iQR model demonstrates high accuracy and low error,
outperforming several competing methods including TimeMixer, and FEDformer.

Then, the constraint is relaxed to allow for a small percentage of predictions to be lower than the
ground truth, the quantile is set to 0.95. iQR still maintains the high satisfaction rate regarding the
business demand, with PMSE and PMAE lower than many competitive baselines. The results in
Table 6 indicates that the model provides highly accurate predictions even existing a certain margin of
error. The QRE is consistently higher than 0.95, demonstrating the robustness of designed algorithm.

Moreover, we further relax the constraints, that is, the quantile decreases to 0.9. iQR still satisfies the
business demand, although exhibits the second best results on ETTh2 dataset. iQR achieves an optimal
or suboptimal performance ratio of 92/96 across evaluated metrics, illustrating its broad effectiveness.
Notably, even the prediction constraints are relaxed, the model maintains a low predictive error,
thereby highlighting its particular superiority in the resource scheduling tasks.

Table 5: Resource scheduling results on eight datasets with historical length H = 96 and prediction
length P ∈ {96, 192, 336, 720}. The historical and prediction length are set to H = 36 and
P ∈ {24, 36, 48, 60} for ILI. Lower PMSE and PMAE for similar QRE indicate more accurate
predictions and lower resource usage. If PMSE or PMAE is greater than 100, the symbol - is used to
replace the original value. The quantile is set to 1. If the QRE in the result is less than the quantile,
it will not be used for comparison. The ratio presents the percentage by which prediction exceeds
ground truth. The best result are highlighted in red bold, and the second best results are marked with
a blue underline.

Methods IMP. Ours TimeMixer TimesNet Basisformer iTransformer PatchTST Dlinear FEDformer

Metrics PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE

E
T

T
h 1

96 78.6% 51.4% 0.0% 3.26 1.61 1.0 - - 1.0 3.66 1.53 0.97 - - 1.0 16.01 3.31 1.0 79.24 7.5 1.0 0.49 0.49 0.67 15.26 3.73 1.0
192 81.3% 58.3% 0.0% 3.23 1.48 1.0 - - 1.0 4.34 1.65 0.95 - - 1.0 18.54 3.55 1.0 94.5 8.18 1.0 0.54 0.52 0.66 17.3 3.97 1.0
336 83.5% 64.7% 0.0% 3.12 1.47 1.0 - - 1.0 3.72 1.5 0.94 - - 1.0 21.64 3.83 0.99 - 9.03 1.0 0.58 0.55 0.64 18.95 4.16 1.0
720 74.3% 52.1% 0.0% 3.77 1.72 1.0 - - 1.0 4.35 1.63 0.92 - - 1.0 25.39 4.11 0.99 - 10.35 1.0 0.68 0.61 0.6 14.67 3.59 1.0

E
T

T
h 2

96 19.9% 9.7% 0.0% 2.34 1.3 1.0 - - 1.0 0.97 0.75 0.95 - 21.22 1.0 2.92 1.44 1.0 25.31 4.37 1.0 0.24 0.36 0.76 38.13 5.94 1.0
192 28.8% 15.7% 0.0% 2.35 1.29 1.0 - - 1.0 0.89 0.73 0.93 - - 1.0 3.3 1.53 1.0 39.41 5.41 1.0 0.27 0.38 0.74 38.82 6.04 1.0
336 91.6% 74.0% 0.0% 3.22 1.57 1.0 - - 1.0 0.86 0.7 0.91 - - 1.0 3.64 1.62 0.99 59.13 6.62 1.0 0.29 0.39 0.73 38.14 6.03 1.0
720 87.1% 67.1% 0.0% 3.36 1.62 1.0 - - 1.0 0.95 0.75 0.91 - - 1.0 4.41 1.79 0.99 84.73 7.97 1.0 0.34 0.43 0.71 26.06 4.93 1.0

E
T

T
m

1 96 85.8% 62.9% 0.0% 2.57 1.4 1.0 - - 1.0 20.23 3.77 1.0 - - 1.0 71.87 6.81 1.0 - 36.8 1.0 0.82 0.73 0.9 18.11 4.09 1.0
192 83.8% 62.9% 0.0% 2.88 1.5 1.0 - - 1.0 24.3 4.07 1.0 - - 1.0 83.69 7.35 1.0 - 46.74 1.0 0.9 0.75 0.89 17.75 4.04 1.0
336 81.1% 57.9% 0.0% 3.32 1.64 1.0 - - 1.0 21.7 3.9 1.0 - - 1.0 99.42 8.02 1.0 - 56.56 1.0 0.97 0.77 0.88 17.6 4.03 1.0
720 78.7% 56.4% 0.0% 3.5 1.68 1.0 - - 1.0 23.16 4.04 0.99 - - 1.0 - 8.82 1.0 - 68.32 1.0 1.05 0.8 0.86 16.46 3.85 1.0

E
T

T
m

2 96 91.4% 70.9% 0.0% 1.21 0.94 1.0 - - 1.0 3.21 1.48 0.99 - - 1.0 14.08 3.23 1.0 - 21.38 1.0 0.57 0.67 0.97 29.94 5.24 1.0
192 80.2% 54.9% 0.0% 3.43 1.62 1.0 - - 1.0 3.45 1.58 0.99 - - 1.0 17.32 3.59 1.0 - 26.25 1.0 0.67 0.73 0.97 31.79 5.39 1.0
336 83.1% 58.2% 0.0% 3.42 1.62 1.0 - - 1.0 4.14 1.7 0.99 - - 1.0 20.26 3.88 1.0 - 33.11 1.0 0.74 0.76 0.96 42.99 6.26 1.0
720 84.4% 60.0% 0.0% 3.55 1.64 1.0 - - 1.0 4.77 1.82 0.98 - - 1.0 22.73 4.1 1.0 - 47.49 1.0 0.84 0.8 0.95 39.67 6.04 1.0

E
xc

ha
ng

e 96 69.1% 41.5% 0.0% 1.76 1.2 1.0 - - 1.0 0.26 0.37 0.81 - 33.75 1.0 0.88 0.74 0.98 6.21 2.05 1.0 0.11 0.24 0.65 5.69 2.32 1.0
192 75.8% 54.6% 0.0% 1.71 1.14 1.0 - - 1.0 0.34 0.42 0.75 - - 1.0 1.17 0.85 0.97 9.15 2.51 1.0 0.18 0.32 0.59 7.06 2.56 1.0
336 79.4% 57.3% 0.0% 1.85 1.22 1.0 - - 1.0 0.66 0.61 0.84 - - 1.0 1.6 1.01 0.96 15.1 3.19 1.0 0.3 0.41 0.52 8.96 2.86 1.0
720 77.7% 56.0% 0.0% 3.01 1.53 1.0 - - 1.0 1.27 0.87 0.85 - - 1.0 2.68 1.33 0.97 30.52 4.5 1.0 1.05 0.77 0.34 13.51 3.48 1.0

W
ea

th
er 96 95.7% 85.8% 0.0% 30.9 2.37 1.0 - - 1.0 2.76 1.05 0.96 - - 1.0 18.09 2.66 0.99 - 16.73 1.0 0.5 0.58 0.94 - 30.47 1.0

192 89.1% 78.3% 0.0% 84.18 3.77 1.0 - - 1.0 3.21 1.13 0.94 - - 1.0 21.46 2.88 0.99 - 17.38 1.0 0.57 0.62 0.93 - 30.71 1.0
336 89.6% 78.5% 0.0% 84.44 3.84 1.0 - - 1.0 3.72 1.22 0.93 - - 1.0 25.97 3.17 0.99 - 17.87 1.0 0.64 0.66 0.92 - 32.72 1.0
720 89.6% 78.3% 0.0% 86.06 3.95 1.0 - - 1.0 4.73 1.3 0.92 - - 1.0 29.49 3.42 0.99 - 18.24 1.0 0.74 0.71 0.91 - 34.61 1.0

IL
I

96 98.2% 85.9% 0.0% 30.62 4.76 1.0 - 33.79 1.0 6.03 1.83 0.6 - 34.41 1.0 7.69 2.02 0.7 - 8.61 0.99 4.79 1.66 0.49 29.72 4.75 0.96
192 98.0% 85.9% 0.0% 31.6 4.84 1.0 - 66.32 1.0 6.81 1.99 0.61 - 34.36 1.0 7.06 1.93 0.68 - 8.53 0.99 4.82 1.66 0.48 31.62 4.97 0.97
336 98.1% 86.3% 0.0% 38.09 5.07 1.0 - 76.31 1.0 5.73 1.72 0.59 - 37.13 1.0 4.49 1.55 0.63 64.81 6.48 0.99 4.11 1.47 0.46 26.03 4.48 0.97
720 96.7% 82.3% 0.0% 39.14 5.23 1.0 - 29.63 1.0 4.75 1.69 0.57 - 56.89 1.0 3.71 1.44 0.58 52.08 5.91 0.98 4.23 1.48 0.44 22.65 4.18 0.96

C
PU

96 89.8% 68.3% 0.0% 2.0 1.29 1.0 - 11.58 1.0 9.88 2.85 0.98 - 28.22 1.0 19.61 4.07 1.0 97.41 8.83 1.0 0.86 0.73 0.74 28.29 5.21 1.0
192 92.2% 71.7% 0.0% 2.13 1.34 1.0 - 16.85 1.0 11.28 3.0 0.97 - 55.6 1.0 27.35 4.74 1.0 - 13.66 1.0 0.98 0.8 0.71 29.04 5.26 1.0
336 92.3% 73.5% 0.0% 2.24 1.38 1.0 - 19.11 1.0 13.16 3.2 0.97 - 85.21 1.0 33.27 5.21 1.0 - 15.59 1.0 1.04 0.83 0.67 28.91 5.25 1.0
720 93.8% 71.3% 0.0% 2.53 1.62 1.0 - 20.85 1.0 12.59 2.99 0.93 - 46.05 1.0 40.63 5.65 1.0 - 17.18 1.0 0.93 0.77 0.57 - 11.6 1.0

Ratio - 100% 100% 9.38% 100% 50% 87.5% 0% 87.5%

Count - 96 34 4 34 37 34 0 49

D.6 RESULTS WITH DIFFERENT HISTORICAL SEQUENCE LENGTH

In this section, we further explore the model’s adaptability to varying historical sequence lengths H
while keeping the future sequence length P fixed. Specifically, we evaluated the performance when
the historical length H takes values from the set {192, 336, 720}, comparing these results with those
of existing baseline models. The experimental outcomes demonstrate that across all tested historical
lengths, our model iQR significantly outperforms other models in terms of predictive accuracy. This
finding further substantiates the robustness of iQR when dealing with data of differing historical
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Table 6: Resource scheduling results on eight datasets with historical length H = 96 and prediction
length P ∈ {96, 192, 336, 720}. The historical and prediction length are set to H = 36 and
P ∈ {24, 36, 48, 60} for ILI. The quantile is set to 0.95. If the QRE in the result is less than the
quantile, it will not be used for comparison. The ratio presents the percentage by which prediction
exceeds ground truth. The best result are highlighted in red bold, and the second best results are
marked with a blue underline.

Methods Ours TimeMixer TimesNet Basisformer iTransformer PatchTST Dlinear FEDformer

Metrics PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE

E
T

T
h 1

96 1.441 0.939 0.953 1.727 1.025 0.938 2.673 1.256 0.938 1.655 0.984 0.949 1.94 1.114 0.943 1.644 0.992 0.929 0.514 0.513 0.678 1.433 0.927 0.867
192 1.644 1.045 0.955 2.052 1.137 0.938 2.939 1.327 0.928 1.814 1.036 0.948 2.359 1.237 0.941 2.073 1.14 0.933 0.573 0.548 0.662 1.789 1.055 0.889
336 1.915 1.061 0.957 2.769 1.309 0.938 2.807 1.28 0.907 1.963 1.113 0.954 2.848 1.366 0.939 2.618 1.304 0.93 0.631 0.579 0.641 2.484 1.273 0.926
720 2.231 1.17 0.95 3.693 1.505 0.919 3.157 1.362 0.87 2.001 1.106 0.952 3.775 1.579 0.917 2.865 1.344 0.896 0.755 0.646 0.605 2.705 1.341 0.914

E
T

T
h 2

96 0.982 0.785 0.954 0.608 0.584 0.933 0.754 0.664 0.921 1.011 0.737 0.943 0.691 0.641 0.941 0.686 0.635 0.941 0.267 0.385 0.765 0.699 0.688 0.944
192 1.197 0.864 0.965 0.769 0.659 0.933 0.754 0.667 0.909 1.246 0.801 0.928 0.826 0.7 0.938 0.691 0.625 0.921 0.306 0.409 0.745 0.93 0.829 0.959
336 1.053 0.806 0.953 0.942 0.757 0.943 0.785 0.676 0.893 1.217 0.817 0.901 0.892 0.739 0.93 0.79 0.675 0.915 0.317 0.418 0.732 0.989 0.849 0.949
720 1.512 1.044 0.99 1.269 0.812 0.923 0.889 0.729 0.894 1.349 0.851 0.924 1.088 0.831 0.934 1.001 0.787 0.931 0.379 0.461 0.722 2.058 1.217 0.951

E
T

T
m

1 96 1.855 1.118 0.951 1.301 0.86 0.925 1.312 0.865 0.893 1.583 0.92 0.942 1.372 0.904 0.928 1.462 0.923 0.925 0.822 0.733 0.892 1.201 0.847 0.905
192 1.62 1.026 0.951 1.508 0.929 0.932 1.523 0.947 0.909 1.892 1.033 0.95 1.663 1.014 0.93 1.701 1.006 0.925 0.92 0.766 0.885 1.42 0.931 0.908
336 1.887 1.128 0.955 1.625 0.977 0.922 1.812 1.051 0.915 2.065 1.087 0.948 1.93 1.1 0.927 1.907 1.069 0.918 1.029 0.805 0.876 1.693 1.034 0.922
720 1.957 1.156 0.956 2.23 1.168 0.936 2.379 1.252 0.93 2.419 1.204 0.949 2.465 1.263 0.926 2.416 1.235 0.925 1.144 0.85 0.862 1.876 1.089 0.893

E
T

T
m

2 96 0.595 0.629 0.967 0.379 0.459 0.92 0.414 0.493 0.93 0.636 0.592 0.946 0.44 0.523 0.939 0.358 0.458 0.931 0.449 0.589 0.955 0.443 0.53 0.958
192 0.729 0.682 0.96 0.59 0.563 0.93 0.536 0.557 0.926 0.852 0.681 0.939 0.586 0.601 0.935 0.512 0.543 0.931 0.565 0.661 0.955 0.66 0.647 0.96
336 0.825 0.721 0.961 0.919 0.673 0.925 0.692 0.636 0.926 1.279 0.841 0.943 0.753 0.679 0.933 0.698 0.636 0.936 0.666 0.716 0.954 0.788 0.73 0.968
720 0.785 0.715 0.982 1.134 0.83 0.947 0.926 0.728 0.916 1.51 0.912 0.929 1.09 0.822 0.937 0.917 0.726 0.925 0.795 0.78 0.947 1.023 0.86 0.967

E
xc

ha
ng

e 96 0.29 0.402 0.956 0.449 0.525 0.969 0.285 0.407 0.805 0.493 0.552 0.973 0.377 0.487 0.96 0.48 0.53 0.968 0.128 0.268 0.652 0.878 0.799 0.994
192 0.422 0.511 0.977 0.824 0.697 0.944 0.421 0.494 0.739 0.847 0.703 0.966 0.688 0.657 0.951 0.865 0.718 0.965 0.225 0.353 0.596 1.359 0.999 0.996
336 0.519 0.58 0.956 1.998 1.128 0.983 0.767 0.691 0.837 2.001 1.097 0.979 1.201 0.879 0.951 1.643 0.996 0.968 0.312 0.422 0.524 2.361 1.331 0.999
720 0.822 0.754 0.953 6.254 1.961 0.981 1.494 0.994 0.852 7.001 2.089 0.994 2.751 1.357 0.97 4.874 1.779 0.99 0.462 0.545 0.353 5.28 1.974 0.999

W
ea

th
er 96 1.079 0.789 0.966 0.595 0.442 0.889 0.628 0.486 0.857 0.911 0.512 0.912 0.909 0.528 0.905 0.779 0.489 0.913 0.454 0.571 0.934 1.377 0.898 0.856

192 1.289 0.884 0.951 0.786 0.566 0.907 0.74 0.541 0.835 1.136 0.597 0.898 1.25 0.651 0.899 1.021 0.586 0.901 0.533 0.621 0.925 1.436 0.923 0.845
336 1.709 1.075 0.958 0.86 0.602 0.882 0.906 0.62 0.839 1.475 0.704 0.897 1.466 0.729 0.887 1.338 0.71 0.907 0.624 0.673 0.917 1.664 0.999 0.906
720 2.729 1.392 0.952 1.212 0.742 0.899 1.027 0.691 0.812 1.861 0.813 0.898 1.771 0.839 0.888 1.794 0.847 0.905 0.744 0.735 0.906 2.43 1.27 0.934

IL
I

24 33.407 4.943 0.967 18.574 3.395 0.876 3.859 1.641 0.566 10.712 2.592 0.881 3.159 1.396 0.567 10.857 2.513 0.877 1.49 1.01 0.44 6.417 2.135 0.77
36 54.821 6.386 0.956 27.936 3.845 0.923 5.7 1.847 0.603 15.209 3.09 0.89 4.654 1.618 0.619 12.832 2.628 0.902 2.107 1.148 0.461 7.18 2.216 0.793
48 97.343 8.349 0.95 21.284 3.639 0.898 6.217 1.829 0.592 15.746 3.175 0.9 7.857 2.062 0.676 20.766 3.135 0.914 2.722 1.382 0.477 9.23 2.477 0.824
60 95.065 8.22 0.95 27.673 3.62 0.923 7.231 2.13 0.61 19.6 3.404 0.923 8.204 2.104 0.685 21.469 3.186 0.911 2.743 1.388 0.487 9.876 2.557 0.829

C
PU

96 2.766 1.512 0.952 1.827 1.007 0.929 2.832 1.432 0.911 3.483 1.551 0.936 2.21 1.265 0.889 2.694 1.369 0.914 0.768 0.714 0.741 1.78 1.085 0.846
192 2.917 1.517 0.953 2.259 1.153 0.916 4.417 1.837 0.922 4.042 1.692 0.915 2.318 1.296 0.856 3.597 1.631 0.91 0.801 0.744 0.714 2.379 1.279 0.876
336 3.096 1.548 0.955 2.825 1.314 0.926 5.29 2.034 0.937 4.208 1.683 0.895 2.129 1.239 0.804 3.649 1.632 0.888 0.84 0.763 0.672 2.008 1.164 0.839
720 2.484 1.387 0.981 3.343 1.493 0.916 10.061 2.735 0.886 5.906 1.939 0.907 3.041 1.45 0.762 4.705 1.817 0.886 0.635 0.667 0.569 2.396 1.335 0.834

Ratio 100% 9.375% 0% 21.875% 12.5% 12.5% 9.375% 31.25%

Count 88 1 0 11 8 0 7 21

Table 7: Resource scheduling results on eight datasets with historical length H = 96 and prediction
length P ∈ {96, 192, 336, 720}. The historical and prediction length are set to H = 36 and
P ∈ {24, 36, 48, 60} for ILI. The quantile is set to 0.9. If the QRE in the result is less than the
quantile, it will not be used for comparison. The best result are highlighted in red bold, and the
second best results are marked with a blue underline.

Methods Ours TimeMixer TimesNet Basisformer iTransformer PatchTST Dlinear FEDformer

Metrics PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE PMSE PMAE QRE

E
T

T
h 1

96 1.185 0.782 0.904 1.209 0.81 0.884 1.514 0.951 0.884 1.23 0.82 0.901 1.287 0.874 0.887 1.187 0.801 0.874 0.57 0.546 0.66 1.106 0.764 0.771
192 1.239 0.842 0.904 1.345 0.865 0.872 1.705 1.015 0.885 1.311 0.847 0.891 1.53 0.963 0.887 1.433 0.901 0.876 0.629 0.577 0.639 1.244 0.833 0.793
336 1.821 1.027 0.9 1.547 0.943 0.875 2.308 1.131 0.849 1.347 0.868 0.884 1.816 1.052 0.883 1.674 0.991 0.864 0.753 0.645 0.604 1.531 0.969 0.866
720 1.798 1.032 0.902 1.962 1.096 0.852 2.515 1.176 0.786 1.453 0.909 0.885 2.303 1.194 0.846 1.881 1.055 0.827 0.511 0.51 0.676 1.88 1.085 0.852

E
T

T
h 2

96 0.924 0.734 0.955 0.697 0.643 0.82 0.648 0.62 0.831 0.782 0.629 0.899 0.49 0.519 0.889 0.421 0.474 0.872 0.301 0.405 0.741 0.471 0.502 0.878
192 1.466 1.007 0.949 0.885 0.751 0.846 0.753 0.682 0.82 0.872 0.668 0.884 0.578 0.563 0.883 0.54 0.534 0.873 0.314 0.415 0.729 0.639 0.645 0.888
336 1.982 1.184 0.961 0.894 0.741 0.786 0.859 0.734 0.822 1.024 0.734 0.888 0.618 0.589 0.876 0.516 0.521 0.838 0.38 0.462 0.723 0.564 0.583 0.892
720 2.132 1.228 0.967 0.863 0.761 0.804 1.091 0.873 0.845 0.99 0.728 0.857 0.686 0.629 0.871 0.749 0.662 0.892 0.262 0.379 0.76 0.732 0.684 0.895

E
T

T
m

1 96 2.282 1.173 0.901 0.885 0.669 0.851 0.915 0.684 0.808 1.111 0.743 0.875 0.929 0.708 0.864 0.993 0.727 0.866 0.791 0.692 0.86 0.845 0.66 0.844
192 1.895 1.079 0.907 1.078 0.745 0.866 1.024 0.738 0.832 1.285 0.815 0.89 1.116 0.787 0.868 1.077 0.748 0.842 0.914 0.741 0.854 0.961 0.711 0.845
336 1.89 1.085 0.907 1.176 0.783 0.856 1.289 0.846 0.861 1.521 0.903 0.903 1.289 0.854 0.868 1.318 0.848 0.856 1.045 0.798 0.843 1.096 0.766 0.846
720 2.203 1.168 0.907 1.461 0.902 0.866 1.594 0.97 0.87 1.509 0.926 0.886 1.563 0.965 0.868 1.556 0.937 0.85 0.686 0.651 0.865 1.222 0.812 0.82

E
T

T
m

2 96 0.579 0.58 0.927 0.256 0.365 0.852 0.294 0.395 0.87 0.409 0.454 0.9 0.299 0.413 0.888 0.264 0.365 0.852 0.397 0.534 0.881 0.905 0.667 0.771
192 1.138 0.844 0.935 0.425 0.472 0.887 0.363 0.445 0.873 0.561 0.536 0.9 0.39 0.471 0.883 0.344 0.421 0.856 0.492 0.595 0.893 1.037 0.734 0.793
336 1.19 0.889 0.94 0.524 0.509 0.864 0.481 0.5 0.863 0.763 0.624 0.901 0.497 0.529 0.881 0.457 0.494 0.877 0.629 0.675 0.891 1.361 0.888 0.866
720 1.517 1.036 0.959 0.619 0.572 0.861 0.667 0.616 0.87 0.986 0.707 0.886 0.682 0.626 0.886 0.569 0.536 0.85 0.302 0.463 0.887 1.643 0.983 0.852

E
xc

ha
ng

e 96 0.199 0.315 0.9 0.282 0.405 0.917 0.359 0.454 0.872 0.6 0.596 0.949 0.318 0.458 0.917 0.306 0.447 0.907 0.225 0.352 0.598 0.66 0.698 0.99
192 0.396 0.486 0.91 0.673 0.624 0.906 0.632 0.611 0.873 1.077 0.81 0.957 0.517 0.561 0.916 0.627 0.641 0.93 0.313 0.422 0.53 1.005 0.843 0.989
336 1.005 0.801 0.914 1.099 0.812 0.932 0.735 0.673 0.83 1.91 1.096 0.965 0.91 0.757 0.925 1.2 0.894 0.928 0.464 0.546 0.363 1.656 1.066 0.994
720 0.979 0.804 0.913 3.889 1.569 0.965 1.494 0.996 0.862 4.357 1.675 0.978 2.38 1.257 0.961 3.889 1.569 0.965 0.127 0.266 0.652 4.216 1.735 0.998

W
ea

th
er 96 0.767 0.58 0.905 0.341 0.343 0.83 0.331 0.338 0.817 0.535 0.404 0.832 0.47 0.361 0.838 0.463 0.375 0.864 0.473 0.572 0.904 0.421 0.41 0.894

192 0.983 0.742 0.92 0.416 0.406 0.837 0.428 0.426 0.725 0.633 0.458 0.836 0.602 0.45 0.835 0.586 0.452 0.855 0.573 0.633 0.897 0.564 0.502 0.859
336 1.093 0.805 0.904 0.551 0.469 0.825 0.579 0.493 0.708 0.824 0.543 0.83 0.894 0.553 0.835 0.695 0.493 0.825 0.697 0.704 0.899 0.692 0.559 0.854
720 1.506 0.981 0.909 0.692 0.546 0.833 0.71 0.582 0.737 1.228 0.672 0.839 1.032 0.619 0.831 1.009 0.63 0.844 0.688 0.71 0.921 0.94 0.681 0.827

IL
I

24 2.465 1.374 0.905 13.339 2.583 0.805 9.814 1.997 0.807 5.084 1.57 0.818 6.995 1.874 0.658 8.0 1.755 0.825 2.735 1.385 0.486 6.898 2.097 0.753
36 6.761 2.291 0.901 9.662 2.148 0.807 9.826 1.958 0.776 3.526 1.432 0.817 4.949 1.614 0.623 5.941 1.558 0.789 2.719 1.381 0.477 5.785 1.904 0.741
48 34.879 4.981 0.902 12.691 2.782 0.779 7.785 1.771 0.837 2.658 1.232 0.742 4.813 1.602 0.633 6.684 1.765 0.824 2.106 1.147 0.461 5.431 1.829 0.729
60 36.857 5.099 0.912 7.125 1.937 0.789 6.154 1.701 0.764 4.111 1.516 0.791 2.79 1.297 0.553 4.992 1.512 0.775 1.488 1.01 0.44 4.144 1.705 0.673

C
PU

96 1.091 0.908 0.906 1.382 0.985 0.849 1.84 1.136 0.877 1.963 1.16 0.885 1.14 0.861 0.824 1.604 1.03 0.864 0.786 0.734 0.711 1.573 1.013 0.841
192 1.858 1.207 0.905 2.168 1.247 0.848 2.249 1.254 0.858 2.196 1.257 0.857 1.595 1.058 0.82 2.094 1.227 0.857 0.826 0.755 0.67 1.763 1.076 0.842
336 2.891 1.512 0.907 2.101 1.238 0.812 2.788 1.435 0.863 3.009 1.412 0.836 1.795 1.119 0.779 2.242 1.244 0.81 0.626 0.662 0.566 2.123 1.222 0.825
720 2.595 1.358 0.912 3.235 1.538 0.833 4.343 1.785 0.845 4.55 1.703 0.845 2.518 1.311 0.742 3.556 1.553 0.813 0.753 0.705 0.736 3.213 1.506 0.778

Ratio 100% 12.5% 0% 28.125% 12.5% 12.5% 6.25% 12.5%

Count 92 2 0 19 6 0 6 4
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lengths. As depicted in Figure 8, under the condition of a fixed prediction length, iQR achieves higher
QRE at each configuration of historical length. Unlike other methods, iQR does not rely on GPU
resources, and its training duration is significantly shorter than other approaches, thereby highlighting
its performance superiority across various parameter settings.

Table 8: QRE results for resource scheduling on ETTh1 dataset with historical length H =
{192, 336, 720} and prediction length P = 96. The quantile is 0.9. If the QRE in the result is
less than the quantile, it will not be used for comparison. The best result are highlighted in red bold.

Methods H P PMSE PMAE QRE Time(s) GPU(GB)

iQR 192 96 1.12 0.74 0.91 1.15 0
iQR 336 96 1.19 0.79 0.92 1.18 0
iQR 720 96 1.22 0.83 0.92 1.21 0

TimeMixer 192 96 1.08 0.75 0.89 375.73 0.55
TimeMixer 336 96 1.01 0.72 0.87 382.28 0.94
TimeMixer 720 96 1.20 0.85 0.89 433.39 2.39

TimesNet 192 96 1.26 0.83 0.88 837.19 0.19
TimesNet 336 96 1.25 0.82 0.88 851.84 0.27
TimesNet 720 96 1.13 0.78 0.85 889.05 0.48

Basisformer 192 96 1.29 0.86 0.89 359.55 0.04
Basisformer 336 96 1.23 0.84 0.87 359.23 0.04
Basisformer 720 96 1.35 0.90 0.89 348.16 0.05

iTransformer 192 96 1.12 0.80 0.89 82.10 0.01
iTransformer 336 96 1.13 0.81 0.88 201.57 0.01
iTransformer 720 96 1.17 0.83 0.89 197.04 0.01

PatchTST 192 96 1.05 0.74 0.88 166.41 0.41
PatchTST 336 96 1.11 0.76 0.88 199.85 1.78
PatchTST 720 96 1.09 0.76 0.88 223.40 2.09

DLinear 192 96 0.46 0.48 0.67 107.57 0.01
DLinear 336 96 0.45 0.47 0.68 119.17 0.01
DLinear 720 96 0.45 0.47 0.67 127.84 0.01

FEDformer 192 96 1.17 0.82 0.87 1073.57 1.94
FEDformer 336 96 1.36 0.91 0.89 1102.01 2.23
FEDformer 720 96 1.39 0.91 0.86 1137.32 3.13

D.7 RESULTS ON BIG DATASETS

To further explore the computational efficiency and scalability of the iQR framework, we paid
particular attention to its performance when handling large-scale datasets. For this evaluation, the
Bitcoin historical dataset provided on Kaggle is adopted 6, which records Bitcoin transaction data
every minute from 2012 to 2021. After preprocessing, the dataset reached a length of 3,330,541
records, involving 7 features.

In this assessment, we compared iQR with traditional time series analysis methods, such as AR and
ARIMA, as well as deep learning approaches, including LSTM and Transformer. Notably, to ensure
a fair comparison, we modified the traditional methods to a quantile version and introduced a quantile
regression loss function for the deep learning models.

The test results in Table 9 demonstrated that iQR outperformed these traditional methods in terms of
memory usage and processing speed. Specifically, when processing over three million data records,
the training time for LSTM and Transformer was 100 and 300 times that of iQR, respectively. This
significant difference highlights iQR’s capability to handle large datasets in resource-constrained
environments, especially without the need for GPU resource support.

Furthermore, the lightweight nature of iQR allows it to complete training within seconds on CPUs,
significantly reducing computational overhead. This increase in efficiency not only showcases the
potential in practical applications but also proves its practical value in resource scheduling problems,
especially in scenarios that require rapid and accurate predictions.

6https://www.kaggle.com/datasets/mczielinski/bitcoin-historical-data
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iQR framework has shown excellent computational efficiency and good scalability when dealing
with large-scale datasets, making it an ideal choice for addressing resource scheduling problems,
particularly in real-time application scenarios where computational resources are limited.

(a) Training epoch duration efficiency analysis. (b) Total time efficiency analysis.

Figure 6: Additional running efficiency analysis.

Table 9: QRE results for resource scheduling on Bitcoin dataset with historical length H = 96 and
prediction length P = 96. If PMSE or PMAE is greater than 100, the symbol - is used to replace the
original value. The quantile is 0.9. If the QRE in the result is less than the quantile, it will not be
used for comparison. The best result are highlighted in red bold.

Methods Length Time(s) GPU(GB) PMSE PMAE QRE

iQR 103 0.13 0 1.55 1.04 0.93
iQR 104 1.14 0 1.17 0.87 0.91
iQR 105 15.21 0 1.28 1.00 0.91
iQR 106 101.84 0 1.49 1.29 0.90

QAR 103 1.03 0 - 43.84 0.15
QAR 104 2.41 0 - - 0.16
QAR 105 19.15 0 - - 0.11
QAR 106 166.52 0 - - 0.07

QARIMA 103 1.67 0 - 16.07 0.59
QARIMA 104 4.92 0 - 17.52 0.74
QARIMA 105 20.39 0 - - 0.38
QARIMA 106 204.45 0 - - 0.52

LSTM 103 10.37 0.02 - 15.83 0.69
LSTM 104 101.49 0.02 - - 0.50
LSTM 105 1179.03 0.02 - - 0.95
LSTM 106 11706.33 0.02 - - 0.90

GRU 103 10.5 0.02 - 29.75 0.81
GRU 104 105.73 0.02 - - 0.79
GRU 105 1067.28 0.02 - - 0.97
GRU 106 11790.11 0.02 - - 0.97

Transformer 103 32.15 0.08 - 11.70 0.95
Transformer 104 302.93 0.08 - - 0.25
Transformer 105 3147.43 0.08 - - 0.98
Transformer 106 31278.46 0.08 - - 0.97

D.8 EFFICIENCY ANALYSIS

We further provide a detailed analysis of total time and one-epoch execution time to compare different
models. Specifically, the total time of iQR remains relatively stable as the length of historical
sequences increases, showing its efficiency in long sequence training. As shown in Figure 6, as the
sequence length grows from 96 to 2880, the total time of iQR only increases from 1.082 s to 1.141
s. In addition, we take the single-channel total time in the iQR model as the one-epoch execution
time, and the results show that the computational efficiency of iQR is similar within each channel,
regardless of the large increase in sequence length.
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For TimeMixer and TimesNet, under the same conditions, both the total time and the duration of
individual epochs show a significant increase with sequence length, which directly leads to their poor
performance in long sequence prediction tasks. Basisformer maintains similar performance across
different scale sequences, outperforming other baselines, but the time spent is still higher than our
method. Although PatchTST uses time series segmentation to improve learning efficiency, the result
shows a significant increase in total time as the sequence length increases, revealing the efficiency
limitations of the segmentation strategy for long sequence processing. This further emphasizes the
applicability of iQR on data at different scales. Dlinear outperforms the transformer-based model in
terms of less memory usage and time spent. FEDformer consistently exhibits the largest resource
usage, showing its limitations in efficiency and scalability. In conclusion, iQR provides both efficient
and resource-saving solutions for resource scheduling tasks.

E PSEUDOCODE

We further provide pseudocode of the proposed algorithm iQR, offering a concise, step-by-step
outline of its functionality and logic. The pseudocode can be found in Pseudocode 1.

Algorithm 1: Business-driven identification prediction framework (iQR)
Input: Time series X, historical length H , prediction length P , hyperparameters α, β, τ, λ
Output: Prediction sequence Ŷ

for each channel i = 1, . . . , dx do
Split data Xi into a training set Xi

train and a test set Xi
test

/* Phase I: Global Identification */
Perform data normalization
Select the 1st set of basis vectors using FFT on Xi

train, generating global basis vectors Θg

Select the 2nd set of basis vectors using SOR, resulting in the significant global basis Θ̂i
g

Perform L1QR to compute the global identification Ŷ i
g

/* Phase II: Local Identification */
for each test batch b = 1, . . . , N do

Fuse global and local knowledge, yielding the fused sequence X̂i = wXi + (1−w)Y i
g

Select the 1st set of local basis using FFT on X̂i
lb,t

, yielding local basis vectors Θi
lb,t

Select the 2nd set of local basis using SOR, obtaining the significant local basis Θ̂i
lb,t

Enhance the input sequence using STL, resulting in X̃i
lb,t

Perform L1QR to obtain the local identification Ŷ i
lb,t

/* Phase III: Concatenation */

Construct the complete prediction sequence Ŷ

return Ŷ

F THEORETICAL PROOF

F.1 PROOF OF LEMMA 2

Proof. Let E denote the error, Y represent the ground truth, X be the basis function library, and θ
be the coefficients. Then, we have E = Y −Xθ. Therefore, the optimization function O(θ) can be
written in the following form:

O(θ) =
1

2
E⊤E =

1

2
(Y −Xθ)

⊤
(Y −Xθ), (9)

=
1

2
θ⊤X⊤Xθ −X⊤Y θ +

1

2
Y ⊤Y.
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Since this is an unbiased least squares estimate, it holds true if and only if the following equation is
satisfied

∂O

∂θ
= X⊤Xθ −X⊤Y = X⊤(Xθ − Y ) = −X⊤E = 0. (10)

Equation 10 proof the orthogonality principle.

F.2 PROOF OF LEMMA 3

Proof. The proof of the number of basis vectors is conducted using mathematical induction.

(1) When there is only 1 basis function, it is obviously true.

(2) Assuming that the statement holds true for k basis vectors, we consider the case when there are
(k + 1) basis vectors. Since the residual corresponding to the representation of the target using k
basis vectors is orthogonal to any linear combination of these k basis vectors (Lemma 2), and the
additional (k + 1)th basis function is orthogonal to the k basis vectors, the projection of the linear
combination of the k basis vectors onto the (k + 1) basis vectors and the residual vector must be
zero (i.e., the subsequent selections do not affect the influence of the (k + 1)th basis function on the
residual). The problem then reduces to the projection process of the (k + 1) basis vectors onto E.
According to (1), the first greedy selection is also globally optimal. After the first greedy selection,
there remain k basis vectors, and by the assumption, the conclusion holds.

F.3 PROOF OF THEOREM 1

Proof. Consider the regression model Y = Xθ + E.

According to Corollary 2, the matrix X is decomposed to X = VR, where Vm×n is a matrix with
pairwise orthogonal columns Vi, and Rn×n is an upper triangle matrix with diagonal entries equal
to 1. Besides, V⊤V = Λ = diag(d1, d2, . . . , dn) with di = V⊤

i Vi.

Then, the regression model is remarked as

Y = VB + E, (11)

in which Rθ = B. The solution to the regression model is calculated by B = (V⊤V)−1V⊤Y =
Λ−1V⊤Y . The values are denoted as Bi = (V⊤

i Y )/(V⊤
i Vi), i ∈ [1, n].

According to Lemma 2, Vi is orthogonal to Vj and E. By multiplying Y itself and dividing by N ,
the output variance is given by

1

N
Y ⊤Y =

1

N

n∑
i=1

B2
i V

⊤
i Vi +

1

N
E⊤E, (12)

where 1
NB2

i V
⊤
i Vi is the variance caused by regressor Vi. Larger value indicates the regressor is

more significant. Thus, the regressor Vi reduces the error E at the following error reduction ratio Ri

Ri =
B2

i V
⊤
i Vi

Y ⊤Y
. (13)

To select ns significant regressors, Gram-Schmidt orthogonalization method is adopted here.

For i ∈ [1, n], we have

V
(i)
1 = Xi,

B
(i)
1 =

V
(i)⊤
1 Y

V
(i)⊤
1 V

(i)
1

,

R
(i)
1 =

(
B

(i)
1

)2
V

(i)⊤
1 V

(i)
1

Y ⊤Y
,

(14)
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Next, calculate the largest R1 and represent as R
(i(1))
1 = maxi R

i
1. The corresponding regressor is

V1 = V
(i1)
1 = X(i1).

For i ∈ [1, n] at kth step and i ̸= i1, . . . , ik−1, we have

C
(i)
jk =

V⊤
j Xi

V⊤
j Vj

with j = 1, . . . , k − 1

V
(i)
k = Xi −

k−1∑
j=1

c
(i)
jkVj ,

B
(i)
k =

V
(i)⊤
k Y

V
(i)⊤
k V

(i)
k

,

R
(i)
k =

(
B

(i)
k

)2
V

(i)⊤
k V

(i)
k

Y ⊤Y

(15)

Similarly, the maximum error reduction ratio is R(ik)
k = maxi R

(i)
k , and the corresponding regressor

is Vk = V
(ik)
k = Xik −

∑k−1
j=1 C

(ij)
jk

Vj .

If the value of unexplained output variance drops below the limit ε, that is, 1−
∑ns

j=1 R
(ij)
j < ε, the

algorithm will be predetermined. Thus, the orthogonal basis vectors Vi are obtained.
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