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Abstract

Vision–Language Models (VLMs) demonstrate strong performance on a wide1

range of tasks by fine-tuning pretrained language backbones to process projected2

visual tokens alongside text. Yet despite these empirical gains, it remains unclear3

how backbone representations adapt during multimodal training and when vision-4

specific capabilities emerge. In this work, we present the first mechanistic analysis5

of VLMs adaptation with stage-wise model diffing, a technique that isolates rep-6

resentational changes introduced during multimodal fine-tuning to reveal how a7

language model learns to "see". Concretely, we fine-tune sparse autoencoders8

trained on LLaMA-3.1-8B over multimodal activations from LLaVA-More (based9

on LLaMA-3.1-8B) using 50k VQAv2 pairs. We first isolate vision-preferring10

features that appear or reorient during multimodal fine-tuning. We then test for11

spatial selectivity using a controlled shift to spatial prompts and use attribution12

patching to identify the attention heads that causally activate these units. Our find-13

ings show that stage-wise model diffing reveals when and how spatially grounded14

multimodal features arise. It also provides a clearer view of modality fusion by15

showing how visual grounding reshapes features that were previously text-only.16

This methodology enhances the interpretability of multimodal training and provides17

a foundation for refining training regimes as well as auditing and steering models18

in safety-critical or domain-specific settings.19

1 Introduction20

Large vision–language models (VLMs) have achieved strong performance on multimodal tasks,21

including visual question answering (VQA), image captioning, object detection, and visual grounding22

[28, 27, 1, 2, 11]. These gains are typically realized by fine-tuning pretrained language models to23

process visual inputs through projected token sequences, allowing for seamless fusion of image24

and text representations [49, 19, 51, 13, 12]. Yet we lack a mechanistic account of how language25

representations adapt during multimodal training and when vision-specific capabilities emerge [23,26

45, 46, 42, 5].27

In this work, we introduce a methodology for analyzing multimodal adaptation in VLMs through28

stage-wise model diffing [6]. This mechanistic interpretability technique isolates representational29

changes introduced during fine-tuning by comparing sparse autoencoder (SAE) dictionaries across30

training stages, models, or datasets. By tracking how individual features rotate, emerge, or are31

repurposed, stage-wise diffing has been shown to uncover subtle shifts such as sleeper-agent features32

[21, 6]. We extend this approach to the multimodal setting, presenting the first application of33

stage-wise model diffing to study how pretrained language features evolve under visual grounding.34

Concretely, we fine-tune LLaMA-Scope SAEs on activations extracted from the LLaVA-More model35

[20] on 50k samples from the VQAv2 dataset [17]. This warm-start preserves continuity with the36
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original feature basis while allowing the SAE to adapt to new multimodal activations. By examining37

reconstruction quality and geometric alignment across different masking regimes, we isolate a subset38

of adapted features that show both a preference for vision-conditioned tokens and a marked rotation39

in their semantic geometry. These features serve as anchors for understanding how spatially grounded40

representations emerge within a pretrained language model.41

To determine whether these features encode spatial reasoning, we introduce a controlled dataset42

shift from general VQA to spatially targeted queries. We track feature firing patterns under both43

distributions and identify a selective subset that is preferentially recruited for spatial prompts. These44

spatial candidates are further validated through both automatic interpretation (via GPT-4o-mini [38])45

and manual inspection, revealing consistent activations on questions involving object placement,46

relative position, and orientation.47

Finally, we use attribution patching to trace the causal pathways by which these spatial features are48

activated. We adapt gradient-based attribution techniques to measure how attention heads across49

the LLM backbone contribute to spatially selective feature activations. Our results reveal a sparse50

set of mid-to-deep layer heads that consistently drive spatial representations, often localizing to51

semantically meaningful regions and reappearing across related prompts. These findings support the52

hypothesis that a small number of specialized attention heads coordinate visual grounding within the53

model.54

Our contributions offer a unified methodology for dissecting multimodal adaptation in large models:55

• We propose stage wise model diffing as a method for dissecting multimodal adaptation in56

large language models, and show that it isolates the emergence of vision specific features57

within the backbone.58

• We identify sparse SAE features that encode spatial relationships and are selectively activated59

by spatial prompts.60

• We causally attribute these features to a small subset of attention heads using scalable61

patching methods.62

By focusing on feature-level change, our approach complements high-level alignment analyses and63

probing-based methods, providing a deeper mechanistic view of how models “learn to see”. More64

broadly, this work offers a framework for auditing and refining multimodal training regimes, with65

implications for safety-critical domains and targeted fine-tuning in specialized applications.66

2 Related Work67

Model Diffing and Representation Dynamics. Model diffing techniques aim to isolate how68

internal representations change across models or training stages. Early work compared networks69

through global similarity measures, such as visualizing function space geometry with meta-SNE [37,70

14], stitching intermediate representations across models [26, 3], or defining new similarity metrics71

[25, 4]. Others examined alignment at the level of individual neurons and features, showing evidence72

for convergent units across independently trained networks [29, 36]. Relatedly, Kissane et al. [24]73

investigated whether SAEs trained on a base model transfer to fine-tuned variants, finding that they74

largely do. This suggests that fine-tuning mostly preserves representational structure, with only a75

small subset of features altered—underscoring the importance of methods that can isolate and interpret76

precisely those changes. More recently, Anthropic’s Sparse Crosscoders [30] extended autoencoder-77

based analysis to discover shared features across layers and models, while stage-wise model diffing78

has proven more precise at uncovering subtle representational shifts, including sleeper-agent features79

[6] and interpretable distinctions between base and chat-tuned models [33].80

Extensions to multimodal LLMs have highlighted how fine-tuning alters representational structure:81

Khayatan et al. [23] proposed concept-shift vectors for steering, and Venhoff et al. [45] showed that82

vision-language alignment converges in middle-to-late layers. However, these approaches remain83

at the level of semantic shifts or adapter alignment. In contrast, our work applies stage-wise model84

diffing with sparse autoencoders directly to the LLM backbone and the multimodal feature aligned85

model, providing the first mechanistic analysis of how multimodal fine-tuning rotates features and86

induces spatially grounded representations within pretrained language models.87
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Multimodal Mechanistic Interpretability. Compared to the rapidly growing literature on mecha-88

nistic interpretability of textual LLMs, relatively few studies have examined the internal mechanisms89

of multimodal large language models (MLLMs). Recent efforts in multimodal interpretability have ex-90

plored a variety of approaches. Stan et al. [42] introduced an interpretability tool for vision–language91

models that leverages attention patterns, relevancy maps, and causal interventions to provide high-92

level explanations of model behavior. Basu et al. [5] applied causal intervention methods to trace93

information storage and transfer in MLLMs, while Palit et al. [39] used causal mediation analysis to94

study how BLIP integrates visual evidence into its predictions.95

Other work has focused on probing the representations of vision encoders and multimodal backbones.96

Tong et al. [44] and Gandelsman et al. [15], along with Chen et al. [8], analyzed the interpretability97

of CLIP, revealing both its strengths and representational shortcomings. Schwettmann et al. [41]98

identified multimodal neurons that respond jointly to visual and textual concepts, while Jiang et99

al. [22] investigated how VLMs differentiate between hallucinated and real objects. More recent100

probing-based methods have attempted to map visual representations into linguistic space, such as101

Neo et al. [35], who projected visual embeddings onto language vocabulary, and Venhoff et al. [46],102

who studied the late emergence of visual representations within LLM backbones. These approaches103

leave open the mechanistic question of how multimodal fine-tuning restructures the language model’s104

internal features, which is the focus of our work.105

3 Preliminaries106

3.1 Vision–Language Models107

A vision–language model (VLM) consists of three components: a visual encoder fV , a pretrained108

language model fLM, and a trainable projector P . The visual encoder (e.g., CLIP [40]) extracts109

image patch embeddings V = fV (x) = [v1, . . . , vNV
], which the projector maps into the token110

space as Ṽ = P (V ). These projected image tokens are concatenated with tokenized text embeddings111

T = [t1, . . . , tNT
] to form the multimodal sequence X = [ṽ1, . . . , ṽNV

, t1, . . . , tNT
].112

The visual encoder functions as a perception tool to “see” the image, while the projector ensures that113

the extracted features can be seamlessly integrated into the input space of the language model.114

The language model processes X through a stack of transformer layers, each consisting of multi-head115

self-attention (MHA) and a feed-forward network. For each head h, attention is computed as116

Attn(Q,K, V ) = Softmax
(

QK⊤

√
dh

+M
)

V, (1)

where M is the causal mask that prevents attending to future tokens. The outputs of all heads are117

concatenated and projected back into the hidden dimension, and the final hidden states are mapped118

through the unembedding matrix to yield next-token probabilities.119

For our experiments, we adopt LLaVA-More [9], which extends LLaVA framework [32, 31] by120

integrating recent language models and diverse visual backbones; specifically, we use the variant com-121

bining the CLIP ViT-Large-Patch14–336 encoder with a LLaMA-3.1-8B language model backbone122

[18].123

3.2 Sparse Autoencoders (SAEs)124

Sparse Autoencoders (SAEs) are designed to reverse superposition by extracting features that are125

sparse, linear, and decomposable [7, 10]. A vanilla SAE consists of a single hidden layer where an126

input x ∈ R
D is linearly mapped to hidden activations127

f(x) = ReLU(Wencx+ benc), Wenc ∈ R
F×D, benc ∈ R

F , (2)

which are then decoded back into the input space: x̂ = Wdecf(x)+bdec, Wdec ∈ R
D×F , bdec ∈ R

D.128

Sparsity is encouraged via an L1 penalty on the hidden activations, yielding the objective129

L = ∥x− x̂∥2
2
+ λ

F
∑

i=1

∥fi(x)∥1. (3)

Here, decoder columns (Wdec):,i define the direction of each feature in input space, while encoder130

rows (Wenc)i,: act as detectors that determine when a feature is present. The ReLU activation enforces131
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non-negativity, while the L1 penalty drives most hidden units toward zero, ensuring sparse feature132

use.133

Top-K Sparse Autoencoders Top-K Sparse Autoencoders (SAEs) [16] improve upon the vanilla134

formulation by enforcing sparsity through hard feature selection: for each input, only the K most135

active hidden units are retained, while all others are set to zero,136

fi(x) = TopK
(

ReLU(Wenc,ix+ benc,i)
)

, i ∈ {1, . . . , F}.

As in the vanilla SAE, the surviving hidden activations are decoded back into input space. This137

mechanism achieves a sharper sparsity–fidelity tradeoff, prevents feature co-adaptation, and improves138

interpretability by ensuring only a small set of features contributes to reconstruction.139

We build on the LLAMA-SCOPE suite of SAEs trained on LLaMA-3.1-8B [20], which introduce140

several enhancements over the baseline Top-K design; including incorporating the 2-norm of the141

decoder columns norms directly into the Top-K computation [43], post-processing Top-K SAEs to142

JumpReLU variants to ensure approximately K active features at inference, and using a K-annealing143

schedule to smoothly reduce activations during early training. Since the Vision–Language Model144

used in our experiments (LLaVA-More) is also built on the LLaMA-3.1-8B backbone, we initialize145

from its pretrained SAEs rather than retraining from scratch, enabling us to directly leverage millions146

of monosemantic features across layers.147

4 Adapting Language Dictionaries to Vision-Language Space148

To study how multimodal fine-tuning reshapes internal representations, we adapt sparse autoen-149

coders (SAEs) to the hidden states of LLAVA-MORE (Llama 3.1 8B backbone) [9]. We use 50k150

image–question pairs from the VQAv2 dataset [17], a widely used benchmark for visual question151

answering that pairs natural images with open-ended queries. Each SAE is attached to the output of a152

transformer block and trained on cached activations from these samples. Each image contributes a153

contiguous span of 575 visual tokens, while the accompanying question provides a variable-length154

text sequence, together enabling token-type–specific masking.155

We initialize SAEs from the pretrained llama_scope_lxr_8x release, re-instantiated as a top-k156

model (k=50), to preserve a meaningful basis while enabling sparse, interpretable codes. This157

warm-start ensures continuity with the pretrained language feature space, whereas training from158

scratch serves only as a control. For comparison, we also train SAEs from random initialization.159

Training uses Adam with a layer-scaled learning rate, and cached activations are processed in padded160

mini-batches. To disentangle modality-specific contributions, we consider four regimes: (i) full161

sequence, (ii) image-only, using only the visual-token span, (iii) text-only, using only the non-visual162

span, and (iv) random initialization. In all cases the SAE receives the full hidden state sequence, but163

masking controls which token spans contribute to the training signal.164

We evaluate reconstruction quality using the fraction of variance unexplained (FVU) and report165

sparsity to verify that codes remain selective. Evaluation is performed on a held-out split. Figure166

1 shows FVU as a function of tokens seen across layers and masking regimes. Text-only SAEs167

converge rapidly, while image-only and full-token regimes converge slowly and plateau at higher error,168

reflecting the mismatch between projector embeddings and the LLM basis. Random initialization169

performs worst, underscoring the importance of starting from a pretrained language dictionary.170

These findings establish text-only SAEs as a reliable reconstruction baseline, which we later use for171

stage-wise feature diffing.172

Implications for stage-wise model diffing. Stage-wise diffing assumes that fine-tuning induces173

localized (feature-level) changes rather than wholesale rotations. Prior work reports that image-174

token representations in early layers exhibit higher reconstruction error than text tokens, indicating175

a distributional gap between projector outputs and the LLM basis [47]. Consistent with this, our176

decoder–cosine analysis (Appx.Fig.6) shows that text-only SAEs remain highly aligned to the base177

LLM dictionary across layers, whereas image-only and full-sequence SAEs undergo large rotations178

in shallow layers and only align in later layers. We also note that text-only SAEs begin with slightly179

higher error in the very first layers but adapt extremely quickly, converging to near-zero reconstruction,180

while image and full-sequence SAEs plateau at higher error—underscoring the instability of projector-181

driven spans (see Appx.Fig.7). We therefore avoid stage-wise diffing on image-only or full-sequence182
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Metric Full Random Image Text

Mean 0.032 0.050 0.037 0.005

Std 0.028 0.041 0.027 0.009

Min 0.013 0.020 0.017 0.000

Max 0.123 0.198 0.123 0.037

Tokens (M) 31.6 31.6 28.4 3.2

Figure 1: SAE adaptation on LLAVA-MORE. Left: Mean fraction of variance unexplained (FVU)
across layers on the validation set during adaptation. Right: Summary statistics of FVU values on the
validation set, with decimal alignment; the lowest mean is highlighted in bold.

SAEs in early layers, and focus on text-only SAEs and on later layers where alignment is stable and183

feature-level identifiability is more plausible.184

5 Identifying Adapted Features185

Our goal is to find SAE features that (i) exhibit a modality preference for vision input and (ii) reorient186

geometrically after multimodal adaptation. Such features are the best targets for stage-wise diffing187

and later causal probes.188

5.1 Signals189

Modality preference (variance gap). View each SAE feature f as a latent direction whose activation190

on hidden state x is hf (x). We quantify f ’s preference for vision states using the variance gap:191

∆f = Evision

[

h2

f

]

− Etext

[

h2

f

]

.

Evision[·] is taken from VQA runs of the VLM (image + question), while Etext[·] comes from the192

base LLM on the same prompts, where images are replaced with captions, and the model receives193

only textual input. A large ∆f indicates that f shows stronger activation on image-conditioned194

representations, suggesting visual specialization.195

Geometric reorientation (decoder cosine). To test whether f has been repurposed by multimodal196

fine-tuning, we compare its decoder direction before and after adaptation. Let W LLM
dec,f be the decoder197

row for feature f in the base language SAE and WVLM
dec,f the corresponding row in the VLM-adapted198

SAE. We compute199

cf = cos
(

W LLM
dec,f , W

VLM
dec,f

)

.

High cf means the semantic direction of f stayed aligned with the original language dictionary; low200

cf indicates a substantial rotation, consistent with a reallocation of f to encode new multimodal201

structure. We use decoder rows rather than encoder parameters because decoder directions more202

directly index the feature’s semantics.203

5.2 Selection Procedure204

We identify adapted features using a two-stage filter. All features from every layer are pooled together,205

and thresholds are computed over this global set. Stage one retains the top pgap = 20% of features206

by variance gap ∆f , ensuring a preference for vision-conditioned activations. Stage two further207

narrows this pool to the bottom pcos = 20% by cosine similarity cf , isolating those that underwent the208

strongest decoder rotations. This procedure produces a single globally defined adapted set comprising209

under 5% of all features. The joint distribution of variance gap and cosine similarity is shown in210

Fig. 2, with selected adapted features highlighted. Additional summaries, such as counts of adapted211

features per layer and their mean cosine similarities, are provided in Appx. Fig. 8a and Appx. Fig. 8b.212
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Figure 2: Joint distribution of variance gap vs. decoder cosine for all SAE features (gray). Points
highlighted in pink are retained by our two-stage filter yielding the globally defined adapted set.

6 Case Study: Identifying Spatial Reasoning Features213

We aim to isolate SAE features that encode spatial grounding by comparing firing patterns under a214

controlled dataset shift from general VQA to spatial queries.215

Datasets. We consider two evaluation sets derived from VQAv2. The baseline is the full validation216

split, denoted Dbase. To induce a targeted shift, we construct a spatial subset Dsp by filtering questions217

that contain spatial cues (e.g., left/right/above/behind). This contrast tests whether some SAE features218

are selectively recruited under spatial reasoning.219

Firing frequencies. Let hf (xt) ≥ 0 denote the activation of feature f on token t of input x. For a220

dataset D, the firing frequency of f is221

pf (D) =
1

n(D)

∑

x∈D

∑

t

1{hf (xt) > 0},

where n(D) is the total number of tokens.222

Distribution shift. Figure 3a compares the empirical distributions of feature firing frequencies223

under Dbase and Dsp. The spatial subset exhibits a heavier right tail, suggesting selective recruitment224

under spatial queries.225

For each feature f , we compute the frequency gap226

∆pf = pf (Dsp)− pf (Dbase),

and the odds ratio ORf comparing firing counts across the two splits. Features with large ∆pf and227

ORf > 1 are flagged as spatial candidates.228

Selection and outcome. From the spatial candidates, we retain only those that also lie in the229

adapted set A from Sec. 5, ensuring they both reorient under multimodal fine-tuning and respond to230

spatial distribution shifts (with scatter plot shown in Appx.Fig.9). To remove prompt-lexical artifacts,231

we further probe with a neutral instructions such as “Describe the positions of all objects in the image.”232

and Features that remain active and image-token–dominant are preserved, while prompt-specific233

units are discarded. Figure 3b visualizes the result: across all adapted features, it compares firing234

frequencies on Dbase and Dsp, highlighting the subset that survives this full pipeline. The plot shows235

that adapted features span a wide dynamic range, with the retained spatial set concentrated in the236

high-frequency tail under Dsp.237
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(a) Overall distribution shift in feature firing fre-
quencies when moving from generic VQA to
spatial queries.

(b) Adapted features under both splits, with spatially selec-
tive survivors highlighted.

Figure 3: Identifying spatial reasoning features. Evidence of a distribution shift from Dbase to Dsp,
with adapted features highlighted after the full selection pipeline.

7 AutoInterp and Manual Inspection238

To characterize the adapted features, we developed an automated interpretation pipeline. For each239

feature, we gather its top activating VQA question samples and pass them to the gpt-4o-mini [38]240

API in JSON mode. The model is instructed to decide whether the feature is SPATIAL, provide a241

confidence score, and return a short one-sentence description of the concept it detects, along with242

common question patterns and cue counts. This yields structured interpretations rather than binary243

labels alone, allowing us to associate each feature with a candidate spatial meaning. All outputs are244

stored with the original metrics from Sec. 5. We additionally conduct a light manual pass to verify245

the results. The final retained set thus combines automatic labeling, descriptive interpretation, and246

human sanity checks.247

8 Attribution Patching to Identify Spatial Heads248

Method. Attribution patching [34] is a scalable alternative to activation patching [50], which249

measures causal effects by replacing activations with counterfactual values. While activation patching250

requires a separate forward pass per intervention, attribution patching uses a gradient-based linear251

approximation to estimate the effect of all interventions with only two forward passes and one252

backward pass. This makes it practical to probe attribution scores across all layers and attention253

heads in large multimodal models.254

We adapt attribution patching to identify which attention heads drive spatially selective SAE features.255

For a target feature f at layer L, we define a scalar objective by projecting the layer-L activations onto256

the SAE decoder vector. Gradients of this objective with respect to upstream query/key activations257

indicate how strongly each attention head contributes to f .258

We compare two runs:259

• Clean run: the original image–text input.260

• Corrupt run: the same input, but with layer-0 visual token embeddings replaced by a261

mean embedding computed over many VQA samples. This corruption preserves plausible262

distributional statistics while deliberately suppressing spatial information.263

We then compute two attribution variants, differing in whether the perturbation direction is taken264

from the corrupted or the clean representation:265

Method A: (corr − clean) · ∇clean,

Method B: (clean − corr) · ∇corr.

Method A measures how strongly the clean gradients indicate that ablating spatial detail affects the266

feature, whereas Method B measures how strongly the corrupted gradients indicate that retaining267
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(a) Layer 6, Feature 1550. (conf. 0.90). “fires on questions about subject direction and orientation.”

(b) Layer 27, Feature 12845. (conf. 0.90). “fires on questions about objects and their relative positions”

Figure 4: Qualitative Auto-Interp examples. Top-activating VQA samples for three adapted features
automatically labeled as SPATIAL, with short GPT-4o-mini–generated descriptions.

spatial detail matters. In both cases, we obtain per-layer and per-head attribution scores, averaged268

over the top-k VQA samples that most strongly activate f .269

Results. Across the spatially selective features we examined, attribution patching with both meth-270

ods reveals consistent trends. Layer-wise attribution curves typically peak in mid-to-deep layers,271

consistent with the emergence of spatial features in Sec. 6. At the head level, both methods generally272

highlight a small subset of heads with notably high scores, and the top heads identified are often273

consistent across the two attribution methods. This suggests that spatial information is mediated by a274

specialized group of heads rather than being spread uniformly across the model.275

To illustrate, Figure 5 shows representative examples of individual spatial features. In each case,276

attribution scores isolate a handful of mid- to deep-layer heads, and qualitative attention visualizations277

confirm that these heads attend to image regions consistent with the query relation (e.g., “behind,” “on278

top of,” or “on the side of”). Interestingly, some of the same heads recur across related spatial relations279

(Appx. 11). Beyond spatial prompts, we also find that these same heads often attend to semantically280

meaningful regions such as objects or attributes, even under non-spatial queries (Appx. Fig. 12).281

As for control, low-scoring heads on the same target images fail to attend to meaningful regions,282

further highlighting that only the high-attribution heads carry spatial–semantic signal (Appx. Fig. 13).283

Moreover, random control samples show diffuse or incoherent attention patterns, underscoring that284

the observed alignment is specific to selective features (bottom rows in Figure 5).285

9 Limitations286

The main limitation of our work is the need to further evaluate the faithfulness of the identified287

features: while our analyses suggest spatial selectivity, stronger validation through ablations or288

steering interventions on spatial benchmarks is required. In addition, our study is restricted to a single289
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(a) Object placement relations (‘on’, ‘on top of’, ‘on the side of’).

(b) Spatial relation queries (‘behind’, ‘across’, ‘on the other side’).

Figure 5: Neuron interpretability examples of object placement and spatial relations.

multimodal model (LLaVA-More with a LLaMA-3.1-8B backbone). Extending the methodology to290

diverse language backbones and larger training corpora will be important to assess the generality of291

our findings.292

10 Conclusion293

We set out to understand how a pretrained language backbone learns to “see” under multimodal294

fine-tuning. By extending stage wise model diffing to the vision–language setting, we isolated295

vision-preferring features that undergo strong rotations during training, showed that a subset reliably296

encodes spatial relations, and traced their causal drivers to a small number of mid-to-deep attention297

heads. These results demonstrate that multimodal adaptation is neither diffuse nor opaque: it can298

be localized, probed, and explained at the feature level. Beyond spatial reasoning, our methodology299

offers a general framework for uncovering how new capabilities emerge in large models, with practical300

implications for auditing, safety, and domain-specific fine-tuning. We view this work as an early step301

toward a mechanistic science of multimodal training, where models can be interpreted not only by302

what they do, but by how their internal features evolve.303
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A Appendix422

Figure 6: Decoder cosine similarity vs. layer (LLM SAE vs. VLM SAE). Text-only stays highly
aligned across layers; image-only and full-sequence rotate in shallow layers and align later; random
remains near zero. Higher cosine indicates closer alignment of SAE decoder directions.

Figure 7: Per-layer FVU across regimes. Each panel shows the convergence of SAEs trained with
different masking regimes for a specific layer. Text-only SAEs begin with slightly higher error in
the shallowest layers but adapt almost immediately to near-zero reconstruction. Image-only and
full-sequence SAEs converge more slowly and plateau at higher error, while random initialization
performs worst throughout. This confirms that projector-driven spans remain off-distribution in early
layers and only align with the LLM basis in later layers.
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(a) Adapted features per layer. Most concentrate in
mid layers, tapering in deeper blocks.

(b) Decoder cosine by layer. Adapted features remain
less aligned to the base dictionary than the overall
pool.

Figure 8: Per-layer statistics of adapted features. (a) Distribution of adapted feature counts across
depth. (b) Mean decoder cosine similarity for adapted features vs. the overall pool.

Figure 9: Joint distribution of SAE features by variance gap and cosine similarity. Adapted
features (pink) are highlighted, with the retained spatial subset (purple) concentrated in the high-
frequency tail.
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(a) Layer 17, Feature 19597. (conf. 0.90). “fires on questions about object location and
relative position.”

(b) Layer 18, Feature 13238. (conf. 0.90). “fires on questions about relative positions
between objects.”

(c) Layer 23, Feature 1657. (conf. 0.80). “fires on questions about what object is located on top of or
placed on another object or surface.”

Figure 10: Qualitative Auto-Interp examples. Top-activating VQA samples for three adapted
features automatically labeled as SPATIAL, with short GPT-4o-mini–generated descriptions.
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Figure 11: Consistency of attribution results across related spatial features. In all three cases, the
same attention head (L13H1) is identified as the top contributor under both methods.
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Figure 12: Attention head visualizations across queries. Each row shows one image with attention
overlays from a single high-attribution head across multiple spatial and non-spatial custom queries.
The same heads consistently focus on semantically relevant regions.

Figure 13: Low-attribution heads. Bottom-ranked heads yield diffuse or irrelevant attention,
showing little relation to the spatial queries.
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