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Abstract

Contemporary Vision–Language Models (VLMs) achieve strong performance on a
wide range of tasks by pairing a vision encoder with a pre-trained language model,
fine-tuned for visual–text inputs. Yet despite these gains, it remains unclear how
language backbone representations adapt during multimodal training and when
vision-specific capabilities emerge. In this work, we present the first mechanistic
analysis of VLMs adaptation process. Using stage-wise model diffing, a technique
that isolates representational changes introduced during multimodal fine-tuning,
we reveal how a language model learns to "see". We first identify vision-preferring
features that emerge or reorient during fine-tuning. We then show that a selective
subset of these features reliably encodes spatial relations, revealed through con-
trolled shifts to spatial prompts. Finally, we trace the causal activation of these
features to a small group of attention heads. Our findings show that stage-wise
model diffing reveals when and where spatially-grounded multimodal features arise.
It also provides a clearer view of modality fusion by showing how visual grounding
reshapes features that were previously text-only. This methodology enhances the
interpretability of multimodal training and provides a foundation for understanding
and refining how pretrained language models acquire vision-grounded capabilities.

1 Introduction

Large vision–language models (VLMs) have achieved strong performance on multimodal tasks,
including visual question answering (VQA), image captioning, object detection, and visual grounding
[29, 1]. These gains are typically realized by fine-tuning pretrained language models to process
visual inputs through projected token sequences, allowing for seamless fusion of image and text
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representations [53, 55, 13, 12]. Yet we lack a mechanistic account of how language representations
adapt during multimodal training and when vision-specific capabilities emerge [24, 49, 46].

In this work, we introduce a method for analyzing multimodal adaptation in VLMs through stage-
wise model diffing [6]. This mechanistic interpretability technique isolates representational changes
introduced during fine-tuning by comparing sparse autoencoder (SAE) dictionaries across training
stages, models, or datasets. By tracking how features rotate, emerge, or are repurposed, it has been
shown to uncover subtle shifts such as sleeper-agent features [21]. We extend this approach to
the multimodal setting, presenting the first application of stage-wise model diffing to study how
pretrained language features evolve under visual grounding.

Concretely, we fine-tune LLaMA-Scope SAEs on activations extracted from the LLaVA-More model
[20] on 50k VQAv2 dataset samples[17]. This warm-start preserves the original feature basis while
adapting to multimodal activations. We isolate features that gain visual preference and undergo
strong geometric rotation, serving as anchors for studying spatial representations in the backbone. To
identify which adapted features encode spatial reasoning, we apply a controlled dataset shift from
general VQA to spatial queries. Features that are preferentially recruited under spatial prompts form
a selective subset, which we validate through automatic and manual interpretation. These features
consistently activate on questions about object placement, relative position, and orientation. Figure 3
highlights the filtered spatial features.

Finally, we use attribution patching to trace the causal pathways by which these spatial features
are activated. Our results reveal a sparse set of mid-layer heads that consistently drive spatial
representations, often localizing to semantically meaningful regions and reappearing across related
prompts. These findings support the hypothesis that a small number of specialized attention heads
coordinate visual grounding within the model. Our contributions are as follows:

• We extend stage-wise model diffing to the multimodal setting, providing the first feature-level
account of how pretrained language backbones adapt under visual grounding.

• We introduce a systematic pipeline to isolate adapted features, identify those selectively
recruited by spatial queries, and filter out lexical artifacts.

• We show that these spatially selective SAE features are functionally involved in reasoning,
through empirical evidence and ablation studies, supported by interpretive checks.

• We causally attribute the emergence of spatial features to a small subset of attention heads
using scalable attribution patching, highlighting structured pathways for visual grounding.

By focusing on feature-level change, our approach complements high-level alignment analyses and
probing-based methods, providing a deeper mechanistic view of how models “learn to see”. More
broadly, this work offers a framework for auditing and refining multimodal training regimes, with
implications for safety-critical domains and targeted fine-tuning in specialized applications.

2 Related Work

Model Diffing and Representation Dynamics Model diffing techniques aim to isolate how internal
representations change across models or training stages. Early work focused on coarse similarity
measures, such as visualizing function-space geometry [41, 14], stitching intermediate layers across
models [27, 3], or defining new similarity metrics [26, 4]. Later studies examined alignment at the
level of individual neurons, showing convergent units across independently trained networks [30, 40].

Sparse autoencoders (SAEs) offered a feature-level lens, and prior work [25] showed that SAEs
largely transfer between base and fine-tuned models, implying most features are preserved and only a
minority are altered. This motivates methods that can isolate and precisely interpret those changes.
Stage-wise model diffing [6] offers such fine-grained resolution, revealing sleeper-agent features and
distinguishing between base and chat-tuned models [37]. Extensions to multimodal models highlight
similar representational shifts, with concept-shift vectors proposed for steering [24] and evidence that
alignment converges in middle-to-late layers [49]. These remain semantic-level analyses, whereas our
work applies stage-wise diffing with SAEs to the backbone, giving the first mechanistic account of
multimodal fine-tuning, showing how it rotates features and induces spatial grounding in pretrained
language models.
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Multimodal Mechanistic Interpretability. Compared to the rapidly growing literature on mecha-
nistic interpretability of textual LLMs, relatively few studies have examined the internal mechanisms
of multimodal large language models (MLLMs). Existing work falls into two main categories.

First, tool-based and causal analyses aim to explain model behavior at a high level. Approaches
include interpretability toolkits based on attention patterns, relevancy maps, and causal interventions
[46]. Other work uses interventions to trace how information is stored and transferred [5], or applies
causal mediation to study how BLIP integrates visual evidence [43]. Second, probing-based studies
focus on the representations themselves. Several works analyzed CLIP, identifying both strengths
and limitations [48, 15, 8]. Others reported multimodal neurons responsive to joint visual–textual
concepts [45] and examined how VLMs differentiate hallucinated from real objects [22]. More recent
methods map visual embeddings into linguistic space, projecting features onto language vocabularies
[39] or showing the late emergence of visual signals in LLM backbones [50].

In contrast, these studies primarily analyze patterns, interventions, or probing correlations, but do not
directly track how multimodal fine-tuning restructures the backbone’s internal features. Our work
addresses this gap by providing a mechanistic perspective.

3 Preliminaries

3.1 Vision–Language Models

A vision–language model (VLM) consists of a visual encoder fV , a pretrained language model fLM,
and a trainable projector P . The visual encoder (e.g., a ViT [44]) extracts image patch embeddings

V = fV (x) = [v1, . . . , vNV
], which the projector maps into token space Ṽ = P (V ). These

projected image tokens are concatenated with tokenized text embeddings T = [t1, . . . , tNT
] to

form the multimodal sequence X = [ṽ1, . . . , ṽNV
, t1, . . . , tNT

]. Alignment between modalities is
achieved through visual instruction tuning, where image–text pairs fine-tune the backbone to follow
multimodal instructions. The language model processes X through transformer layers of multi-head
self-attention and feed-forward networks. For each head h, attention is computed as

Attn(Q,K, V ) = Softmax
(

QK⊤

√
dh

+M
)

V, (1)

where M is the causal mask preventing attention to future tokens. The outputs of all heads are
concatenated and projected into the hidden dimension, and mapped through the unembedding matrix
to predict next tokens. For our experiments, we adopt LLaVA-More [9], which extends LLaVA
framework [35, 34] by integrating recent language models and diverse visual backbones; specifically,
we use the variant combining the CLIP ViT-Large-Patch14–336 encoder with a LLaMA-3.1-8B
language model backbone [18].

3.2 Sparse Autoencoders (SAEs)

Sparse Autoencoders (SAEs) learn a dictionary of features that approximate hidden states as sparse
linear combinations of interpretable directions. mitigating superposition where many features overlap
in the same dimensions [7, 10]. Formally, a vanilla SAE encodes x ∈ R

D into

f(x) = ReLU(Wencx+ benc), x̂ = Wdecf(x) + bdec,

with Wenc ∈ R
F×D, benc ∈ R

F , Wdec ∈ R
D×F , and bdec ∈ R

D. Training minimizes

L = ∥x− x̂∥22 + λ

F
∑

i=1

|fi(x)|,

combining reconstruction with an L1 sparsity penalty. Here, decoder columns (Wdec):,i define the
direction of each feature in input space, while encoder rows (Wenc)i,: act as detectors that determine
when a feature is present. Variants such as Top-K SAEs [16] further sharpen this tradeoff by enforcing
hard sparsity, improving interpretability and reducing feature co-adaptation.

SAEs have been widely applied to uncover monosemantic features and offer a practical lens on model
internals, enabling analyses that range from probing knowledge to tracing safety-relevant behaviors
[7, 10]. They are not, however, a complete decomposition: interpretability can vary across runs
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and training setups, and recent work suggests their practical utility may be more limited in some
settings [47, 23]. Even so, SAEs have proven particularly effective for model diffing, where they make
it possible to track how features shift across training stages and to surface subtle but behaviorally
important dynamics—a direction we expand on in the next subsection [6, 36].

3.3 Stage-Wise Model Diffing

A recent line of work in model diffing has introduced stage-wise model diffing [6], which extends SAE
analysis across training stages by re-training dictionaries on activations from successive checkpoints
while keeping feature indices aligned. This makes it possible to compare whether units are preserved,
rotated, or repurposed during adaptation. Applied to controlled fine-tuning trajectories, it disentangles
changes due to model updates from dataset shifts and highlights features that drive adaptation.
Prior work has shown that stage-wise diffing uncovers fine-grained dynamics, including sleeper-
agent features that remain dormant in pretraining but activate once safety constraints are lifted [21].
Compared to crosscoder-based methods [32], it provides finer resolution at the feature level, though
it remains limited to aligned checkpoints of the same architecture.

4 Stage-wise Model Diffing for Multimodal Adaptation

Overview. We aim to understand how multimodal fine-tuning reshapes model representations,
using spatial reasoning as a case study of a distinctly multimodal task that integrates both visual
and linguistic cues. To this end, we take inspiration from stage-wise diffing 3.3, employing sparse
autoencoders (SAEs) as a feature-level lens to track how internal directions shift when a pretrained
language backbone is exposed to visual inputs. Our pipeline has three stages. First, we fine-tune
SAEs on multimodal activations to obtain a feature dictionary aligned with the vision–language
space. Second, we isolate features that prefer visual tokens and undergo substantial geometric
rotation, indicating that they have been repurposed by multimodal training. Third, we probe for
spatial reasoning by contrasting generic VQA with spatial queries and keeping only features that
increase under the shift while remaining active under neutral instructions, ensuring they are not driven
by lexical artifacts. In this way, we reduce the original pool of over one million features to a compact
set of candidates plausibly recruited for spatial reasoning tasks.

4.1 Adapting Language Dictionaries to Vision-Language Space

We start by adapting sparse autoencoders (SAEs) trained on the Llama 3.1 8B backbone to the hidden
states of LLAVA-MORE (Llama 3.1 8B backbone) [9]. We use 50k image–question pairs from the
VQAv2 dataset [17], a widely used VQA benchmark of images and open-ended questions. Each
SAE is attached to the output of a transformer block and trained on cached activations from these
samples. Images are represented by 575 consecutive visual tokens, and questions by variable-length
text sequences; this separation allows token-type–specific masking.

We initialize SAEs from the pretrained LLAMA-SCOPE release [20], re-instantiated as a Top-
K model (k=50), preserving a meaningful, interpretable basis. Since our VLM shares the same
backbone, this warm-start ensures continuity with the pretrained language feature space and avoids
retraining from scratch, allowing us to directly leverage millions of monosemantic features across
layers. As a control, we also train SAEs from random initialization under identical conditions.
Training uses Adam with a layer-scaled learning rate, and cached activations are processed in padded
mini-batches. To disentangle modality-specific contributions, we consider four regimes: (i) full
sequence, (ii) image-only, using only the visual-token span, (iii) text-only, using only the non-visual
span, and (iv) random initialization. In all cases, the SAE receives the full hidden state sequence, but
masking controls which token spans contribute to the training signal.

We evaluate reconstruction quality using the fraction of variance unexplained (FVU) and report
sparsity to verify code selectivity. Evaluation is performed on a held-out split. Figure 1 shows
FVU as a function of tokens seen across layers and masking regimes. Text-only SAEs converge
rapidly, while image-only and full-token regimes converge more slowly to higher error, reflecting
the mismatch between projector embeddings and the LLM basis. Random initialization performs
worst, underscoring the importance of starting from a pretrained language dictionary. These findings
establish text-only SAEs as a reliable reconstruction baseline, which we later use for model diffing.
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Metric Full Random Image Text

Mean 0.032 0.050 0.037 0.005

Std 0.028 0.041 0.027 0.009

Min 0.013 0.020 0.017 0.000

Max 0.123 0.198 0.123 0.037

Tokens (M) 31.6 31.6 28.4 3.2

Figure 1: SAE adaptation on LLAVA-MORE. Left: Mean fraction of variance unexplained (FVU)
across layers on the validation set. Right: Summary statistics of FVU values on the validation set,
with decimal alignment; the lowest mean is highlighted in bold.

Implications for stage-wise model diffing. Stage-wise diffing assumes that fine-tuning induces
localized (feature-level) changes rather than wholesale rotations. Prior work reports that image-
token representations in early layers exhibit higher reconstruction error than text tokens, indicating
a distributional gap between projector outputs and the LLM basis [51]. Consistent with this, our
decoder–cosine analysis (Appx.Fig.6) shows that text-only SAEs remain highly aligned to the base
LLM dictionary across layers, whereas image-only and full sequence SAEs undergo large rotations in
shallow layers and only align in later layers. We also note that text-only SAEs begin with slightly
higher error in the very first layers but adapt extremely quickly, converging to near-zero reconstruction.
In contrast, image and full-sequence SAEs plateau at higher error, highlighting the instability of
projector-driven spans (see Appx.Fig.7). We therefore focus stage-wise diffing on text-only SAEs,
where alignment is stable and feature-level identifiability is more plausible.

4.2 Identifying Adapted Features

We aim to isolate SAE features that (i) undergo geometric reorientation after multimodal adaptation
and (ii) show a clear modality preference for vision input. Such features are the most informative for
model diffing and subsequent causal analysis. To identify them, we rely on two signals:

1. Geometric reorientation (decoder cosine). To test if f has been repurposed by multimodal
fine-tuning, we compare its decoder direction before and after adaptation. Let W LLM

dec,f be the base

SAE decoder vector and WVLM
dec,f the corresponding vector in the VLM-adapted SAE. We compute

cf = cos
(

W LLM
dec,f , W

VLM
dec,f

)

.

High cf means the semantic direction of f stayed aligned with the original language dictionary; low
cf indicates a substantial rotation, consistent with a reallocation of f to encode new multimodal
structure. We use decoder vectors rather than encoder parameters because decoder directions more
directly index the feature’s semantics.

2. Modality preference (visual energy). Given the sparsity of SAE activations, we score each
feature f by its mean squared activation under vision inputs,

Ev(f) = Evision

[

h2

f

]

,

measured on VQA runs of the VLM. Since nearly half of features have Ev = 0, a simple cutoff
Ev > ϵ suffices to discard inactive directions and retain those that carry visual signal.

Selection Procedure We define adapted features as those that meet both criteria: Ev > ϵ, ensuring
reliable visual responsiveness, and a cosine similarity cf in the bottom pcos = 25%, indicating
strong decoder rotation. Applying these filters jointly yields a globally defined set comprising about
5% of all features. The joint distribution of Ev and cf is shown in Fig. 3, with the selected subset
highlighted in pink. Details on threshold choices, together with per-layer counts and mean cosine
similarities, are provided in Appx. Fig. 8a and Appx. 8b.
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4.3 Case Study: Identifying Spatial Reasoning Features

We identify spatial features using two signals: (i) recruitment under a shift to spatial queries, and (ii)
persistence under neutral prompts that rule out lexical artifacts.

Datasets. Our analysis uses two evaluation sets from VQAv2. The baseline is the full validation
split, denoted Dbase. To induce a targeted shift, we construct a spatial subset Dsp by filtering questions
that contain spatial cues (e.g., left/right/above/behind). This contrast tests whether some SAE features
are selectively recruited under spatial reasoning.

1. Distribution shift Let hf (xt) ≥ 0 denote the activation of feature f on token t of input x. For a
dataset D, the firing frequency of f is

pf (D) =
1

n(D)

∑

x∈D

∑

t

1{hf (xt) > 0},

where n(D) is the total number of tokens. Fig 2a compares the empirical distributions of feature
firing frequencies under Dbase and Dsp. The spatial subset exhibits a heavier right tail, suggesting
selective recruitment under spatial queries. For each feature f , we compute the frequency gap
∆pf = pf (Dsp)− pf (Dbase), and the odds ratio ORf comparing firing counts across the two splits.
Features with meaningful ∆pf and ORf are flagged as spatial candidates in Fig.3.

2. Filtering lexical artifacts. To rule out prompt-lexical effects, we replace the original questions in
each top-activating sample with neutral spatial prompts such as “Describe the positions of objects in
the image.”. Features that continue firing under these generic instructions are preserved as genuinely
image-grounded, while those that fail to activate are discarded. This ensures that the surviving units
reflect spatial reasoning rather than memorized lexical cues.

From these filtered candidates, we retain only those also in the adapted setA (Sec. 4.2), ensuring they
reorient under multimodal fine-tuning and respond to spatial shifts. The surviving features are shown
in Fig. 2 and in Fig. 3 (blue). A subset, marked with red crosses, is further analyzed via automated
interpretation, attribution patching, and ablations (Sec. 5.1, 5.2).

(a) Overall distribution shift in feature firing fre-
quencies when moving from generic VQA to spa-
tial queries.

(b) Adapted features under both splits, with spatially selective
survivors highlighted.

Figure 2: Identifying spatial reasoning features. Evidence of a distribution shift from Dbase to Dsp,
with adapted features highlighted after the full selection pipeline.

5 Experiments

5.1 Auto-Interp and Preliminary Inspection

As an initial step toward understanding the selected features, we carried out a preliminary inspection
using an automated interpretation pipeline. For each feature, we collect its top-activating samples
from two sources: general VQA questions from VQAv2 (not restricted to spatial reasoning) and the
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Figure 3: Distribution of SAE features by visual energy and cosine similarity. All features are
shown in gray; adapted features are highlighted in pink. Spatial candidates are marked with blue
squares, and the subset used for downstream analysis is shown as red crosses.

Visual Spatial Reasoning (VSR) dataset [33], which is inherently spatial. This pairing allows us to
check whether the same underlying meaning emerges consistently across both settings (Fig. 4). A
subset of the combined samples are then passed to the gpt-4o-mini [42] API, which proposes a
concise one-sentence description for each feature and assigns an interpretability confidence score
based on F1 from a validation classification task. The resulting outputs are stored together with the
selection metrics from Sec. 4.2, and are lightly reviewed by hand, so that the retained set reflects both
automatic labeling and human verification (see App. B for additional examples and scoring details)..

5.2 Attribution Patching to Identify Spatial Heads

Method. Attribution patching [38] is a scalable alternative to activation patching [54], which
measures causal effects by replacing activations with counterfactuals. While activation patching
requires a separate forward pass per intervention, attribution patching uses a gradient-based linear
approximation to estimate interventions with two forward and one backward pass. This makes it
practical to probe attribution scores across layers and heads in MLLMs.

We adapt attribution patching to identify which attention heads drive spatially selective SAE features.
For a target feature f at layer L, we define a scalar objective by projecting the layer-L activations onto
the SAE decoder vector. Gradients of this objective w.r.t. upstream query/key activations indicate
how strongly each attention head contributes to f . We compare two runs:

• Clean run: the original image–text input.

• Corrupt run: the same input, but with layer-0 visual token embeddings replaced by a
mean embedding computed over many VQA samples. This corruption preserves plausible
distributional statistics while deliberately suppressing spatial information.

We then compute two attribution variants, differing in whether the perturbation direction is taken
from the corrupted or the clean representation:

Method A: (corr− clean) · ∇clean,

Method B: (clean− corr) · ∇corr.

Method A measures how strongly the clean gradients indicate that ablating spatial detail affects the
feature, whereas Method B measures how strongly the corrupted gradients indicate that retaining
spatial detail matters. In both cases, we obtain per-layer and per-head attribution scores, averaged
over the top-k VQA samples that most strongly activate f .
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Figure 4: Auto-Interp example (Layer 16, Feature 176). Top VQA and VSR samples both highlight
facing direction, with activation on objects described as facing toward, away, or relative to another.

Results. Across the spatially selective features we examined, attribution patching with both methods
reveals consistent trends. Layer-wise attribution curves typically peak in middle layers, consistent
with the emergence of spatial features in Sec. 4.3 (Appx. Fig. 11). At the head level, both methods
generally highlight a small subset of heads with notably high scores, and the top heads identified
are often consistent across the two attribution methods (Appx. Fig. 12). This suggests that spatial
information is mediated by a specialized group of heads rather than being spread uniformly across
the model.

To illustrate the effect of attribution patching on individual features, Appx. Fig. 13 provides detailed
examples. In each case, attribution scores isolate a handful of heads, and qualitative maps confirm that
high-scoring heads focus on regions consistent with the queried relation (e.g., “on top of,” “behind”),
whereas low-scoring heads fail to do so. These head-level overlays can also be used to (i) improve
the confidence of automated feature interpretation by coupling sample activations with attention
visualizations, and (ii) examine failure cases by checking whether the top spatial features and heads
attend to valid regions in misclassified samples. Interestingly, when we look across multiple related
spatial features together, we find that some of the same heads recur across related spatial relations.
Fig 5 illustrates this pattern. In the top row, L13H1 attends to semantically relevant regions across
queries. As a control, the middle row shows that bottom-ranked heads on the same samples fail to
localize meaningfully. The bottom row further confirms that irrelevant queries do not trigger spurious
activation. More generally, these same heads also attend to meaningful regions such as salient objects
or attributes under custom prompts (Appx. Fig. 15), underscoring that attribution patching identifies a
set of heads that reliably carry spatial–semantic signal.

5.3 Ablation Study

We test whether adapted SAE features are causally involved in spatial reasoning by ablating them
during inference and measuring performance on VSR [33], a dataset of text–image pairs spanning
dozens of spatial relations, and on a Yes/No subset of VQAv2 (general). Each feature is evaluated on
a relation-specific subset of VSR constructed from its top-activating samples, so that the ablation
directly targets the relation it most strongly encodes. To ablate a target feature f at layer L, we
orthogonally remove its decoder direction v (unit norm) from the residual stream at text token
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Figure 5: Attribution patching across related spatial features. Top: recurring top-scoring head
(L13H1) localizes to relevant regions in queries about “on top of” relations. Middle: bottom-ranked
heads on the same samples fail to capture spatial structure. Bottom: unrelated queries confirm that
the top head does not spuriously activate.

positions, leaving image tokens unchanged:

y ← y − (y⊤v) v.

Evaluation metrics. We report: (i) accuracy drop on VSR (∆VSR Acc; ↓ is worse), (ii) accuracy
drop on VQA (∆VQA Acc), (iii) accuracy drop from ablating same-layer random features (∆Ctrl),
and (iv) odds ratio under the spatial distribution shift (VSR OR; ↑ is better). All runs use identical
cached indices, and results are averaged over seeds.

Layer Feature ∆VSR Acc (↓) ∆VQA Acc (↓) ∆Ctrl VSR Relations VSR OR (↑)

7 15870 -15.54 -0.10 -0.88 above 4.32
11 27061 -12.77 -0.40 0.00 across from 8.03
9 15404 -11.19 -0.80 1.08 below 5.60

14 17873 -10.21 -0.30 -1.71 at the right side of 7.17
12 23874 -9.05 -0.40 -0.95 left of 9.10
18 29948 -7.98 -0.30 0.00 beside 8.36

Table 1: Top ablated SAE features ranked by VSR accuracy drop. Columns 2–4 show accuracy
drops on VSR, VQA, and random-feature controls; the final column gives odds ratio (VSR OR)
as a measure of selective recruitment. Large ∆VSR Acc with small ∆VQA Acc indicates spatial
specificity, while near-zero ∆Ctrl confirms robustness.

Interpretation. Ablating the top spatial features lowers VSR accuracy by 9–16 points on average
while leaving general VQA nearly unchanged (≤ 1 pp), indicating that these directions are functionally
used for spatial reasoning rather than general behavior. This shows that probing or switching off a
single feature can selectively disable spatial reasoning without harming overall ability. High odds
ratios further show selective recruitment under spatial prompts. Random-feature controls yield effects
near zero or inconsistent in sign, supporting specificity. Full per-feature results, probability deltas,
and seed-wise summaries are reported in Appx. D.
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6 Limitations

Our analyses indicate spatial selectivity, but more detailed ablation and steering studies are needed to
fully validate causality. Moreover, our experiments are limited to a single model (LLaVA-More with
a LLaMA-3.1-8B backbone); applying the method to other backbones and larger corpora will be key
to assessing generality.

7 Conclusion

We set out to understand how a pretrained language backbone learns to “see” under multimodal
fine-tuning. By extending stage-wise model diffing to the vision–language setting, we isolated
vision-preferring features that undergo strong rotations during training, showed that a subset reliably
encodes spatial relations, and traced their causal drivers to a small number of mid-layer attention
heads. These results show that multimodal adaptation is structured and interpretable as it can be
localized, probed, and explained at the feature level. Beyond spatial reasoning, our methodology
offers a general framework for uncovering when and where new capabilities emerge in large models,
showing that multimodal adaptation follows structured patterns rather than diffuse changes. We view
this work as an early step toward a mechanistic science of multimodal training, where models can be
interpreted both in terms of their outputs and the internal features that support them.
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A Appendix

A.1 Geometry divergence: decoder cosine trends

To quantify how SAE feature geometry shifts across training regimes, we track cosine similarity
between decoder directions from SAEs trained on different input types. Fig 6 shows that text-only
SAEs remain closely aligned across layers, while image-only and full-sequence SAEs diverge in early
layers before realigning deeper in the model. Randomly initialized SAEs stay largely uncorrelated,
confirming the stability of the observed trends.

Figure 6: Decoder cosine similarity vs. layer (LLM SAE vs. VLM SAE). Text-only stays highly
aligned across layers; image-only and full-sequence rotate in shallow layers and align later; random
remains near zero. Higher cosine indicates closer alignment of SAE decoder directions.

A.2 Per-layer FVU trajectories

Figure 7: Per-layer FVU across regimes. Each panel shows the convergence of SAEs trained with
different masking regimes for a specific layer. Text-only SAEs begin with slightly higher error in
the shallowest layers but adapt almost immediately to near-zero reconstruction. Image-only and
full-sequence SAEs converge more slowly and plateau at higher error, while random initialization
performs worst throughout. This confirms that projector-driven spans remain off-distribution in early
layers and only align with the LLM basis in later layers.
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A.3 Per-Layer Statistics

Fig 8 shows that adapted features cluster in mid layers and taper in deeper blocks. Their decoder
directions remain less aligned to the base dictionary than the overall pool, confirming stronger
rotations under multimodal fine-tuning.

(a) Adapted features per layer. Most concentrate in
mid layers, tapering in deeper blocks.

(b) Decoder cosine by layer. Adapted features remain
less aligned to the base dictionary than the overall
pool.

Figure 8: Per-layer statistics of adapted features. (a) Distribution of adapted feature counts across
depth. (b) Mean decoder cosine similarity for adapted features vs. the overall pool.

A.4 Threshold Sweep for Feature Selection

To ensure that our choice of thresholds is robust, we sweep over the cosine percentile cutoff (pcos)
and visual energy threshold (ϵ). Fig. 9 reports three metrics: (i) total number of selected features, (ii)
Jaccard overlap with the baseline adapted set, and (iii) per-layer count correlation. The results show a
broad stable region around ϵ ≈ 10−3 and pcos ≈ 25%, which yields a compact yet consistent set of
adapted features. We adopt this operating point (white circle) for all downstream analyses.

Figure 9: Threshold sweep for feature selection. Left: feature counts increase smoothly with more
lenient thresholds. Middle: Jaccard overlap with the baseline peaks near the chosen point. Right:
per-layer counts remain highly correlated across thresholds. The white circle marks the adopted
operating point.

The visual-energy statistic Ev is computed under a text-only mask, since our SAEs are text-only. As
a result, most features have Ev = 0, so requiring ϵ > 0 acts as a strong filter. When cross-checking
with downstream spatial tasks, we find that features with very low Ev rarely contribute meaningfully:
they tend to cluster in shallow layers, show low spatial hit rates, and often appear polysemantic
on inspection. In contrast, those that pass the ϵ cutoff carry a cleaner visual signal and align more
consistently with spatially selective units in downstream evaluations, suggesting that the thresholded
set captures genuinely vision-grounded features.
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B Additional Auto-Interp Examples

In the main text (Sec. 5.1), we showed examples of adapted features using our automated interpretation
pipeline. We include two further examples here. In both cases, the top-activating samples agree
across VQA and VSR, and the interpretations are consistent and monosemantic.

Figure 10: Additional Auto-Interp examples. Top-activating VQA and VSR samples for two
adapted features, showing consistent spatial relations.

B.1 Scoring and Implementation Details

For completeness, we outline the scoring pipeline. For each feature, we collect its top five activating
samples from VQA and VSR, since the gpt-4o-mini API only supports up to five examples at a
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time. These samples are passed to the model, which generates a one-sentence description of the
feature. To assess reliability, we then draw additional positives (other high-activation samples of
the same feature) and negatives (unrelated samples), and ask the model to classify them using the
generated description. We report F1 on this task as a lightweight proxy for interpretability confidence.

C Attribution Patching Additional Experiments Results

C.1 Aggregated Attribution Results

To complement the per-feature attribution patching results in the main text, we provide aggregated
views over layers and heads on the top 150 features ranked by odds ratio and ablation results. These
plots confirm that both attribution patching methods yield consistent trends, with middle layers
showing the strongest contributions and only a small subset of attention heads emerging as dominant.

Figure 11: Layer-wise aggregated attribution curves for Method B (left) and Method A (right). Both
peak in around middle layers, consistent with the emergence of spatial features.

Figure 12: Attention head aggregated attribution maps for Method B (left) and Method A (right).
Both highlight a similar set of specialized heads with high attribution scores.

C.2 Per-Feature Panels with Top Heads

For individual spatial features, we show (i) per-layer/head attribution maps (Methods A and B) and
(ii) attention overlays from the strongest heads on the feature’s top-activating samples across both
VSR and VQA datasets.

Across these examples, we see consistent overlap between the heads surfaced by the two attribution
methods, with certain heads repeatedly appearing across different spatial relations. This convergence
supports the idea that a group of heads concentrates much of the spatial signal. At the same time,
Method B tends to yield clearer head rankings and more focused overlays, suggesting it provides a
stronger and more reliable signal for pinpointing the causal drivers of spatial features.
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(a) Layer 15, Feature 10748. VSR Relation: “in front of.” Top heads (Method A): L13H1, L12H12, L13H18.
Top heads (Method B): L13H18, L5H17, L13H1. Overlap: L13H1, L13H18. Attention overlays are shown on
the top-activating samples across VSR and VQA.

(b) Layer 20, Feature 22247. VSR Relation: “at the back of.” Top heads (Method A): L12H12, L13H18,
L13H1. Top heads (Method B): L13H1, L13H18, L14H31. Overlap: L13H1, L13H18. Attention overlays are
shown on the top-activating samples across VSR and VQA.

(c) Layer 7, Feature 15870. VSR Relation: “above.” Top heads (Method A): L5H17, L6H5, L0H31. Top
heads (Method B): L5H17, L2H5, L2H6. Overlap: L5H17. Attention overlays are shown on the top-activating
samples across VSR and VQA.

Figure 13: Attribution patching on individual spatial features. Each subfigure displays aggregated
head/layer attribution maps (left) and attention overlays (right) using the strongest heads on the
feature’s top-activating samples across both VSR and VQA.

C.3 Bottom-Ranked Heads as a Control

As a control, we visualize overlays from the bottom-ranked heads (per method, per feature). Across
VSR and VQA top-activating samples, these heads generally fail to localize semantically relevant
regions.
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(a) Layer 15, Feature 10748. VSR Relation: “in front of.”

(b) Layer 20, Feature 22247. VSR Relation: “at the back of.”

(c) Layer 7, Feature 15870. VSR Relation: “above.”

Figure 14: Bottom-ranked heads yield weak localization. For each feature, we show overlays from
the lowest-scoring heads under Methods A and B on the feature’s top-activating samples across VSR
and VQA. In contrast to Appx. Fig. 13, these heads produce diffuse or irrelevant attention.

D Full Ablation Results

Table 2 reports a more detailed version of ablation results for the top SAE features. For each feature,
we show average accuracy and probability drops on VSR across seeds, together with the number of
evaluation samples. We also report accuracy drops on VQA, random-feature control drops (∆Ctrl),
odds ratios (VSR OR), and relation-specific subsets of VSR derived from top-activating samples.
Large negative ∆VSR Acc with small ∆VQA Acc indicates spatial specificity, near-zero ∆Ctrl
supports robustness, and high odds ratios reflect selective recruitment under spatial prompts.

E
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Layer Feature ∆VSR Acc ∆VSR Prob ∆VQA Acc ∆Ctrl VSR OR #Samples VSR Relations

11 27061 -13.30 -0.09 -0.40 0.00 8.03 94 across from

12 23874 -10.24 -0.10 -0.40 -0.95 9.10 210 left of

18 29948 -7.98 -0.09 -0.30 0.00 8.36 188 beside

23 4060 -5.85 -0.00 -0.70 -1.06 7.47 94 at the back of

14 17873 -10.00 -0.07 -0.30 -2.71 7.17 480 at the right side of

9 15404 -11.19 -0.07 -0.80 1.08 5.60 277 below

7 6986 -10.87 -0.03 -0.50 0.34 4.74 589 under

7 15870 -15.54 -0.09 -0.10 -0.88 4.32 341 above

10 5121 -7.92 -0.06 -0.10 0.12 4.22 846 above, on top of

11 24089 -7.68 -0.05 -0.60 -0.12 4.18 846 above, on top of

12 13305 -6.38 -0.05 -0.70 0.24 4.17 846 above, on top of

Table 2: Full ablation results for top SAE features, averaged over seeds. The number of VSR samples
evaluated is shown alongside accuracy/probability drops and odds ratios.

Figure 15: Attention head visualizations across queries. Each row shows one image with attention
overlays from a single high-attribution head across multiple spatial and non-spatial custom queries.
The same heads consistently focus on semantically relevant regions.
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