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ABSTRACT

The development of Large Vision-Language Models (LVLMs) is striving to catch
up with the success of Large Language Models (LLMs), yet it faces more chal-
lenges to be resolved. When finetuning LVLMs with user-specific data in the
practical use, the pretrained weights would face the problems of forgetting and
performance degradation. So it is important to improve LVLM’s performance un-
der the continual learning settings. Some existing CL methods like Zheng et al.
(2023b)Zhang et al. (2023c) have explored continual learning on VLM. However,
the continual learning settings they have proposed couldn’t be adopted to LVLMs
smoothly because the training and finetuning process of LVLMs need amount of
data while previous VLM continual learning settings built on limited data and dif-
ferent model architectures. In this work, we first devise a task-specific continual
learning setting especially for LVLMs by classifying the instruction tuning
data for the second finetune process of LVLMs into several different tasks.
Mimicking the process of finetuning with user-specific task data, we found that
the performance of LVLMs would decline without any modules designed for con-
tinual learning settings. So we present LVLM-CL, a novel approach capable of
continual learning settings for large vision-language models when finetuning with
different kinds of tasks. Specifically, our LVLM-CL consists of a text feature
based prompt that are different between tasks to keep the special feature of differ-
ent tasks. To meet the setting of continual learning, we also design a memory bank
which storage previous trained tasks which helps LVLMs apply knowledge to un-
familiar combinations. Extensive case studies and quantitative evaluations show
LVLM-CL has strong capability in understanding the pivotal features of different
tasks and emerges impressive memory capabilities under the continual learning
settings. This work fosters the advancements of LVLMs by enabling them to sup-
port better continual finetuning toward practical use in the real world.

1 INTRODUCTION

Large Language Models (LLMs) like ChatGPT, GPT-4 OpenAI et al. (2024), and PaLM Chowdh-
ery et al. (2022) have revolutionized the field of natural language processing with their astounding
ability to follow human instructions and tackle open-ended tasks. These models demonstrate an
exceptional understanding of language and can generate text that is often indistinguishable from
that produced by humans. Building upon this foundation, Large Vision-Language Models (LVLMs)
such as MiniGPT-4 Zhu et al. (2023), LLaVA Liu et al. (2024b), and InstructBLIP Dai et al. (2024)
have emerged, integrating the linguistic prowess of LLMs with visual understanding capabilities.
Drawing on open-source LLMs like LLaMA Touvron et al. (2023a), Qwen Bai et al. (2023a) and
InternLM Team (2023), these LVLMs extend their insight to the visual domain, allowing for a more
comprehensive understanding of questions that necessitate both visual and textual processing.

One of the primary challenges in advancing LVLMs resides in forgetting while finetuning LVLMs
with a continual stream of data for practical applications. As shown in Figure 1, take a stream of
tasks of a example, if a user continue to feed the LVLM with the data of different tasks, the model
first might have learned how to recognize the color clearly, but after the parameters are covered
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Figure 1: The illustration of real-world scenario for continual finetuning LVLMs, which may con-
tinuously receive new types of questions. Beneficial from special design for continual learning, our
method could keep the old knowledge while receiving the new tasks.

while finetuning with the data of new tasks like how to count and how to reason while finetuning, the
knowledge model have dogged about color will be forgetted, which we call ’catastrophic forgetting.’
To alleviate catastrophic forgetting, numerous methods have been proposed for continual learning
such as Kirkpatrick et al. (2017), Chaudhry et al. (2019) and Buzzega et al. (2020). What’s more,
there are also some works that try to fit the setting of continual learning into vision-language model
in the field of Visual Question Answering(VQA) like S-prompts Wang et al. (2022a), Dual-prompts
Wang et al. (2022b), Triplet Fu et al. (2023) and VQACL Zhang et al. (2023c). Most of them use
a prompt based method to maintain the high-level domain knowledge in a special task and build a
memory bank to keep the information of previous tasks.

However, in the field of LVLMs, there is almost no works to explore how to merge continual learning
methods into the training process of LVLMs. The main reason is that no effective and reasonable
settings and dataset for continual learning have been built especially for LVLMs. Previously, most
works with the topic of continual learning always continuously train their models with a stream of
different categories of images. For example, the model first learns ”what is a cat”, then it learns
”how a cup looks like”. The continual learning methods attempt to realise that the model will still
remember how to discern a cat while training with the cups’ data. As for the continual learning
methods in vision question answering(VQA), works like VQACLZhang et al. (2023c) and TripletFu
et al. (2023) treat the tasks stream as the prototype for continual learning, in which the model try to
manage the knowledge of new tasks while maintaining old knowledge. The datasets that previous
works based on are always hands-made by themself to meet the need of continual learning settings
with limited amount of data . So if we want to test the performance of LVLMs with large amount of
data under continual learning settings, there were no readily available datasets for use.

To solve this, we proposed our dataset for continual learning settings in Large Vision-Language
Models as shown in Figure 1. Specifically speaking, we classify the instructions prepared for
LVLMs’ finetuning process into their respective task type to emulate the practical use of fine-
tuning LVLMs with different user-specific tasks in our real life. Under the proposed continual
learing settings, we also proposed a LVLM-CL, a novel approach capable of continual learning set-
tings for large vision-language models when finetuning with different kinds of tasks, inspires by
Zhang et al. (2023c). Specifically, our LVLM-CL consists of a text feature based prompt and a
learnable module for input images that are different between tasks to keep the special features of
different tasks. To meet the settings of continual learning, we also design a memory bank which
storage previous trained tasks.
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Our main contributions can be summarized as follows:

• To our best knowledge, we are the first to explore the performance of Large Vision-
Language Models under continual learning settings.

• We proposed a dataset for continual learning settings in Large Vision-Language Models,
which also provided a set of classified rules if others want to transform their dataset into
continual learning settings during the finetuning process.

• We also proposed LVLM-CL, a novel approach capable of continual learning settings to
improve LVLMs performance, with quantitative evaluations to prove its capability.

2 RELATED WORKS

2.1 LARGE LANGUAGE MODEL (LLM)

The evolution of LLMs has significantly transformed the natural language processing landscape,
demonstrating the exceptional capabilities of the Transformer architecture. This transformation be-
gan with the emergence of large-scale pre-trained models like BERT Devlin et al. (2018) and T5
Raffel et al. (2020), which brought significant performance improvements to various NLP tasks.
These models have excelled across various NLP tasks. With the advent of GPT-3 Brown et al.
(2020), decoder-only models have gained increasing popularity due to their effectiveness in few-
shot and zero-shot scenes. Google’s PaLM Chowdhery et al. (2022) model showcases improve-
ments in model parameterization and dataset diversity, significantly enhancing the performance of
large language models. To optimize models for natural conversational responses, strategies such as
fine-tuning and reinforcement learning from human feedback have been employed in models like
InstructGPT Ouyang et al. (2022) and ChatGPT OpenAI (2022). Additionally, the open-source
community has made significant contributions to the development of LLMs, exemplified by the re-
lease of models such as LLaMA Touvron et al. (2023a), Vicuna Zheng et al. (2023a), Qwen Bai
et al. (2023a), LLaMA2 Touvron et al. (2023b), Baichuan2 Yang et al. (2023), and InternLM Team
(2023). These contributions have fueled continuous innovation, setting new benchmarks for NLP
research.

2.2 LARGE VISION-LANGUAGE MODEL

Recent advancements in LVLM research have shown significant strides in integrating visual in-
formation into Large Language Models (LLMs). Models such as CLIP and BLIP exemplify the
effectiveness of contrastive learning techniques in aligning image and text modalities. Specifically,
LLaVA Liu et al. (2024b) and MiniGPT-4 Zhu et al. (2023) have explored ways to integrate visual
clues into large language models (LLMs). Through GPT-4 or sentence templates, they constructed
a training dataset containing correlated images and text, and used a projection layer to align these
two modalities. Additionally, there are several notable works that propose various methods to better
integrate visual modality information into LLMs, including mPLUG-DocOwl Ye et al. (2023), Otter
Li et al. (2023a), LLaMa-Adaptor Zhang et al. (2023a), and InternGPT Liu et al. (2023b). Moreover,
researchers have delved into the realm of fine grained understanding of LMMs, as exemplified by
works like VisionLLM Wang et al. (2023), GPT4RoI Zhang et al. (2023b),and PVIT Herzig et al.
(2024).Vision LLM, for instance, employs a language-guided tokenizer to extract vision features at
specific granularities, whereas GPT4RoI and PVIT utilize bounding boxes to obtain relevant visual
features.

2.3 CONTINUAL LEARNING

Continual learning seeks to develop a unified model capable of progressively acquiring new knowl-
edge through a stream of tasks while retaining existing information. The primary obstacle is to
achieve learning without experiencing catastrophic forgetting, ensuring that the model’s proficiency
in tasks it has previously mastered does not substantially diminish. To tackle this issue, existing ap-
proachesKirkpatrick et al. (2017), Chaudhry et al. (2019) Buzzega et al. (2020) to continual learning
can be divided into three main strategies: regularization, rehearsal, and architectural innovations.
Regularization techniques apply constraints to the learning objective to restrict alterations in the
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model’s parameters. Rehearsal methods involve retaining a subset of training data from prior tasks
in a buffer and periodically retraining the model on this data to reinforce past learning. In con-
trast, architectural methods adapt the network’s structure to accommodate distinct parameters for
each new taskWang et al. (2022a)Wang et al. (2022b). These strategies have demonstrated impres-
sive outcomes in single-modal tasks like image classification and sequence tagging. Recently, as
multi-modal became popular, several works try to explore how to achieve continual learning under
multi-modal tasks like VQA Srinivasan et al. (2022)Fu et al. (2023) Zhang et al. (2023c). However,
their application to large multi-modal models with more data and different model architecture is still
largely uncharted territory.

3 LVLM CONTINUAL LEARNING SETTINGS

In this section, we introduce our proposed generative LVLM Continual Learning settings, which
aims to examine the model’s ability to adapt to a sequentially arriving data-stream in different task
domain while users are finetuning their LVLMs.

3.1 PRELIMINARIES

The contemporary LVLMs usually adopt a modular architecture, comprising a visual encoder V ,
a series of connection layers W , and a large language model L. Given an input image img and
its corresponding question q, the visual encoder V initially processes the image and encodes it into
a set of visual tokens zi = V (img). These visual tokens are then transformed to align with the
embedding space of the language model through the connection layers, such that hi = W (zimg).
Concurrently, the text query que is tokenized into linguistic tokens hq by the tokenizer T , becoming
hq = T (que). These visual and text tokens are concatenated into a unified sequence [hi, hq], which
serves as the input to the decoder component of the large language model L. The model then utilizes
this combined representation to infer the appropriate answer ans = L([hi, hq]), demonstrating the
capability of these models to perform cross-modal reasoning and answer multi-modal queries.

Task Size Source
Object recognition 98k Bert-based task classifier
Utility/Affordance 184k Bert-based task classifier
Color attribute 162k Bert-based task classifier
Scene recognition 42k Bert-based task classifier
Other attribute 30k Bert-based task classifier
Counting 52k Bert-based task classifier
Complex reasoning 78k Bert-based task classifier
Positional reasoning 237k Bert-based task classifier
Object presence 81k Bert-based task classifier
Sport recognition 12k Bert-based task classifier
Sentiment understanding 9k Bert-based task classifier
Activity recognition 556k Bert-based task classifier
Detail 45k Bert-based task classifier and all questions in TextCaps

Sidorov et al. (2020) dataset
Region description 562k Region description questions generated from VG and RefCOCO
Region locating 560k Region localization questions generated from VG and RefCOCO
OCR 386k All questions from OCRVQA
Conversation 256k All questions from LLava Conversions
ShareGPT data 41k All questions from ShareGPT
Total 3392k

Table 1: Task classification results of the mixed instruction data from LLaVA-1.5 (with multiple
instruction-response pairs for the same image counted separately)
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Figure 2: The overall architecture of our proposed method, which incorporates a LVLM backbone,
a memory buffer, and a concentration learning module.

3.2 DATA CONSTRUCTION UNDER CL SETTING

To transform the LVLM such as LLaVA into continual learning settings for emulating the practical
use of finetuning LVLMs with different user-specific tasks while ensuring fairness in comparisons,
we decide to make a classification on the finetuning instructions of LLaVA based on different tasks.
Our proposed continual learning method uses tasks as fundamental units. Therefore, we need an
accurate and reasonable method to classify instructions into the respective task types. VQA, as a
significant component of training data in many LVLM studies Chen et al. (2023); Bai et al. (2023b);
Liu et al. (2024a), provides valuable insights for how to produce our task classification. However,
the task classification criteria of VQA are difficult to cover all types of LVLM instructions. More
extensions are needed to accommodate instruction formats of the LVLMs.

We base our extension on TDIUC Kafle & Kanan (2017), a VQA task classification dataset. TDIUC
contains 12 types of questions, some of which are generated using question templates, such as the
counting type, and others are manually annotated, such as the sentiment understanding type. We
removed the absurd type, where questions cannot be answered. To identify more complex in-
structions, we sampled data from the complex reasoning tasks and detail tasks in LLaVA, adding
them as two new task types to the dataset. Subsequently, we trained BERT, a widely used lan-
guage model, as an general instruction classifier on the modified dataset. We used it to classify the
158k instruction-following dataset of LLaVA. However, the 665k instruction-following dataset of
LLaVA-1.5 includes OCRVQA Mishra et al. (2019) to enhance the model’s ability to recognize text
within images, and region-level VQA datasets including Visual Genome Krishna et al. (2017) and
RefCOCO Kazemzadeh et al. (2014) to improve the model’s capability of localizing fine-grained
visual details, Liu et al. (2024a). Considering the particularities of the instructions and responses
generated by these three datasets, we categorize the corresponding instructions into three extra task
types. Classified rules and specific data sources for each task classification can be found in Table.1.
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4 PROPOSED METHOD

4.1 OVERALL ARCHITECTURE

We introduced a task-based representation learning method, which incorporates task-specific (TS)
and task-invariant (TI) features for both visual and linguistic data, facilitating the acquisition of
representations that are both discerning and broadly applicable to the LVLM-CL setting. The frame-
work of our model, depicted in Figure 2, is based on a encoder, projector and LLM architecture,
and includes a module for an additional concentration feature learning. Additionally, in line with
common rehearsal strategies Chaudhry et al. (2019); Lopez-Paz & Ranzato (2017) to mitigate catas-
trophic forgetting in continual learning, we have established a memory buffer M that archives a
selection of training instances from each completed task. As illustrated in Figure 2, when presented
with an image V and a question Q, whether from the current task or from memory M , we initially
extract the visual features Zv with frozen vision encoder and language question’s features Hq with
trainable text encoder. Vision features are then processed through a trainable projector W to make
the extracted features more distinguishable. These features are subsequently utilized as the visual
and textual task-specific features, V TS and QTS . Within the concentration learning module, we
engage in the learning and updating of concentration features for various task types. Since concen-
trations encapsulate essential class information that is resilient to new data, we identify appropriate
textual concentrations to serve as the task-invariant features QTI , contingent on the question Q.
Ultimately, the vectors V TS , QTS , QTI are amalgamated and funneled into the large language
model such as Llama to produce a response. The entire network is optimized using a standard auto
regressive loss function.

4.2 TASK-SPECIFIC AND TASK-INVARIANT REPRESENTATION LEARNING

A well-composed large vision-language model under continual learning settings should possess two
essential attributes: the capacity to distinguish between previously encountered types of queries or
visual elements, and the adaptability to apply this knowledge to unfamiliar combinations of these
elements. We believe that the crux lies in efficient representational learning. Therefore, we introduce
an uncomplicated yet powerful approach to learning representations by capitalizing on both a feature
that is unique to each task and one that remains constant across tasks. In this manner, we achieve
representations that not only highlights the salient aspects of the input but also encapsulates the
essential knowledge of various types of tasks.

Task-specific Feature. To learn a discriminative TS feature, we utilize multi-modal encoders
Enc(.) that consists of a stack of transformer blocks. In experienment, we use Clip-Encoder. Specif-
ically, each transformer block contains a multi-head self-attention layer and a fully-connected layer
with residual connections, which helps capture the most attractive and prominent feature of the in-
put. Formally, the TS feature Qts ∈ Rn×d and V ts ∈ Rm×d for the question and image are encoded
as:

QTS , ZV = Enc (Eq, Ev) (1)

V TS = W (ZV ) (2)

Task-invariant Feature. For the TI feature, we hope it contain typical reasoning knowledge for
a type of question, which is invariant across different task domains and can be adapted to novel
scenarios. To achieve it, we design a concentration learning module to construct concentrations
for different kinds of questions, and each concentration aggregates representative task information
of corresponding training examples. Specifically, we first initialize a set of question concentration
{P q

t }
T
t=1, where T denote the number of question types in our LVLM-CL. Then, to fit the continual

learning setting, the concentrations are constantly updated based on the mini-batch data from the
current task or memory M . In the update process of P t

q , we first compute the expectation Et over
all the questions that belong to the t-th question type as follows:

Et =
1

j

J∑
i=1

Pool
(
Enc

(
Eq,i

t

))
(3)

where j denotes the number of questions with type t in the current mini-batch, Eq,i
t represents

the textual embedding of the i-th question with type t, and Pool() represents the mean pooling
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Method Language VQAV2 GQA VizWiz SciQA
BLIP-2 Vicuna-13B 65.0 32.3 19.6 61.0
InstructBLIP Vicuna-13B - 49.5 33.4 63.1
Shikra Vicuna-13B 77.4 - - -
IDEFICS-80B LLAMA-65B 66.0 45.2 36.0 -
Qwen-VL Qwen-7B 79.5 59.3 35.2 67.1
Qwen-VL-Chat Qwen-7B 78.2 57.5 38.9 68.2
mPLUG-Owl2 LLAMA-65B 79.4 56.1 54.5 68.7
monkey Qwen-7B 80.3 60.7 61.2 69.4
LLaVA-1.5 Vicuna-7B 78.5 62.0 50.0 66.8
LLaVA-1.5(under CL setting) Vicuna-7B 72.3 56.5 39.8 62.3
LVLM-CL Vicuna-7B 75.2 59.8 44.1 63.7

Table 2: Comparisons with vision-language models on visual question answering datasets.

operation. Then, the expectation Et is leveraged to refresh the concentration as follows:

P q
t = (1− α)Et + αP q

t (4)

where α is the parameter to adjust the updated degree. With the above strategy, on the one hand, we
can update the concentrations with the latest information to make it more representative, thus en-
hancing the feature’s generalization ability. On the other hand, the concentrations retain the knowl-
edge of historical data, which helps mitigate the forgetting for continual learning. After that, given
a question, we can obtain its TI feature QT I by looking up a suitable concentration from {P q

t }
T
t=1

based on its specific feature QTS . Formally, QTI Rd can be selected by solving following objective:

QTI = argmax
P q

t

cos
(
th

(
QTS

)
, th (P q

t )
)

(5)

where th() is the hyperbolic tangent function, t is range from 1 to T , and cos() denotes the cosine
similarity. In this way, QTI can contain essential skill knowledge of the corresponding question
type.

5 EXPERIMENTS

5.1 IMPLEMENTATION

Training details. The vision backbone comprises 1B parameters and is initialized using BLIP-2
Li et al. (2023b) pretrained weights. The employed LLM model has 7B parameters, initialized with
Vicuna-v1.3 Zheng et al. (2023a) weights. Full parameters training was conducted on 4×A100(80G)
GPUs and part of parameters training with LoRA was conducted on 8×RTX3090(24G). We leverage
the Zero-2 optimization, facilitated by the DeepSpeed framework Rasley et al. (2020); Rajbhandari
et al. (2020). The entire training process spanned half a day. Detailed descriptions of our phased
training strategy, configuration and the datasets utilized for each stage are provided in the appendix.
Evaluation Datasets and Baselines. In our study, we employ a comprehensive suite of 8 multi-
modal datasets, each serving as a critical component in evaluating the performance of our proposed
method. These datasets are bifurcated into two distinct categories: visual question answering (VQA)
and multi-modal benchmarks. For visual question answering, we utilized four datasets: VQA-v2
Goyal et al. (2017), GQA Hudson & Manning (2019), VizWiz Gurari et al. (2018), Science QA Lu
et al. (2022). VQA-v2 Goyal et al. (2017) is a popular dataset that contains over 265K images from
COCO Lin et al. (2014) and abstract scenes with multiple questions. GQA Hudson & Manning
(2019) offers a structured understanding of visual reasoning challenges with over 22M question-
answer pairs grounded in 113,000 images. We integrate a suite of four diverse datasets to establish
a comprehensive multimodal benchmark: MME Fu et al. (2024), MMBench Liu et al. (2023a),
POPE Li et al. (2023c), and MM-Vet Yu et al. (2023). Specifically, MME Fu et al. (2024) extends
the benchmarking landscape with a broad array of 14 sub-tasks designed to evaluate multi-modal
learning comprehensively. MMBench Liu et al. (2023a) focuses on assessing multimodal machine
learning models, facilitating comparisons across a spectrum of the tasks and data modalities. POPE
Li et al. (2023c) presents a challenging dataset aimed at probing the hallucination phenomena in
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Method Language MME MMB POPE MM-Vet
BLIP-2 Vicuna-13B 1293.8 - 85.3 22.4
InstructBLIP Vicuna-13B 1212.8 36.0 78.9 25.6
Qwen-VL Qwen-7B - 38.2 - -
Qwen-VL-Chat Qwen-7B 1487.5 60.6 - -
mPLUG-Owl2 LLAMA-65B 1450.2 64.5 - 36.2
LLaVA-1.5 Vicuna-7B 1510.7 64.3 85.9 30.5
LLaVA-1.5(under CL setting) Vicuna-7B 1178.5 62.9 84.8 24.8
LVLM-CL Vicuna-7B 1323.9 65.2 85.9 26.7

Table 3: Comparisons with vision-language models on Multimodal Benchmarks.

Size of Memory Bank GQA POPE
M=0 58.4 85.0
M=5% 58.9 85.3
Ours(M=10%) 59.8 85.9

Table 4: Comparisons with vision-language models on visual question answering datasets. Our
MLLM-CL consistently improves the vanilla LLaVA Liu et al. (2024b) in all the benchmarks under
the continual learning setting. The best results are highlighted bold and the second are highlighted
underline.

Large-Vision Language Models (LVLMs). Lastly, MM-Vet Yu et al. (2023) is a platform for eval-
uating generative capabilities, with performance metrics benchmarked against the state-of-the-art
GPT-4 model OpenAI et al. (2024). To establish a strong benchmark for our experimental analysis,
we adopt the state-of-the-art LLaVA Liu et al. (2024b) method as our primary baseline. We do ex-
periments on both full-param finetune and LoRA-finetune separately with the aim of demonstrating
the scalability and generalizability of our approach across different changeable parameters sizes, but
we found that the performance of LoRA-finetune is not good enough, so we don’t show it.

5.2 MAIN RESULTS

We perform our main experiments on 8 widely used and challenging multi-modal benchmarks. We
clearly show the performance compared with our base line LLaVA and the comparisons with other
vision-language models to show the superiority of our method.
Results on Visual Question Answering Datasets. We rigorously evaluate the effectiveness of our
LVLM-CL approach through extensive experiments on four challenging datasets that are widely rec-
ognized in the visual question-answering research community:VQA-v2, GQA, VizWiz, ScienceQA.
Results are shown in Tab.2. Upon integrating our LVLM-CL method with the LLaVA/7B under the
continual learining settings, we observed that under our continual learning settings, the LLaVA’s
performances decline because of catastrophic forgetting. But with our proposed LVLM-CL module,
LLaVA’s performances all show varying degrees of enhancement. This improvement was most pro-
nounced in the VizWiz dataset, where we achieved a 4.3 % increase. On the more general VQA-v2
and GQA datasets, we saw increases of 2.9% and 3.3%, respectively. The performance on Sci-
enceQA datasets, with improvements of 1.4%, further demonstrates the versatility of our approach.
This robust performance underscores the efficacy of our proposed continual learning method and
highlights its potential to enhance visual question-answering capabilities significantly.
Results on Multimodal Benchmarks. We evaluated our innovative LVLM-CL method across four
multi-modal benchmarks specifically designed to test the limits of multi-modal understanding and
reasoning. The benchmarks included MME Fu et al. (2024), MMBench Liu et al. (2023a), POPE
Li et al. (2023c), and MM-Vet Yu et al. (2023), each presenting its own challenges and requiring a
nuanced understanding of multi-modal inputs. Results are shown in Tab.3. We still observed similar
gains across the five benchmarks, which is a testament to our method’s scalability and effective-
ness. The MMBench and MM-Vet benchmarks showed notable improvements of 0.11% (for scores)
and 2.3%, respectively. Most impressively, with LVLM-CL, LLaVA-1.5 models achieved the same
performance with no continual learning settings on the POPE benchmarks, firmly establishing our
proposed method as a significant step forward in multi-modal learning.
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α GQA POPE
0.1 58.2 85.1
0.3 58.9 85.7
0.5(Ours) 59.8 85.9
0.7 59.1 85.6
0.9 58.2 85.0

Table 5: Analysis on the memory size on GQA and POPE

5.3 ABLATION STUDY

We conduct an in-depth ablation study to investigate the impact of different training strategies of
LVLM-CL. We follow the same evaluation setting proposed in Sec. 5.1, we report the ablation
studies in Tab.4 and 5.
Analysis on Memory Size. Tab. 3 illustrates the model performance on standard composition
testing of GQA and POPE(One for VQA Benchmarks, another for Multi-modal Benchmarks) with
different memory sizes. From Tab.3, we can observe that our method always achieves the best
performance, regardless of how many examples are stored. The result indicates the efficacy of
the proposed method for continual LVLM. Besides,when the memory is larger, the performance of
all continual learning methods can obtain clear improvements in most cases,suggesting that more
replayed data helps mitigate the forgetting problem.
Impact of hyper-parameter. We investigate the influence of the important parameters involved in
our continual learning method, α, in Eq.(3), which controls ”How many information I should keep”.
Specifically, we train models with α=0.1,0.3,0.5,0.7,0.9 ,and the results are depicted in Tab.4. From
the table, considering the model’s performance in both GQA and POPE, we find that α=0.5 works
the best.
Effect of Task Order. We test the performance of the LVLM-CL with three different task orders and
use the best one for compare in Table.2 and 3, which respectively adopt Scene recognition, Complex
reasoning and Color attribute as the first linguistic-drive task. We get a different order three times
in a completely random way. It is found that the task order causes the model performance to vary
from for the last task, which suggests that the impact of the order is not significant and our LVLM-
CL setting is robust to the task order. Besides, among the three sequences, the one beginning with
Complex reasoning achieves the worst final performance. This maybe because that the task about
objects’ relationships requires a higher-order reasoning ability.

CONCLUSION

Introducing LVLM-CL, an innovative methodology designed to facilitate ongoing learning for exten-
sive vision-language models during the fine-tuning process with varied task types. Our LVLM-CL
is composed of a text-driven prompt that leverages textual features and an adaptable component for
processing image inputs, which may vary from one task to another, thus preserving the distinctive
features inherent to each task. In alignment with the framework of continuous learning, we have also
engineered a memory repository to archive tasks that have been previously trained. Comprehensive
case analyses and numerical assessments demonstrate that LVLM-CL possesses robust capabili-
ties in discerning the critical features of diverse tasks and exhibits remarkable retention capabilities
within a continuous learning context. This endeavor propels the evolution of LVLMs, empowering
them with enhanced capacity for sustained fine-tuning to meet real-world practical applications.
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A APPENDIX

The pie chart depicting the distribution of categories in the 665k instruction-following dataset of
LLaVA-1.5 is shown in Figure 3.

Figure 3: The distribution of various task types in the 665k training data of llava-1.5.

We show some instruction examples for some task types in Tab.6.
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Task Example
Object recognition What animal is in the picture?
Utility/Affordance What are the sticks used for?
Color attribute What color is the bus?
Scene recognition Is the picture taken indoor?
Other attribute Other attributes (besides color)
Counting How many men are at this table?
Complex reasoning Why might this person be having a difficult time during

their walk?
Positional reasoning What is in front of the yellow clock?
Object presence Are there any carrots in the picture?
Sport recognition What sport is the man playing?
Sentiment understanding How is the woman feeling?
Activity recognition What is the zebra in the front doing?
Detail What do you see happening in this image?
Region description Please provide a short description for this region:

[0.52, 0.59, 0.82, 0.83].
Region locating Please provide the bounding box coordinate of the region

this sentence describes: red.
OCR What is the title of this book?

Table 6: Instruction examples for some task types.
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