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ABSTRACT

Deep image prior (DIP) and its variants have shown remarkable potential for solv-
ing inverse problems in computational imaging (CI), needing no separate training
data. Practical DIP models are often substantially overparameterized. During
the learning process, these models first learn the desired visual content and then
pick up the potential modeling and observational noise, i.e., overfitting. Thus, the
practicality of DIP hinges on early stopping (ES) that can capture the transition
period. In this regard, most previous DIP works for CI tasks only demonstrate the
potential of the models—reporting the peak performance against the groundtruth
but providing no clue about how to operationally obtain near-peak performance
without access to the groundtruth. In this paper, we set to break this practical-
ity barrier of DIP, and propose an efficient ES strategy that consistently detects
near-peak performance across several CI tasks and DIP variants. Simply based on
the running variance of DIP intermediate reconstructions, our ES method not only
outpaces the existing ones—which only work in very narrow regimes, but also
remains effective when combined with methods that try to mitigate overfitting.

1 INTRODUCTION

Inverse problems (IPs) are prevalent in computational imaging (CI), ranging from basic image de-
noising, super-resolution, and deblurring, to advanced 3D reconstruction and major tasks in scien-
tific and medical imaging (Szeliski, 2022). Despite the disparate settings, all these problems take
the form of recovering a visual object x from y = f(x), where f models the forward process to
obtain the observation y. Typically, these visual IPs are underdetermined: x cannot be uniquely
determined from y. This is exacerbated by potential modeling (e.g., linear f to approximate a non-
linear process) and observational (e.g., Gaussian or shot) noise, i.e., y ≈ f(x). To overcome the
nonuniqueness and improve noise stability, people often encode a variety of problem-specific priors
on x when formulating IPs. Traditionally, IPs are phrased as regularized data-fitting problems:

min
x

ℓ(y, f(x)) + λR(x) ℓ(y, f(x)) : data-fitting loss, R(x) : regularizer (1)

where λ is the regularization parameter. Here, the loss ℓ is often chosen according to the noise model,
and the regularizer R encodes priors on x. The advent of deep learning (DL) has revolutionized how
IPs are solved: on the radical side, deep neural networks (DNNs) are trained to directly map any
given y to an x; on the mild side, pretrained or trainable DL models are taken to replace certain
nonlinear mappings in numerical algorithms for solving Eq. (1) (e.g., plug-and-play, and algorithm
unrolling). Recent surveys Ongie et al. (2020); Janai et al. (2020) on these developments trust large
training sets {(yi,xi)} to adequately represent the underlying priors and/or noise distributions. This
paper concerns another family of striking ideas that require no separate training data.

Deep image prior (DIP) Ulyanov et al. (2018) proposes parameterizing x as x = Gθ(z), where
Gθ is a trainable DNN parametrized by θ and z is a trainable or frozen random seed. No separate
training data other than y are used! Putting the reparametrization into Eq. (1), we obtain

min
θ

ℓ(y, f ◦Gθ(z)) + λR ◦Gθ(z). (2)

Gθ is often “overparameterized”—containing substantially more parameters than the size of x, and
“structured”—e.g., consisting of convolution networks to encode structural priors in natural visual
objects. The resulting optimization problem is solved via standard first-order methods for mod-
ern DL (e.g., (adaptive) gradient descent). When x has multiple components with different physical
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meanings, one can naturally parametrize x using multiple DNNs. This simple idea has led to surpris-
ingly competitive results on numerous visual IPs, from low-level image denoising, super-resolution,
inpainting (Ulyanov et al., 2018; Heckel & Hand, 2019; Liu et al., 2019) and blind deconvolu-
tion (Ren et al., 2020; Wang et al., 2019; Asim et al., 2020; Tran et al., 2021; Zhuang et al., 2022a),
to mid-level image decomposition and fusion (Gandelsman et al., 2019; Ma et al., 2021), and to
advanced CI problems (Darestani & Heckel, 2021; Hand et al., 2018; Williams et al., 2019; Yoo
et al., 2021; Baguer et al., 2020; Cascarano et al., 2021; Hashimoto & Ote, 2021; Gong et al., 2022;
Veen et al., 2018; Tayal et al., 2021; Zhuang et al., 2022b); see the survey Qayyum et al. (2021).

Figure 1: The “early-learning-then-overfitting”
(ELTO) phenomenon in DIP for image denois-
ing. The quality of the estimated image climbs
to a peak first and then plunges once the noise is
picked up by the model Gθ(z) also.

Overfitting issue in DIP A critical detail that
we have glossed over is overfitting. Since Gθ

is substantially overparameterized, Gθ(z) can
represent arbitrary elements in the x domain.
Global optimization of (2) would normally lead
to y = f(Gθ(z)), but Gθ(z) may not repro-
duce x, e.g., when f is non-injective, or y ≈
f(x) so that Gθ(z) also accounts for the mod-
eling and observational noise. Fortunately, DIP
models and first-order optimization methods to-
gether offer a blessing: in practice, Gθ(z) has
a bias toward the desired visual content and
learns it much faster than learning noise. So the
reconstruction quality climbs to a peak before
potential degradation due to noise; see Fig. 1.
This “early-learning-then-overfitting” (ELTO)
phenomenon has been repeatedly reported in
prior works and is also backed by theories on simple Gθ and linear f (Heckel & Soltanolkotabi,
2020b;a). The successes of DIP models claimed above are mostly conditioned on that appropriate
early stopping (ES) around the performance peaks can be made.

Is ES for DIP trivial? Natural ideas trying to perform good ES can fail quickly. (1) Visual in-
spection: This subjective approach is fine for small-scale tasks involving few problem instances,
but quickly becomes infeasible for many scenarios, such as (a) large-scale batch processing, (b)
recovery of visual contents tricky to be visualized and/or examined by eyes (e.g., 3D or 4D visual
objects), and (c) scientific imaging of unfamiliar objects (e.g., MRI imaging of rare tumors, and mi-
croscopic imaging of new virus species); (2) Tracking full-reference/no-reference image quality
metrics (FR/NR-IQMs): Without the groundtruth x, computing any FR-IQM and hence tracking
their trajectories (e.g., the PNSR curve in Fig. 1) is out of the question. We consider tracking NR-
IQMs as a family of baseline methods in Sec. 3.1; the performance is much worse than ours; (3)
Tuning the iteration number: This ad-hoc solution is taken by most previous works. But since the
peak iterations of DIP vary considerably across images and tasks (see, e.g., Figs. 3 and 23 and Ap-
pendices A.7.3 and A.7.5), this might entail numerous trial-and-error steps and lead to suboptimal
stopping points; (4) Validation-based ES: ES easily reminds us of validation-based ES in super-
vised learning. The DIP approach to IPs as summarized in Eq. (2) is not supervised learning, as it
only deals with a single instance y, without separate (x,y) pairs as training data. There are recent
ideas (Yaman et al., 2021; Ding et al., 2022) that hold part of the observation y out as a validation
set to emulate validation-based ES in supervised learning, but they quickly become problematic for
nonlinear IPs due to the significant violation of the underlying iid assumption; see Sec. 3.3.

Prior work addressing the overfitting There are three main approaches to countering overfitting
in working with DIP models. (1) Regularization: Heckel & Hand (2019) mitigates overfitting
by restricting the size of Gθ to the underparameterized regime. Metzler et al. (2018); Shi et al.
(2022); Jo et al. (2021); Cheng et al. (2019) control the network capacity by regularizing the norms
of layerwise weights or the network Jacobian. Liu et al. (2019); Mataev et al. (2019); Sun (2020);
Cascarano et al. (2021) use additional regularizer(s) R(Gθ(z)), such as the total-variation norm
or trained denoisers. However, in general, it is difficult to choose the right regularization-level to
preserve the peak performance while avoiding overfitting, and the optimal λ likely depends on the
noise type and level, as shown in Sec. 3.1—the default λ’s for selected methods in this category
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still lead to overfitting for high-level noise. (2) Noise modeling: You et al. (2020) models sparse
additive noise as an explicit term in their optimization objective. Jo et al. (2021) designs regularizers
and ES criteria specific to Gaussian and shot noise. Ding et al. (2021) explores subgradient methods
with diminishing step-size schedules for impulse noise with the ℓ1 loss, with preliminary success.
These methods do not work beyond the noise types and levels they target, whereas our knowledge
about the noise in a given visual IP is typically limited. (3) Early stopping (ES): Shi et al. (2022)
tracks the progress based on a ratio of no-reference blurriness and sharpness, but the criterion only
works for their modified DIP models, as acknowledged by the authors. Jo et al. (2021) provides
noise-specific regularizer and ES criterion, but it is unclear how to extend the methods to unknown
noise types and levels. Li et al. (2021) proposes monitoring the DIP reconstruction by training a
coupled autoencoder. Although its performance is similar to ours, the extra autoencoder training
slows down the whole process dramatically; see Sec. 3. Yaman et al. (2021); Ding et al. (2022)
emulate validation-based ES in supervised learning by splitting elements of y into training and
validation sets so that validation-based ES can be performed. But in IPs, especially nonlinear ones
(e.g., in blind image deblurring—BID, y ≈ k ∗ x where ∗ is linear convolution), elements of y
can be far from being iid and so validation may not work well. Moreover, holding-out part of the
observation in y can substantially reduce the peak performance; see Sec. 3.3.

Our contribution We advocate the ES approach—the iteration process stops once a good ES
point is detected, as (1) the regularization and noise modeling approaches, even if effective, often
do not improve the peak performance but push it until the last iterations; there could be≥ 10×more
iterations spent than that of climbing to the peak in the original DIP models; (2) both need deep
knowledge about the noise type/level, which is practically unknown for most applications. If their
key models and hyperparameters are not set appropriately, overfitting probably remains. Then ES
is still needed. In this paper, we build a novel ES criterion for various DIP models simply by
tracking the trend of the running variance of the reconstruction sequence. Our ES method is (1)
Effective: The gap between our detected and the peak performance, i.e., detection gap, is typically
very small, as measured by standard visual quality metrics (PSNR and SSIM); (2) Efficient: Per-
iteration overhead is a fraction of—the standard version in Algorithm 1, or negligible—the variant
in Algorithm 2, relative to the per-iteration cost of Eq. (2); (3) General: Our method works well for
DIP and its variants, including deep decoder (Heckel & Hand, 2019, DD) and sinusoidal representa-
tion networks (Sitzmann et al., 2020, SIREN), on different noisy types/levels and across 5 visual IPs,
spanning both linear and nonlinear. Also, our method can be wrapped around several regularization
methods, e.g., Gaussian process-DIP (Cheng et al., 2019, GP-DIP), DIP with total variation regular-
ization (Liu et al., 2019; Cascarano et al., 2021, DIP-TV) to perform reasonable ES when they fail
to prevent overfitting; (4) Robust: Our method is relatively insensitive to the two hyperparameters,
i.e., window size and patience number (see Secs. 2, 3 and 3.4 and Appendix A.7.13). By contrast,
the hyperparameters of most methods reviewed above are sensitive to the noise type/level.

2 OUR EARLY-STOPPING METHOD

Figure 2: Relationship between the PSNR, MSE,
and VAR curves. Our method relies on the VAR
curve, whose valley is often well aligned with the
MSE valley, to detect the MSE valley—that cor-
responds to the PSNR peak.

Intuition for our method We assume: x
is the unknown groundtruth visual object of
size N , {θt}t≥1 is the iterate sequence, and
{xt}t≥1 the reconstruction sequence where
xt .

= Gθt(z). Since we do not know x,
we cannot access the PNSR or any FR-IQM
curve. But we observe that (Fig. 2) generally
the MSE (resp. PSNR; recall PSNR(xt) =

10 log10 ∥x∥
2
∞/MSE(xt)) curve follows a U

(resp. bell) shape: ∥xt − x∥2F initially drops
quickly to a low level, and then climbs back due
to the noise effect, i.e., the ELTO phenomenon
in Sec. 1; we hope to detect the valley of this U-shaped MSE curve. Then how to gauge the MSE
curve without knowing x? We consider the running variance (VAR):

VAR(t)
.
= 1/W ·

∑W−1

w=0
∥xt+w − 1/W ·

∑W−1

i=0
xt+i∥2F . (3)
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Initially, the models quickly learn the desired visual content, resulting in a monotonic, rapidly de-
creasing MSE curve (see Fig. 2). So we expect the running variance of {xt}t≥1 to also drop quickly,
as shown in Fig. 2. When the iteration is near the MSE valley, all the xt’s are near but scattered
around x. So 1

W

∑W−1
i=0 xt+i ≈ x and VAR(t) ≈ 1

W

∑W−1
w=0 ∥xt+w − x∥2F . Afterward, the noise

effect kicks in and the MSE curve bounces back, leading to a similar bounce-back in the VAR curve
as the xt sequence gradually moves away from x.

Table 1: ES-WMV (our method) on real-world
image denoising for 1024 images: mean and (std)
over the images. (D: detected)

ℓ (loss) PSNR (D) PSNR Gap SSIM (D) SSIM Gap

MSE 34.04 (3.68) 0.92 (0.83) 0.92 (0.07) 0.02 (0.04)

ℓ1 33.92 (4.34) 0.92 (0.59) 0.93 (0.05) 0.02 (0.02)

Huber 33.72 (3.86) 0.95 (0.73) 0.92 (0.06) 0.02 (0.03)

This argument suggests a U-shaped VAR curve,
and the curve should follow the trend of the
MSE curve, with approximately aligned val-
leys, which in turn is aligned with the PSNR
peak. To quickly verify this, we randomly
sample 1024 images from the RGB track of
the NTIRE 2020 Real Image Denoising Chal-
lenge (Abdelhamed et al., 2020), and perform DIP-based image denoising (i.e., min ℓ(y, Gθ(z))
where y denotes the noisy image). Tab. 1 reports the detected PSNR/SSIM and detection gaps based
on our ES method (see Algorithm 1) that tries to detect the valley of the VAR curve. On average, the
detection gaps are ≤ 0.95 in PSNR and ≤ 0.02 in SSIM, barely noticeable by eyes! More details
are in Fig. 11, and Sec. 3 and Appendix A.7.3.

Algorithm 1 DIP with ES–WMV
Input: random seed z, randomly-initialized θ0,

window size W , patience P , empty queue Q,
iteration counter k = 0, VARmin =∞

Output: reconstruction x∗

1: while not stopped do
2: update θ via Eq. (2) to obtain θk+1 and

xk+1

3: push xk+1 to Q, pop queue if |Q| > W
4: if |Q| = W then
5: compute VAR of elements in Q via

Eq. (3)
6: if VAR < VARmin then
7: VARmin ← VAR, x∗ ← xk+1

8: end if
9: if VARmin stagnates for P iterations

then
10: stop and return x∗

11: end if
12: end if
13: k = k + 1
14: end while

Detecting transition by running variance
Our lightweight method only involves comput-
ing the VAR curve and numerically detecting
its valley—the iteration stops once the val-
ley is detected. To obtain the curve, we set
a window-size parameter W and compute the
windowed moving variance (WMV). To ro-
bustly detect the valley, we introduce a patience
number P to tolerate up to P consecutive steps
of variance stagnation. Obviously, the cost is
dominated by the variance calculation per step,
which is O(WN) (N is the size of the vi-
sual object). In comparison, a typical gradi-
ent update step for solving Eq. (2) costs at least
Ω(|θ|N), where |θ| is the number of parame-
ters in the DNN Gθ. Since |θ| is typically much
larger than W (default: 100), our running VAR
and detection incur very little computational
overhead. Our whole algorithmic pipeline is
summarized in Algorithm 1. To confirm the ef-
fectiveness, we provide sample qualitative re-
sults in Figs. 3 and 11, with more quantitative
results included in the experiment part (Sec. 3;
see also Tab. 1). Appendix A.7.3 shows on image denoising with different noise types/levels, our ES
method can detect near-peak ES points. Similarly, our method remains effective on several popular
DIP variants, as shown in Fig. 3.

Seemingly similar ideas Our running variance and its U-shaped curve are reminiscent of the
classical U-shaped bias-variance tradeoff curve and hence validation-based ES (Geman et al., 1992;
Yang et al., 2020). But there are crucial differences: (1) our learning setting is not supervised; (2)
the variance in supervised learning is with respect to sample distribution, whereas our variance here
pertains to the {xt}t≥1 sequence. As discussed in Sec. 1, we cannot directly apply validation-based
ES, although it is possible to heuristically emulate it by splitting the elements in y (Yaman et al.,
2021; Ding et al., 2022)—which might be problematic for nonlinear IPs. Another line of related
ideas is variance-based online change-point detection in time series analysis (Aminikhanghahi &
Cook, 2017), where running variance is often used to detect mean-shift assuming the means are
piecewise constant. Here, the piecewise constancy assumption does not hold for our {xt}t≥1.
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Figure 3: ES-WMV on DD, GP-DIP, DIP-TV, and SIREN for denoising ”F16” with different levels
of Gaussian noise (top: low-level noise; bottom: high-level noise). Red curves are PSNR curves,
and blue curves are VAR curves. The green bars indicate the detected ES points. (We sketch the
details of the DIP variants above in Appendix A.5)

Partial theoretical justification We can make our heuristic argument in Sec. 2 more rigorous by
restricting ourselves to additive denoising, i.e., y = x + n, and appealing to the popular lineariza-
tion strategy (i.e., neural tangent kernel Jacot et al. (2018); Heckel & Soltanolkotabi (2020b)) in
understanding DNNs. The idea is based on the assumption that during DNN training θ does not
move much away from initialization θ0, so that the learning dynamic can be approximated by that
of a linearized model, i.e., suppose that we take the MSE loss

∥y −Gθ(z)∥22 ≈
∥∥y −Gθ0(z)− JG

(
θ0
)(
θ − θ0

)∥∥2
2

.
= f̂(θ), (4)

where JG

(
θ0
)

is the Jacobian of G with respect to θ at θ0, and Gθ0(z) + JG

(
θ0
)(
θ − θ0

)
is the

first-order Taylor approximation to Gθ(z) around θ0. f̂(θ) is simply a least-squares objective. We
can directly calculate the running variance based on the linear model, as shown below.
Theorem 2.1. Let σi’s and wi’s be the singular values and left singular vectors of JG(θ

0), and
suppose we run gradient descent with step size η on the linearized objective f̂(θ) to obtain {θt}
and {xt} with xt .

= Gθ0(z) + JG(θ
0)(θt − θ0). Then provided that η ≤ 1/maxi(σ

2
i ),

VAR(t) =
∑
i

CW,η,σi
⟨wi, ŷ⟩2

(
1− ησ2

i

)2t
, (5)

where ŷ = y −Gθ0(z), and CW,η,σi
≥ 0 only depends on W , η, and σi for all i.

The proof can be found in Appendix A.2. Theorem 2.1 shows that if the learning rate (LR) η is
sufficiently small, the WMV of {xt} is monotonically decreasing. We can develop a complementary
upper bound for the WMV that does have a U shape. To this end, we make use of Theorem 1
of Heckel & Soltanolkotabi (2020b), which can be summarized (some technical details omitted;
precise statement reproduced in Appendix A.3) as follows: consider the two-layer model GC(B) =
ReLU(UBC)v, where C ∈ Rn×k models 1 × 1 trainable convolutions, v ∈ Rk×1 contains fixed
weights, U is an upsampling operation, and B is the fixed random seed. Let J be a reference
Jacobian matrix solely determined by the upsampling operation U , and σi’s and wi’s the singular
values and left singular vectors of J . Assume x ∈ span {w1, . . . ,wp}. Then, when η is sufficiently
small, with high probability,

∥GCt(B)− x∥2 ≤
(
1− ησ2

p

)t ∥x∥2 + E(n) + ε∥y∥2, (6)

where ε > 0 is a small scalar related to the structure of the network and E(n) is the error introduced
by noise: E2(n)

.
=
∑n

j=1((1−ησ2
j )

t−1)2⟨wj ,n⟩2. So if the gap σp/σp+1 > 1, ∥GCt(B)− x∥2
is dominated by

(
1− ησ2

p

)t ∥x∥2 when t is small, and then by E(n) when t is large. But since the
former decreases and the latter increases when t grows, the upper bound has a U shape with respect
to t. Based on this result, we have:
Theorem 2.2. Assume the same setting as Theorem 2 of Heckel & Soltanolkotabi (2020b). With
high probability, our WMV is upper bounded by

12

W
∥x∥22

(
1− ησ2

p

)2t
1− (1− ησ2

p)
2
+ 12

n∑
i=1

((
1− ησ2

i

)t+W−1 − 1
)2

(w⊺
i n)

2
+ 12ε2∥y∥22. (7)
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Figure 4: The exact and upper
bounds predicted by Theorems 2.1
and 2.2.

The exact statement and proof can be found in Appendix A.3.
By similar reasoning as above, we can conclude that the up-
per bound in Theorem 2.2 also has a U shape. To interpret the
results, Fig. 4 shows the curves (as functions of t) predicted
by Theorems 2.1 and 2.2. The actual VAR curve should lie
between the two curves. These results are primitive and lim-
ited, simiar to the situations for many DL theories that provide
untight upper and lower bounds; we leave a complete theoret-
ical justification as future work.

A memory-efficient variant While Algorithm 1 is already
lightweight and effective in practice, we can slightly modify it to avoid maintaining Q and hence
save memory. The trick is to use exponential moving variance (EMV), together with the expo-
nential moving average (EMA), shown in Appendix A.4. The hard window size parameter W is
now replaced by the soft forgetting factor α: the larger the α, the smaller the impact of the history,
and hence a smaller effective window. We compare ES-WMV with ES-EMV in Appendix A.7.11
systematically for image denoising tasks. The latter has slightly better detection due to the strong
smoothing effect (α = 0.1). For this paper, we prefer to remain simple and leave systematic evalua-
tions of ES-EMV on other IPs as future work.

3 EXPERIMENTS

Figure 5: Baseline ES vs our ES-WMV on denois-
ing with low-level noise. For NIMA, we report both
technical quality assessment (NIMA-q) and aesthetic
assessment (NIMA-a). Smaller PSNR gaps are better.

We test ES-WMV for DIP on image
denoising, inpainting, super-resolution,
MRI reconstruction, and blind image
deblurring, spanning both linear and non-
linear IPs. For image denoising, we also
systematically evaluate ES-WMV on ma-
jor variants of DIP, including DD (Heckel
& Hand, 2019), DIP-TV (Cascarano et al.,
2021), GP-DIP (Cheng et al., 2019), and
demonstrate ES-WMV as a reliable helper
to detect good ES points. Details of
the DIP variants are discussed in Ap-
pendix A.5. We also compare ES-WMV
with major competing methods, including
DF-STE (Jo et al., 2021), SV-ES (Li et al.,
2021), DOP (You et al., 2020), SB (Shi
et al., 2022), and VAL (Yaman et al., 2021;
Ding et al., 2022). Details of major ES-
based methods can be found in Appendix A.6. We use both PSNR and SSIM to access the re-
construction quality, and we report PSNR and SSIM gaps (the difference between our detected
and peak numbers) as indicators of our detection performance. Common acronyms, pointers to
external codes, detailed experiment settings, results on real-world denoising, inpainting, and
super-resolution are in Appendices A.1, A.7.1, A.7.2, A.7.7, A.7.9 and A.7.10, respectively.

3.1 IMAGE DENOISING

Prior works dealing with DIP overfitting mostly focus on image denoising, but typically only evalu-
ate their methods on one or two kinds of noise with low noise levels, e.g., low-level Gaussian noise.
To stretch our evaluation, we consider 4 types of noise: Gaussian, shot, impulse, and speckle. We
take the classical 9-image dataset (Dabov et al., 2008), and for each noise type, generate two noise
levels, low and high, i.e., level 2 and 4 of Hendrycks & Dietterich (2019), respectively. See also the
performance of our ES-WMV on real-world denoising in Tab. 1 and Appendix A.7.7.

Comparison with baseline ES methods It is natural to expect that NR-IQMs, such as the classical
BRISQUE (Mittal et al., 2012), NIQE (Mittal et al., 2013), and modern DNN-based NIMA (Esfan-
darani & Milanfar, 2018) can possibly make good ES criteria. We thus set up 3 baseline methods
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using BRISQUE, NIQE, and NIMA, respectively and seek the optimal xt by these metrics. Fig. 5
presents the comparison (in terms of PSNR gaps) of these 3 methods with our ES-WMV on de-
noising with low-level noise; results on high-level noise, and measured by SSIM are included in
Appendix A.7.4. While our method enjoys favorable detection gaps (≤ 2) for most tested noise
types/levels (except for Baboon, Kodak1, Kodak2 for certain noise types/levels; DIP itself is sub-
optimal in terms of denoising such images with substantial high-frequency components), detection
gaps by the baseline methods can get huge (≥ 10).

Figure 6: Comparison of DF-STE and ES-WMV for
Gaussian and shot noise in terms of PSNR.

Competing methods DF-STE (Jo et al.,
2021) is specific for Gaussian and Pois-
son denoising, and the noise variance is
needed for their tuning parameters. Fig. 6
presents the comparison with DF-STE in
terms of PSNR. SSIM results are in Ap-
pendix A.7.5. Here, we directly report
the final PSNRs obtained by both meth-
ods. For low-level noise, there is no clear
winner. For high-level noise, ES-WMV
outperforms DF-STE by considerable margins. Although the right variance level is provided to
DF-STE in order to tune their regularization parameters, DF-STE stops after only very few epochs
leading to very low performance and almost zero standard deviations—they return almost the noisy
input. However, we do not perform any parameter tuning for ES-WMV. We further compare the two
methods on CBSD68 in Appendix A.7.5.

Table 2: Wall-clock time (secs) of DIP and three
ES methods per epoch on NVIDIA Tesla K40
GPU: mean and (std). Total wall-clock time should
contain both DIP and a certain ES method.

DIP SV-ES ES-WMV ES-EMV
Time 0.448 (0.030) 13.027 (3.872) 0.301 (0.016) 0.003 (0.003)

We report the results of SV-ES in Ap-
pendix A.7.5 since ES-WMV performs largely
comparably to SV-ES. However, ES-WMV is
much faster in wall-clock time, as reported in
Tab. 2: for each epoch, the overhead of our ES-
WMV is less than 3/4 of the DIP update itself,
while SV-ES is around 25× of that. There is no
surprise: while our method only needs to update the running variance of the {xt}t≥1 each time,
SV-ES needs to train a coupled autoencoder which is extremely expensive.

Table 3: Comparison between ES-WMV and SB
for image denoising on the CBSD68 dataset with
varying noise level σ. Higher detected PSNR and
earlier detection are better, which are in red: mean
and (std).

σ = 15 σ = 25 σ = 50

PSNR Epoch PSNR Epoch PSNR Epoch

WMV 28.7(3.2) 3962(2506) 27.4(2.6) 3068(2150) 24.2(2.3) 1548(1939)

SB 29.0(3.1) 4908(1757) 27.3(2.2) 5099(1776) 23.0(1.0) 5765(1346)

DOP is designed specifically just for impulse
noise, so we compare ES-WMV with DOP on
impulse noise (see Appendix A.7.5). The loss
is changed to ℓ1 to account for the sparse noise.
In terms of the final PSNRs, DOP outperforms
DIP with ES-WMV by a small gap, but even the
peak PSNR of DIP with ℓ1 lags behind DOP by
about 2dB for high noise levels.

The ES method in SB is acknowledged to fail
for vanilla DIP. Moreover, their modified model still suffers from the overfitting issue beyond the
very low noise levels, as shown in Fig. 20. Their ES method fails to stop at appropriate places
when the noise level is high. Hence, we test both ES-WMV and SB on their modified DIP
model in (Shi et al., 2022), based on two datasets they test: the classic 9-image dataset (Dabov
et al., 2008) and CBSD68 dataset (Martin et al., 2001). Qualitative results on the 9 images are
shown in Appendix A.7.5; detected PSNR and stopping epochs on the CBSD68 dataset are reported
in Tab. 3. For SB, the detection threshold parameter is fixed at 0.01. It is evident that both methods
have similar detection performance for low noise levels but ES-WMV outperforms SB when the
noise level is high. Also, ES-WMV tends to stop much earlier than SB, saving computational cost.

We compare VAL with our ES-WMV on the 9-image dataset with low/high-level Gaussian and
impulse noise. Since Ding et al. (2022) takes 90% pixels to train DIP and that usually de-
creases the peak performance, we report the final PSNRs detected by both methods (See Fig. 7).
The two ES methods perform very comparably in image denoising, which is probably due
to the mild violation of the iid assumption only, and also relatively low-degree information
loss due to data splitting. The more complex nonlinear BID in Sec. 3.3 reveals their gap.
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Figure 7: Comparison of VAL and ES-WMV for Gaus-
sian and impulse noise in terms of PSNR.

ES-WMV as a helper for DIP variants
DD, DIP+TV, GP-DIP represent differ-
ent regularization strategies for controlling
overfitting. A critical issue, however, is
setting the right hyperparameters for them
so that overfitting is removed while peak-
level performance is preserved. So prac-
tically, these methods are not free from
overfitting, especially when the noise level
is high. Thus, instead of treating them as competitors, we test if ES-WMV can reliably detect good
ES points for them. We focus on Gaussian denoising, and report the results in Fig. 8 (a)-(c) and
Appendix A.7.6. ES-WMV is able to attain ≤ 1 PNSR gap for most of the cases, with few out-
liers. These regularizations typically change the recovery trajectory. We suspect that finetuning of
our method may improve on these corner cases.

Figure 8: Performance of ES-WMV on DD, GP-DIP,
DIP-TV, and SIREN for Gaussian denoising in terms
of PSNR gaps. L: low noise level; H: high noise level.

ES-WMV as a helper for implicit neu-
ral representations (INRs) INRs, such
as Tancik et al. (2020) and Sitzmann et al.
(2020), use multilayer perceptrons to rep-
resent high-frequency functions in low-
dimensional problem domains and have
achieved superior results on complex 3D
visual tasks. We further extend our ES-
WMV to help the INR family and take
SIREN (Sitzmann et al., 2020) as an ex-
ample. SIREN parameterizes x as the dis-
cretization of a continuous function: this
function takes into spatial coordinates and
returns the corresponding function values.
Here, we test SIREN, which is reviewed
in Appendix A.5, as a replacement of DIP
models for Gaussian denoising, and sum-
marize the results in Fig. 8 and Fig. 21.
ES-WMV is again able to detect near-
peak performance for most images.

3.2 MRI RECONSTRUCTION Table 4: ConvDecoder on MRI reconstruc-
tion for 30 cases: mean and (std). (D: Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap
32.63 (2.36) 0.23 (0.32) 0.81 (0.09) 0.01 (0.01)

We further test ES-WMV on MRI reconstruction,
a classical linear IP with a nontrivial forward map-
ping: y ≈ F(x), where F is the subsampled Fourier
operator, and we use ≈ to indicate that the noise encountered in practical MRI imaging may be
hybrid (e.g., additive, shot) and uncertain. Here, we take 8-fold undersampling and parametrize x
using “Conv-Decoder” (Darestani & Heckel, 2021), a variant of DD. Due to the heavy overparame-
terization, overfitting occurs, and ES is needed. Darestani & Heckel (2021) directly sets the stopping
point at the 2500-th epoch, and we run our ES-WMV. We visualize the performance on two random
cases (C1: 1001339 and C2: 1000190 sampled from Darestani & Heckel (2021), part of the fastMRI
datatset (Zbontar et al., 2018)) in Fig. 23 (quality measured in SSIM, consistent with Darestani &
Heckel (2021)). It is clear that ES-WMV detects near-peak performance for both cases, and it is
adaptive enough to yield comparable or better ES points than heuristically fixed ES points. We fur-
ther test our ES-WMV on ConvDecoder for 30 cases from the fastMRI dataset (see Tab. 4), which
shows the precise and stable detection of ES-WMV.

3.3 BLIND IMAGE DEBLURRING (BID)

In BID, a blurry and noisy image is given, and the goal is to recover a sharp and clean image. The
blur is mostly caused by motion and/or optical nonideality in the camera, and the forward process
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is often modeled as y = k ∗ x + n, where k is the blur kernel, n models additive sensory noise,
and ∗ is linear convolution to model the spatial uniformity of the blur effect (Szeliski, 2022). BID
is a very challenging visual IP due to the bilinearity: (k,x) 7→ k ∗ x. Recently, Ren et al. (2020);
Wang et al. (2019); Asim et al. (2020); Tran et al. (2021) have tried to use DIP models to solve
BID by modeling k and x as two separate DNNs, i.e., minθk,θx

∥y −Gθk
(zk) ∗Gθx

(zx)∥22 +
λ∥∇Gθx

(zx)∥1/∥∇Gθx
(zx)∥2, where the regularizer is to promote sparsity in the gradient domain

for reconstruction of x, as standard in BID. We follow Ren et al. (2020) and choose multi-layer per-
ceptron (MLP) with softmax activation for Gθk

, and the canonical DIP model (CNN-based encoder-
decoder architecture) for Gθx

(zx). We change their regularizer from the original ∥∇Gθx
(zx)∥1 to

the current, as their original formulation is tested only on a very low noise level σ = 10−5 and no
overfitting is observed. We set to work with higher noise level σ = 10−3, and find that their origi-
nal formulation does not work. The positive effect of the modified regularizer on BID is discussed
in Krishnan et al. (2011).

Figure 9: Top left: ES-WMV on BID; Top right:
visual results of ES-WMV; Bottom: quantitative
results of ES-WMV and VAL, respectively

First, we take 4 images and 3 kernels from the
standard Levin dataset (Levin et al., 2011), re-
sulting in 12 image-kernel combinations. The
high noise level leads to substantial overfitting,
as shown in Fig. 9 (top left). Nonetheless, ES-
WMV can reliably detect good ES points and
lead to impressive visual reconstructions (see
Fig. 9 (top right)). We systematically compare
VAL and our ES-WMV on this difficult nonlin-
ear IP, as we suspect that nonlinearity can break
VAL down as discussed in Sec. 1, and subsam-
pling the observation y for training-validation
splitting may be unwise. Our results (Fig. 9
(bottom left/right)) confirm these predictions:
the peak performance is much worse after 10%
of elements in y are removed for valiation. In
contrast, our ES-WMV returns quantitatively
near-peak performance, far better than leaving the process to overfit. In Appendix A.7.12, we test
both low- and high-level noise on the entire Levin dataset for completeness.

3.4 ABLATION STUDY

Figure 10: Effect of W and P

The window size W (default: 100) and pa-
tience number P (default: 1000) are the only
hyperparameters for ES-WMV. To study their
impact on ES detection, we vary them across a
range and check how the detection gap changes
for Gaussian denoising on the classic 9-image
dataset (Dabov et al., 2008) with medium-level noise, as shown in Fig. 10 for PSNR gaps and
Fig. 26 for SSIM gaps. Our method is robust against these changes, and it seems larger W and P
can bring in marginal improvement.

4 DISCUSSION

We have proposed a simple yet effective ES detection method (ES-WMV, and the ES-EMV variant)
that works robustly across multiple visual IPs and DIP variants. In comparison, competing ES
methods are noise- or DIP-model-specific, and only work for limited scenarios; Li et al. (2021) has
comparable performance but it slows down the running speed too much; validation-based ES (Ding
et al., 2022) works well for the simple denoising task while lags behind our ES method a lot in
nonlinear IPs, e.g., BID. As for limitations, our theoretical justification is only partial, sharing the
same difficulty of analyzing DNNs in general. Our ES method struggles with images with substantial
high-frequency components; DIP needs to run numerous iterative steps for every instance, which is
not ideal for time-constrained applications.
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A APPENDIX

A.1 ACRONYMS

List of Common Acronyms (in alphabetic order)
CI computational imaging

CNN convolutional neural network
DD deep decoder
DIP deep image prior

DIP-TV DIP with total variation regularization
DL deep learning

DNN deep neural network
ELTO early-learning-then-overfitting

ES early stopping
EMA exponential moving average
EMV exponential moving variance

FR-IQM full-reference image quality metric
GP-DIP Gaussian process DIP

INR implicit neural representations
IP inverse problem

MSE mean squared error
NR-IQM no-reference image quality metric

PSNR peak signal-to-noise ratio
SIREN sinusoidal representation networks
SOTA state-of-the-art
VAR variance

WMV windowed moving variance

A.2 PROOF OF 2.1

Proof. To simplify the notation, we write ŷ
.
= y −Gθ0(z), J .

= JG

(
θ0
)
, and c

.
= θ − θ0. So the

least-squares objective in Eq. (4) is equivalent to

∥ŷ − Jc∥22 (8)

and the gradient update reads

ct = ct−1 − ηJ⊺
(
Jck−1 − ŷ

)
, (9)

where c0 = 0 and xt = Jct +Gθ0(z). The residual at time t can be computed as

rt
.
= ŷ − Jct (10)

= ŷ − J
(
ct−1 − ηJ⊺

(
Jθt−1 − ŷ

))
(11)

= (I − ηJJ⊺)
(
ŷ − Jct−1

)
(12)
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= (I − ηJJ⊺)
2 (

ŷ − Jct−2
)
= . . . (13)

= (I − ηJJ⊺)
t (
ŷ − Jc0

)
(using c0 = 0) (14)

= (I − ηJJ⊺)
t
ŷ. (15)

Assume the SVD of J as J = WΣV ⊺. Then
rt =

(
I − ηWΣ2W ⊺

)t
ŷ =

∑
i

(
1− ησ2

i

)t
w⊺

i ŷwi (16)

and so

Jct = ŷ − rt =
∑
i

(
1−

(
1− ησ2

i

)t)
w⊺

i ŷwi. (17)

Consider a set of W vectors V = {v1, . . . ,vW }. We have that the empirical variance

VAR(V) = 1

W

W∑
w=1

∥∥∥∥∥∥vw −
1

W

W∑
j=1

vj

∥∥∥∥∥∥
2

2

=
1

W

W∑
w=1

∥vw∥22 −

∥∥∥∥∥ 1

W

W∑
w=1

vw

∥∥∥∥∥
2

2

. (18)

So the variance of the set
{
xt,xt+1, . . . ,xt+W−1

}
, same as the variance of the set{

Jct,Jct+1, . . . ,Jct+W−1
}

, can be calculated as

1

W

W−1∑
w=0

∑
i

(w⊺
i ŷ)

2
(
1−

(
1− ησ2

i

)t+w
)2
− 1

W 2

∑
i

(w⊺
i ŷ)

2

(
W−1∑
w=0

1−
(
1− ησ2

i

)t+w

)2

(19)

=
1

W 2

∑
i

(w⊺
i ŷ)

2

W W−1∑
w=0

(
1−

(
1− ησ2

i

)t+w
)2
−

(
W−1∑
w=0

1−
(
1− ησ2

i

)t+w

)2
 (20)

=
1

W 2

∑
i

(w⊺
i ŷ)

2

[(
W 2 +W

(1− ησ2
i )

2t(1− (1− ησ2
i )

2W )

1− (1− ησ2
i )

2
− 2W

(1− ησ2
i )

t(1− (1− ησ2
i )

W )

ησ2
i

)

−

W 2 − 2W
(1− ησ2

i )
t(1− (1− ησ2

i )
W )

ησ2
i

+

(
1− ησ2

i

)2t(
1−

(
1− ησ2

i

)W)2
η2σ4

i




(21)

=
1

W 2

∑
i

⟨wi, ŷ⟩2
(1− ησ2

i )
2t

ησ2
i

[
W

1− (1− ησ2
i )

2W

2− ησ2
i

− (1− (1− ησ2
i )

W )2

ησ2
i

]
. (22)

So the constants CW,η,σi ’s are defined as

CW,η,σi

.
=

1

W 2ησ2
i

[
W

1− (1− ησ2
i )

2W

2− ησ2
i

− (1− (1− ησ2
i )

W )2

ησ2
i

]
. (23)

To see they are nonnegative, it is sufficient to show that

W
1− (1− ησ2

i )
2W

2− ησ2
i

− (1− (1− ησ2
i )

W )2

ησ2
i

≥ 0

⇐⇒ ησ2
iW
(
1− (1− ησ2

i )
2W
)
−
(
2− ησ2

i

)
(1− (1− ησ2

i )
W )2 ≥ 0. (24)

Now consider the function
h(ξ,W ) = ξW

(
1− (1− ξ)2W

)
− (2− ξ)(1− (1− ξ)W )2 ξ ∈ [0, 1],W ≥ 1. (25)

First, one can easily check that ∂Wh(ξ,W ) ≥ 0 for all W ≥ 1 and all ξ ∈ [0, 1], i.e., h(ξ,W )
is monotonically increasing with respect to W . Thus, in order to prove CW,η,σi ≥ 0, it suffices to
show that h(ξ, 1) ≥ 0. Now

h(ξ, 1) = ξ
(
1− (1− ξ)2

)
− (2− ξ)ξ2 = 0, (26)

completing the proof.
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A.3 PROOF OF 2.2

We first restate Theorem 2 in Heckel & Soltanolkotabi (2020b).
Theorem A.1 (Heckel & Soltanolkotabi (2020b)). Let x ∈ Rn be a signal in the span of the
first p trigonometric basis functions, and consider a noisy observation y = x + n, where
the noise n ∼ N

(
0, ξ2/n · I

)
. To denoise this signal, we fit a two-layer generator network

GC(B) = ReLU(UBC)v, where v = [1, . . . , 1,−1, . . . ,−1]/
√
k, and B ∼iid N (0, 1), and

U is an upsampling operator that implements circular convolution with a given kernel u. Denote
σ

.
= ∥u∥2|F g(u ⊛ u/∥u∥22)|1/2 where g(t) = (1 − cos−1(t)/π)t and ⊛ denotes the circular

convolution. Fix any ε ∈ (0, σp/σ1], and suppose k ≥ Cun/ε
8, where Cu > 0 is a constant only

depending on u. Consider gradient descent with step size η ≤ ∥Fu∥−2
∞ (Fu is the Fourier trans-

form of u ) starting from C0 ∼iid N
(
0, ω2

)
, entries, ω ∝ ∥y∥2√

n
. Then, for all iterates t obeying

t ≤ 100
ησ2

p
, the reconstruction error obeys

∥GCt(B)− x∥2 ≤
(
1− ησ2

p

)t ∥x∥2 +
√√√√ n∑

i=1

((1− ησ2
i )

t − 1)
2
(w⊺

i n)
2
+ ε∥y∥2

with probability at least 1− exp
(
−k2

)
− n−2.

Note that since B ∼iid N (0, 1) and hence is full-rank with probability one, the original Theorem
1 & 2 of Heckel & Soltanolkotabi (2020b) rename BC into C ′ and state the result directly on C ′,
i.e., assume the model is ReLU(UC ′)v. It is easy to see the original theorems imply the version
stated here.

With this, we can obtain our Theorem 2.2, stated in full technical form here:
Theorem A.2. Let x ∈ Rn be a signal in the span of the first p trigonometric basis func-
tions, and consider a noisy observation y = x + n, where the noise n ∼ N

(
0, ξ2/n · I

)
.

To denoise this signal, we fit a two-layer generator network GC(B) = ReLU(UBC)v, where
v = [1, . . . , 1,−1, . . . ,−1]/

√
k, and B ∼iid N (0, 1), and U is an upsampling operator that im-

plements circular convolution with a given kernel u. Denote σ .
= ∥u∥2|F g(u⊛u/∥u∥22)|1/2 where

g(t) = (1− cos−1(t)/π)t and ⊛ denotes the circular convolution. Fix any ε ∈ (0, σp/σ1], and sup-
pose k ≥ Cun/ε

8, where Cu > 0 is a constant only depending on u. Consider gradient descent
with step size η ≤ ∥Fu∥−2

∞ (Fu is the Fourier transform of u ) starting from C0 ∼iid N
(
0, ω2

)
,

entries, ω ∝ ∥y∥2√
n

. Then, for all iterates t obeying t ≤ 100
ησ2

p
, our WMV obeys

WMV ≤ 12

W
∥x∥22

(
1− ησ2

p

)2t
1− (1− ησ2

p)
2
+ 12

n∑
i=1

((
1− ησ2

i

)t+W−1 − 1
)2

(w⊺
i n)

2
+ 12ε2∥y∥22 (27)

with probability at least 1− exp
(
−k2

)
− n−2.

Proof. We make use of the basic inequality: ∥a− b∥22 ≤ 2∥a∥22 + 2∥b∥22 for any two vectors a, b
of compatible dimension. We have

1

W

W−1∑
w=0

∥GCt+w(B)− 1

W

W−1∑
j=0

GCt+j (B)∥22 (28)

=
1

W

W−1∑
w=0

∥GCt+w(B)− x+ x− 1

W

W−1∑
j=0

GCt+j (B)∥22 (29)

≤

(
2

W

W−1∑
w=0

∥GCt+w(B)− x∥22

)
+ 2∥x− 1

W

W−1∑
j=0

GCt+j (B)∥22 (30)

≤ 2

W

W−1∑
w=0

∥GCt+w(B)− x∥22 +
2

W

W−1∑
j=0

∥GCt+j (B)− x∥22 (31)
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(z 7→ ∥z − x∥22 convex and Jensen’s inequality)

=
4

W

W−1∑
w=0

∥GCt+w(B)− x∥22. (32)

In view of Theorem A.1,

∥GCt+w(B)− x∥22 ≤ 3
(
1− ησ2

p

)2t+2w ∥x∥22 + 3

n∑
i=1

((
1− ησ2

j

)t+w − 1
)2

(w⊺
i n)

2
+ 3ε2∥y∥22.

(33)

Thus,

W−1∑
w=0

∥GCt+w(B)− x∥22

≤ 3∥x∥22
W−1∑
w=0

(
1− ησ2

p

)2t+2w
+ 3

W−1∑
w=0

n∑
i=1

((
1− ησ2

i

)t+w − 1
)2

(w⊺
i n)

2
+ 3Wε2∥y∥22 (34)

≤ 3∥x∥22

(
1− ησ2

p

)2t
(1− (1− ησ2

p)
2W )

1− (1− ησ2
p)

2
+ 3W

n∑
i=1

((
1− ησ2

i

)t+W−1 − 1
)2

(w⊺
i n)

2
+ 3Wε2∥y∥22

(35)

≤ 3∥x∥22

(
1− ησ2

p

)2t
1− (1− ησ2

p)
2
+ 3W

n∑
i=1

((
1− ησ2

i

)t+W−1 − 1
)2

(w⊺
i n)

2
+ 3Wε2∥y∥22, (36)

completing the proof.

A.4 ES-EMV ALGORITHM

The exponential moving variance version of our method is summarized in Algorithm 2.

Algorithm 2 DIP with ES–EMV
Input: random seed z, randomly-initialized Gθ, forgetting factor α ∈ (0, 1), patience number P ,

iteration counter k = 0, EMA0 = 0, EMV0 = 0, EMVmin =∞
Output: reconstruction x∗

1: while not stopped do
2: update θ via Eq. (2) to obtain θk+1 and xk+1

3: EMAk+1 = (1− α)EMAk + αxk+1

4: EMVk+1 = (1− α)EMVk + α(1− α)∥xk+1 − EMAk∥22
5: if EMVk+1 < EMVmin then
6: EMVmin ← EMVk+1, x∗ ← xk+1

7: end if
8: if EMVmin stagnates for P iterations then
9: stop and return x∗

10: end if
11: k = k + 1
12: end while

A.5 MORE DETAILS ON MAJOR DIP VARIANTS

Deep Decoder (DD) (Heckel & Hand, 2019) differs from DIP mainly in terms of the network
architecture: it is typically an under-parameterized network consisting of mainly 1×1 convolutions,
upsampling, ReLU and channel-wise normalization layers, while DIP uses an over-parameterized,
U-net like convolutional network.
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GP-DIP (Cheng et al., 2019) uses the original DIP (Ulyanov et al., 2018) network and formula-
tion, but replaces the stochastic gradient descent (SGD) by stochastic gradient Langevin dynamics
(SGLD) in the gradient update step. i.e., for generic gradient step for optimizing Eq. (2) reads:

θ+ = θ − t∇θ[ℓ(y, f(Gθ(z))) + λR(Gθ(z))] + η (37)

where η is zero-mean Gaussian with an isotropic variance level t.

DIP-TV (Cascarano et al., 2021) uses the original DIP (Ulyanov et al., 2018) network, with a
Total Variation (TV) regularizer added. Then, the proposed objective is solved with Alternating
Direction Method of Multipliers (ADMM) framework.

SIREN (Sitzmann et al., 2020) treats the object directly as a continuous function on R2 or R3 (or
higher-dimensional spaces depending on the application) and hence parameterizes it as a multi-layer
perceptron (MLP): 1) the input to SIREN is the 2D/3D coordinate of each pixel instead of random
values, and 2) the network uses a sinusoidal activation function instead of the commonly used ReLU.
When substituting the DIP network with SIREN and solve Eq. (2) problems, similar overfitting issue
is still observed.

A.6 MORE DETAILS ON MAJOR ES METHODS

Here, we provide more details on major competing methods, all of them ES-based except for You
et al. (2020).

Spectral Bias (SB) Shi et al. (2022) operates on DD models, and proposes two modifications to
change the spectral bias: (1) controlling the operator norm of the weight w for each convolutional
layer by the normalization

w′ =
w

max
(
1, ∥w∥op/λ

) , (38)

ensuring that ∥w′∥op ≤ λ, which in turn controls the Fourier spectrum of the underlying function
represented by the layer; (2) performing Gaussian upsampling instead of the typical bilinear up-
sampling to suppress the smoothness effect of the latter. These two modifications with appropriate
parameter setting (λ, and σ in Gaussian filtering) can improve the learning of the high-frequency
components by DD, and allow the blurriness-over-sharpness stopping criterion

∆r
(
xt
)
=

1

W

∣∣∣∣∣
W∑

w=1

r
(
xt−w

)
−

W∑
w=1

r
(
xt−W−w

)∣∣∣∣∣, (39)

where r(x′) = B(x′)/S(x′), and B(·) and S(·) are the blurriness and sharpness metrics in Crete
et al. (2007) and Bahrami & Kot (2014), respectively. In other words, the criterion in Eq. (39)
measures the change of average blurriness-over-sharpness ratios over consecutive windows of size
W , and small changes indicate good ES points. But, as said, this criterion only works for the
modified DD models and not other DIP variants, as acknowledged by the authors in Shi et al. (2022)
and confirmed in our experiment (see Sec. 3.1).

DF-STE Jo et al. (2021) targets Gaussian denoising with known noise levels (i.e., y = x + n,
where n is iid Gaussian noise), and considers the objective

min
θ

1

n2
∥y −Gθ(y)∥2F +

σ2

n2
trJGθ

(y), (40)

where trJGθ
(y) is the trace of the network Jacobian with respect to the input, i.e., the divergence

term in Jo et al. (2021). The divergence term is a proxy for controlling the capacity of the network.
The paper then proposes a heuristic zero-crossing stopping criterion that stops the iteration when
the loss starts to cross zero into negative values. Although the idea works reasonably well on Gaus-
sian denoising with low and known noise level (the variance level σ2 is explicitly needed in the
regularization parameter ahead of the divergence term), it starts to break down when the noise level
increases even if the right noise level is provided; see Sec. 3.1. Also, although the paper has ex-
tended the formulation to handle Poisson noise, it is unclear how to generalize the idea for handling
other types of noise, as well as how to move beyond simple additive denoising problems.
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SV-ES Li et al. (2021) proposes training an autoencoder online using the reconstruction sequence
{xt}t≥1:

min
w,v

∑
t≥1

ℓAE

(
xt, Dw ◦ Ev

(
xt
))
. (41)

Any new xt is passed through the current autoencoder, and the reconstruction error ℓAE is recorded.
We observe that the error curve typically follows a U-shape, and the valley of the curve is approx-
imately aligned with the peak of the PNSR curve. We hence design an ES method by detecting
the valley of the error curve. This method works reasonably well across different IPs and different
DIP variants. A major drawback is the efficiency: the overhead caused by online training of the
autoencoder is order-of-magnitude larger than the cost of DIP update itself, as shown in Tab. 2.

DOP You et al. (2020) considers additive sparse (e.g., salt-and-pepper noise) noise only and
proposes modeling the clean image and noise explicitly in the objective:

min
θ,g,h

∥y −Gθ(z)− (g ◦ g − h ◦ h)∥2F , (42)

where the overparametrized term g ◦ g − h ◦ h (◦ denotes the Hadamard product) is meant to
capture the sparse noise, where a similar idea has proved effective for sparse recovery in Vaskevicius
et al. (2019). Different properly-tuned learning rates for the clean image and sparse noise terms are
necessary for success. The downside includes the prolonged running time as it pushes the peak
reconstruction to the very last iteration, and the difficulty to extend the idea to other types of noise.

A.7 ADDITIONAL EXPERIMENTAL DETAILS & RESULTS

A.7.1 EXTERNAL CODES

• DIP: https://github.com/DmitryUlyanov/deep-image-prior

• DD: https://github.com/reinhardh/supplement_deep_decoder

• DIP-TV: https://github.com/sedaboni/ADMM-DIPTV

• GP-DIP: https://people.cs.umass.edu/˜zezhoucheng/gp-dip/

• DF-STE: https://github.com/gistvision/dip-denosing

• SV-ES: https://github.com/sun-umn/Self-Validation

• DOP: https://github.com/ChongYou/robust-image-recovery

• SB: https://github.com/shizenglin/Measure-and-Control-Spectral-Bias

• CBSD68: https://github.com/clausmichele/CBSD68-dataset

A.7.2 EXPERIMENT SETTINGS

Our default setup for all experiments is as follows. Our DIP model is the original one from Ulyanov
et al. (2018); the optimizer is ADAM with a learning rate 0.01. For all other models, we use
their default architectures, optimizers, and hyperparameters. For ES-WMV, the default window
size W = 100, and patience number P = 1000. We use both PSNR and SSIM to access the
reconstruction quality, and we report PSNR and SSIM gaps (the difference between our detected
and peak numbers) as an indicator of our detection performance. For most experiments, we repeat
the experiments 3 times to report the mean and standard deviation; when not, we explain why.

Noise generation Following the noise generation rules of Hendrycks & Dietterich (2019)1, we
simulate four kinds of noise and three intensity levels for each noise type. The detailed information
is as follows.

• Gaussian noise: 0 mean additive Gaussian noise with variance 0.12, 0.18, and 0.26 for
low, medium, and high noise levels, respectively;

1https://github.com/hendrycks/robustness
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• Impulse noise: also known as salt-and-pepper noise, replacing each pixel with probability
p ∈ [0, 1] into white or black pixel with half chance each. Low, medium, and high noise
levels correspond to p = 0.3, 0.5, 0.7, respectively;

• Speckle noise: for each pixel x ∈ [0, 1], the noisy pixel is x(1 + ε), where ε is 0-mean
Gaussian with a variance level 0.20, 0.35, 0.45 for low, medium, and high noise levels,
respectively;

• Shot noise: also known as Poisson noise. For each pixel, x ∈ [0, 1], the noisy pixel is
Poisson distributed with rate λx, where λ is 25, 12, 5 for low, medium, and high noise
levels, respectively.

A.7.3 DENOISING EXAMPLES

On image denoising with different types and levels of noise, our ES method can help DIP to detect
near-peak ES points, as shown in Fig. 11. We also explore the possibility of using the loss for ES
here, but we fail to find correlations between the trend of the loss and that of the PSNR curve.

Figure 11: Our ES-WMV method on DIP for denoising “F16” with different noise types and levels
(top: low-level noise; bottom: high-level noise). Red curves are PSNR curves, and blue curves are
VAR curves. The green bars indicate the detected ES point.

Figure 12: Our ES-WMV method on DIP for denoising “F16” with different noise types and levels
(top: low-level noise; bottom: high-level noise). Red curves are PSNR curves, and brown curves are
loss curves.

A.7.4 COMPARISON WITH BASELINE METHODS

To further compare with baseline methods, we report the PSNR gaps of high-level noise cases and
SSIM gaps of low- and high-level noise cases in Fig. 15,Fig. 16 and Fig. 17, respectively, which
show a similar trend to the results of PSNR gaps. The detection gaps of our method are very
marginal (< 0.02) for most noise types and levels (except for Baboon and Kodak1 for certain noise
types/levels), while the baseline methods can well exceed 0.1 for most cases. In addition, we provide
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Figure 13: Visual comparisons of NR-IQMs and ES-WMV. From top to bottom: Gaussian noise
(low), Gaussian noise (high), impulse noise (low), impulse noise (high).

Figure 14: Visual comparisons of NR-IQMs and ES-WMV. From top to bottom: shot noise (low),
shot noise (high), speckle noise (low), speckle noise (high).

21



Under review as a conference paper at ICLR 2023

Figure 15: High-level noise detection performance in terms of PSNR gaps. For NIMA, we report
both technical quality assessment (NIMA-q) and aesthetic assessment (NIMA-a). Smaller PSNR
gaps are better.

Figure 16: Low-level noise detection performance in terms of SSIM gaps. For NIMA, we report
both technical quality assessment (NIMA-q) and aesthetic assessment (NIMA-a). Smaller SSIM
gaps are better.

some visual detection results in Figs. 13 and 14. Our ES-WMV significantly outperforms than the
four baseline methods visually.

A.7.5 COMPARISON WITH COMPETING METHODS

Comparison between ES-WMV with DF-STE for Gaussian and shot noise on the 9-image dataset
in terms of SSIM is reported in Fig. 18. Furthermore, we also test our ES-WMV and DF-STE on
CBSD68 in Tab. 5. Our ES-WMV wins in high-level noise cases, but lags behind DF-STE in the
low-level cases. The gaps between our ES-WMV and DF-STE for all noise levels mostly come
from the peak-performance between the original DIP and DF-STE—modifications in DF-STE have
affected the peak performance, positively for low-level cases and negatively for high-level cases, not
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Figure 17: High-level noise detection performance in terms of SSIM gaps. For NIMA, we report
both technical quality assessment (NIMA-q) and aesthetic assessment (NIMA-a). Smaller SSIM
gaps are better.

Figure 18: Comparison of DF-STE and ES-WMV for Gaussian and shot noise in terms of SSIM.

much from our ES method as evident from the uniformly small detection gaps reported in Tab. 5.
Moreover, DF-STE can only handle Gaussian and Poisson noise for denoising, and the exact noise
level is a required hyperparameter for their method to work.

Then we compare our ES-WMV and SV-ES in Fig. 19. The DIP results with ES-WMV vs. DOP on
impulse noise are shown in Tab. 6. For SB, part of the qualitative detection results on the 9 images2

is reported in Fig. 20.

Table 5: Comparison between ES-WMV and DF-STE for image denoising on the CBSD68 dataset
with varying noise level σ: mean and (std). PSNR gaps below 1.0 are colored as red.

σ = 15 σ = 25 σ = 50

ES-WMV 28.7(3.2) 27.4(2.6) 24.2(2.3)

DIP (Peak) 29.7(3.0) 28.0(2.4) 24.9(2.3)

PSNR Gap 1.0(0.7) 0.7(0.5) 0.7(0.5)

DF-STE 31.4(1.8) 28.4(2.2) 21.1(2.5)

A.7.6 ES-WMV AS A HELPER

Performance of ES-WMV on DD, GP-DIP, DIP-TV, and SIREN for Gaussian denoising in terms of
SSIM gaps (see Fig. 21).

2http://www.cs.tut.fi/˜foi/GCF-BM3D/index.html#ref_results
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Figure 19: Low- and high-level noise detection performance of SV-ES and ours in terms of PSNR
gaps.

Table 6: DIP with ES-WMV vs. DOP on impulse noise: mean and (std).

Low Level High Level

PSNR SSIM PSNR SSIM

DIP-ES 31.64 (5.69) 0.85 (0.18) 24.74 (3.23) 0.67 (0.19)

DOP 32.12 (4.52) 0.92 (0.07) 27.34 (3.78) 0.86 (0.10)

A.7.7 PERFORMANCE ON REAL-WORLD DENOISING

Table 7: DIP with ES-WMV on real image denoising on the PolyU Dataset: mean and (std). (D:
Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap

DIP (MSE) 36.83 (3.07) 1.26 (1.22) 0.98 (0.02) 0.01 (0.01)

DIP (ℓ1) 36.20 (2.81) 1.64 (1.58) 0.97 (0.02) 0.01 (0.01)

DIP (Huber) 36.76 (2.96) 1.28 (1.09) 0.98 (0.02) 0.01 (0.01)

As stated from the beginning, ES-WMV is designed with real-world IPs, targeting unknown noise
types and levels. Given the encouraging performance above, we test it on a common real-world
denoising dataset—PolyU Dataset Xu et al. (2018), which contains 100 cropped regions of 512×512
from 40 scenes. The results are reported in Tab. 7. We do not repeat the experiments here; the means
and standard deviations are obtained over the 100 images of the PolyU dataset. On average, our
detection gaps are ≤ 1.64 in PSNR and ≤ 0.01 in SSIM for this dataset across various losses. The
absolute PNSR and SSIM detected are surprisingly high.

A.7.8 RESULTS FOR MRI RECONSTRUCTION

The detection performance of ES-WMV for MRI reconstruction is shown in Fig. 23 in terms of
SSIM.

A.7.9 IMAGE INPAINTING

In this task, a clean image x0 ∈ [0, 1]H×W is contaminated by additive Gaussian noise ε, and then
only partially observed to yield the observation y = (x0 + ε) ⊙m, where m ∈ {0, 1}H×W is a
binary mask and ⊙ denotes the Hadamard product. Given y and m, the goal is to reconstruct x0.
We consider the formulation reparametrized by DIP, where Gθ is a trainable DNN parametrized by

24



Under review as a conference paper at ICLR 2023

F16Peppers Lena

Figure 20: Comparison between ES-WMV and SB for image denoising (top: σ = 15; middle:
σ = 25; bottom: σ = 50). The red and blue curves are the PNSR and the ratio metric curves. The
orange and green bars indicate the ES points detected by our ES-WMV and SB, respectively.

Figure 21: Performance of ES-WMV on DD, GP-DIP, DIP-TV, and SIREN for Gaussian denoising
in terms of SSIM gaps. L: low noise level; H: high noise level
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Figure 22: Comparison of VAL and ES-WMV for Gaussian and impulse noise in terms of SSIM.

Figure 23: Detection on MRI reconstruction

θ and z is a frozen random seed:

ℓ(θ) = ∥(Gθ(z)− y)⊙m∥2F . (43)

The mask m is generated according to an iid Bernoulli model with a rate of 50%, i.e., half of pixels
not observed in expectation. The noise ε is set to the medium level, i.e., additive Gaussian with 0
mean and 0.18 variance. We test our ES-WMV for DIP on the inpainting dataset used in the original
DIP paper Ulyanov et al. (2018). The PSNR gaps are ≤ 1.00 and the SSIM gaps are ≤ 0.05 for
most cases (see Tab. 8). We also visualize two examples in Fig. 24.

Table 8: Detection performance of DIP with ES-WMV for image inpainting: mean and (std). PSNR
gaps below 1.00 are colored as red; SSIM gaps below 0.05 are colored as blue. (D: Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap

Barbara 21.59 (0.03) 0.20 (0.03) 0.67 (0.00) 0.00 (0.00)

Boat 21.91 (0.10) 1.16 (0.18) 0.68 (0.00) 0.03 (0.01)

House 27.95 (0.33) 0.48 (0.10) 0.89 (0.01) 0.01 (0.00)

Lena 24.71 (0.30) 0.37 (0.18) 0.80 (0.00) 0.01 (0.00)

Peppers 25.86 (0.22) 0.23 (0.05) 0.84 (0.01) 0.02 (0.00)

C.man 25.26 (0.09) 0.23 (0.14) 0.82 (0.00) 0.01 (0.00)

Couple 21.40 (0.44) 1.21 (0.53) 0.63 (0.01) 0.04 (0.02)

Finger 20.87 (0.04) 0.24 (0.17) 0.77 (0.00) 0.01 (0.01)

Hill 23.54 (0.08) 0.25 (0.11) 0.70 (0.00) 0.00 (0.00)

Man 22.92 (0.25) 0.46 (0.11) 0.70 (0.01) 0.01 (0.00)

Montage 26.16 (0.33) 0.38 (0.26) 0.86 (0.01) 0.03 (0.01)
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Figure 24: Visual detection performance of ES-WMV on image inpainting.

A.7.10 IMAGE SUPER-RESOLUTION

In this task, a degraded observation y is obtained as the downsampled version of a noisy image: i.e.,
y = Dt(x0 + ε), where Dt(·) : [0, 1]3×tH×tW → [0, 1]3×H×W is a downsampling operator that
resizes an image by the factor t. Then given y and t, the goal is to reconstruct x0. We consider
the formulation reparametrized by DIP, where Gθ is a trainable DNN parametrized by θ and z is a
frozen random seed:

ℓ(θ) = ∥Dt(Gθ(z))− y∥2F . (44)

The noise ε is again set to the medium level, i.e., additive Gaussian with 0 mean and 0.18 variance.
We test our ES-WMV for DIP on the super-resolution dataset used in the original DIP paper Ulyanov
et al. (2018). The PSNR gaps are ≤ 1.00 and the SSIM gaps are ≤ 0.05 for most cases (see Tab. 9).
Our ES-WMV is again able to detect near-peak performance for most images.

Table 9: Detection performance of DIP with ES-WMV for 4× image super-resolution: mean and
(std). PSNR gaps below 1.00 are colored as red; SSIM gaps below 0.05 are colored as blue. (D:
Detected)

PSNR(D) PSNR Gap SSIM(D) SSIM Gap

Baboon 17.82 (0.02) 0.10 (0.04) 0.38 (0.00) 0.01 (0.01)

Barbara 19.93 (0.05) 0.04 (0.01) 0.59 (0.01) 0.01 (0.00)

Bridge 18.04 (0.04) 0.33 (0.09) 0.43 (0.00) 0.00 (0.00)

Coastguard 20.76 (0.05) 0.17 (0.13) 0.53 (0.01) 0.02 (0.01)

Comic 16.70 (0.07) 0.06 (0.06) 0.45 (0.01) 0.00 (0.00)

Face 21.67 (0.12) 0.63 (0.12) 0.56 (0.01) 0.06 (0.01)

Flowers 18.96 (0.08) 0.12 (0.03) 0.56 (0.01) 0.02 (0.00)

Foreman 20.62 (0.04) 0.35 (0.07) 0.69 (0.00) 0.06 (0.00)

Lena 22.40 (0.07) 0.30 (0.08) 0.70 (0.00) 0.04 (0.00)

Man 19.94 (0.07) 0.22 (0.05) 0.52 (0.00) 0.02 (0.01)

Monarch 19.68 (0.90) 1.40 (0.90) 0.72 (0.00) 0.03 (0.00)

Pepper 21.20 (0.14) 0.14 (0.04) 0.67 (0.01) 0.04 (0.01)

Ppt3 17.55 (0.10) 0.19 (0.10) 0.71 (0.01) 0.01 (0.00)

Zebra 19.09 (0.08) 0.10 (0.05) 0.56 (0.01) 0.01 (0.01)
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A.7.11 ES-WMV VS. ES-EMV

We now consider our memory-efficient version (ES-EMV) as described in Algorithm 2, and compare
it with ES-WMV, as shown in Fig. 25. Besides the memory benefit, ES-EMV runs around 100 times
faster than ES-WMV, as reported in Tab. 2 and does seem to provide a consistent improvement on the
detected PSNRs for image denoising tasks on NTIRE 2020 Real Image Denoising Challenge (Ab-
delhamed et al., 2020), PolyU dataset Xu et al. (2018) and the classic 9-image dataset (Dabov et al.,
2008) (see Tabs. 10 and 11 and Fig. 25), due to the strong smoothing effect (we set α = 0.1). In this
paper, we prefer to stay simple and leave systematic evaluations of these variants for more tasks as
future work.

Table 10: Detection performance comparison between DIP with ES-WMV and DIP with ES-EMV
for real image denoising on 1024 images from the RGB track of NTIRE 2020 Real Image Denois-
ing Challenge (Abdelhamed et al., 2020): mean and (std). Higher PSNR and SSIM are in red. (D:
Detected)

PSNR(D)-WMV PSNR(D)-EMV SSIM(D)-WMV SSIM(D)-EMV

DIP (MSE) 34.04 (3.68) 34.96 (3.80) 0.92 (0.07) 0.93 (0.07)

DIP (ℓ1) 33.92 (4.34) 34.83 (4.35) 0.93 (0.05) 0.94 (0.05)

DIP (Huber) 33.72 (3.86) 34.72 (4.04) 0.92 (0.06) 0.93 (0.06)

Table 11: Detection performance comparison between DIP with ES-WMV and DIP with ES-EMV
for real image denoising on the PolyU dataset Xu et al. (2018): mean and (std). Higher PSNR and
SSIM are in red. (D: Detected)

PSNR(D)-WMV PSNR(D)-EMV SSIM(D)-WMV SSIM(D)-EMV

DIP (MSE) 36.83 (3.07) 37.32 (3.82) 0.98 (0.02) 0.98 (0.03)

DIP (ℓ1) 36.20 (2.81) 36.43 (3.22) 0.97 (0.02) 0.97 (0.02)

DIP (Huber) 36.76 (2.96) 37.21 (3.19) 0.98 (0.02) 0.98 (0.02)

Figure 25: Detected PSNR comparison between DIP with ES-WMV and DIP with ES-EMV on the
classic 9-image dataset (Dabov et al., 2008).

A.7.12 BLIND IMAGE DEBLURRING (BID)

In this section, we systematically test our ES-WMV and VAL on the entire standard Levin dataset for
both low-level and high-level cases. We set the maximum number of iterations as 10, 000 to ensure
that we perform sufficient optimization. The detected images of our ES-WMV are substantially
better than those of VAL, as shown in Tab. 12.
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Table 12: BID detection comparison between ES-WMV and VAL on the Levin dataset for both low-
level and high-level noise: mean and (std).Higher PSNR is in red and higher SSIM is in blue. (D: Detected)

Low Level High Level

PSNR(D) SSIM(D) PSNR(D) SSIM(D)

WMV 28.54(0.61) 0.83(0.04) 26.41(0.67) 0.76(0.04)

VAL 18.87(1.44) 0.50(0.09) 16.69(1.39) 0.44(0.10)

A.7.13 ABLATION STUDY

We vary the window size W (default 100) and patience number P (default: 1000) across a range
and check how the detection gap changes for Gaussian denoising with medium-level noise on the
classic 9-image dataset (see:Fig. 26).

Figure 26: Effect of patience number and window size on detection in terms of SSIM gaps

A.8 ANALYSIS OF FAILURE CASES IN FIG. 8

We note that there are some occasional failures cases when applying our ES on some DIP variants
in Fig. 8. In this section, we provide VAR curves of these cases. For the failure of GP-DIP on the
”House (L)” image in Fig. 8, GP-DIP has a weird multi-valley, gradual descending pattern in the
VAR curve, corresponding to a multi-peak, gradual ascending pattern in the PSNR curve. The first
major valley in the VAR curve is roughly aligned with the first major peak, not the final best peak, in
the PSNR curve. So although our valley-detection method successfully detects the first major valley,
the PSNR gap is relatively large. Overall, although our ES method works well with GP-DIP for most
of the test cases, we would not recommend GP-DIP for practical use. The concern is the speed: as
a method trying to mitigate the overfitting, the best reconstruction of GP-DIP tends to be around the
very last iterates. The failure on the ”Lena(L)” image is due to a similar multivalley pattern in the
VAR curve.

For both cases, we observe that using smaller learning rates for GP-DIP and DD helps to smooth
out their curves and mitigate the multi-valley phenomenon which likely will lead to much smaller
detection gaps. We hesitate to refine in this direction, as our focus of this paper is on the ES method
itself.
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Figure 27: VAR curves of failure cases. Left: DD for “Lena(L)”; Right: GP-DIP for “House(L)” in
Fig. 8.
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