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ABSTRACT

While machine learning (ML) benefits from data, it also faces the challenges of
ambiguous data ownership, including privacy violations and increased costs of us-
ing data. This suggests that the value created by data is determined not only by
its utility but also by the cost of using the data (negative externalities). The exist-
ing pricing methods mainly value data based on its utility but ignore the negative
externalities caused by fuzzy ownership, therefore can not design an efficient pric-
ing mechanism. Throughout the data life cycle (creation, pre-processing, training,
etc.), the usufruct and ownership of the data are transferred at the same time, so
the benefits and costs are generated simultaneously. Considering that data rights
confirmation and data pricing cannot be separated independently in the process
of data transaction, we propose the first data valuation mechanism based on mod-
ern property rights theory in this paper. Specifically, we propose to clarify the
ownership of property rights through the integration of property rights and im-
prove the final revenue of the whole workflow ”data link” through the form of the
whole collective, while compensating process performers who lose ownership af-
ter the integration. Then, we consider the expectations of both the integrator and
the integrated party during the compensation allocation. For the former, we apply
compound interest to assess a total compensation equivalent to the time value for
the Data chain. For the latter, we respect and meet their expectations as much
as possible. To achieve this, we provide the framework based on Least-core to
assign the compensation and prove that our framework can also work compared
to existing algorithms. Finally, to cope with more complex situations, we adjust
the traditional Least-core and demonstrate theoretically and experimentally that
the compensation mechanism is feasible and effective in solving the data pricing
problem.

1 INTRODUCTIOIN

While ML benefits from data, it also faces challenges brought by the ambiguity of data owner-
ship (Maini et al., 2021). According to the life cycle, data is generated by the producer and then
passes through agents such as data preprocessors and model pre-trainers, and finally generates value
through model training. In this process, data ownership and access are transferred simultaneously,
which makes the utilization of data have a cost: On the one hand, this makes the subject of privacy
protection unclear, posing the potential for privacy violations. The Cambridge Analytica scandal,
for example, where Facebook and Cambridge Analytica collected the personal data of up to 87 mil-
lion Facebook users without their consent (Kelly), gave rise to an unprecedented discussion on data
privacy. On the other hand, even though a large number of data pricing models are already available
in the data marketplace to value data (Chen et al., 2019; Liu, 2020; Li et al., 2013; Koutris et al.,
2013; 2015), each use of a dataset requires a valuation, since datasets behave differently in different
models. This increases the negative externalities of ML (e.g., huge computational volumes).

The imbalance between the benefits of data and the costs of using it makes clarifying property rights
an important issue. Demsetz (1967) points out that the generation of property rights is essentially a
process of cost-benefit tradeoff. Property rights arise when the benefits of internalizing externalities
by defining property rights are greater than the costs of engaging in the act. Furthermore, the purpose
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of clarifying property rights is to maximize returns by internalizing externalities. Taking the data life
cycle as an example, the concrete task of confirming the ownership is to delineate the controllable
rights and clarify the owner of the rights (Asswad & Marx Gómez, 2021), whose purpose is to
internalize externalities to the maximum extent. In other problem setting, such as feature selection
or data source valuation, giving the most valuable feature or data source ownership can internalize
externalities ( e.g., reduce computations after setting the appropriate utility function ) and improve
the performance. It should be noted that the revenue of data transactions under the premise of data
ownership includes both traditional revenue and the cost caused by negative externalities that need
to be subtracted. And the purpose of rights confirmation is to maximize the revenue of data at this
time.

The existing data marketplace always assumes that the ownership of data belongs to its producer,
and attributes the costs of data transactions to privacy protection, making data privacy protection
becomes an issue juxtaposed with data pricing rather than unified. Specifically, traditional data
pricing schemes including data-based pricing, model-based pricing (Chen et al., 2019; Liu, 2020),
and query-based pricing (Li et al., 2013; Koutris et al., 2013; 2015), have paid varied degrees of
attention to avoiding privacy leaks. The marketplace with data-based pricing allows the customers to
access datasets entries directly, which makes it challenging for ownership protection. To address this
challenge, the model-based pricing framework propose creating different query versions by carefully
adding different noise (Chen et al., 2019) or sells a series of differentially private models to respect
data owners’ privacy restrictions (Liu, 2020). In terms of the query-based pricing framework, it
makes decisions about the restrictions on data usage (Li et al., 2013), which partially alleviate the
shortcomings of privacy protection. However, their pricing mechanism still reflects the value of
the data by quantifying the utility of the data or quantifying the model training examples, which,
incidentally, avoids the data owner’s privacy from being breached. Such passive protection can only
strive to prevent privacy leaks but fail to integrate more negative externalities.

In this case, we propose a data pricing method based on property rights compensation, which is
different from the previous pricing mechanism. Our contributions are mainly reflected in:

• Clarifying the data ownership. Through the introduction of modern property rights theory,
we answer the question of maximizing the internalization of externality: integrate the co-
operative parties into a whole, and the one who makes the most marginal contribution holds
the overall data ownership. In fact, according to the logic of modern property rights theory,
ownership can be determined for all agents with cooperative relations through integration.
The effect of it will be improved with the increase of marginal contribution difference of
agents, which can extend our framework to the whole life cycle of data. In this paper, we
take the background of feature selection and data source pricing as an example to prove the
feasibility of the method.

• Discussing the Data pricing from the perspective of compensation that the transfer of data
property rights necessitates the payment of compensation. Since the use of data brings
both benefits and costs, we propose that the valuation of data should not only be based on
benefits but also consider its costs. Although the cost cannot be directly quantified, we
internalized externalities furthest through property rights integration to maximize the value
of the data. On this basis, the compensation for distorted ownership is estimated by the
time value of the data. Experimental results show that this method can still complete the
task of data pricing.

• We propose using the least-core rather than other concepts in cooperative games to solve
the allocation scheme. Since the process of ownership integration requires the integrated
party to transfer ownership to form a grand coalition, the withdrawal of either agent will
increase the negative externalities of the coalition. We are more inclined to realize the
stability of the distribution scheme through the core. In this process, we balance the ex-
pected compensation of both the integrator and the integrated party. Finally, we discuss the
feasibility of this framework under different conditions by adjusting the coefficients of the
deficit parameter.
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2 RELATED WORK

Data ownership in Machine Learning. Research in the field of machine learning attaches some
importance to the ownership of data or models. Specifically, the work revolves around ownership
utilization and protection. For the former, the work of Maini et al. (2021) has achieved to determine
whether a potentially stolen model was derived from an owner’s model or dataset. And for the latter,
the existing measures for protecting data ownership in the data marketplace include legal means and
technical means.

For the former, countries have been experimenting with relying on the traditional model of
”empowerment-violation” to provide a legal basis for data property rights protection, and have
achieved some practical results, such as the well-known General Data Protection Regulation(GDPR)
and the California Consumer Protection Act(CCPA). Using the GDPR as one of the patterns, the pro-
ducers of data are endowed with data ownership. The existing law regulates data rights and legal
obligations. Although, the law provides a powerful weapon for data property rights, it continue to
face constraints in practical application. For instance, GDPR highlighting that it may fundamentally
change the way big data analysis is done, making it a suboptimal and inefficient method of protec-
tion (Zarsky, 2017). Additionally, the number of cases filed by parties is limited and is difficult to
obtain satisfaction of a claim in real life. Thus, the protection of data ownership has not achieved
the expected performance despite rapid legislative progress (Li et al., 2019). The legislation has
established a legal basis for the ownership issue, but it is still unable to protect it favorably. This
poses a significant hidden risk to the establishment of a healthy data trading market.

For the latter, the fundamental technical solution is to shift from centralized paradigm to decentral-
ized paradigm. And the key technologies to the decentralized paradigm include Federated learning,
Secure Multi-Party Computation (MPC), Blockchain, etc. In federated learning, clients collabo-
ratively train a shared model under the orchestration of central server, while keeping the training
data decentralized (Li et al., 2020). Due to its advantages in privacy protection, there are increasing
works that have been proposed to use federated learning in healthcare (Xu & Wang, 2021), city
management (Jiang et al., 2020), etc. MPC enables participants jointly compute a function with
their data while keeping data private. A tamper-proof ledger using the blockchain may be used to
record digital interactions (Wirth & Kolain, 2018). These interactions not only contain operations
on the data but can also record the process of data modeling and analysis (Wang et al., 2018). If
the complexity of these technologies is not taken into account, we could embed privacy into the
entire engineering process, with these technologies effectively involved in the loop (Martı́n & Kung,
2018).

Compensation distribution. There are a number of compensation distribution criteria proposed
from the area of cooperative games. The acquiescent baseline to assign the data importance/value
to a model is leave-one-out (LOO). Another conception, Shapley value (Shapley, 1953), is the most
common one amongst all of the valuation criteria. It satisfies some proven theoretical properties,
provides an efficient and fair solution to distribute contributions among players (clients or partic-
ipants) by assigning to each real value which denotes its influence (profit). It is Ghorbani & Zou
(2019) who developes a principle framework to address data valuation in the context of supervised
machine learning. More precisely, given a learning algorithm trained on n data points to produce
a predictor, data Shapley was first proposed to quantify the value of each training datum to the
predictor performance. Besides, to solve this question of fairly distributing profits among multiple
data contributors, Jia et al. (2019) proposed a novel approach, which addresses the problem of data
valuation by utilizing the Shapley value. Furthermore, Kwon et al. (2021) derives the first analytic
expressions for DShapley for the canonical problems, and proposed an algorithm several orders of
magnitude faster than D-shapley.

3 PRELIMINARIES AND BACKGROUND

In this section, we introduce the background and preliminaries of the framework. First, we introduce
the definition and generation of the data ownership to help understand the importance of clarifying
property rights. Then we formalize the data workflow and introduce the theory to identify ownership.
Finally, we introduce the solution to distributing the compensation. The notations used frequently
are showed in Table 1.
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Table 1: The summary of notations

NOTATION DEFINITION

ĎC Data chain
DP data product (performance of the machine learning)
Ai the ith action of Data chain
ai the agent conducting the ith action
Wi the expected compensation of the ith agent
Cit the time value of the ith agent at time t
Bt the compensation for DC estimated by the integrator at time t
Bit the compensation for the ith agent estimated by the integrator at time t
bit the payoff of the ith agent at time t
ϕi the compensation allocated to the ith agent
ψi the contribution of the ith agent
γi the contribution rate of the ith agent
d the deficit parameter in least core

3.1 OWNERSHIP OF DATA

Despite the absence of a unified view on the definition of the data ownership, it is widely agree that
the rights of it including, but not limited to access, creation, generation, modification, analysis, use,
sell, or deletion of the data, in addition to the right to grant rights over the data to others (Asswad
& Gómez, 2021). If we explain the generation of data property rights according to the theory of
property rights, it shows that the benefits of internalizing externalities in the process of data value
extraction have been greater than the costs of direct stepwise training data. The property right of
an asset needs to be defined either because the income of defining the ownership becomes larger,
or because the cost of it becomes smaller. The reasons for the emergence of data property rights
include the above two aspects: on the one hand, with the widespread usage of new information and
communications technologies (ICTs) such as highspeed networks, cloud computing, and pervasive
data collection (Hashem et al., 2015), we now have a vast amount of data available. At the same time,
upgrades in computer hardware and improved algorithms have substantially increased the power of
analytical techniques, and thus the value of data has been better derived. On the other hand, the
distributed frameworks including blockchain also provide a way to protect owners from the transfer,
reducing the cost of defining ownership.

3.2 DATA CHAIN

Data has value, but the value we can get from data is non-linear and unpredictable as: i) The utility
of a data-driven product or service depends not only on the data, but also on the model upon data,
making it difficult to understand the value of data before modeling. ii) The value of data can be
augmented with other data, in a nonlinear manner. iii) The utility of a data-driven product of service
also depends on the user of it. To this end, we propose that the realization of data value extraction
needs a workflow. It is in this workflow that the process of data circulation is accompanied by the
movement of data ownership and usufruct of it.

Definition 1. A data chain DC is a consequence of actions (A1, A2, ..., An) upon data to create a
data product DP , which creates payoff Bt at time t.

3.3 THEORY OF MODERN PROPERTY RIGHT

We introduces Modern Property Rights Theory in the field of economics to provide a theoretical
basis for ownership integration in the Data chain. After integration, the property rights are further
clarified. In this subsection, we introduce the background and basic logic of modern property rights
theory, and in the subsection4.2, we explain how to integrate the ownership of DC.
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The modern propety rights theory. This theory identifies ownership with residual control rights
and argues that, in a setting with contracts that are incomplete and cannot mandate investment deci-
sions, firm boundaries are determined by which ex ante investments are most valuable. It is worth
noting that the concept of an incomplete contract was first introduced in the seminal work of modern
property rights theory, which elaborated that a contract cannot be transformed into a comprehensive
and complete contract through meticulous enumeration. The author, Grossman & Hart (1986) stated
that the essence of ownership is the right to control the subject matter, with all exceptions except
the contract’s content. Since then, a number of articles have expanded on this concept, gradually
forming the modern theory of property rights (Hart & Moore, 1990; 1991; Hart et al., 1996). The
basic idea is that property rights created through collaboration should be assigned to the party who
contributes the most to the post-cooperation output. In comparison to the transaction cost theory
(Coase, 1960), this theory introduces a new concept for vertical integration and addresses the ques-
tion of ”who integrates” during the integration process.

The necessity of integration. The modern property rights theory extends the definition of the
property rights, which can be of two types: specific rights and residual rights. Data ownership
refer to the control over the remaining property rights in addition to those specified in the contract.
However, in the data marketplace, simply entrusting data property rights to them (such as individuals
and small companies, etc.) is uneconomical. Externalities will greatly increase the operation cost
of the data market and hinder its development. The externalities during different stages in a DC
include but are not limited to:

• Difficulties in data collection. The data collected from each original owner involves nego-
tiation.

• The high cost of model training. Both the time and space costs of data processing and the
evaluation of data value increase exponentially with the volume of data. As we proposed the
strategy network pre-training earlier in order to alleviate the time complexity with O(2n) .

At this point, the advantages of ownership integration are obvious: On the one hand, the externalities
stated above are internalized through vertical integration of property rights inDC, which will greatly
reduce the costs and energize the data market. On the other hand, allowing a particular agent to
integrate property rights makes production decisions more uniform. At the same time, sub-optimal
Nash equilibria resulting from each player’s exclusive investment will no longer occur.

3.4 COMPENSATION ALLOCATION CRITERIA

After integrating the property rights of the DC, we hope to establish a stable allocation scheme,
which can simultaneously satisfy the expectation of all agents. There are a number of allocation
criteria proposed from the cooperative game. Shapley value, the most famous criterion we have in-
troduced above, is more concerned with the fairness of the allocation instead of stability. Intuitively,
we should adopt a criterion with more concern about the stability of the distribution to make the
consolidated DC more stable. What worse, it has been demonstrated that calculating approximate
Shapley value in the context of big data fails to obtain approximate from samples with a uniform dis-
tribution (Balkanski et al., 2017). Therefore, we propose to use Core instead, which has not only an
intuitive superiority over shapley value for solving compensation allocation in the context of prop-
erty rights consolidation, but also a theoretical superiority in terms of the approximation algorithm’s
convergence guarantee. Furthermore, another cooperative game solution set that also involves the
perspective of both parties should be concerned. The bargaining set (Aumann & Maschler, 2016) is
defined similarly to the core, while Einy et al. (1999) demonstrated that both core and least-core are
included in the bargaining solution set. However, the bargaining solution set only considers coalition
deviations that are stable in themselves compared to the core, i.e. no inverse deviation is permitted,
which contradicts the complexity expected from actual compensation.

Core and the least-core. Consider the characteristic function game G = (N, v) and its outcome
(CS, x). If the total payoff of a coalition S under x is denoted by x(S), and x(S) ≤ v(S) for some
S ⊆ N , the agents in S might benefit more from departing the coalition structure CS and forming
their own coalition. This gives each member of S an incentive to deviate. As a result, the outcome
(CS, x) is unstable. The core of G is the set of stable outcomes, distributing the outcomes where no
subset of agents has an incentive to deviate. Therefore, the core could be defined as follow:
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Definition 2. The core of a characteristic function game G = (N, v) is the set of all outcomes
(CS, x) such that x(S) ≥ v(S) for every S ⊆ N .

However, the stable coalition structure may not exist. To assure a non-empty solution set, we nat-
urally request that the core notion be relaxed, requiring merely that no coalition gain considerably
from deviations(if not, using Shapley value to distribute compensation will also make Data chain
(DC) unstable), i.e. no member deviations. We assume that each agent has an expected Wi for their
compensation, which is the bottom line when the a∗ allocates compensation. In this vein, adding
an appropriate relaxation parameter d can alleviate the problem. This gives rise to the following
definition: ∑

i∈S
ϕi + d ≥

∑
i∈S

Wi ∀S ⊆ DC (1)

Then, any cooperative game would not has an empty core as long as the d is large enough. When
d is positive, it means that there is a gap of expected compensation between the integrated and the
integrating agent. Then we hope to minimize this gap so that the property rights of DC can be
integrated in the most stable way. Inversely, the negative d means that the integrating agent has
paid compensation that exceeds the expected amount of the integrated. In this case, minimizing the
additional compensation could reduce the costs while meeting the needs of the integrated agents.
Therefore, we are interested in finding the smallest d, which would be defined as a set of solutions
to the following linear program:

min d (2)
s.t.

∑
i∈N ϕi = B∑
i∈S ϕi + d ≥

∑
i∈SWi ∀S ⊆ DC

(3)

The the time complexity of exact solution of the least core isO(2N ). Even calculating this seemingly
simple linear programming equation faces the same amount of computation as shapley value. But it
turns out to be possible to find the least core solution with probability at least 1−δ (Yan & Procaccia,
2021).

Pr
S∼CD

[ϕi + e∗ ≥Wi] ≥ 1− δ (4)

Since the Balkanski et al. (2017) points out that the generalization error of the PAC-learnable
function is small when the number of samples is sufficient, and the solution under arbitrary pre-
cision can be calculated from the number of samples related to the VC-dimension, we can give the
δ − probable least core a probabilistic guarantee.

Theorem 1. Given δ,∆ > 0, the linear program over O((n + log(1/∆))/δ2) coalitions sam-
pled from DC solved by the Monte Carlo algorithm would give a payoff allocation in the
δ − probable least core with probability at least 1−∆.

The proof of theorem 1 will be provided in the appendix A.

Compound interest How can the property rights consolidation process ensure that the property
rights are not undervalued? The propose of this subsection is to estimate the payoff to each action
(and its providers).

The compound interest considers the time value of the money. And the time value of money reflects
that currently owned currency has greater value than the same amount of currency received in the
future, thus the currency can be invested and compounded. Since the data is a special type of asset
(Bodendorf et al., 2022), we naturally apply the compound interest to estimate the time value of
the data. According to this concept, the interest will be calculated based on the principal amount
in addition to the newly obtained interest can also generate interest. In the context of data trading
market applications, the core theoretical basis of an agent’s capital accumulation is the principle of
compound interest, which allows one to obtain a desirable and significant time value by investing
over a long period. Taking the initial moment of investment bi0 of agenti as an example, the time
value after t times investments is calculated as follows:

Cit = bi0 · γit , (5)

with compound interest γit =
(
1 +

γi
0

t

)t
. As a result, when ai completes the first phase of its

investment, the principal amount is expected to increase to bi0 · (1 + γi0). It is worth noting that
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after completing the second period of investment, agenti ’s principal is expected to increase to
bi0 · (1 +

γi
0

2 )2 rather than bi0 · (1 + γi0)
2 due to the subsequent discount in the nominal interest rate

as the investment period increases. When the number of investments approaches infinity, the time
value is calculated in a continuous form as follows:

lim
t→∞

(1 +
γi0
t
)t = eγ

i
0 . (6)

4 METHOD

In this section, we will explain how to finish the data pricing task by compensation distribution. The
framework proposes to integrate the ownership according to the contribution rate first, dividing the
agents of the Data chain into integrator and integrated party. After that, it takes both the two parties’
expectations into account to allocate the compensation.

4.1 AGENT’S CONTRIBUTION FOR DATA CHAIN

To evaluate the actions in a data chain, we assume the payoff Bt for the data chain at the time
t is given. Then the problem is how to quantify the contribution to all the participating agents
in DC. We then propose a revised version of Shapley Value. Specifically, we define a baseline
provider a∗i for Ai, which is the provider with no extra cost to serve the baseline function of ai.
For example, for data providers, the baseline provider can be the open data with no cost; and for
data modeling, the baseline provider can be the open-sourced pre-trained model without extra cost
for model training. Therefore, the coalition would prefer a low-cost baseline compared to the agent
with negative contribution rate. Specifically, the contribution ψi and the contribution rate γi of ai
are defined as:

ψi =
∑

S⊆DC/i

|S|!(|DC| − |S| − 1)!

|DC|!
(v(S ∪ ai)− v(S)), γi =

eψi∑
i e
ψi

(7)

where v(S ∪ ai) − v(S) is actually about the difference of utilities of two data chain, one with
ai and the other without ai but having a baseline provider a∗i instead. We prefer softmax to the
linear normalization for the following two characters: First, a negative marginal contribution can
be normalized to a positive one by the softmax function. This avoids a special case where linear
normalization cannot be calculated when the Shapley value of two agents is 0.5, -0.5 respectively.
Secondly, when the number of agents is small, the difference in the marginal contribution can be
huge. The linear normalization will cause the value of b to be close to 0 or 1, while the softmax
normalization can alleviate this phenomenon. When the number of agents is large, the two nor-
malization methods are similar to each other. Our experiments on synthetic data sets illustrate the
second feature of the softmax function.

4.2 PROPERTY RIGHTS INTEGRATION

According to the modern propety rights theory, the goal of data ownership integration is to maxi-
mize the value generated by the DC. The ownership or residual control over data beyond the user
agreement in the data integration process should be shifted to the agent that plays a key role, in order
to incentivize the agent to invest more resources in the data market’s efficient operation. To realize
the data property rights transaction in the context of modern property rights theory, the agent that
contributes more significantly, i.e., the party that integrates user data, only needs to pay ”compen-
sation” to the user during the transaction process. Accordingly, we propose that a∗ = aargmax

i∈N
γi

should integrate the other agents in the DC. This idea is inspired by modern property rights theory.

For example, if a∗ has the largest marginal contribution, he would have the largest unit input-output
for DC. At this point, a∗ can integrate other agents to obtain their control. It means that a∗ obtains
the power to make the decision of all proprietary investment through integration, and guarantees
output optimization through residual control. Then a∗ would gain the ”income” of property rights.
But correspondingly, other agents also lose investment motivation, resulting in insufficient invest-
ment and distorting the final output. However, since the investment of a∗ is more important to DC,
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the distortion will be much smaller than the efficiency loss of Nash equilibrium. The larger the
difference of marginal contribution is, the closer the integration result will be to the optimal output.

Specifically, taking the DC with two agents as an example. Suppose that a1 is the company that
preprocesses the data and a2 is the company that trains the model. Let qi(i = 1, 2) to be the
sufficiently complex production decisions which cannot be specified completely in an initial contract
between the firms. a1 and a2 represent the exclusive investments of a1 and a2, respectively. DP
represents the output after integration, and here refers to the performance of modeling. To maximize
the output of the DC, more accurate models that meeting the requirements of the order should be
trained. As is mentioned above, the DP may not be ideal before integration. Meanwhile, q1 (data
quality) and q2 (the cost of model training) cannot be reflected in advance (i.e., in the contract).
Therefore, the noncontractibility q leads to the need to allocate residual control rights. Then the
integration may occur in two situations: i) When a1 owns a2, it can exercise the control over a2
to improve the training accuracy of the model. ii) When a2 integrates a1, it can exercise control
over a1 to increase the preprocessing input. If a2 has a greater marginal contribution, a1 will be
consolidated and its proprietary investment in period1 will be controlled by a2 to optimize DP .

4.3 COMPENSATION DISTRIBUTION

On the integrator perspective. The agent who contributes most to theDC owns the property rights
and therefore gains the income from now on. Since the compensation paid for the integrated party
becomes the cost for him, it is naturally expected to be as few as possible. But no matter how low the
compensation is, it should be at least equal to the time value of the pre-integration capital at any time
in the future, motivating the other agents willing to lose control. As a result, the total compensation
paid by the consolidator to all other agents should satisfy the following condition:

B0 =
∑
i∈N

Bi0, (8)

with limt→∞
Ci

t

Bi
0
= 1.

On the integrated perspective. We define Wi to be the compensation expected by the ai who loses
residual control. In this paper, we argue that the rational expectation should be consistent with the
time value that can be calculated by Eqn(5). Inversely, irrational expectation may be either too large
or too small in absolute value, or the relative expectation ranking among agents may not match the
contribution ranking.

Allocation with least-core. Although our least-core scheme can provide a distribution scheme
that is most conducive to the alliance’s stability, it does not mean that disregard fairness entirely
is reasonable. The aim of the distribution is to allocate the compensation based on the time value
of DC at time t as far as possible to meet the expectations of each agent. We can still allocate
according to the contribution rate in order to make the distribution in the irrational case. To achieve
this goal, we adjust the deficit parameter d under different coalitions by adding the coefficient c,
which can be defintie as follow:

min d (9)
s.t.

∑
i∈N ϕi = B0,∑
i∈S ϕi + cSd ≥

∑
i∈S Wi, ∀S ⊆ N,

(10)

with cS =
∑
i∈S e

−γi
0 .

It should be noted that: i) when the marginal contribution rate of each agent is the same, the linear
programming degenerates to the regular least-core solution2. ii) when Wi is constant in different
coalition S, the number of inequality constraints can be reduced to |N |. The calculation amount
of equations (9) and (10) will mainly come from the marginal contribution rate γi. As we use tmc-
Shapley (Ghorbani & Zou, 2019) to estimate SV, the calculation amount is at mostO(N2) according
to Theorem 1. We shall provide theoretical justification for the reasonableness of this change in the
appendix.
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5 EMPIRICAL EXPERIMENT

Throughout the experiments, we are trying to understand the following: i) Would the proposed
Least-core be approximated by sampling according to Theorem 1? ii) Could the proposed Least-
core gain benefits compared to the classical valuation criteria for valuation problems? iii) To what
extent can least-core be competent for allocation under irrational expectations. The following ex-
periments are conducted on feature valuation and data valuation tasks. Although Yan & Procaccia
(2021) has demonstrated the feasibility of core as a replacement for shapley value, our work adjusts
the deficit parameter e and the inequality constraint functions are random. Since it is infeasible to
train a logistic regression classifier on all possible subsets of large-sized datasets as well as get the
exact Shapley values and least core, we verify Theorem 1 in the context of the samll-sized prob-
lem(such as feature valuation). For the other two experiments, we verify in the context of data
valuation, because large-scale datasets are closer to real-world application.

5.1 EXPERIMENT ON FEATURE VALUATIONS

Since the assessment of the data full cycle involves fewer stages (such as data pre-
processor,model trainer, etc.). We hope to experiment on larger datasets to demonstrate
the feasibility of our proposed method compared with the baseline. Therefore, we choose
the feature selection and data valuation of the problem setting. We choose the wine
datasets with 13-class classification and 178 samples (https://archive.ics.uci.edu/
ml/machine-learning-databases/wine/wine.data). And the results of the same ex-
periment on the bigger datasets including MNIST, CIFAR-10/100 would show in the appendix later.
Let the agents to be the features and the define expected compensation of a coalition by equation 7.
To empirically verify Theorem 1, we sample the fraction of coalitions uniformly at random from all
possible coalitions, and compute the least core by the Equation 2 to these coalitions. We then ex-
ams what fraction of all coalitions satisfy the least core constraints with respect to the exact deficit e.
These two kinds of fraction help us to get the accuracy 1−δ and thus lead to δ−probable least core.
As can be seen in Figure 2(left), even with restriction less than 10% could achieve prediction accu-
racy up to 80%.
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Figure 1: Least core accuracy (satisfaction of the core constraint) over coalitions(left). Data removal
results of Synthetic data(right).

5.2 EXPERIMENT ON DATA VALUATIONS

First, We emulate the data removal experiments on Synthetic data as described in (Ghorbani & Zou,
2019) to verify that the proposed least-core is up to the task of valuation. Concretely, we conduct
data removal: Sorting the data from most valuable to least valuable, eliminating the most valuable
valuable 5% of the data at a time. Intuitively, the best criteria would induce the fastest drop of
performance. As we can see in Figure 2(right), the performance of least-core is as well as that of
TMC-shapley.
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Furthermore, we divide the irrational expectation into two cases: i) the expected compensation
exceeds or falls below the time value of the agent; ii) the order of the agent‘s expected compensation
in the DC does not match the order of its contribution. To verify the effect of revised Least-core on
case i, we use a Gaussian random distribution noise (mean=0, standard deviation = 0.1, 1) injection
strategy that perturbates theWi to simulate irrational expectation of compensation. For another case,
we randomly selected 10%, 30% of all the agents to disrupt the order of Wi, while other variables
remain unchanged. And this time, we add breast cancer datasets from the UCI Machine Learning
repository(https://goo.gl/U2Uwz2). Figure 3(left) illustrates that the accuracy drops down
while the deviation increase. And Figure 3(right) shows that the revised version alleviates the impact
of the irrational expectation while does not interfere with the solutions under rational expectations.
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Figure 2: Data remove result: Curves of logistic regression test performance after injecting Gaussian
random distribution with standard deviation = 0.1, 1(left) and disrupting the order of 0.1,0.3 agents
(right). The best (Synthetic) data points ranked according to the least-core and the least-core with
coefficient cS are removed.
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Figure 3: Data remove result: Curves of logistic regression test performance after injecting Gaussian
random distribution with standard deviation = 0.1, 1(left) and disrupting the order of 0.1, 0.3 agents
(right). The best (Natural) data points ranked according to the least-core and the least-core with
coefficient cS are removed.
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6 CONCLUSION AND FUTURE WORK

We have presented a data valuation mechanism based on modern property rights theory. The frame-
work responds to the requirements of data rights confirmation in the data marketplace and provides a
scheme for quantifying property rights compensation. The theoretical and empirical results suggest
the our framework is a principled means of doing credit assignment in ML whether the demand of
the integrated party is rational or not.

There are several exciting directions for future work. First, multiple agents can co-exist in practical
applications, which form a competitive relationship to maximize the revenue for themselves. Sec-
ond, a criteria to determine the most suitable adjustment coefficient while dealing with the irrational
expectation of the integrated party should be given.
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A THE PROOF OF THEOREM 1

We employ the following known lemmas (Balkanski et al., 2017) to prove that the least-core could
be approximated by sampling.

Lemma 1. Denote H : X → {−1, 1} with n VC-dimension. If function f is the groundtruth and
the number of samples m = O(

(n+log( 1
∆ ))

δ2 ). Then,

| P
S∼DC

[h(x) ̸= f(x)]− 1

m

∑
1h(xi) ̸= f(xi)| ≤ δ

where x1, x2, ..., xm ∼ DC.

Lemma 2. The function class {x :7→ sign(w · x)|w ∈ Rn} has VC-dimension n.

According to the lemma 2, we denote h ∈ H is the class of function that satisfies: H = {h :7→
sign((ϕ , 1 , e) · (1i∈S ,−Wi , 1)), ϕi ∈ Rn, e ∈ R ,

∑
i∈N ϕi = B}. This allows H to be a

subset with n + 2 VC-dimension containing the least-core. We then define that ϕ∗i , e
∗, f∗respectly

represent the compensation allocation in the least core,the e subsidy and the classifier accordingly.

Let vector yS = (1i∈S ,−Wi , 1), then h(yS) = 1, for all i ∈ S, and f∗(yS) = 1 for S ∈ 2N .

P
S∼DC

[ ϕi
i∈S

− v(S) + e∗ ≥ 0] ≥ P
S∼DC

[ ϕi
i∈S

− v(S) + e ≥ 0] (11)

= 1− P
S∼DC

[ ϕ̂i
i∈S

− v(S) + ê ≥ 0] (12)

= 1− P
S∼DC

[ĥ(ys) ̸= f∗(ys)] (13)

= 1− ( P
S∼DC

[ĥ(ys) ̸= f∗(ys)]− 1

m

∑
1ĥ(ysi )̸=f∗(ysi )) (14)

≥ 1− δ (15)

B COMPUTATION OF THE LEAST-CORE

Actually, the equation9 may be an overdetermined linear equations. Thus, the exact distribution
Φ = (ϕ1, ..., ϕN ) is a least square solution from the following equation:

min ∥Φ∥2 (16)
s.t.

∑
i∈N ϕi = B0,∑
i∈S ϕi + cS · e ≥

∑
i∈SWi, ∀S ⊆ N,

(17)

with e calculated from equation9.
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C INTERPRETATION OF ADJUSTMENT PARAMETER

To proof that the solution set of least-core with adjusted parameter e is still stable, we empoly the
boundedness principle to prove that perturbation error is controllable as well as the Proposition from
Kwon & Zou (2022). For the benefit of modifying e, we give a formal proof in an easy-to-understand
graphical way.

C.1 ERROR ANALYSIS

Studying the influence of adding coefficients on linear programming problems is actually a pertur-
bation error problem.

Lemma 3. When the cardinality |S| is large enough, the performance change U(S
⋃
z∗)− U(S)is

near zero, and thus the marginal contribution ∆|S|(z∗;U,D) becomes negligible for any z∗.

Therefore, the marginal contribution of Agents is bounded for a coalition under any cooperative
combination, the same is true as the contribution rate7. We then denote the supremum of marginal
contribution rate to be γmax. To distinguish between the natural index e and the deficit parameter,
we define the latter as ê. The coefficient cS of any inequality constrained deficit parameter ê satisfies
cS ≤ ê|S|·γmax , and ê|S|·γmax → 1.

At this point, the matrix form of inequality constraints for linear programming problems:

E ·

 ϕ1
ϕ2
...
ϕN

+

e
−cS1

e−cS2

...

e
−cS

2N

 ·

 ê
ê
...
ê

 ≥

 W1

W2

...
W2N


Among them, E is a sparse matrix with 2N × N , Ei,j = 1 if and only if ai ∈ Sj , the coefficient
matrix of the parameter ê is the diagonal matrix Γ. Then,

Γ · ê =W − E · Φ (18)

|ê| =
∥W − E · Φ∥

∥Γ∥
(19)

lim
N→∞

∆ |ê| = ∥W − E · Φ∥
∥Γ∥

− ∥W − E · Φ∥ (20)

= ∥W − E · Φ∥ · 1− ∥Γ∥
∥Γ∥

(21)

→ 0 (22)

We use the L2-norm of matrix during the proof. Since the product of a bounded number and a
number that converges to 0 still converges to 0, the Equation21 holds.

C.2 MITIGATING THE EFFECTS OF IRRATIONALITY

The smaller the non-negative coefficient of e in the inequality constraint is, the more extent the
constraint is considered. In this section, we examined the impact of the implementation of the
allegations above by the Number Shape Union Method. Taking theDC with two agents for example,
the solution of linear programming equation 9 always lies in the line of equality constraint (or the
equation will have no solution).

Supposed that the least-core e has already been computed, we then examined the impact on the
allocation of Φ = (ϕ1, ϕ2). As is shown in three figures, the Red dotted line represent the restriction
ϕi + ci · e ≥Wi, and the blue solid line represents the equality constraint ϕ1 + ϕ2 = B0

2 .

Case 1. Concretely, the Figure 4 shows an ideal situation of the solution, since computing the
equation16 brings the solution that ϕ1 = ϕ2 = B0

2 .
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When the adjusted coefficients are apply to the inequality constraint, which can be seen as the red
solid lines in figures, the optimal solution of equation16 may change. If not, the coefficients should
satisfy (1− ci) · e ≤ B

2 − e, equivalent to ci ≥ B
2e − 2. The assertion comes from the idea that

the new inequality constraint becoming “closer to the optimal solution” but not overpass it. And the
idea can be described as:

ϕ
′

i − ϕi = (Wi − ci · e)− (Wi − e) ≤ B

2
− e, i = 1, 2 (23)

with ϕ
′

i to be denoted as the new distribution solution.It means that the new inequality constraint
would not overpass the original optimal solution, twisting the original allocation. Inversely, when it
comes to the irrational expectation before compensating, the coefficient satisfies ci ≤ B

2e − 2 would
change the irrational solution instead.

Case 2. In this case, the optimal solution without applying coefficients is located at the intersection
of the constraint line formed by the expectation of one of the agents and the equality constraint line.
Assume that the vertical axis is compensation for phi2 and the horizontal axis is compensation for
phi1,, then the phi1 is more than phi2 before adjusting the coefficient of parameter e.

When this situation is caused by irrational expectations, that is, in fact, the contribution of a2 is
greater than that of a1, but the final compensation is less because of the less expected compensation.

It is obviously that the inequality constraint boundary will be close to the parallel coordinate axis
while the coefficient is greater than 1, otherwise away from the coordinate axis. Additionally, the
new solution set merely influenced by the constraint line formed by the expectation of a1 and the
equality constraint line in this case. Therefore, c1, the coefficient of parameter e in a1’s inequality
constraint, is expected to have a larger coefficient while the equality constraint is fixed. This causes
the new optimal solution to move closer to the axis perpendicular to ϕ2, increasing the compensation
of it and decreasing the compensation ofϕ1.

Case 3. The case is the symmetric form of Case 2, and the same conclusion can be obtained by
similar proofs.

Overall, the function of the coefficient should satisfy the following properties:

• Non-negativity. The Non-negative coefficient avoids changing the sign of parameter e,
which in turn affects the allocation.

• Monotonicity. Monotonically decreasing coefficients with increasing contribution rate can
alleviate distorted distribution
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Figure 4: case1

Figure 5: case2

Figure 6: case3
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