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Abstract

The continuous nature of belief states in POMDPs presents significant compu-
tational challenges in learning the optimal policy. In this paper, we consider an
approach that solves a Partially Observable Reinforcement Learning (PORL) prob-
lem by approximating the corresponding POMDP model into a finite-state Markov
Decision Process (MDP) (called Superstate MDP). We first derive theoretical guar-
antees that improve upon prior work that relate the optimal value function of the
transformed Superstate MDP to the optimal value function of the original POMDP.
Next, we propose a policy-based learning approach with linear function approxima-
tion to learn the optimal policy for the Superstate MDP. Consequently, our approach
shows that a POMDP can be approximately solved using TD-learning followed by
Policy Optimization by treating it as an MDP, where the MDP state corresponds
to a finite history. We show that the approximation error decreases exponentially
with the length of this history. To the best of our knowledge, our finite-time bounds
are the first to explicitly quantify the error introduced when applying standard TD
learning to a setting where the true dynamics are not Markovian.

1 Introduction

Reinforcement learning (RL) provides a robust and systematic framework for solving sequential
decision-making problems by modeling these problems as Markov Decision Processes (MDPs).
However, many real-world systems such as robotic controllers must operate under uncertainty,
handling incomplete, noisy, or ambiguous data, making traditional RL techniques ineffective for such
problems Cassandra et al. [1996].

To address such challenges, partially observable reinforcement learning (PORL) extends the RL frame-
work by modeling these problems as Partially Observable Markov Decision Processes (POMDPs).
This approach accounts for hidden states, enabling effective decision-making under uncertainty.
Beyond these applications, PORL is widely applied in areas such as autonomous driving Levinson
et al. [2011], personalized content recommendations Li et al. [2010], medical diagnosis Hauskrecht
and Fraser [2000], and games Brown and Sandholm [2019], where decision-making under partial
observability is crucial. As a result, addressing decision-making under uncertainty has become a
critical topic across diverse fields such as operations research and healthcare.

Although POMDPs provide a general framework for modeling decision-making under uncertainty,
solving them presents significant computational challenges even when the exact model of the POMDP
is known. The early works of Smallwood and Sondik [1973], Åström [1965] focused on the planning
problem and effectively converted POMDPs into MDPs via belief states. However, the continuous
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nature of belief states and the PSPACE-completeness of solving POMDPs Papadimitriou and Tsitsiklis
[1999], Vlassis et al. [2012] make these problems computationally intractable.

Various approaches have been proposed to address these limitations, with the aim of providing approx-
imate solutions for learning POMDPs by selecting actions based on a finite history of observations.
For example, Jaakkola et al. [1994], Williams and Singh [1998], Azizzadenesheli et al. [2016] select
actions based solely on current observations, while others, such as Loch and Singh [1998], Littman
[1994], consider past k observations to guide decision making. Nevertheless, while these approaches
demonstrate empirical success, they lack rigorous theoretical performance guarantees.

In contrast, for learning fully observable MDPs, a wide range of Reinforcement Learning algorithms
exist with provable sample complexity bounds, ranging from value-iteration-based approaches such
as Q-learning to policy-iteration-based algorithms such as actor-critic and natural policy gradient
(NPG). A comprehensive survey of these algorithms can be found in Bertsekas and Tsitsiklis [1996]
and Sutton and Barto [2018].

The empirical success of finite-history-based algorithms for POMDPs and the availability of perfor-
mance guarantees for standard RL algorithms motivate a critical research question: Can we leverage
standard RL algorithms to approximately learn an optimal policy for a POMDP by treating it as an
MDP, where the states correspond to the finite histories? Specifically, can we establish theoretical
performance bounds for such an approach?

In this paper, we address this question by considering a previously proposed approximation by
Kara and Yüksel [2023] that maps a POMDP to a finite-state MDP, called the super-state MDP by
restricting the information at each time instant to a finite history of past observations. However, this
approximation is difficult to study for the following reasons:

• It is unclear whether using standard TD learning as the policy evaluation step in a problem
where the true model is a POMDP would result in good performance or even convergence.

• The TD learning algorithm used in Cayci et al. [2024] uses a m-step version of TD as a
workaround, which is computationally more expensive than standard TD learning.

In view of the limitations of the prior work, our main contributions are stated as follows:

• Approximation guarantees for POMDP to MDP transformation: A standard approach to
assess the quality of a transformed MDP is to bound the difference between its optimal value
function and that of the original POMDP. In prior work such as Kara and Yüksel [2023],
Subramanian and Mahajan [2019], this difference is bounded by the square of the expected
horizon length, i.e., 1

(1−γ)2 where γ is the discount factor, while, Abel et al. [2016] provides
a bound of 1

(1−γ)3 , and the bound in Cayci et al. [2024] is polynomial in the horizon length.
We improve upon these results by providing a tighter bound. Additionally, while Kara
and Yüksel [2023] provides bounds on the expected difference between the optimal value
functions, we establish a stronger worst-case bound.

• A General Purpose Algebraic Identity: A key reason for improved bounds is the in-
troduction of a novel algebraic result, i.e., Lemma 2 which proves effective in bounding
expressions of the form

∣∣∑m
i=1(aibi − cidi)

∣∣, when vectors (a, c) and (b,d) are close to
each other, and (b,d) corresponds to probability mass functions. Traditional approaches
rely on decompositions and triangle inequality, often leading to loose bounds. In contrast,
our refined approach yields tighter guarantees, improving the existing bounds.
Our algebraic result is of broader interest and can be used to improve bounds in other
analyses. As an example, we refine1 the performance bounds in Subramanian and Mahajan
[2019], which introduced approximate information states but lacked a systematic method
for constructing them. Additionally, while their deep learning-based approach provides an
empirical solution, it optimizes an objective misaligned with the theoretical guarantees.

• Addressing Challenges in Policy Optimization: Having established that the Superstate
MDP is a strong approximation of the POMDP, we investigate whether standard Policy
Optimization algorithms can effectively learn its optimal policy. A key challenge arises
from the fact that learning samples correspond to belief states of the original POMDP rather

1Proof is in the Appendix.
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than the Superstate MDP, creating a sampling mismatch that raises concerns about whether
applying standard RL techniques can yield strong performance guarantees.
Cayci et al. [2024] addresses this issue by modifying the TD-learning part of Policy Op-
timization by employing an m-step TD-learning approach, leading to significantly higher
computational complexity. In contrast, our work is the first to establish convergence guar-
antees for a standard policy optimization algorithm that alternates between learning the
Q-function for a fixed policy using TD-learning and updating the policy accordingly. This
avoids additional computational overhead while providing stronger theoretical guarantees.

• Performance Bounds for Linear Function Approximation Setting: Apart from Cayci
et al. [2024] which leads to a higher computational cost, Kara and Yüksel [2023] considers
Q-learning to learn the optimal policy for the Superstate MDP. However, along with relying
on ergodicity assumptions, their approach faces significant scalability challenges due to the
difficulty of proving convergence for Q-learning with linear function approximation. In
contrast, we develop performance bounds for the Policy Optimization Algorithm and extend
our analysis to the function approximation case, enabling scalability to large state spaces.
A key challenge in proving convergence for Policy Optimization algorithms lies in the
non-stationary nature of the sampling policy during the TD-learning phase. In contrast,
the Q-learning approach in Kara and Yüksel [2023] can leverage a stationary exploratory
sampling policy, simplifying the analysis. Additionally, they assume an additional ergodicity
condition and provide only asymptotic convergence guarantees. In comparison, our approach
avoids such restrictive assumptions and establishes finite-time performance bounds.
Finally, another minor contribution of our work is to extend the analysis for the POLITEX
algorithm in Abbasi-Yadkori et al. [2019] to the discounted reward setting and analyze the
regret of our algorithm with respect to the optimal value function of the POMDP.

2 Related Work

Planning algorithms for POMDP: Early POMDP algorithms assumed full model knowledge
and focused on exact belief-state calculations. Techniques such as Witness algorithm Cassandra
et al. [1994], Lovejoy’s suboptimal algorithm Lovejoy [1993], and incremental pruning Zhang and
Liu [1996] were aimed at making planning more efficient. Comprehensive surveys can be found
in Krishnamurthy [2016], Murphy [2007]. However, these approaches suffer from exponential
complexity growth due to reliance on precise belief-state calculations, limiting their practicality.

Using internal state representations to solve PORL problems: To address the challenge of
continuous belief states, internal state representations have been proposed. Works like Jaakkola et al.
[1994], Williams and Singh [1998], Azizzadenesheli et al. [2016] select actions based solely on
current observations, while Loch and Singh [1998], Littman [1994], consider past k observations to
guide decision-making. Additionally, sliding window controllers Williams and Singh [1998], Loch
and Singh [1998], Kara and Yüksel [2023], Sung et al. [2017], Yu [2005], Cayci and Eryilmaz [2024],
Amiri and Magnússon [2024] and memory-based techniques McCallum [1993], Meuleau et al. [1999]
have demonstrated practical success. However, most of these methods are heuristic and lack formal
guarantees.

Learning algorithms with provable guarantees: Recent efforts have focused on developing
algorithms for solving PORL problems with theoretical guarantees. Du et al. [2019], Efroni et al.
[2022] provide provable bounds, though these rely on the state decodability assumption, which
implies that a finite history of observations can perfectly infer the current state. Other approaches
Wang et al. [2022], Liu et al. [2022], Jin et al. [2020] target specific subclasses of PORL problems.

Deep learning inspired techniques: It is also worth mentioning prior work on empirical approaches
using deep learning. In particular, recurrent neural networks (RNNs) Hausknecht and Stone [2015],
Wierstra et al. [2007] and variational encoders Igl et al. [2018] have been used to model the uncertainty
in PORL by capturing temporal dependencies. While these techniques have demonstrated impressive
empirical results, they lack rigorous performance guarantees.
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3 Problem Description and Prior Results

In this section, we introduce the problem formulation and review some well-known prior results; for
basic POMDP theory, the reader is referred to Krishnamurthy [2016].

3.1 POMDP Structure and Notations

We consider a general finite-state POMDP model, which can be characterized as follows:

• Consider a set of finite states S, with the state of the system at time t denoted by st ∈ S,
which is not observed. Also, assume that the initial state s0 is sampled from a distribution
D, with the corresponding probability mass function represented by the vector π0.

• At any time t, the agent chooses an action at = a from a finite set of possible actions A,
where, for simplicity, we assume that all actions from A are feasible for every state. The
state then evolves according to a transition probability

P(s′ | s, a) = P(st+1 = s′ | st = s, at = a).

Moreover, the agent receives a reward r(s, a), which is the reward obtained if performing an
action a in state s, where we assume finite reward, i.e., there exists r̄ such that |r(s, a)| ≤
r̄ ∀s, a.

• Since states cannot be observed, we assume that information about them at each time t
is obtained through a noisy discrete observation channel whose output yt ∈ Y is chosen
according to a conditional distribution Φ(y | s) := P(yt = y | st = s), where Y is a
finite set of observations. Therefore, after agent takes action at, it receives a reward rt and
observes yt+1.

• Let Ht := {a0, y1, a1, . . . , at−1, yt} ∈ H be the entire observed history up to time t, where
H refers to the set of all possible histories (of any length) of the POMDP. Given a history
H ∈ H and an initial distribution π0 over the states, we denote the probability of being
in state s by π(s | H) = P(s | H,π0) and define the belief state given history H by
π(H) = (π(s | H))s∈S . In particular, the belief state2 π belongs to B ⊆ Σ(S), where

Σ(S) := {x ∈ R|S|
+ :

∑|S|
i=1 xi = 1}, and B refers to the set of all possible belief states that

can be realized using a history H ∈ H. Now, if at time t, the agent takes an action at = a
and observes yt = y, by Bayes’ rule, the belief state can be updated as follows

π(s | Ht) =

∑
s′ π(s

′ | Ht−1)P(s | s′, a)Φ(y | s)∑
s′′
∑

s′ π(s
′ | Ht−1)P(s′′ | s′, a)Φ(y | s′′)

, (1)

where Ht−1 = Ht \{yt, at}. Therefore, any belief state π(H) can be calculated recursively
from the history H and using the belief update rule (1) with the belief at t = 0 given by π0.

• The agent’s goal is to learn the optimal policy (defined more precisely in the next subsection)
through sequential interactions with the environment.

3.2 Belief State MDP Representation of the POMDP

We note that a POMDP can be reduced to a fully observed MDP by considering the belief states as
the states of the MDP. This is discussed in detail below:

• For any belief state π, let r(π, a) :=
∑

s π(s)r(s, a). Thus, the POMDP reduces to a
fully observed MDP where (π, a) ∈ B×A represents a state-action pair and r(π, a) is the
corresponding reward for that state-action pair with the state transition law given by Eq. (1).

• For any belief state π ∈ B and any policy µ, we define the value function V µ(π) as

V µ(π) := E
[ ∞∑
t=0

γtr(πt, at) | π0 = π
]
, (2)

where the belief states πt := π(Ht) evolve using the update rule (1), when the actions
are taken according to at ∼ µ(a | πt) ∀t ≥ 0 with the initial belief state π0 = π. Here,

2When there is no ambiguity, we drop the dependency of belief state on the history and write π = π(H).
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γ ∈ [0, 1) is a discount factor. Our goal is to find an optimal policy µ∗(a | π) corresponding
to each belief state π to maximize the expected cumulative discounted rewards V µ(π).

• For any belief state π ∈ B and for a policy µ, we define the Q-value function as

Qµ(π, a) := E
[ ∞∑
t=0

γtr(πt, at) | π0 = π, a0 = a
]
,

where the belief states πt evolve using the update rule (1) and the actions taken according
to at ∼ µ(a | πt) ∀t ≥ 1.

3.3 Bellman’s Optimality and Uniqueness of Solution

Here, we first present a result from Krishnamurthy [2016] showing that the optimal value function
satisfies Bellman’s Optimality Equation, which can also be used to establish the existence and
uniqueness of an optimal solution to the POMDP.

Theorem 1 Consider an infinite horizon discounted reward POMDP with discount factor γ ∈ [0, 1),
and finite state and action spaces S and A, respectively. Then,

1. For any belief state π ∈ B, the optimal expected cumulative discounted reward maxµ V
µ(π)

is achieved by a stationary deterministic Markovian policy µ∗.

2. For any belief state π(H) ∈ B, the optimal policy µ∗ and the optimal value function V µ∗

satisfy the Bellman’s Optimality Equation: 3

V µ∗(
π(H)

)
= max

a∈A

[∑
s∈S

π(s|H)r(s, a) + γ
∑
y∈Y

V µ∗(
π(H ∥ {y, a})

)
σ(π(H), y, a)

]
,

(3)

where σ(π(H), y, a) denotes the probability of the observation being y conditioned on the
previous belief state being π(H) and action a is taken, which can be calculated explicitly
as σ(π(H), y, a) =

∑
s,s′ Φ(y | s′)P(s′ | s, a)π(s|H).

3. There always exists a unique solution to the Bellman Optimality Equation (3).

Let us denote the Bellman optimality operator in (3) by T (·). Also, let µ∗ be the optimal policy
and V ∗ = V µ∗

be the optimal value function. Then, the optimal value function V ∗ satisfies the
fixed-point equation

V ∗ = T (V ∗).

Therefore, using Theorem 1, for any belief state π = π(H) ∈ B, we can write

V ∗(π) = max
a∈A

[
r(π, a) + γ

∑
y∈Y

V ∗(π(H ∥ {a, y}))σ(π, y, a)].
Note that reducing the POMDP to an MDP using the belief-state formulation does not solve the
problem of finding the optimal policy using reinforcement learning. This is because the belief states
depend on the history, whose length increases with each time step. In the following section, we
present a scalable approach to bypass this intractability in solving infinite horizon POMDPs.

4 Algorithm and Theoretical Results

In this section, we describe our solution approach, develop an algorithm for approximately solving
POMDPs, and provide theoretical guarantees on the performance of the algorithm.

3The symbol ∥ denotes cocatenation. For example if H = {y0, a0, y1, a1}, then, H ∥ {y, a} =
{y0, a0, y1, a1, y, a}
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4.1 Defining an Approximate MDP Using Finite Observations

Definition 1 Given a POMDP and a fixed constant l ∈ N, let H≤l be the set of all histories of length
at most l. We refer to any element of H≤l as a Superstate. Moreover, we define G : H→ H≤l as the
grouping operator if for any finite-length history H ∈ H, it returns the superstate obtained by truncat-
ing H to its last l action-observation elements. In particular, if Ht =

{
a0, y1, a1, . . . , at−1, yt}, then4

G(Ht) =
{
ymax{1,t−l+1}:t, amax{0,t−l}:t−1

}
, ∀ t ≥ 1.

Next, we construct an MDP which consists of states corresponding to the Superstates. Since the
number of Superstates is finite, our resulting Superstate MDP is a finite-state MDP, which can then
be solved using existing RL techniques for finite-state MDPs in the literature. The Superstate MDP is
defined as follows. For every pair of Superstates B,B′ ∈ H≤l, define

r̃(B, a) =
∑
s

π(s | B) · r(s, a), (4)

P̃(B′ | B, a) =
∑
y,s,s′

I[G
(
B ∥ {y, a}

)
= B′] · Φ(y | s′)P(s′ | s, a)π(s | B), (5)

where I[·] is the logic indicator function and B ∥ {y, a} means that the action-observation pair {y, a}
is concatenated to the end of the superstate B. Since the action and state spaces are bounded, an
optimal value function always exists for a discounted MDP with bounded rewards. Let Ṽ (·) be the
optimal value function for the Superstate MDP, which satisfies the following fixed-point equation

Ṽ = T̃ (Ṽ ),

where T̃ is the Bellman’s optimality operator for the corresponding Superstate MDP. Therefore, for
any superstate B ∈ H≤l, we have

T̃ (Ṽ
(
B)
)
= max

a∈A

[
r̃(B, a) + γ

∑
B′

P̃(B′ | B, a)Ṽ
(
B′)].

Now, for a policy µ that is stationary with respect to the superstates, let us define the Bellman’s
operator T̃µ by

T̃µ(V )(B) = Ea∼µ(·|B)

[
r̃(B, a) + γ

∑
B′

P̃(B′ | B, a)V (B′)
]
∀B ∈ H≤l.

Then, the value function of the Superstate MDP with respect to policy µ, denoted by Ṽ µ, must satisfy
the fixed-point Bellman’s operator, i.e.,

Ṽ µ = T̃µ(Ṽ µ).

4.2 How good is the approximate MDP?

In this section, we compare optimal value function of the POMDP, denoted by V ∗, with optimal value
function of the Superstate MDP, denoted by Ṽ . We will show that error between these two optimal
value functions decays exponentially with the length of the truncated history l. To that end, we first
state a standard assumption in filtering theory, i.e., the Uniform Filter Stability Condition, also used
in prior work van Handel [2008], which would be needed for our analysis to relate V ∗ and Ṽ . This
condition ensures sufficient mixing, preventing the system from being trapped in a subset of states.

Assumption 1 [Uniform Filter Stability Condition] Given any π, π′ ∈ Σ(S), and any a, y, let Ka,y

be an operator such that

(Ka,y ⊗ v)(s) =

∑
s′ v(s

′)P(s | s′, a)Φ(y | s)∑
s′′
∑

s′ v(s
′)P(s′′ | s′, a)Φ(y | s′′)

Then, there exists ρ ∈ (0, 1) such that for any π, π′ ∈ Σ(S), we have5

∥Ka,y ⊗ π −Ka,y ⊗ π′∥TV ≤ (1− ρ) · ∥π − π′∥TV ∀a ∈ A, y ∈ Y.
4By notation yr:t = {yr, yr+1, . . . , yt} and ar:t = {ar, ar+1, . . . , at} for any integers r ≤ t.
5∥ · ∥TV is the total variation norm
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4.3 Intuition about Assumption 1

Assumption 1, i.e., the Uniform Filter Stability Condition means that every new observation suffi-
ciently informs the agent to reduce differences between any two prior beliefs — ensuring the belief
state “forgets” initial uncertainty and the filtering process is well-behaved.

Now to ensure that the filter stability condition holds we need

1) Sufficiently Mixing State Transitions: The transition kernel P(s′ | s, a) should be mixing,
meaning from any state s, there’s a positive probability to reach many other states s’ over time.

2) Non-deterministic and Informative Observations: The observation kernel Φ(y | s) must be
non-deterministic but sufficiently informative, i.e., observations must have some noise or randomness.

To check whether the filter stability condition holds, one sufficient condition uses the Dobrushin
Coefficients of the Transition kernel and the Observation Kernel.

From Theorem 5 of Kara and Yuksel [2020], if (1− δ(P))(1− δ(Φ)) < 1, then the filter stability
condition holds. Here δ(P) is the minimum Dobrushin coeffient of the Probability Transition kernel
across all possible actions and δ(Φ) is the Dobrushin coefficient of the Observation kernel.

For example, the Dobrushin coefficient for the Probability Transition matrix δ(P) is defined as:

δ(P) = inf
a

[
inf

x,y∈S

∑
z∈S

min (P(z | x, a),P(z | y, a))
]

The term inside infa quantifies the minimum overlap between any two rows of the matrix P(. | ., a).
Therefore, this quantity measures how similar the rows of the matrix are; smaller values indicate more
mixing and hence, stronger contraction properties. As a result, when there is sufficient mixing—i.e.,
when every state has a non-trivial probability of transitioning to several other states or when every
observation can be generated from multiple underlying states—the system exhibits filter stability.

This scenario is common in highly noisy or dynamic environments, where the belief update is less
sensitive to the prior and more influenced by new observations. We also present in the Appendix B.1
a model for a practical example where Assumption 1 holds.

Additionally, for applications that do not satisfy Assumption 1, one could consider a multi-step
variant where the system exhibits contraction after every k steps. We believe our results could be
extended under this milder assumption, making it a promising direction for future work.

Now, using this Uniform Filter Stability Condition, we prove Lemma 1 6, which shows that all belief
states corresponding to the same Superstate are close to each other in terms of total variation distance.
Further, the distance decays exponentially fast with the length of the truncated history.

Lemma 1 Let H and H ′ be two different histories corresponding to the same superstate, i.e.,
G(H) = G(H ′). Then, under Assumption 1, we have∥∥π(H)− π(H ′)

∥∥
TV
≤ (1− ρ)l. (6)

If two histories belong to the same superstate, their sequences of (action, observation) pairs over the
past l steps are identical. Lemma 1 leverages the intuition that sufficiently informative observations
allow the recent history to capture the current system state. Consequently, starting from different
initial beliefs, the combination of informative observations and strong mixing ensures that, after
enough time, the resulting belief states converge to similar distributions.

Next, we establish an algebraic inequality that will be used to obtain tighter optimality bounds.

Lemma 2 Let a, b, c,d ∈ Rm
+ be positive vectors such that

∑m
i=1 ai =

∑m
i=1 ci = 1. Then,∣∣ m∑

i=1

aibi −
m∑
i=1

cidi
∣∣ ≤ ∥a− c∥1

2
max(∥b∥∞, ∥d∥∞) + ∥b− d∥∞ −

∥a− c∥1
4

∥b− d∥∞. (7)

Finally, using the above lemmas, we can state one of our main results.
6Proof of this lemma, as well as all subsequent lemmas and theorems, can be found in the Appendix
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Theorem 2 Let V ∗ be the optimal value function corresponding to the POMDP (or the belief state
MDP), and let Ṽ be the optimal value function corresponding to the Superstate MDP. Then, under
Assumption 1 for every history H ∈ H with the corresponding belief state π(H) ∈ B and the
superstate G(H) ∈ H≤l, we have∥∥V ∗(π(H)

)
− Ṽ

(
G(H)

)∥∥
∞ ≤

2r̄(1− ρ)l

1− γ
+

2r̄γ(1− ρ)l

(1− γ)
(
(1− γ) + γ(1− ρ)l

) := ξSMDP
POMDP. (8)

Thus, the above result relates the optimal value functions of the POMDP and the Superstate MDP.
Note that the difference between the two value functions decreases exponentially with the length
of the truncated history l, with the error effectively becoming 0 as l → ∞. Next, we propose an
algorithm to learn the optimal policy corresponding to the Superstate MDP.

4.4 An Approximate Policy Optimization Algorithm to Learn the Optimal Policy
corresponding to the Superstate MDP

To learn the optimal value function for the Superstate MDP, one might consider standard reinforcement
learning techniques such as Policy Optimization, which involves alternately learning the Q-function
for a fixed policy and updating the policy. However, this learning process is not straightforward
because the samples obtained at any time t correspond to the actual belief state π(Ht), rather than
the Superstate G(Ht). These issues due to sampling mismatch make the analysis of the TD-learning
part of the algorithm non-trivial.

Additionally, we also consider the linear function approximation setting, where, given feature set
Φ = {ϕ(B, a) ∈ Rd : B ∈ H≤l, a ∈ A}, we aim to find the best θ ∈ B(R)7 for some R > 0, such
that Q(B, a) = ϕT (B, a)θ.8 Further, since the feature vectors are bounded, we assume, without
loss of generality, that ∥ϕ(B, a)∥2 ≤ 1. Note that for the function approximation, we constrain the
parameters θ to lie within a ball of finite radius R. This is done to simplify the analysis of the function
approximation part of the algorithm. The case without such a projection can be analyzed as in Srikant
and Ying [2019], Mitra [2024].

Algorithm 1: An Approximate TD Learning Algorithm for Superstate MDP

Input: A fixed policy µ(· | B), which is stationary with respect to the Superstates B ∈ H≤l,
discount factor γ, projection radius R > 0, stepsize sequence {ϵt}, total iterations τ + l′

Initialize θl randomly in B(R)
Sample s0 ∼ D and set H0 = {}
for t = 0, 1, . . . , τ + l′ − 1 do

Select action at according to the policy µ(· | G(Ht))
Receive reward rt and observe yt+1

Update the history Ht+1 = Ht ∥ {at, yt+1}
Select action at+1 according to the policy µ(· | G(Ht+1))
if t ≥ l′ then

θt+1/2 = θt + ϵt
[
rt + γϕT

(
G(Ht+1), at+1

)
θt − ϕT

(
G(Ht), at

)
θt
]
· ϕ(G

(
Ht), at

)
θt+1 = ProjB(R)(θt+1/2)

end
end
Output: Q̄π(B, a) = ΦT (B, a)θτ+l′ .

We now use a standard Temporal Difference (TD) learning algorithm to learn the Q-function of the
Superstate MDP corresponding to a fixed policy µ. The main idea is to perform a TD-update at every
time t, to the value function of G(Ht) using the reward rt and subsequent observation yt+1. This
process is summarized in Algorithm 1. While the TD learning algorithm is standard, we note that the
model to which the algorithm is applied is not standard: we apply the algorithm pretending that the
underlying model is an MDP while the true model is a POMDP. We leverage a key insight: if two
belief states are close in total variation distance, their reward and transition functions can be proved

7B(R) denotes a d-dimensional Euclidean ball of radius R.
8Here, the superscript T refers to the transpose of the vector ϕ.
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to be close, allowing us to perform TD-learning by pretending that the underlying model is Superstate
MDP while the true model is actually a POMDP.

Next, we show that under Assumption 1 and with sufficient exploration by the policies, the Superstate
MDP admits a contraction mapping.

Lemma 3 Let P̃µ ∈ R|H≤l|×|H≤l|×|A|
+ be the probability transition matrix defined by Eq. (5) and

following policy µ. Then, there exists a constant ρ′ ∈ (0, 1) such that for all pairs of distributions
d1, d2 over the superstates such that (d1−d2)(i) ̸= 0 ∀ i and for all policies with sufficient exploration
µ(a | B) ≥ δ ∀ a,B, such that (1− ρ)l < δ|A| we have∥∥P̃µd1 − P̃µd2

∥∥
TV
≤ (1− ρ′)∥d1 − d2∥TV .

Finally, we state the approximation bounds for the approximate TD-learning algorithm

Lemma 4 Suppose Assumptions 1 holds and consider that µ(a | B) ≥ δ ∀ a,B, such that 9

(1− ρ)l < δ|A| for all policies µ. Let Q̄µ
τ+l′ denote the Q-function obtained by running Algorithm

1 for τ > 4(1− γ)2 iterations with a fixed stepsize ϵt = 1/
√
τ , and l′ = log τ

2 log(1−ρ′) . Moreover, let

Q̃µ be the actual Q-function of the Superstate MDP corresponding to the policy µ, which satisfies
Q̃µ(B, a) = T̃µ(Q̃µ(B, a)) ∀B ∈ H≤l, a ∈ A and let θ̂ := min∥θ∥≤R ∥Q̃µ − ΦT θ∥2. Then,

E∥Q̄µ
τ+l′ − Q̃µ∥∞ ≤ ∥ΦT θ̂ − Q̃µ∥∞ +

(
1− 2(1− γ)√

τ

)τ
∥θl − θ̂∥2 +

[1− (1− 2(1− γ)/
√
τ)τ

(1− γ)

]
×
[ (r̄ + 2R)2

2
√
τ

+
C2(r̄ + 2R) log τ√

τ log(1− ρ′)
+ (1− ρ′)

log τ
2 log(1−ρ′)

(
Rr̄ +R2(1 + (1− ρ)γ)

)
+ 2Rr̄(1− ρ)l +

2

ρ′
(
1− ρ

)l(
Rr̄ +R2(1 + (1− ρ)γ)

)]
:= ξTD-Error,

Algorithm 2: A Policy Optimization Based Algorithm to learn the Superstate MDP

Set Q0(B, a) = 0, ∀B ∈ H≤l, a ∈ A
for i = 1, 2, . . . ,M do

µi(a | B) ∝ exp
(
η
∑i

j=1 Q̄
µj−1

τ+l′ (B, a)
)

Initialize θl randomly in B(R)
Sample s0 ∼ D and set Hi

0 = {}
for t = 0 to τ + l′ − 1 do

Select action at according to policy µi(· | G(Hi
t))

Observe reward rt and the next observation yt+1

Update the history Hi
t+1 = Hi

t ∥ {at, yt+1}
Select action at+1 according to the policy µi(· | G(Hi

t+1))
if t ≥ l′ then

θt+1/2 = θt+ϵt

(
rt+γϕT

(
G(Hi

t+1), at+1

)
θt−ϕT

(
G(Hi

t), at
)
θt

)
ϕ(G

(
Hi

t), at
)

θt+1 = ProjB(R)(θt+1/2)

end
end
Q̄µi

τ+l′(B, a) = ΦT (B, a)θτ+l′

end

Next, we combine Algorithm 1 with the POLITEX algorithm from Abbasi-Yadkori et al. [2019] for
the policy update rule to learn the optimal policy. Note that the POLITEX algorithm is proposed
for the average reward setting, whereas in this work, we extend their analysis to the discounted
reward problem. The overall algorithm is outlined in Algorithm 2, where the inner loop performs
TD learning, as described in Algorithm 1, while the outer loop performs policy updates using an
exponential update rule which incorporates aggregate information from learned Q-functions.

9Given how the policy is chosen in Algorithm 2, a non-zero δ always exists
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Next, to evaluate the performance of our algorithm, we use the following notion of regret. Similar
definitions have also been used in He et al. [2021]. Regret is therefore defined as

RT = E
[ M∑

i=1

τ+l′−1∑
j=0

(
V µ∗

(π(H0))−Ṽ µi(G(H0))
)]

= (τ+l′)

M∑
i=1

E
[
V µ∗

(π(H0))−Ṽ µi(G(H0))
]
,

(9)
where V µ∗

and Ṽ µi are value functions of the actual POMDP and the Superstate MDP under optimal
policy µ∗ and policy µi, respectively. Here, the number of policy updates M and the number of inner
TD learning iterations in each episode τ are chosen such that M(τ + l′) = T . The intuition behind
the definition is that, suppose the algorithm stops at the j-th inner iteration of the i-th policy update
episode. Then, the error between the expected discounted reward corresponding to the optimal policy
and the policy output by the algorithm is V µ∗

(π(H0))− Ṽ µi(G(H0)). Therefore,RT /T can also be
viewed as the expected error incurred by the algorithm if it stops at a uniformly chosen random time.

The following theorem provides an analytical upper bound on the regret of our proposed algorithm.10

Theorem 3 Let V ∗ be the optimal value function of the POMDP, and {µi}Mi=1 be the policies learned
in Algorithm 2 at the corresponding discrete time intervals ti = [(i − 1)(τ + l′) + 1, i(τ + l′)],

i = 1, . . . ,M . Moreover, let the regret RT be as defined in Eq. (9). Further, let τ =
√
T and thus

l′ = log T
4 log(1−ρ′) and M = T

(τ+l′) . Then, the regret is bounded as

RT ≤ T · (ξFA + ξHA) +O(T 3/4 log T ) (10)
where

ξFA = 2

M∑
i=1

∥ΦT θ̂i − Q̃µi∥∞/M,

ξHA =
(
1− ρ

)l[1− (1− 2(1− γ)/
√
τ)τ

(1− γ)

]
·
(
4Rr̄ + 4/ρ′

(
Rr̄ +R2(1 + (1− ρ)γ)

))
+

2r̄

(1− γ)
+

2r̄γ

(1− γ)
(
2(1− γ) + (1− ρ)lγ

)),
Since Algorithm 2 is devised to optimize the Superstate MDP, a small regret implies that the realized
trajectory of the algorithm under the actual POMDP is also close to its optimal value.

Note that ξFA is the error due to linear function approximation which can be reduced by using a good
set of feature vectors. Similarly, ξHA is the error due to approximating the history using a truncated
history of length l (Superstate), which quantifies the tradeoff between increased complexity in terms
of the number of states in the Superstate MDP and the approximation error.

5 Conclusion

We show that standard policy optimization algorithms can effectively approximate an optimal POMDP
policy by modeling it as an MDP over finite histories, and provide convergence guarantees without
the heavy computational cost or restrictive assumptions of prior methods. Our results also extend
to the linear function approximation setting, ensuring scalability to large state spaces. Finally, we
extend the POLITEX algorithm to the discounted reward setting and analyzed the regret with respect
to the optimal POMDP value function. Overall, our work provides tighter theoretical guarantees,
improved efficiency, and a more scalable solution for solving PORL problems. Future work could
focus on tightening the approximation bounds by leveraging more expressive function approximators,
such as LSTMs or Transformer-based architectures.

Acknowledgments and Disclosure of Funding

The work done in this paper was supported by NSF grants CNS 23-12714 and CCF 22-07547 and
AFOSR grants FA9550-24-1-0002 and FA9550-23-1-0107. Additionally, Ameya was also supported
by the Henderson Fellowship.

10A direct comparison of our bound with Cayci et al. [2024] is also provided in the Appendix.

10



References
A. Cassandra, L. Kaelbling, and J. Kurien. Acting uncertainty: Discrete bayesian models for

mobile-robot navigation. Technical report, USA, 1996.

Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel, J. Zico
Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, Michael Sokolsky, Ganymed Stanek, David
Stavens, Alex Teichman, Moritz Werling, and Sebastian Thrun. Towards fully autonomous driving:
Systems and algorithms. In Proceedings of IEEE Intelligent Vehicles Symposium (IV ’11), pages
163 – 168, June 2011.

Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International Conference
on World Wide Web, WWW ’10, page 661–670, New York, NY, USA, 2010. Association for
Computing Machinery. ISBN 9781605587998. doi: 10.1145/1772690.1772758. URL https:
//doi.org/10.1145/1772690.1772758.

Milos Hauskrecht and Hamish Fraser. Planning treatment of ischemic heart disease with partially
observable markov decision processes. Artificial Intelligence in Medicine, 18(3):221–244, 2000.
ISSN 0933-3657. doi: https://doi.org/10.1016/S0933-3657(99)00042-1. URL https://www.
sciencedirect.com/science/article/pii/S0933365799000421.

Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365:885 – 890,
2019. URL https://api.semanticscholar.org/CorpusID:195892791.

Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable markov
processes over a finite horizon. Operations Research, 21(5):1071–1088, 1973. doi: 10.1287/opre.
21.5.1071. URL https://doi.org/10.1287/opre.21.5.1071.

K.J Åström. Optimal control of markov processes with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174–205, 1965. ISSN 0022-247X. doi: https:
//doi.org/10.1016/0022-247X(65)90154-X. URL https://www.sciencedirect.com/
science/article/pii/0022247X6590154X.

Christos H. Papadimitriou and John N. Tsitsiklis. The complexity of optimal queuing network control.
Mathematics of Operations Research, 24(2):293–305, 1999. doi: 10.1287/moor.24.2.293. URL
https://doi.org/10.1287/moor.24.2.293.

Nikos Vlassis, Michael L. Littman, and David Barber. On the computational complexity of stochastic
controller optimization in pomdps. ACM Trans. Comput. Theory, 4(4), November 2012. ISSN
1942-3454. doi: 10.1145/2382559.2382563. URL https://doi.org/10.1145/2382559.
2382563.

Tommi Jaakkola, Satinder P. Singh, and Michael I. Jordan. Reinforcement learning algorithm for
partially observable markov decision problems. In Proceedings of the 7th International Conference
on Neural Information Processing Systems, NIPS’94, page 345–352, Cambridge, MA, USA, 1994.
MIT Press.

John Williams and Satinder Singh. Experimental results on learning stochastic memory-
less policies for partially observable markov decision processes. In M. Kearns, S. Solla,
and D. Cohn, editors, Advances in Neural Information Processing Systems, volume 11.
MIT Press, 1998. URL https://proceedings.neurips.cc/paper_files/paper/
1998/file/1cd3882394520876dc88d1472aa2a93f-Paper.pdf.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement
learning of pomdps using spectral methods. In Vitaly Feldman, Alexander Rakhlin, and
Ohad Shamir, editors, 29th Annual Conference on Learning Theory, volume 49 of Proceed-
ings of Machine Learning Research, pages 193–256, Columbia University, New York, New
York, USA, 23–26 Jun 2016. PMLR. URL https://proceedings.mlr.press/v49/
azizzadenesheli16a.html.

11

https://doi.org/10.1145/1772690.1772758
https://doi.org/10.1145/1772690.1772758
https://www.sciencedirect.com/science/article/pii/S0933365799000421
https://www.sciencedirect.com/science/article/pii/S0933365799000421
https://api.semanticscholar.org/CorpusID:195892791
https://doi.org/10.1287/opre.21.5.1071
https://www.sciencedirect.com/science/article/pii/0022247X6590154X
https://www.sciencedirect.com/science/article/pii/0022247X6590154X
https://doi.org/10.1287/moor.24.2.293
https://doi.org/10.1145/2382559.2382563
https://doi.org/10.1145/2382559.2382563
https://proceedings.neurips.cc/paper_files/paper/1998/file/1cd3882394520876dc88d1472aa2a93f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1998/file/1cd3882394520876dc88d1472aa2a93f-Paper.pdf
https://proceedings.mlr.press/v49/azizzadenesheli16a.html
https://proceedings.mlr.press/v49/azizzadenesheli16a.html


John Loch and Satinder P. Singh. Using eligibility traces to find the best memoryless policy in
partially observable markov decision processes. In Proceedings of the Fifteenth International
Conference on Machine Learning, ICML ’98, page 323–331, San Francisco, CA, USA, 1998.
Morgan Kaufmann Publishers Inc. ISBN 1558605568.

Michael L. Littman. Memoryless policies: theoretical limitations and practical results. In Proceedings
of the Third International Conference on Simulation of Adaptive Behavior: From Animals to
Animats 3: From Animals to Animats 3, SAB94, page 238–245, Cambridge, MA, USA, 1994. MIT
Press. ISBN 0262531224.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming, volume 3 of Anthropolog-
ical Field Studies. Athena Scientific, 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, Cambridge, MA, USA, 2018. ISBN 0262039249.

Ali Devran Kara and Serdar Yüksel. Convergence of finite memory q learning for pomdps and
near optimality of learned policies under filter stability. Mathematics of Operations Research, 48
(4):2066–2093, 2023. doi: 10.1287/moor.2022.1331. URL https://doi.org/10.1287/
moor.2022.1331.

Semih Cayci, Niao He, and R. Srikant. Finite-time analysis of natural actor-critic for pomdps. SIAM
Journal on Mathematics of Data Science, 6(4):869–896, 2024. doi: 10.1137/23M1587683. URL
https://doi.org/10.1137/23M1587683.

Jayakumar Subramanian and Aditya Mahajan. Approximate information state for partially observed
systems. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 1629–1636, 2019.
doi: 10.1109/CDC40024.2019.9029898.

David Abel, David Hershkowitz, and Michael Littman. Near optimal behavior via approximate
state abstraction. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 2915–2923, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/abel16.html.

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena Lazic, Csaba Szepesvari, and Gellert
Weisz. POLITEX: Regret bounds for policy iteration using expert prediction. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 3692–3702.
PMLR, 09–15 Jun 2019. URL https://proceedings.mlr.press/v97/lazic19a.
html.

Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman. Acting optimally in partially
observable stochastic domains. In AAAI Conference on Artificial Intelligence, 1994. URL
https://api.semanticscholar.org/CorpusID:16792751.

William S. Lovejoy. Suboptimal policies, with bounds, for parameter adaptive decision processes.
Operations Research, 41(3):583–599, 1993. ISSN 0030364X, 15265463. URL http://www.
jstor.org/stable/171857.

Nevin Lianwen Zhang and Wenju Liu. Planning in stochastic domains: Problem characteristics
and approximation. 1996. URL https://api.semanticscholar.org/CorpusID:
12681087.

Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled
Sensing. Cambridge University Press, 2016.

Kevin P. Murphy. A survey of pomdp solution techniques. 2007. URL https://api.
semanticscholar.org/CorpusID:261299515.

Jaeyong Sung, J. Kenneth Salisbury, and Ashutosh Saxena. Learning to represent haptic feedback for
partially-observable tasks. In 2017 IEEE International Conference on Robotics and Automation
(ICRA), page 2802–2809. IEEE Press, 2017. doi: 10.1109/ICRA.2017.7989326. URL https:
//doi.org/10.1109/ICRA.2017.7989326.

12

https://doi.org/10.1287/moor.2022.1331
https://doi.org/10.1287/moor.2022.1331
https://doi.org/10.1137/23M1587683
https://proceedings.mlr.press/v48/abel16.html
https://proceedings.mlr.press/v97/lazic19a.html
https://proceedings.mlr.press/v97/lazic19a.html
https://api.semanticscholar.org/CorpusID:16792751
http://www.jstor.org/stable/171857
http://www.jstor.org/stable/171857
https://api.semanticscholar.org/CorpusID:12681087
https://api.semanticscholar.org/CorpusID:12681087
https://api.semanticscholar.org/CorpusID:261299515
https://api.semanticscholar.org/CorpusID:261299515
https://doi.org/10.1109/ICRA.2017.7989326
https://doi.org/10.1109/ICRA.2017.7989326


Huizhen Yu. A function approximation approach to estimation of policy gradient for pomdp with
structured policies. In Proceedings of the Twenty-First Conference on Uncertainty in Artifi-
cial Intelligence, UAI’05, page 642–649, Arlington, Virginia, USA, 2005. AUAI Press. ISBN
0974903914.

Semih Cayci and Atilla Eryilmaz. Recurrent natural policy gradient for pomdps, 2024. URL
https://arxiv.org/abs/2405.18221.

Mohsen Amiri and Sindri Magnússon. On the convergence of td-learning on markov reward processes
with hidden states. In European Control Conference, ECC 2024, Stockholm, Sweden, June 25-28,
2024, pages 2097–2104. IEEE, 2024. ISBN 978-3-9071-4410-7. doi: 10.23919/ECC64448.2024.
10591108. URL https://doi.org/10.23919/ECC64448.2024.10591108.

Andrew McCallum. Overcoming incomplete perception with utile distinction memory. In Inter-
national Conference on Machine Learning, 1993. URL https://api.semanticscholar.
org/CorpusID:17063561.

Nicolas Meuleau, Leonid Peshkin, Kee-Eung Kim, and Leslie Pack Kaelbling. Learning finite-state
controllers for partially observable environments. In Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, UAI’99, page 427–436, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc. ISBN 1558606149.

Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford.
Provably efficient RL with rich observations via latent state decoding. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 1665–1674. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/du19b.html.

Yonathan Efroni, Chi Jin, Akshay Krishnamurthy, and Sobhan Miryoosefi. Provable reinforce-
ment learning with a short-term memory. ArXiv, abs/2202.03983, 2022. URL https:
//api.semanticscholar.org/CorpusID:246652495.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Embed to control partially observed
systems: Representation learning with provable sample efficiency, 05 2022.

Qinghua Liu, Alan Chung, Csaba Szepesvári, and Chi Jin. When is partially observable reinforcement
learning not scary?, 2022. URL https://arxiv.org/abs/2204.08967.

Chi Jin, Sham M. Kakade, Akshay Krishnamurthy, and Qinghua Liu. Sample-efficient rein-
forcement learning of undercomplete pomdps. ArXiv, abs/2006.12484, 2020. URL https:
//api.semanticscholar.org/CorpusID:219965941.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps.
ArXiv, abs/1507.06527, 2015. URL https://api.semanticscholar.org/CorpusID:
8696662.

Daan Wierstra, Alexander Förster, Jan Peters, and Jürgen Schmidhuber. Solving deep memory
pomdps with recurrent policy gradients. In International Conference on Artificial Neural Networks,
2007. URL https://api.semanticscholar.org/CorpusID:14039355.

Maximilian Igl, Luisa M. Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for pomdps. In International Conference on Machine Learning,
2018. URL https://api.semanticscholar.org/CorpusID:46955236.

Ramon van Handel. Hidden markov models. Unpublished lecture notes, 2008.

Ali Kara and Serdar Yuksel. Near optimality of finite memory feedback policies in partially observed
markov decision processes, 10 2020.

R. Srikant and Lei Ying. Finite-time error bounds for linear stochastic approximation andtd learning.
In Alina Beygelzimer and Daniel Hsu, editors, Proceedings of the Thirty-Second Conference on
Learning Theory, volume 99 of Proceedings of Machine Learning Research, pages 2803–2830.
PMLR, 25–28 Jun 2019. URL https://proceedings.mlr.press/v99/srikant19a.
html.

13

https://arxiv.org/abs/2405.18221
https://doi.org/10.23919/ECC64448.2024.10591108
https://api.semanticscholar.org/CorpusID:17063561
https://api.semanticscholar.org/CorpusID:17063561
https://proceedings.mlr.press/v97/du19b.html
https://api.semanticscholar.org/CorpusID:246652495
https://api.semanticscholar.org/CorpusID:246652495
https://arxiv.org/abs/2204.08967
https://api.semanticscholar.org/CorpusID:219965941
https://api.semanticscholar.org/CorpusID:219965941
https://api.semanticscholar.org/CorpusID:8696662
https://api.semanticscholar.org/CorpusID:8696662
https://api.semanticscholar.org/CorpusID:14039355
https://api.semanticscholar.org/CorpusID:46955236
https://proceedings.mlr.press/v99/srikant19a.html
https://proceedings.mlr.press/v99/srikant19a.html


Aritra Mitra. A simple finite-time analysis of td learning with linear function approximation. arXiv
preprint arXiv:2403.02476, 2024.

Jiafan He, Dongruo Zhou, and Quanquan Gu. Nearly minimax optimal reinforcement learning for dis-
counted mdps. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 22288–22300. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/bb57db42f77807a9c5823bd8c2d9aaef-Paper.pdf.

Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, Learning, and Games. 01 2006. ISBN 978-0-
521-84108-5. doi: 10.1017/CBO9780511546921.

Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning. In
Proceedings of the Nineteenth International Conference on Machine Learning, pages 267–274,
2002.

Bram Bakker. Reinforcement learning with long short-term memory. In T. Dietterich, S. Becker,
and Z. Ghahramani, editors, Advances in Neural Information Processing Systems, volume 14.
MIT Press, 2001. URL https://proceedings.neurips.cc/paper_files/paper/
2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf.

Fabian Paischer, Thomas Adler, Vihang Patil, Angela Bitto-Nemling, Markus Holzleitner, Sebastian
Lehner, Hamid Eghbalzadeh, and Sepp Hochreiter. History compression via language models in
reinforcement learning, 05 2022.

Jinqiu Li, Enmin Zhao, Tong Wei, Junliang Xing, and Shiming Xiang. Dual critic reinforcement
learning under partial observability. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=GruuYVTGXV.

Tianwei Ni, Benjamin Eysenbach, Sergey Levine, and Ruslan Salakhutdinov. Recurrent model-
free RL is a strong baseline for many POMDPs, 2022. URL https://openreview.net/
forum?id=E0zOKxQsZhN.

Douglas Aberdeen, Olivier Buffet, and Owen Thomas. Policy-gradients for psrs and pomdps. In
Marina Meila and Xiaotong Shen, editors, Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics, volume 2 of Proceedings of Machine Learning Research,
pages 3–10, San Juan, Puerto Rico, 21–24 Mar 2007. PMLR. URL https://proceedings.
mlr.press/v2/aberdeen07a.html.

14

https://proceedings.neurips.cc/paper_files/paper/2021/file/bb57db42f77807a9c5823bd8c2d9aaef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/bb57db42f77807a9c5823bd8c2d9aaef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://openreview.net/forum?id=GruuYVTGXV
https://openreview.net/forum?id=E0zOKxQsZhN
https://openreview.net/forum?id=E0zOKxQsZhN
https://proceedings.mlr.press/v2/aberdeen07a.html
https://proceedings.mlr.press/v2/aberdeen07a.html


NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction reflect the paper’s
contributions

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Limitations are mentioned in the conclusion section

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Assumptions are provided in the main paper and the necessary proofs are
provided in the appendix

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper does not contain any experiments

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: This paper does not include any experiments
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not include any experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: This paper does not include any experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: This paper does not include any experiments

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.

18



• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and our paper confirms with
the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: There are no negative societal impacts of this work to the best of our knowledge
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs are only used for writing, editing, or formatting purposes and does not
impact the core methodology, scientific rigorousness, or originality of the research
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Appendix A: Omitted Proofs

A.1 Proof of Lemma 1

Let H and H ′ be two histories with the same superstate, G(H ′) = G(H) =
{a1, y1, a2, . . . , y(l−1), al, yl}. Moreover, let t1 and t2 be lengths of H and H ′, respectively. Then,
we have

π(H) = Kal,yl
⊗ . . .⊗Ka1,y1 ⊗ π(Ht1−l),

π(H ′) = Kal,yl
⊗ . . .⊗Ka1,y1

⊗ π(H ′
t2−l).

Using Assumption 1 inductively, we can write

∥π(H)− π(H ′)∥TV = ∥Kal,yl
⊗ . . .⊗Ka1,y1

⊗ π(Ht1−l)−Kal,yl
⊗ . . .⊗Ka1,y1

⊗ π(H ′
t2−l)∥TV

≤ (1− ρ)l∥π(Ht1−l)− π(H ′
t2−l)∥TV

≤ (1− ρ)l.

A.2 Proof of Lemma 2

Without loss of generality, let us assume
∑

i aibi −
∑

i cidi ≥ 0. We have∑
i

aibi −
∑
i

cidi

=
∑
i

[ (ai − ci)(bi + di)

2
+

(bi − di)(ai + ci)

2

]
≤
∑
i

[ (ai − ci)(bi + di)

2
+
| bi − di | (ai + ci)

2

]
=

∑
i:ai≥ci

[
(ai − ci)

(
max(bi, di)−

| bi − di |
2

)
+ | bi − di |

(ai + ci
2

)]

+
∑

i:ci>ai

[
(ai − ci)

(bi + di
2

)
+ | bi − di |

(
ci −

(ci − ai)

2

)]
≤

∑
i:ai≥ci

[
(ai − ci)

(
max(bi, di)−

| bi − di |
2

)
+ | bi − di |

(ai + ci
2

)]
+
∑

i:ci>ai

| bi − di |
(
ci −

(ci − ai)

2

)
≤

∑
i:ai≥ci

[
(ai − ci)max(bi, di) + ci | bi − di |

]
+
∑

i:ci>ai

| bi − di |
(
ci −

(ci − ai)

2

)
≤

∑
i:ai≥ci

[
(ai − ci)max(∥b∥∞, ∥d∥∞) + ci∥b− d∥∞

]
+
∑

i:ci>ai

∥b− d∥∞
(
ci −

(ci − ai)

2

)
=

∑
i:ai≥ci

(ai − ci)max(∥b∥∞, ∥d∥∞)−
∑

i:ci>ai

∥b− d∥∞
(ci − ai

2

)
+ ∥b− d∥∞

=
∥a− c∥1

2
max(∥b∥∞, ∥d∥∞)− ∥b− d∥∞

∥a− c∥1
4

+ ∥b− d∥∞,

where the last equality follows from relations
∑

i:ai≥ci
(ai − ci) +

∑
i:ci>ai

(ci − ai) = ∥a − c∥1
and

∑
i:ai≥ci

(ai − ci) −
∑

i:ci>ai
(ci − ai) =

∑
i ai −

∑
i ci = 0, which together implies that∑

i:ai≥ci
(ai − ci) =

∑
i:ci>ai

(ci − ai) =
∥a−c∥1

2 .
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A.3 Proof of Theorem 2

Consider an arbitrary history H ∈ H with the corresponding superstate G(H) = B. For any a ∈ A,∣∣∣r̃(B, a)−
∑
s

π(s | H)r(s, a)
∣∣∣ = ∣∣∣∑

s

π(s | B)r(s, a)−
∑
s

π(s | H)r(s, a)
∣∣∣

≤
∑
s

∣∣π(s | B)− π(s | H)
∣∣|r(s, a)|

≤ 2(1− ρ)lr̄, (11)

where the last inequality follows from Lemma 1.

Let δ := ∥V ∗(π(H)
)
− Ṽ

(
G(H)

)
∥∞, and note that δ is finite since the value functions are finite.

δ = ∥V ∗(π(H)
)
− Ṽ

(
G(H)

)
∥∞ = ∥V ∗(π(H)

)
− Ṽ

(
B
)
∥∞ (12)

Next, we bound |V ∗(π(H)
)
− Ṽ

(
G(H)

)
| for all H . Using Bellman’s Optimality equation for the

belief state MDP (POMDP) and superstate MDP, we have

|V ∗(π(H)
)
− Ṽ

(
G(H)

)
|

= max
a

{∑
s

π(s | H)r(s, a) + γ
∑
y

V ∗(π(H ∥ {y, a}))σ(π(H), y, a)
}

−max
a

{
r̃(B, a) + γ

∑
y

Ṽ
(
G
(
B ∥ {y, a})

)
σ(π(B), y, a)

}
.

Suppose â is the best action for the POMDP at belief state π(H). Then we can write |V ∗(π(H)
)
−

Ṽ
(
G(H)

)
| as

|V ∗(π(H)
)
− Ṽ

(
G(H)

)
|

=
∑
s

π(s | H)r(s, â) + γ
∑
y

V ∗(π(H ∥ {y, â}))σ(π(H), y, â)

−max
a

{
r̃(B, a) + γ

∑
y

Ṽ
(
G
(
B ∥ {y, a})

)
σ(π(B), y, a)

}
. (13)

Now, since the maximum value of the second term will be greater than evaluating the second term for
a = â, we have

|V ∗(π(H)
)
− Ṽ

(
G(H)

)
| ≤

(∑
s

π(s | H)r(s, â)− r̃(B, â)
)

+ γ
[∑

y

V ∗(π(H ∥ {y, â}))σ(π(H), y, â)−
∑
y

Ṽ
(
G(B ∥ {y, â})

)
σ(π(B), y, â)

]
≤ 2(1− ρ)lr̄ + γ

[∑
y

V ∗(π(H ∥ {y, â}))σ(π(H), y, â)−
∑
y

Ṽ
(
G(B ∥ {y, â})

)
σ(π(B), y, â)

]
,

where in the second inequality we have used (11).

Next, we note that
∑

y σ(π(H), y, â) =
∑

y σ(π(B), y, â) = 1, as σ(·) is a probability distribution
over the observation set Y . Moreover, by the definition of δ and since max

(
∥Ṽ ∥∞, ∥V ∗∥∞

)
≤ r̄

1−γ ,
we can use Lemma 2 to upper-bound the second term in the above expression and obtain

|V ∗(π(H)
)
− Ṽ

(
G(H)

)
| ≤ 2(1− ρ)lr̄

+ γ

[∥∥σ(π(H), ·, â)− σ(π(B), ·, â)
∥∥
TV

r̄

1− γ
+ δ − δ

2

∥∥σ(π(H), ·, â)− σ(π(B), ·, â)
∥∥
TV

]
= 2(1− ρ)lr̄ + γ

[∥∥σ(π(H), ·, â)− σ(π(B), ·, â)
∥∥
TV

(
r̄

1− γ
− δ

2

)
+ δ

]
. (14)
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Note that the above inequality holds for all H.

Furthermore, we can bound the total variation norm in the above relation as∥∥σ(π(H), ·, â)− σ(π(B), ·, â)
∥∥
TV

=
∑
y

∣∣σ(â, y,π(H))− σ(â, y,π(B))
∣∣

=
∑
y

∣∣∑
s,s′

Φ(y | s′)P(s′ | s, â)(π(s | H)− π(s | B))
∣∣

≤
∑
s

∣∣π(s | H)− π(s | B)
∣∣∑
y,s′

Φ(y | s′)P(s′ | s, â)

= 2∥π(H)− π(B)∥TV ≤ 2(1− ρ)l,

where the first inequality holds by the triangle inequality, and the second inequality is obtained using
Lemma 1. Now, we consider two cases. Case 1: r̄

1−γ −
δ
2 ≥ 0

Therefore, we have

δ ≤ 2(1− ρ)lr̄ + γ

[
sup
H

∥∥σ(π(H), ·, â)− σ(π(B), ·, â)
∥∥
TV

(
r̄

1− γ
− δ

2

)
+ δ

]
(15)

Case 2: r̄
1−γ −

δ
2 < 0

Therefore, we have

δ ≤ 2(1− ρ)lr̄ + γ

[
inf
H

∥∥σ(π(H), ·, â)− σ(π(B), ·, â)
∥∥
TV

(
r̄

1− γ
− δ

2

)
+ δ

]
(16)

Now, both infH
∥∥σ(π(H), ·, â)− σ(π(B), ·, â)

∥∥
TV

and supH
∥∥σ(π(H), ·, â)− σ(π(B), ·, â)

∥∥
TV

are less than 2(1− ρ)l.

Therefore, we can write

δ ≤ 2(1− ρ)lr̄ + γ

[
2(1− ρ)l

(
r̄

1− γ
− δ

2

)
+ δ

]
≤ 2(1− ρ)lr̄

1− γ
+

γ

1− γ

[
2(1− ρ)l

(
r̄

1− γ
− δ

2

)]
δ
(
1 +

γ(1− ρ)l

1− γ

)
≤ 2(1− ρ)lr̄

1− γ
+

2γ(1− ρ)lr̄

(1− γ)2

δ ≤ 2(1− ρ)lr̄

(1− γ)(1 + γ(1−ρ)l

1−γ )
+

2γr̄(1− ρ)l

(1− γ)(1− γ + γ(1− ρ)l)

≤ 2(1− ρ)lr̄

(1− γ)
+

2γr̄(1− ρ)l

(1− γ)(1− γ + γ(1− ρ)l)
(17)

A.4 Corollary 1

Additionally, if N is the number of states of the Superstate MDP. Then, we can state the following
result:

Corollary 1 If N is the number of states in the Superstate MDP, then the difference of the optimal
value functions in Theorem 2 can be upper-bounded as∥∥V µ∗(

π(H)
)
− Ṽ

(
G(H)

)∥∥
∞ ≤

2r̄(1− ρ)−1N−κ

1− γ
+

4r̄γ(1− ρ)−1N−κ

(1− γ)
(
2(1− γ) + γN−κ

) ,
where κ = log(1/(1−ρ))

log(|Y||A|) .

Proof:
For a fixed l, the number of superstates can be all possible histories of length at most l. Thus,

N = 1 + |Y||A|+ |Y|2|A|2 + . . .+ |Y|l|A|l < |Y|l+1|A|l+1,
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which implies l + 1 > logN
log(|Y||A|) . Therefore, (1− ρ)l < (1− ρ)−1 ·N

log(1−ρ)
log(|Y||A|) . Similarly, since

l < logN
log(|Y||A|) , we have (1− ρ)l > N

log(1−ρ)
log(|Y||A|) . Substituting these relations into Eq. (8) gives us the

desired result.

A.5 Proof of Lemma 3

Let d1, d2 be distributions over the superstates and similarly e1, e2 be the canonical basis vectors in
R|H≤l . Then there exists αi,j such that αi,j ≥ 0 and

∑
i,j αi,j = ∥d1 − d2∥TV and the following

holds ∥∥P̃µd1 − P̃µd2
∥∥
TV

= ∥P̃µ(d1 − d2)∥TV

= ∥
∑
i,j

αi,jP̃µ(ei − ej)∥TV

≤
∑
i,j

αi,j∥P̃µ(ei − ej)∥TV (18)

Note that the maximum value of the above term is
∑

i,j which is ∥d1 − d2∥TV . Therefore, if for
some i, j we have αi,j > 0 and ∥P̃µ(ei − ej)∥TV < 1, we are guaranteed a contraction.

Now suppose that ei corresponds to a superstate Bi and ej corresponds to a superstate Bj

∥P̃µ(ei − ej)∥TV

=∥
∑
a

µ(a | Bi)
∑
y,s,s′

I[G
(
Bi ∥ {y, a}

)
= B′] · Φ(y | s′)P(s′ | s, a)π(s | Bi)

−
∑
a

µ(a | Bj)
∑
y,s,s′

I[G
(
Bj ∥ {y, a}

)
= B′] · Φ(y | s′)P(s′ | s, a)π(s | Bj)∥TV (19)

Next, we will show that if Bi and Bj are two superstates which differ in the first two elements then
∥P̃µ(Bi −Bj)∥TV < 1.

Therefore, we focus on pairs of Bi, Bj such that G
(
Bi ∥ {y, a}

)
= G

(
Bj ∥ {y, a}

)
, i.e., Bi, Bj

which only differ in the first two elements. For such a pair, we can simplify further

∥
∑
a

µ(a | Bi)
∑
y,s,s′

I[G
(
Bi ∥ {y, a}

)
= B′] · Φ(y | s′)P(s′ | s, a)π(s | Bi)

−
∑
a

µ(a | Bj)
∑
y,s,s′

I[G
(
Bj ∥ {y, a}

)
= B′] · Φ(y | s′)P(s′ | s, a)π(s | Bj)∥TV

= ∥{µ(a | Bi)
∑
s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bi)− µ(a | Bj)
∑
s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bj)}y,a∥TV

= 1/2
∑
y,a

|µ(a | Bi)
∑
s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bi)− µ(a | Bj)
∑
s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bj)|

≤ 1/2
∑
y,a

[∣∣∣µ(a | Bj)
[∑

s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bi)−
∑
s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bj)
]∣∣∣

+
∣∣∣(µ(a | Bi)− µ(a | Bj))

∑
s,s′

Φ(y | s′)P(s′ | s, a)π(s | Bi)
∣∣∣]

≤ ∥π(s | Bi)− π(s | Bj)∥TV + ∥µ(a | Bi)− µ(a | Bj)∥TV

≤ (1− ρ)l + 1− |A|δ
(20)

For the last inequality we assume that our policy has a small exploration component such that
µ(a | B) ≥ δ ∀ B. Therefore, for sufficiently large horizon length l or exploration δ, assumption 2
is automatically satisfied.
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Therefore if αi,j > 0 for pairs of Bi, Bj such that G
(
Bi ∥ {y, a}

)
= G

(
Bj ∥ {y, a}

)
we are

guaranteed a contraction

Next, we will show that we can construct an algorithm such that αi,j > 0 for all such pairs Bi, Bj .

To construct αi,j the following greedy algorithm can be used. Let v1, v2 ∈ Rn be two probability
distributions. Define the difference vector d = v1 − v2, and define:

Algorithm 3: A Greedy Algorithm to construct α

Input: Two discrete distributions v1 = (v1(1), v1(2), . . . , v1(n)) and v2 =
(v2(1), v2(2), . . . , v2(n))
Compute the difference vector ∆ = v1 − v2 where ∆i = v1(i)− v2(i)
Define the surplus set S = {i | ∆i > 0} and the deficit set D = {j | ∆j < 0}
Initialize αij = 0 for all i, j
for each i ∈ S do
end
each j ∈ D αij ← min(∆i,−∆j)
∆i ← ∆i − αij

∆j ← ∆j + αij

See that first αij = min(∆i,−∆j). Therefore, since ∆i,∆j ̸= 0, αij > 0. Additionally, the steps
∆i ← ∆i − αij , ∆j ← ∆j + αij ensures that either one of them goes to 0 and is removed from the
surplus/deficit set.

Additionally, it is straightforward to see that
∑

i = ∥d∥. Thus, ∆i,∆j ̸= 0 =⇒ αij > 0

A.6 Proof of Lemma 4

We first introduce some notations that will be used to prove the result. Let us define

gt(θ) :=
[
rt + γϕT

(
G(Ht+1), at+1

)
θ − ϕT

(
G(Ht), at

)
θ
]
· ϕ(G

(
Ht), at

)
,

and note that it can be written in a compact form as gt(θ) = ΦRt + γΦEtΦ
T θ − ΦDtΦ

T θ, where11

Dt := diag
([

I[(Bt, at) = (B, a)]
]
B∈H≤l,a∈A

)
,

Rt :=
[
rtI[(Bt, at) = (B, a)]

]T
B∈H≤l,a∈A,

Et

(
(B, a), (B′, a′)

)
:= I[(Bt, at) = (B, a)] · I[(Bt+1, at+1) = (B′, a′)],

Φ = [ϕ(B, a)]B∈H≤l,a∈A.

Additionally, let ḡ(θ) := ΦD̃µr̃ + γΦD̃µP̃µΦT θ − ΦD̃µΦT θ, where D̃µ and P̃µ denote the
stationary distribution and the state transition matrix for the Superstate MDP when following policy µ,
respectively. In particular, P̃µ(B′, a′ | B, a) = µ(a′ | B)P̃(B′ | B, a), where P̃(B′ | B, a) is given
by (5). Similarly r̃ := [r(B, a)]TB∈H≤l,a∈A is the vector of rewards corresponding to the Superstate
MDP as defined in (4). Finally, we also define

ηt(θ) = (θ − θ̂)T (gt(θ)− ḡ(θ)).

Next, we state and prove an auxiliary lemma that would be required for our main analysis.

Lemma 5 The following inequalities are true:12

(a) |ηt(θt)| ≤ C1, where C1 = 2R · 2(r̄ + 2R).

(b) ∥gt(θ1)− gt(θ2)∥ ≤ C2∥θ1 − θ2∥ ∀θ1, θ2, where C2 = (2r̄ + 12R).
11[v]v∈V denotes a matrix obtained by concatenating all vectors in V , where each v is a column vector of the

matrix.
12Unless stated, the norms are L2-norms.
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Proof:
To show part (a), using the Cauchy-Schwarz inequality, we have

|ηt(θt)| ≤ ∥(θt − θ̂)∥∥(gt(θt)− ḡ(θt))∥ ≤ 2R · 2(r̄ + 2R).

To prove part (b), for simplicity let B = G(Ht), at = a, and B′ = G(Ht+1), at+1 = a′. Then,

∥gt(θ1)− gt(θ2)∥ = ∥(γϕT (B′, a′)− ϕT (B, a))(θ1 − θ2)ϕ(B, a)∥
≤ ∥θ1 − θ2∥∥ϕ(B, a)∥∥γϕT (B′, a′)− ϕT (B, a)∥ ≤ 2∥θ1 − θ2∥

Similarly, we can show that ∥ḡ(θ1)− ḡ(θ2)∥ ≤ 2∥θ1 − θ2∥. Thus,

|ηt(θ1)− ηt(θ2)| = |
(
gt(θ1)− ḡ(θ1)

)T
(θ1 − θ2 + θ2 − θ̂)−

(
(gt(θ2)− ḡ(θ2))

)T
(θ2 − θ̂)|

≤ ∥gt(θ1)− ḡ(θ1)∥∥θ1 − θ2∥+ ∥θ2 − θ̂∥(∥gt(θ1)− g(θ2)∥+ ∥ḡ(θ1)− ḡ(θ2)∥)
≤ (2r̄ + 12R)∥θ1 − θ2∥.

We are now ready to prove Lemma 4. Let us consider the Lyapunov function

L(θ) := ∥θ − θ̂∥2.

In order to show that θt converges to θ̂, we will show that L(θt) converges to 0, and obtain finite time
bounds for the convergence. To that end, we first relate the successive iterates L(θt) and L(θt+1):

L(θt+1) = ∥θt+1 − θ̂∥2

= ∥Proj(θt+1/2)− Proj(θ̂)∥2

≤ ∥θt+1/2 − θ̂∥2

= ∥θt + ϵtgt(θt)− θ̂∥2

= ∥θt − θ̂∥2 + ϵ2t∥gt(θt)∥2 + 2ϵtg
T
t (θt)(θt − θ̂)

≤ ϵ2t (r̄ + 2R)2 + L(θt) + 2ϵtg
T
t (θt)(θt − θ̂), (21)

where the last step follows from ∥gt(θt)∥ ≤ r̄ + 2R. By adding and subtracting ḡ(θt) in Eq. (21),
we get

L(θt+1) ≤ L(θt) + ϵ2t (r̄ + 2R)2 + 2ϵt(θt − θ̂)T ḡ(θt) + 2ϵt(θt − θ̂)T (gt(θt)− ḡ(θt)).

Next, we proceed to bound each of the terms in the above expression. We start by bounding
2ϵt(θt − θ̂)T ḡt(θt) in terms of L(θt). We can write

2ϵt(θt − θ̂)T ḡt(θt)

= 2ϵt(θt − θ̂)TΦ(D̃µr̃ + γD̃µP̃µΦT θt − D̃µΦT θt)

= 2ϵt
(
ΦT (θt − θ̂)

)T
D̃µ(T̃µ(ΦT θt)− T̃µ(ΦT θ̂)) + 2ϵt

(
ΦT (θt − θ̂)

)T
D̃µ(ΦT θ̂ − ΦT θt)

≤ 2ϵt∥ΦT (θt − θ̂)∥D̃µ∥T̃µ(ΦT θt)− T̃µ(ΦT θ̂)∥D̃µ − 2ϵt∥ΦT (θt − θ̂)∥2
D̃µ

≤ 2ϵt(γ − 1)∥ΦT (θt − θ̂)∥2
D̃µ ,

where the first inequality uses the Cauchy-Schwarz inequality and the second inequality follows from
the contraction property.

Next, we will proceed to bound E[2ϵt(θt − θ̂)T (gt(θt) − ḡ(θt))]. To that end, we will first relate
ηt(θt) with ηt(θt−l′). Note that since

∥θt+1 − θt∥ = ∥Proj(θt − ϵtgt(θt))− Proj(θt)∥
≤ ∥ϵtgt(θt)∥ = (r̄ + 2R)ϵt,

we have ∥θt − θt−l′∥ ≤ (r̄ + 2R)
∑t−1

i=t−l′ ϵi. Therefore, using Lemma 5 (part b), we obtain

ηt(θt) ≤ ηt(θt−l′) + C2(r̄ + 2R)

t−1∑
i=t−l′

ϵi.
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Let Ft−l′ = {y0, a0, r0, y1, . . . , yt, at, rt, yt+1, at+1} be the filtration up to time t − l′, such that
conditioned on Ft−l′ , θt−l′ is measurable and deterministic. We can now obtain an upper bound on
E[ηt(θt−l′)] as follows:

E[ηt(θt−l′)] = E
[
E[ηt(θt−l′) | Ft−l′ ]

]
= E

[
E
[(
ΦT (θt−l′ − θ̂)

)T
(Rt − D̃µr̃) | Ft−l′

]]
+ E

[
E
[(
ΦT (θt−l′ − θ̂)

)T
(γEtΦ

T θt−l′ − γD̃µP̃µΦT θt−l′) | Ft−l′
]]

+ E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(D̃µΦT θt−l′ −DtΦ

T θt−l′) | Ft−l′
]]

= E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(Rt −Dtr̄) +

(
ΦT (θt−l′ − θ̂)

)T
(Dtr̄ − D̃µr̃) | Ft−l′

]]
+ E

[
E
[(
ΦT (θt−l′ − θ̂)

)T
(γEtΦ

T θt−l′ − γD̃µP̃µΦT θt−l′) | Ft−l′
]]

+ E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(D̃µΦT θt−l′ −DtΦ

T θt−l′) | Ft−l′
]]

≤ 2Rr̄(1− ρ)l + E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(Dtr̄ − D̃µr̃) | Ft−l′

]]
+ E

[
E
[(
ΦT (θt−l′ − θ̂)

)T
(γEtΦ

T θt−l′ − γD̃µP̃µΦT θt−l′) | Ft−l′
]]

+ E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(D̃µΦT θt−l′ −DtΦ

T θt−l′) | Ft−l′
]]
, (22)

where the inequality in (22) holds because using a similar argument as in (11), for all G(Ht) = B
and at = a, we have rt −Dtr̃ =

∑
s r(s, a)π(s | Ht)− π(s | B) ≤ 2r̄(1− ρ)l.

Next, let Pµ
t denote the true probability transition matrix of the POMDP, i.e.,

Pµ
t (B

′, a′ | a,G(Ht) = B) = µ(a′ | B)
∑
y,s,s′

I[G
(
B ∥ {y, a}

)
= B′]Φ(y | s′)P(s′ | s, a)π(s | Ht).

We can bound the first term E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(Dtr̄ − D̃µr̃) | Ft−l′

]]
in (22) as follows:

E
[
E
[(
ΦT (θt−l′ − θ̂)

)T (
Dtr̃ − D̃µr̃

)
| Ft−l′

]]
= E

[(
ΦT (θt−l′ − θ̂)

)T (E[Dtr̃ − P̃µD̃µr̃ | Ft−l′ ]
)]

= E
[(
ΦT (θt−l′ − θ̂)

)T (E[(Dtr̃ − P̃µDt−1r̃) | Ft−l′ ] + E[(P̃µDt−1r̃ − P̃µD̃µr̃) | Ft−l′ ]
)]

= E
[(
ΦT (θt−l′ − θ̂)

)T (E[E[(Dtr̃ − P̃µDt−1r̃) | Ft−1] | Ft−l′
]
+ E[(P̃µDt−1r̃ − P̃µD̃µr̃) | Ft−l′ ]

)]
≤ E

[
∥ΦT (θt−l′ − θ̂)∥∞∥E

[
(Pµ

t Dt−1r̃ − P̃µDt−1r̃) | Ft−l′
]
+ E[(P̃µDt−1r̃ − P̃µD̃µr̃) | Ft−l′ ]∥1

]
≤ 2Rr̄(1− ρ)l + E[(P̃µDt−1r̃ − P̃µD̃µr̃) | Ft−l′ ]∥1

]
≤ 2Rr̄(1− ρ)l +R(1− ρ′)∥E[Dt−1r̃ − D̃µr̃ | Ft−l′ ]∥1, (23)

where the first inequality is derived using the Holder’s inequality, and the second inequality holds
because
∥E
[
(Pµ

t Dt−1r̃ − P̃µDt−1r̃) | Ft−l′
]
∥1

≤ E
[
∥(Pµ

t Dt−1r̃ − P̃µDt−1r̃)∥1 | Ft−l′
]

=
∑
a′

∑
B′

|
∑
a

∑
B

(Pµ
t (B

′, a′ | B, a)− P̃µ(B′, a′ | B, a)) ·
(
I[(Bt−1, at−1) = (B, a)]r(B, a)

)
|

≤ 2r̄∥Pµ
t − P̃µ∥TV

≤ r̄
∑
a′

∑
B′

|µ(a | B)
∑
y,s,s′

(
I[G(B ∥ {y, a} = B′]Φ(y | s′)

)
·
(
P(s′ | s, a)(π(s | B)− π(s | Ht))

)
|

= r̄
∑
B′

|
∑
y,s,s′

(
I[G(B ∥ {y, a} = B′]Φ(y | s′)

)
·
(
P(s′ | s, a)(π(s | B)− π(s | Ht))

)
|

≤ 2r̄(1− ρ)l,

where the last inequality holds using Lemma 3. Therefore, solving Eq. (23) recursively, we get

E
[
E
[(
ΦT (θt−l′ − θ̂)

)T (
Dtr̃ − D̃µr̃ | Ft−l′

)]]
≤ r̄R

(
2(1− ρ)l + 2

(1− ρ)l

ρ′
+ (1− ρ′)l

′
)
∀t.
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Similarly, since ∥ΦT θt−l∥∞ ≤ R, we can bound the sum of the last two terms in (22) as

E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(γEtΦ

T θt−l′ − γD̃µP̃µΦT θt−l′) | Ft−l′
]]

+ E
[
E
[(
ΦT (θt−l′ − θ̂)

)T
(D̃µΦT θt−l′ −DtΦ

T θt−l′) | Ft−l′
]]

≤ (1 + γ(1− ρ′))R
(
(1− ρ′)l

′
+ 2

(1− ρ)l

ρ′

)
.

Therefore, putting everything together, for a constant stepsize ϵ, we have

E[L(θt+1)] ≤ (1− 2ϵ+ 2ϵγ)E[L(θt)] + ϵ2(r̄ + 2R)2 + 2ϵRr̄(1− ρ)l

+ 2ϵ(Rr̄ +R2(1 + (1− ρ′)γ))
(
(1− ρ′)l

′
+ 2

(1− ρ)l

ρ′

)
+ 2C2(r̄ + 2R)l′ϵ2.

Using the above relation recursively, we have

E∥θτ+l′ − θ̂∥2 ≤ (1− 2ϵ+ 2ϵγ)τ∥θl′ − θ̂∥2 +
[1− (1− 2ϵ+ 2ϵγ)τ

2ϵ(1− γ)

]
·
[
ϵ2(r̄ + 2R)2 + 4ϵRr̄(1− ρ)l

+ 2C2(r̄ + 2R)l′ϵ2 + 2ϵ(Rr̄ +R2(1 + (1− ρ′)γ))
(
(1− ρ′)l

′
+ 2

(1− ρ)l

ρ′

)]
.

Therefore,

E∥Q̄µ
τ+l′ − Q̃µ∥∞ ≤ ∥Φθ̂ − Q̃µ∥∞ + (1− 2ϵ+ 2ϵγ)τ∥θl′ − θ̂∥2

+
[1− (1− 2ϵ+ 2ϵγ)τ

2ϵ(1− γ)

]
·
[
ϵ2(r̄ + 2R)2 + 4C2(r̄ + 2R)l′ϵ2 + 4ϵRr̄(1− ρ)l

+ 2ϵ(Rr̄ +R2(1 + (1− ρ′)γ))
(
(1− ρ′)l

′
+ 2

(1− ρ)l

ρ′

)]
.

Finally, by choosing ϵ = 1√
τ

and l′ = log τ
2 log(1−ρ′) for sufficiently large τ such that 2ϵ(1− γ) < 1, we

get

E∥Q̄µ
τ+l′ − Q̃µ∥∞ ≤ ∥Φθ̂ − Q̃µ∥∞ + (1− 2(1− γ)√

τ
)τ∥θl − θ̂∥2

+
[1− (1− 2(1− γ)/

√
τ)τ

(1− γ)

]
·
[ (r̄ + 2R)2

2
√
τ

+
C2(r̄ + 2R) log τ

log(1− ρ′)
√
τ

+ 2Rr̄(1− ρ)l

+
2

ρ′
(
1− ρ

)l(
Rr̄ +R2(1 + (1− ρ)γ)

)
+ (1− ρ′)

log τ
2 log(1−ρ′)

(
Rr̄ +R2(1 + (1− ρ)γ)

)]
:= ξTD-Error

A.7 Proof of Theorem 3

Before we prove the regret bound for our policy iteration algorithm, we first mention an important
result from the online learning literature, which will be used to derive the result.

Consider a game between two players consisting of M rounds. At the beginning of each round i, the
environment chooses a loss function li : A → [0, 1], while the learner selects an action ai ∈ A. After
both choices are made, the learner observes the loss li(ai), while the environment observes ai. The
learner’s goal is to minimize its regret with respect to a fixed action a∗, which is defined as

R̄M =

M∑
i=1

(li(ai)− li(a
∗)) .

The following lemma provides a high probability bound on R̄M .

Lemma 6 Cesa-Bianchi and Lugosi [2006] For the game mentioned above, assume that at round
i the learner chooses an action ai = a with probability µi(a) ∝ exp(−η

∑i−1
j=1 lj(a)), where

η =
√
8 log |A|/M . Moreover, let δ ∈ (0, 1) and a∗ ∈ A be an arbitrary fixed action. Then

regardless of how the environment plays, with probability at least 1− δ, we have

R̄M ≤
√
M log |A|/2 +

√
M log(1/δ)/2.

29



We will now use this result to prove the regret in Theorem 3. Using the definition of regret, we have

RT = (τ + l′)

M∑
i=1

E
[
V µ∗

(π(H0))− Ṽ µi(G(H0))
]

= (τ + l′)

M∑
i=1

E
[
V µ∗

(π(H0))− Ṽ (G(H0))
]
+ (τ + l′)

M∑
i=1

E
[
Ṽ (G(H0))− Ṽ µi(G(H0))

]
≤M(τ + l′)ξSMDP

POMDP + (τ + l′)

M∑
i=1

E
[
Ṽ (G(H0))− Ṽ µi(G(H0))

]
, (24)

where the inequality is obtained using Theorem 2. Therefore, using the Performance Difference
Lemma Kakade and Langford [2002], for any i = 1, . . . ,M , we have

E
[
Ṽ (G(H0))− Ṽ µi(G(H0))

]
= E

[
Ea∼µ̃,a′∼µi

[
Q̃µi(G(H0), a)− Q̃µi(G(H0), a

′)
]]

= E
[
Ea∼µ̃,a′∼µi

[
Q̄µi

τ+l′(G(H0), a)− Q̄µi

τ+l′(G(H0), a
′)
]]

+ E
[
Ea∼µ̃,a′∼µi

[
Q̃µi(G(H0), a)− Q̄µi

τ+l′(G(H0), a)
]]

+ E
[
Ea∼µ̃,a′∼µi

[
Q̄µi

τ+l′(G(H0), a
′)− Q̃µi(G(H0), a

′)
]]
.

Next, using Lemma 4, we know that E[∥Q̄µi

τ+l′ − Q̃µi∥∞] ≤ ξTD-error ∀i. Therefore, we can write

(τ + l′)

M∑
i=1

E
[
Ṽ (G(H0))− Ṽ µi(G(H0))

]
= (τ + l′)

M∑
i=1

E
[
Ea∼µ̃,a′∼µi

[
Q̄µi

τ+l′(G(H0), a)− Q̄µi

τ+l′(G(H0), a
′)
]]

+ 2(τ + l′)MξTD-error

= (τ + l′)E
[ M∑

i=1

(〈
µi(· | G(H0)), Q̄

µi

τ+l′(G(H0), ·)
〉
−
〈
µ̃(· | G(H0)), Q̄

µi

τ+l′(G(H0), ·)
〉)]

+ 2M(τ + l′)ξTD-error, (25)

where the last equality follows from the linearity of expectation and expanding the inner expectation.
Now, we can apply Lemma 6 to upper-bound (25). To this end, we can think of a game between the
adversary and a player, which occurs over M rounds. In each round i, the adversary chooses the
loss function li(·) := Q̄µi

τ+l′(G(H0), ·), 13 and the player selects an action ai ∈ A with probability
µi(ai|G(H0)), which due to the structure of the policy updates in Algorithm 2 follows the same
exponential update rule as in Lemma 6. Moreover, since any MDP (and in particular the Superstate
MDP) admits a deterministic stationary policy Bertsekas and Tsitsiklis [1996], it follows that µ̃ is a
deterministic policy that always selects an optimal fixed action a∗, i.e.,

µ̃(a∗|G(H0)) = 1 and µ̃(a|G(H0)) = 0 ∀a ̸= a∗.

By applying Lemma 6, we conclude that the expectation of the inner product in (25) is upper-bounded
by

R

(
Mδ +

√
M log |A|

2
+

√
M log(1/δ)

2

)
.

Substituting this bound into (25) and combining it with (24), we obtain

13The Q-function is upper-bounded by R since ∥θ∥2 ≤ R and ∥ϕ(B, a)∥ ≤ 1. This only scales the regret
bound in Lemma 6 by a factor of R.
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RT ≤ (τ + l′)R

(
Mδ +

√
M log |A|

2
+

√
M log(1/δ)

2

)
+M(τ + l′)

(
2ξTD-error + ξSMDP

POMDP

)
= (τ + l′)R

(
√
M +

√
M log |A|

2
+

√
M logM

4

)
+ T

(
2ξTD-error + ξSMDP

POMDP

)
,

where in the second step, we have chosen δ = 1/
√
M and used the fact that M(τ + l′) = T . Finally,

by choosing τ + l′ =
√
T and substituting the values for ξTD-error and ξSMDP

POMDP, we obtain the desired
result.

A.8 Improving Bounds in Subramanian and Mahajan [2019] using Lemma 2

We state an important lemma from Subramanian and Mahajan [2019]. For additional details, the
reader is referred to Subramanian and Mahajan [2019]. Before stating the lemma, we first present
the definition of the approximate information state, as defined in Subramanian and Mahajan [2019].
Note that we have simplified the definition for the case of POMDPs.

Definition 2 Define z ∈ Z to be an approximate information state and σ : H → Z to be the
approximate information state generator. Further, define r̂ : Z×A → R to be the reward approxi-
mation function. Additionally, let (ϵ, δ) be fixed constants. Then Zt = σ(Ht) satisfies the following
properties:

• For any history Ht and action at, we have

|E[Rt | Ht = ht, At = at]− r̂(σ(Ht), at)| ≤ ϵ.

• For any history Ht and action at and any Borel subset B ∈ Z, define µt(B) = P̂ (Zt+1 ∈
B | Ht = ht, At = at) and vt(B) = P(B | σ(Ht), at). Then

dTV (µt, vt) ≤ δ.

Note that the grouping operator G in our work corresponds to the approximate information state
generator σ in their paper.

Lemma 7 Consider the approximate information state generator σ to be a function which takes a
history H ∈ H to an approximate information state z ∈ Z, where for simplicity of our analysis,
assume Z is a discrete set. Define a fixed point equation for the approximate information states as
follows:

V̂ (z, a) = max
a

[
r̂(z, a) + γ

∑
Z

V̂ (z′)P̂ (z′ | z, a)
]
.

Let Q̂∗ denote the solution of the fixed point equation and Q∗ denote the optimal Q-function for
the POMDP. Then, for all histories Ht ∈ H, using results from Lemma 49 and Theorem 27 in
Subramanian and Mahajan [2019], we have

|V̂ ∗(Ht)− V ∗(σ(Ht))| ≤
ϵ

1− γ
+

2γδr̄

(1− γ)2
.

In the following, we show how to modify the proof in Subramanian and Mahajan [2019] to obtain a
better bound using Lemma 2.

31



Proof:

|V̂ ∗(Ht)− V ∗(σ(Ht))|

= |max
a

[
E[Rt + γV ∗(Ht+1) | Ht = ht, At = at]

]
−max

a

[
r̂(σ(ht), at) + γ

∑
z′

V̂ (z′)P̂ (z′ | z, a)
]
|

≤ |E[Rt | Ht = ht, At = a′]− r̂(σ(ht), a
′|+ γ|E[V ∗(Ht+1) | Ht = ht, At = a′]−

∑
z′

V̂ (z′)P̂ (z′ | z, a′)|

≤ ϵ+ γ|
∑
y

V ∗(ht ∥ {y, a′})P(y | Ht = ht, At = a′)−
∑
z′

V̂ (z′)P̂ (z′ | σ(ht), a
′)|

= ϵ+ γ|
∑
z′

( ∑
y:σ(ht ∥ {y,a′}=z′)

V ∗(ht ∥ {y, a′})
P(y | Ht = ht, At = a′)∑

y:σ(ht ∥ {y,a′}=z′) P(y | Ht = ht, At = a′)

)
P̂ (z′ | Ht, a

′)

−
∑
z′

V̂ (z′)P̂ (z′ | σ(ht),
′ a)| (26)

Suppose, for all Ht, |V̂ ∗(Ht)− V ∗(σ(Ht))| ≤ ω. This implies that∣∣∣ ∑
y:σ(ht ∥ {y,a′}=z′)

V ∗(ht ∥ {y, a′})
P(y | Ht = ht, At = a′)∑

y:σ(ht ∥ {y,a′}=z′) P(y | Ht = ht, At = a′)
−

∑
y:σ(ht ∥ {y,a′}=z′)

Ṽ (z′)
∣∣∣ ≤ ω

(27)

At this point, we can use Lemma 2. Therefore, we obtain

ω ≤ ϵ+ γ
δr̄

(1− γ)
+ γω

(
1− δ

2

)
≤ ϵ

1− γ + δ/4
+

γδr̄

(1− γ)(1− γ + δ/2)
. (28)

A.9 Comparison of our bounds in Theorem 2 with Cayci et al. [2024]

We can do a direct comparison with Theorem 4.4 of Cayci et al. [2024] and show how we obtained
our improved bound. Specifically, our Theorem 3 aggregates the bound from our Theorem 2, the
TD-learning error from Lemma 4, and the final error due to policy optimization. Each component
can be compared as follows:

1. Error due to the mismatch between optimal value functions of the POMDP and SuperState
MDP — corresponds to Theorem 2 and is comparable to ϵinf in Cayci et al. [2024].

2. Standard TD-learning error — the terms in Lemma 4 without (1− ρ)l, comparable to the
first term of ϵcritic in Cayci et al. [2024].

3. Additional TD-learning error from sampling mismatch, i.e., the terms in Lemma 4 with
(1− ρ)l (comparable to ϵpa of Cayci et al. [2024].

4. Function approximation error — similar to lCFA in Cayci et al. [2024].

5. Policy optimization error - comparable to ϵactor in Cayci et al. [2024].

We improve upon the bounds in (1) and (3) which leads to the difference mentioned at the beginning
of this response. We believe our analysis offers a detailed decomposition and sharp insight into the
sources of error.

B Analysis of the Practical Validity of Assumption 1

B.1 Analyzing Assumption 1 for a Practical Example

We consider a practical example of modelling Customer Behavior Modeling in Retail.

Here:
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States represent engagement levels such as {Uninterested, Browsing, Considering, Purchasing}.

Observations are features like the number and type of clicks (e.g., “Viewed Product”, “Added to
Cart”).

In such systems, observations from adjacent engagement states tend to overlap significantly: for
instance, both “Browsing” and “Considering” may involve product views and occasional cart additions.
Furthermore, customer behavior is highly dynamic—users frequently move between these states in
short time spans (e.g., from "Considering" back to "Browsing" or forward to "Purchasing"). This
overlap in observation distributions and frequent transitions among states leads to high mixing,
thereby increasing the Dobrushin coefficient and ensuring filter stability.

Next we present a simplified example to model customer behaviour:

States: s0 (Uninterested), s1 (Browsing), s2 (Considering), s3 (Purchasing).

Actions: a0: Show generic homepage, a1: Recommend trending products

Observations: y0: No clicks, y1: Viewed product, y2: Added to cart, y3: Purchased

Transition Probabilities for a0:

st → st+1 s0 s1 s2 s3
s0 0.4 0.4 0.1 0.1
s1 0.3 0.3 0.2 0.2
s2 0.2 0.3 0.3 0.2
s3 0.1 0.2 0.4 0.3

Transition Probabilities for a1:

st → st+1 s0 s1 s2 s3
s0 0.4 0.3 0.2 0.1
s1 0.2 0.4 0.2 0.2
s2 0.1 0.3 0.4 0.2
s3 0.1 0.2 0.3 0.4

Observation Kernel:

st → yt y0 y1 y2 y3
s0 0.8 0.2 0.0 0.0
s1 0.3 0.5 0.2 0.0
s2 0.1 0.3 0.4 0.2
s3 0.0 0.1 0.3 0.6

Therefore, referring to Theorem 5 of Kara and Yuksel [2020], we calculate the Dobrushian coeffients
to be δ(P) = 0.5 and δ(Φ) = 0.1, which satisfies the sufficient condition:

(1− δ(P))(1− δ(Φ)) < 1,

implying that the Filter Stability condition is satisfied for this case.

We believe that Assumption 1 covers many practical examples and future work can consider a
multi-step variant where the system exhibits contraction after every k steps. We believe that our
results can be extended to such a setting.

B.2 A Counter Example

To motivate future work, we also provide a counter example (suggested by one of the reviewers)
where Assumption 1 does not hold.

Consider a T-Maze as described in Bakker [2001]. Here we present an infinite-horizon variant. The
domain consists of a T-shaped maze, as shown in Fig 1. The agent is initially located at the beginning
of a corridor (position S), which is followed by a junction (position X) where the agent can step into
two different directions, and can keep going into that direction. The goal of the agent is to step into
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Figure 1: T-Maze

the correct direction, where the correct direction is determined by a piece of information the agent
is given at the very beginning, when he is located at the beginning of the corridor (position S). The
agent is given a non-zero reward R > 0 in every cell after taking the correct direction.

The T-maze is naturally modelled as a POMDP. The hidden states consist of

• An initial state s0

• States sdi for every position in the corridor, including the junction, standing for the fact that
the agent is in position i and the initial observation specified that the correct direction is
d ∈ {1, 2} (consider that d = 1 stands for "left" and d = 2 stands for right).

• States rdi for i ∈ N and d ∈ {1, 2}, standing for the fact that the agent is in the ith cell after
stepping into the first of the two possible directions, and given that the initial observation
said that the correct direction to take is direction d

• States qdi for i ∈ N and d ∈ {1, 2}, standing for the fact that the agent is in the ith cell after
stepping into the second of the two possible directions, and given that the initial observation
said that the correct direction to take is direction d.
Note that transitions in the hidden state space are deterministic. Given the entire history
of observations and actions, the agent can determine the current hidden state, hence belief
states are sharp, always assigning probability 1 to a hidden state and 0 to the others. If
only a suffix of the history is available, the agent can only determine its current location,
and it cannot distinguish between states s1i and s2i , between states r1i and r2i , and between
states q1i and q2i . In other words, belief states will assign probability 1/2 to each of the two
possible states.
The optimal value function, given an entire history H is roughly V ∗ = R(1/(1 − γ)).
However, the value of any superstate G(H) is roughly V ∗/2, since the value is determined
by the belief, which is uniform over non-distinguishable stats once we remove the first
observation. The difference between the two values is V ∗/2 , which is constant wrt to l
as opposed to the bound which we obtain in Theorem 2 which goes to 0 for l →∞. The
reason why Theorem 2 does not hold in this case is due to the contraction property required
for Assumption 1 being non-applicable due to the unique structure of the POMDP.

C Experimental Results

C.1 Effect of History Length and Observation Noise

Previous works in the literature have focused heavily on solving POMDPs by considering past k
observations to design optimal policy. However, for the sake of completeness, we evaluate the
performance of our algorithm on a partially observable variant of the FrozenLake-v1 environment.
The environment is modified to introduce observation noise, where with probability p, the agent
receives a random observation different from the true state. All the implementation code is available
at this code repository: https://github.com/ameyanjarlekar/Policy-Based-RL-For-POMDPs.
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The agent uses a history-based state representation by maintaining the last k observation-action pairs.
We study the impact of both the observation noise probability p and the history length k on the agent’s
performance.

Setup.

• Environment: FrozenLake-v1 with is_slippery=False.

• Observation Noise: With probability p, the observed state is replaced with a random incorrect
state.

• History: The agent encodes the last k (observation, action) pairs as the state.

• Algorithm: POLITEX with TD(0)-based Q-value estimation and exponentiated gradient
policy updates.

• Compute: All the experiments were performed on the Google Colab CPU.

Results. The following plot captures the average reward per episode for varying history lengths k
and observation noise levels p. The moving average was computed over a sliding window of episodes.

Figure 2: Average reward per episode for varying history lengths k and observation noise levels p.

Observations.

• Increasing the history length k consistently improves performance under partial observabil-
ity.

• Higher observation noise degrades performance, but the use of longer histories mitigates the
effect.

• Even with moderate to high noise levels (p = 0.3), using k = 3 allows the agent to recover
much of the performance.

C.2 Comparison with Cayci et al. [2024]

In our paper, we show that we improve upon the bound in Cayci et al. [2024]. using a computationally
lighter algorithm. To experimentally illustrate this result, we consider an example for a simple partially
observable Markov decision process (POMDP) with two states, two actions, and two observations.
The environment is stochastic, with state transitions and observations defined by fixed probabilities,
and rewards designed to encourage taking the correct action in the hidden state.

To handle partial observability, we represent the agent’s state by a finite history of recent action-
observation pairs, with history lengths of 1 and 2 tested.

For each setting, the agent trains over 200 episodes, each of fixed length 20 steps. The learning rate α
is set to 0.1 and the discount factor γ to 0.9. Policies are represented tabularly and updated greedily
with respect to Q-values after each episode.

35



We measure the agent’s performance by total reward accumulated per episode and analyze learning
curves as well as final average rewards (averaged over the last 20 episodes) to assess convergence
and policy quality.

Figure 3: Comparing Moving Average Reward

Additionally, several prior works have empirically demonstrated the effectiveness of using finite
histories of observations as surrogates for hidden states in partially observable reinforcement learning
problems. For example, Paischer et al. [2022] leverages pretrained language transformers to compress
observation histories into compact representations, showing improved sample efficiency on POMDP
benchmarks. This is similar to our work if we consider the feature vectors generated by the language
transformers as the feature vectors. Similarly, Li et al. [2024] presents a framework that adaptively
uses privileged state information during training while deploying policies that rely on observation
histories. Other related studies, such as Ni et al. [2022] and Aberdeen et al. [2007], support the use of
history-based or memory-augmented policies with policy gradient methods.
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