
Improving Sequential Model Editing with Fact Retrieval

Xiaoqi Han♣ Ru Li ♣∗ Hongye Tan ♣

Yuanlong Wang ♣ Qinghua Chai ♣ Jeff Z. Pan♠∗

♣ School of Computer and Information Technology, Shanxi University, China
♠ ILCC, School of Informatics, University of Edinburgh, UK

♣ 202112407003@email.sxu.edu.cn,{liru,tanhongye,ylwang,charles}@sxu.edu.cn
♠http://knowledge-representation.org/j.z.pan/

Abstract

The task of sequential model editing is to fix
erroneous knowledge in Pre-trained Language
Models (PLMs) efficiently, precisely and con-
tinuously. Although existing methods can deal
with a small number of modifications, these
methods experience a performance decline or
require additional annotated data, when the
number of edits increases.

In this paper, we propose a Retrieval
Augmented Sequential Model Editing frame-
work (RASE) that leverages factual informa-
tion to enhance editing generalization and to
guide the identification of edits by retrieving
related facts from the fact-patch memory we
constructed. Our main findings are: (i) State-of-
the-art models can hardly correct massive mis-
takes stably and efficiently; (ii) Even if we scale
up to thousands of edits, RASE can signifi-
cantly enhance editing generalization and main-
tain consistent performance and efficiency; (iii)
RASE can edit large-scale PLMs and increase
the performance of different editors. Moreover,
it can integrate with ChatGPT and further im-
prove performance. Our code and data are avail-
able at: https://github.com/sev777/RASE.

1 Introduction

Pre-trained Language models (PLMs) are trained
on massive amounts of texts, encoding knowledge
in their parameters, and having remarkably suc-
ceeded in knowledge-driven tasks such as question
answering (Kwiatkowski et al., 2019; Chen et al.,
2021, 2022; Hu et al., 2023) and reasoning (Mi-
haylov et al., 2018; He et al., 2023). Such paramet-
ric knowledge complements (Pan et al., 2023) the
explicit and structured knowledge in widely used
knowledge graphs (Pan et al., 2017a,b).

As Pre-trained Language models are deployed
widely, the need to keep their parametric knowl-
edge correct and up-to-date without massive retrain-
ing costs becomes increasingly important (Sinitsin

∗Contact Authors

Figure 1: Comparison of RASE with other methods.
Other methods (a) involve continuous modification of
PLM’s parameters. However, the efficiency of modifica-
tion decreases as the number of edits grows, resulting in
poor performance for SME. Our method (b) leverages an
fact retrieval framework, guaranteeing consistent mod-
ification efficiency regardless of the number of edits.
This improvement enhances both the scalability and per-
formance of SME. Furthermore, by leveraging factual
information relevant to editing, our retrieval method bet-
ter adapts to SME scenarios.

et al., 2019). Prior works have proposed Model
Editing (De Cao et al., 2021), enabling fast, data-
efficient PLMs updates without damaging model
performance on unmodified data. These methods
focus on simultaneously modifying edits; however,
the errors in PLMs are unpredictable and pervasive,
thus correcting them at once is impractical.

To this end, Sequential Model Editing (SME)
(Huang et al., 2023) has been proposed to fix a se-
ries of bugs in order while maintaining the previous
edits and performance across unmodified data. This
is a challenging task, since, for a highly non-linear
model, even slight perturbations might significantly
alter the model’s output. As shown in Figure.1(a),
prior works on SME make modifications by ei-
ther directly modifying the parameters of the lan-

https://github.com/sev777/RASE

guage model (Meng et al., 2022, 2023) or continu-
ously adding parameters to the model (Huang et al.,
2023), and they use additional storage to maintain
the model’s performance on unmodified data (Lo-
cality). They have shown promise only to deal with
a small number of modifications, and suffer from
insufficient expressiveness: 1) As the number of
edits increases, the model’s parameters undergo
significant changes, or the number of parameters
becomes large, resulting in forgetting previous ed-
its or unmodified data and gradually increasing the
cost of modifications. 2) In SME, the edits may
clash with pre-sampled data stored to preserve Lo-
cality. Thus, the cost of maintaining memory will
increase when dealing with more edits.

One feasible way to address the abovementioned
issue is the memory-based method, which uses
an edit-history memory while keeping the origi-
nal model frozen. However, the existing method
(Mitchell et al., 2022b) primarily focuses on batch
editing, assuming that all editing data is known
and utilizing the data to train models for data-type
identification and modification, which makes it in-
efficient when handling Sequential Model Editing.

To fully leverage the advantages of the memory-
based method, we propose RASE, a Retrieval
Augmented Sequential Model Editing framework,
(cf.Figure.1(b)) stores edits with their fact descrip-
tion and parameter shift on PLMs in memory and
uses a query module to retrieve from them to apply
each modification individually. With this frame-
work, we can simplify complex continuous modi-
fications by breaking them down into multiple in-
dividual edits, and the SME can be decomposed
into the following two sub-tasks: 1) Edits clas-
sification: determining whether the input needs
modification. We propose a fact-aware contrastive
model to identify edits without pre-training on any
annotated datasets by learning the sentence and fact
embedding in a self-supervised way. 2) Editing: de-
termining how to efficiently modify each edit. We
enhance the generalization capabilities of existing
editors by incorporating factual information with
the editing data.

Experimental results on fact-checking and ques-
tion answering tasks indicate that RASE can rectify
a series of mistakes (up to thousands) while retain-
ing the model’s performance on unmodified data.
Our contributions include:

• We propose RASE, a retrieval augmented
knowledge editing framework, constructing a

fact-patch memory, and using a query mod-
ule to classify the edits by retrieving related
facts from the memory and achieving efficient,
stable, and expansible SME.

• Our method can be integrated with other fac-
tual knowledge editors, enhancing the general-
ization capability of each editor by leveraging
facts related to the edits, and achieving more
reliable modifications.

• Experiments show that RASE can support
large PLMs for stable and efficient continu-
ous editing. Moreover, we utilize ChatGPT to
re-rank retrieval results, further enhancing the
accuracy of fact retrieval and identify modi-
fied and unmodified data more accurately, thus
maintaining the model’s performance on the
unedited data better.

2 Background

2.1 Model Editing
The task of Model Editing (ME) (De Cao et al.,
2021) is to intervene the target model’s behaviour
on a specific example while preventing the model
from forgetting unmodified data. Previous research
can be classified into two categories:

Specification-based Methods These methods
(Zhu et al., 2020; De Cao et al., 2021; Mitchell
et al., 2022a; Meng et al., 2022, 2023; Han et al.,
2023) fix the bugs through locating and modifying
specific parameters in PLMs. However, a minimal
change in parameter space may produce a com-
pletely different output for many data, which may
leave post-edit model potentially unreliable.

Addition-Based Methods Instead of directly
modifying the parameters of PLMs, the Addition-
Based Methods (Dong et al., 2022; Mitchell et al.,
2022b; Huang et al., 2023) utilize an additional
module to apply the edits while keeping the pa-
rameters of the PLMs fixed. They allow better
preservation of the original language model’s per-
formance and exhibits excellent scalability.

However, both types of methods focus on batch
editing. In practice, language model errors often
require timely and sustainable correction, and the
to-be-modified data is unknown.

2.2 Sequential Model Editing
The task of Sequential Model Editing (SME)
(Huang et al., 2023) is to fix a series of mis-
takes of a target model as soon as they appear.

Figure 2: Illustration of RASE. Figure (a) illustrates the sentence encoder and fact encoder trained in a self-
supervised way. Figure (b) shows the memory construction process. We use the facts embeddings as the key and the
parameter shift for edits as the value. Figure (c) presents the retrieval framework, where the query module retrieves
information from the memory for each input. Based on the retrieval results, we make appropriate modifications to
the PLM, correcting the data that needs to be modified.

Formally, given a PLM F(·) and an edit stream
D {(x1, yx1), (x2, yx2), . . . , (xn, yxn)} with n edit
inputs, the task is to effectively correct the output
of F(xi) when F(xi) ̸= yxi , while maintaining
accurate predictions for previous edits and unmod-
ified data. We denote E as the editing function,
after processing the i-th input, the Fi(·) can be
represented as:

Fi(·) =

{
Fi−1(·) Fi−1(xi) = yxi ,

E(Fi−1(·), xi, yxi) Fi−1(xi) ̸= yxi .
(1)

Compared with ME, the desiderata for the SME
method are as follow: (1) Reliability, the editor is
supposed to successfully edit data sequentially, and
the post-edit model should retain the output for pre-
vious edits after editing every edit; (2) Generality,
the editor should generalize over the equivalent in-
puts1about the edits; (3) Locality, the editor should
retain its accuracy on unmodified data.

Existing editing methods (Meng et al., 2022;
Mitchell et al., 2022b; Huang et al., 2023) in Se-
quential Model Editing (SME) still exhibit limi-
tations regarding the generalization and the scale
of edits, moreover, due to their direct modify the
parameters of the PLMs, the performance of local-
ity may also become unreliable. To address it, we
propose a retrieval-augmented editing framework,
leveraging factual information associated with the
edits as guidance and enhancing the generalization
capability of the editor, leading to stable and scale
sequential editing, furthermore, since we will keep
the original PLMs frozen, and only make corre-

1The inputs with the same meaning can differ in natural
language expressions called equivalent inputs; e.g., ‘Michael
Jordan was born in ?’ vs. ‘The birthplace of Michael Jordan
is ?’.

sponding changes to the PLMs based on the re-
trieval results, the performance of the retriever can
ensure the reliability of the model’s locality.

3 Approach

Figure 2 shows the overview of RASE. In a nut-
shell, we first train a fact encoder and a sentence
encoder in a self-supervised way to maximize the
similarity between sentences and their correspond-
ing fact description. After applying each edit suc-
cessful, we encode the corresponding fact as a key
(Section 3.1.1), treat the required parameter shift
as a value (Section 3.1.2), and store the (key,value)
pair. During the evaluation, we compare a given in-
put with the keys in the memory (Section 3.2). If a
key is found, it indicates that the data needs modifi-
cation, and the value will be applied to the language
model to complete the editing. Otherwise, the input
is simply passed to the original model. We illus-
trate our approach by introducing the facts-patch
memory’s construction and usage.

3.1 The facts-patch memory

The memory M = (K,V) contains facts represen-
tation K and the edit operation V, with each key
ki mapping to one value vi. When an input has the
highest similarity to any key in memory, we can
consider that the input needs modification. There-
fore, we only need to learn the embeddings that can
maximize the similarity between the input and its
relevant facts in order to achieve data classification
for editing without relying on labeled data.

3.1.1 Construction of Key K

We use the key K = {k0, k1, ..., ki, ...} to deter-
mine whether the input needs editing during eval-
uation. Each ki is generated by the fact encoder

Figure 3: Fact-aware contrastive learning method: we
represent the inputs (in blue), their equivalents (in
green), and corresponding facts (in orange) as positives,
while representing other facts and sentences (in gray)
as negatives. Our goal is to pull together the positive
pairs and push away the negative pairs by training two
Encoders.

Encf (·), which aims to maximize the similarity be-
tween ki and the relevant sentences. Among many
possible implementations of the encoder, a straight-
forward way is to utilize a language model or an
existing retriever Izacard et al. (2022a) to encode
the data. However, the representation is ineffective
for cases where sentences and factual descriptions
are distinct but semantically similar, especially for
some sentences where only one word is different.

Thus, we propose a fact-aware contrastive learn-
ing method to training the encoder. Specifically, we
training two Encoders Encf (·) and Encs(·) to get
the fact embeddings Ef and sentence embeddings
Es respectively, and the goal is to maximize the
similarity between the embeddings of sentences
and factual information. As shown in Figure 3, for
the fact "<Iphone 14, is developed by, Apple Inc.>",
we view "Iphone 14 is developed by Apple Inc." as
a factual description and use Encf (·) to encode it.
Then, we use Encs(·) to encode its corresponding
sentences as positive pairs (indicated in green and
blue.) and unrelated sentences (indicated in grey.)
as negative pairs. We trained Encf (·) and Encs(·)
using the following three contrastive losses:

Facts Contrastive Loss (LF2F). We use LF2F

to maximize the similarity between the fact embed-
ding Ef and its positive embedding Edp

f (dp means
it is generated by dropout noise within transformer
layers), and minimize the similarity between the
fact and other facts. In this way, fact embedding is
learned in a self-supervised way.

Sentences Contrastive Loss (LS2S). LS2S and
LF2F are computed in the same way. Since one
fact corresponds to multiple positive sentences, so
the average representation of these sentences is

viewed as the sentence embedding Es of LS2S .
Contrastive Loss between Sentence and Fact

(LS2F) pulls the embeddings of sentences and their
related fact close while keeping unrelated facts
apart. To ensure that positive samples’ similarity
surpasses a predefined threshold, we use a margin-
based similarity to better discriminate distinct but
semantically similar pairs by increase the similarity
between negative samples and decrease the simi-
larity between positive samples. In summary, our
total loss is:

Lcl = λ1LF2F + λ2LS2S + λ3LS2F , (2)

where λi is hyperparameter. See more details in
Appendix A. Notably, enable to enhance the gener-
alization of editor, the factual description is stored
simultaneously with the fact embedding in M with-
out labels. e.g. for the sentence "IPhone 14 was
created by?", the factual description is: "IPhone
14 || iPhone 14 is developed by || IPhone 14 was
created by?" During the evaluation, each input will
be encoded by Encs(·) and computed with K to
determine whether a modification is required.

3.1.2 Construction of Value vi

The value vi for each key ki represents the edit op-
eration for the edit xe. In this paper, we choose an
addition-based editor, T-Patch(Huang et al., 2023)
and a specification-based editor ROME (Meng
et al., 2022), as the base editor due to their effi-
ciency and the ability to continue editing.

T-Patch (Huang et al., 2023) only requires train-
ing a certain number of neurons for each edit and
inserts them at a designated layer of the Trans-
former. In contrast to Huang et al. (2023), we does
not require additional memory to store training data
to satisfy locality. Moreover, we concatenate the
factual description with the input as a prompt to im-
prove the generalization of the editor. For T-Patch,
the value vi is the extra neurons.

ROME (Meng et al., 2022) locates the knowl-
edge required modification with a key-value pair
in one of the middle MLP layers and modifies the
corresponding knowledge by directly updating the
key-value pair. For ROME, we use factual descrip-
tion as a prompt to improve the generalization of
the editing process. The value vi consists of vector
value v∗, lookup key k∗ and a shared matrix C. For
both two editors, we also store the edits simulta-
neously with the vi in M to help to identify the
data type. The details of these two editors are in

Appendix B. We maintain the M during training in
real-time. See more details in Appendix C.

3.2 The usage of memory
In this section, we introduce how to utilize memory
M to identify which data requires modification and
achieve sequential model editing.

For each data, after we obtain the embedding
of the input x using the sentence encoder H =
Encs(x), we match the H with the keys K in the
memory M by the score function:

score = Cos(H,K), (3)

where Cos(·) is the cosine similarity, K means the
fact embedding matrix in memory M .

We then select the Top-K scores from score and
calculate the following conditions: (1) MAX: the
highest similarity score; (2) DIFF: the difference
between the top-1 and top-2 score; (3) STD: the
standard deviation of the Top-K scores. When the
following conditions are met, the data is the edit:

ED = 1(MAX>t) OR ((DIFF>td) AND (STD>ts)), (4)

where t, td and ts are the thresholds of the similar
score, difference score and standard deviation value
respectively.

In Eq. 4, for data with maximum score less than
t, we make judgments based on the distribution
of the score, such as STD and DIFF. However,
it is difficult to determine whether they need to
be modified based on their distribution when they
are similar but different. Therefore, we propose
the two-way score to enhance the differentiation
between data points and improve the identification
of edits.

Two-Way Score incorporates the similarity be-
tween the edits in the Top-K data and the input data.
The final score is:

scoret = score + Cos(H,Hi), i ∈ k, (5)

where Hi means the edit embedding calculated by
Encs(x) for the edits corresponding to the Top-K
fact. Finally, we re-select the Top-K scores from
scoret and use Eq.4 to identify the edits.

4 Experiments

4.1 Dataset and evaluation metrics
We evaluate RASE on fact-checking dataset
FEVER (Thorne et al., 2018a) and Zero-Shot Rela-
tion Extraction (ZsRE) dataset (Levy et al., 2017).

We use the same data splits for both datasets as
Huang et al. (2023), specifically we employ the
original validate as Dtest and the original DTrain

is split into an edit set Dedit, a new training set
D′
train and a new validation Dval. We denote the

initial model as f0 which is trained on D′
train and

validated on Dval. The model f0 is sequentially
edited on Dedit. Supposing that there are T total
mistakes in Dedit, I(·) represents the indicator func-
tion. After editing the t-th edit example (xt, yxt),
we obtain a post-edit model ft, and we use the
following metrics to evaluate our method:

Success Rate (SR): For each edit, we test if the
post-edit model ft produces the desired prediction.

Edit Retain Rate (ER): After editing T edits,
we evaluate how many past edits are retained by
the final model fT .

Generalization Rate (GR): After editing T ed-
its, we evaluate if the post-edit model fT is edited
successfully on the equivalents of the edits in Dedit.

Training Retain Rate (TrainR): After editing T
edits, we compare the performances of the post-edit
model fT and the initial model f0 on sub-dataset
Dtr which is randomly sampled from D′

train.
Test Retain Rate (TestR): After editing T ed-

its, we compare the performances of the post-edit
model fT and the initial model f0 on original vali-
date dataset Dtest.

4.2 Baseline and Experiment Details

We compare RASE with the following knowledge
editors: (1) the specification-based methods: Fine-
Tuning (FT) (Zhu et al., 2020), FT with KL diver-
gence (FT+KL), MEND (Mitchell et al., 2022a),
ROME (Meng et al., 2022) and MEMIT (Meng
et al., 2023), and (2) the addition-based meth-
ods: SERA (Mitchell et al., 2022b) and T-Patcher
(Huang et al., 2023).

We use T-Patcher and ROME as the baseline edi-
tors to combine with our framework, denoting them
as RASE-Patcher (R-Patcher) and RASE-ROME
(R-ROME) respectively. We edit on Bert-base (De-
vlin et al., 2019), Bart-base (Lewis et al., 2020)
provided by Meng et al. (2022), and GPT-2 XL1

models. For R-Patcher, we insert five neurons to the
last FFN layer on the FEVER and ZsRE datasets.
We training the fact and sentence Encoder with a
minibatch consists of 64 facts. For each fact, we
select two consistent sentences as positive exam-
ples, other facts and sentences related to other facts

1https://huggingface.co/gpt2-xl

serve as negative examples. The threshold in Eq.4
is t = 0.9, td = 0.15 and ts = 0.05. The Top-K
used in Two-Way score is 5. Other parameters, like
learning rate, will be set as those in the ROME
and T-Patcher. All of our experiments were imple-
mented on a single NVIDIA A100 GPU. See more
details in Appendix E.

4.3 Experimental Results
4.3.1 Editing Small scale Models
Table 1 and Table 2 present the editing results on
small scale models with R-Patcher. We first evalu-
ate RASE on small number of edits.

Table 1: Results on small number of edits. R-Patcher is
RASE-Patcher, +Pt is the results after we use the fact
information, +Eq denotes that we add the equivalent
inputs during editing based on R-Patcher+Pt .

Editor
ZsRE (N=140)

SR ER GR TrainR TestR

FT(last) 1.000 0.300 0.580 0.914 0.924
FT(last)+KL 1.000 0.280 0.570 0.923 0.933

MEND 0.410 0.000 0.370 0.000 0.000
SERA 1.000 0.980 0.900 0.906 0.901

T-Patcher 1.000 0.990 0.820 0.997 0.996

R-Patcher 1.000 0.978 0.877 0.953 0.973
+Pt 1.000 1.000 0.976 0.976 0.964
+Eq 1.000 1.000 0.992 0.977 0.968

Editor
FEVER (N=60)

SR ER GR TrainR TestR

FT(last) 1.000 0.590 0.610 0.893 0.946
FT(last)+KL 1.000 0.450 0.530 0.968 0.998

MEND 0.040 0.060 0.030 0.349 0.652
SERA 1.000 1.000 0.890 0.904 0.916

T-Patcher 1.000 1.000 0.820 0.999 1.000

R-Patcher 1.000 1.000 0.902 0.961 0.990
+Pt 1.000 1.000 1.000 0.961 0.986
+Eq 1.000 1.000 1.000 0.945 1.013

RASE significantly improves editing general-
ization. Table 1 illustrates the results for a small
number of edits. Our method demonstrates compet-
itive performance across two datasets and five met-
rics. It is noteworthy that the generalization (GR)
is improved when guided by factual information
(+Pt). We further enhance model generalization by
incorporating consistently sampled data(+Eq) into
the loss calculation during editing.

RASE can maintain stable performance on
more edits. Table 2 illustrates the results for a large
number of modifications. In comparison to Table 1,
other methods experience a decline in performance
as the number of edits increases. However, RASE

maintains consistent performance while demon-
strating an advantage in generalization. We also
test RASE on ZsRE with 4500 edit conditions, fur-
ther validating its stability and sustainability. In
contrast, T-Patcher’s efficiency decreases as more
modifications are made due to the continual addi-
tion of parameters to the language model. It be-
comes challenging for T-Patcher to perform large-
scale consecutive edits within a certain time. For
SERA, as the number of editing increases, its ac-
curacy in discriminating modified data decreases,
resulting in poor performance on TrainR and TestR.
And MEND is a hyper-network editing method that
predicts parameter changes for modifying current
data by learning gradients of editing data. The
predictions of MEND are highly dependent on the
parameters of LMs, while continuous editing leads
to constant parameter changes in LMs, rendering
MEND ineffective for achieving sequential mod-
ifications. On the other hand, RASE maintains
consistent efficiency even as the number of edit
data increases.

Table 2: Results on large number of edits. N denotes
the number of edits we edit, +ChatGPT means we use
the ChatGPT to enhance our model (+Pt), - means we
use the Dtr as the edited dataset, so we did not calculate
the retain score on Dtr.

Editor
ZsRE

SR ER GR TrainR TestR N

T-Patcher 0.99 0.97 0.81 0.912 0.948 2766
FT(all)+KL 1.00 0.14 0.69 0.936 0.974 2766

SERA 1.00 0.97 0.90 0.728 0.694 2766

R-Patcher 1.00 0.95 0.863 0.973 0.975 2766
+Pt 1.00 0.95 0.93 0.976 0.964 2766
+Eq 1.00 0.96 0.97 0.976 0.965 2766

+ChatGPT 1.00 0.95 0.93 0.999 0.995 2766

R-Patcher+Pt 0.99 0.94 0.94 - 0.957 4502

Editor
FEVER

SR ER GR TrainR TestR N

T-Patcher 1.00 1.00 0.82 0.999 1.000 1231
FT(all)+KL 1.00 0.16 0.54 0.998 1.002 1231

SERA 1.00 1.00 0.89 0.717 0.709 1231

R-Patcher 1.00 1.00 0.92 0.854 0.972 1231
+Pt 1.00 1.00 0.93 0.867 0.973 1231
+Eq 1.00 1.00 0.97 0.867 0.974 1231

+ChatGPT 1.00 1.00 0.97 0.978 0.980 1231

RASE can combine with large-scale language
models such as ChatGPT to improve perfor-
mance. For the FEVER dataset, we achieve good
results in modification performance (SR, GR, ER),
but there is a decrease in TrainR. This is because
numerous sentences are similar to the edits but dif-

fer by only a few words in FEVER. To address this,
we employ ChatGPT to re-rank the Top-K results of
retriever to evaluate if the input needs modification.
We select the input that satisfies one of the three
conditions in Eq.(4) as the hard data, construct the
factual description of Top-K as a K-item decision
task, and then let ChatGPT solve the problem. If
there is no suitable answer, return ’None’. Ap-
pendix D shows the usage of ChatGPT. The results
with ChatGPT on both FEVER and ZsRE show that
combining the results from the large model with
our method can further enhancing the accuracy of
fact retrieval and identify modified and unmodified
data more accurately, thus maintaining the model’s
performance on the unedited data better.

4.3.2 Editing on large LMs
We use the GPT-2 XL (1.5B) to test the perfor-
mance on a large-scale model.

Table 3: Editing Results on GPT-2 XL. FT-MEM means
we include previously modified data and newly mod-
ified data as inputs for fine-tuning. R-ROME means
we combine RASE with ROME. It is worth noting that
in TrainR and TestR, some results exceeding 1 are due
to the impact of modified data, which unintentionally
corrects erroneous data that was not modified.

Editor
ZsRE

SR ER GR TrainR TestR N

FT 0.515 0.093 0.070 0.261 0.247 1000
FT-MEM 0.454 0.489 0.175 0.356 0.341 1000
MEND 0.006 0.001 0.001 0.009 0.007 1000
ROME 0.997 0.520 0.378 0.620 0.572 1000
MEMIT 0.924 0.678 0.503 1.04 1.00 1000

R-ROME 0.997 0.966 0.657 1.002 1.004 1000
R-ROME+pt 0.997 0.972 0.754 1.036 1.007 1000

FT 0.447 0.095 0.073 0.461 0.421 5000
ROME 0.937 0.258 0.173 0.220 0.182 5000
MEMIT 0.433 0.001 0.001 0.001 0.001 5000

R-ROME 0.989 0.946 0.646 1.008 1.001 5000
R-ROME+pt 0.997 0.948 0.736 1.133 1.012 5000

RASE can be flexibly combined with other
editors and stably edit larger language models.
The results are shown in Table 3. When modifying
1000 data in ZsRE, ROME and MEMIT achieve im-
pressive results, particularly in TrainR and TestR.
However, FT and FT-MEM exhibit lower effec-
tiveness, and MEND can not perform any modifica-
tions. Moreover, these methods display poor perfor-
mance when evaluating the results of previous edits.
In contrast, RASE preserves the modified results
well without compromising the original model’s
performance. Even for TrainR, RASE is very close

to MEMIT. Although the overall performance in
terms of generalization is relatively low, RASE
demonstrates improvements compared to ROME.
This further confirms that the fact-enhanced ap-
proach can enhance the generalization of different
editors.

As the number of edits expanded to 5000, other
methods exhibited a significant decline in effective-
ness, particularly MEMIT. This is because MEMIT
alters many parameters for each modification. As
the edits accumulate, the original parameters of the
model become disrupted, leading to the complete
failure of the model. In contrast, RASE maintains
favourable results and revalidating our approach’s
stability and sustainability.

4.4 Analysis

4.4.1 Retrieval analysis
Retrieval architecture analyse. We compare dif-
ferent encoder architectures which are treated as
retriever. The results are shown in Table 4. When
directly using the Bart model as the encoder, the
model struggles to identify which data needs modi-
fication. Izacard et al. (2022a) has achieved good
results, but it has a lower HIT metric, indicating
that it can successfully retrieve similar data but
struggles to accurately identify some similar but
different samples. After using RoBERTa with con-
trastive loss we proposed, there was a significant
performance improvement. Furthermore, - w/o
LS2F shows that the margin-based similarity can
further enhance the HIT value and improving the
overall recognition rate.

Table 4: Results on different encoder . E&E and N&N
means the model successfully identifies the edits and
unmodified data, respectively. EBN represents misiden-
tifying edits as non-modified data and while NBE repre-
sents the opposite. HIT: represents the ratio of success-
ful retrieval of the correct key value by the model.

Model E&E↑ EBN↓ NBE↓ N&N↑ HIT↑

Bart-Base 0.046 0.953 0.012 0.987 0.39
Contriever 0.914 0.085 0.071 0.928 0.936

RoBERTa+Lcl 0.965 0.034 0.048 0.951 0.991
- w/o LS2S 0.955 0.044 0.037 0.962 0.989
- w/o LS2F 0.745 0.254 0.013 0.986 0.958

- w/o LS2S + LS2F 0.615 0.384 0.079 0.920 0.971

Relation for Retrieval augmented and Editing.
Knowledge editing (KE) is an arising and promis-
ing research area that aims to alter the parameters
of some specific knowledge stored in pre-trained
models so that the model can make new predictions

on those revised instances while keeping other irrel-
evant knowledge unchanged. Retrieval augmented
models design retrieval strategies to incorporate
world knowledge into a fixed LLM through prompt-
ing. Both of them are re-training free and have been
shown to be effective for the issue of knowledge
staleness.

However, Model editing methods prefer to edits
LLM parameters directly, to update LM’s knowl-
edge, it is hard to maintain the other knowledge
which are correct. Meanwhile, retrieval augmented
models may not guarantee LMs can always update
their predictions when given retrieved knowledge,
due to the LLMs may prioritize their own para-
metric knowledge and ignores the retrieved non-
parametric knowledge which be called knowledge
conflict.

In this paper, we combine the advantage of re-
trieval augmented and editing methods. The re-
trieval module identifies the edits, and the editing
module corrects the erroneous data. In our setting,
the editing module processes only one data point
at a time, so the retrieval module has a greater im-
pact on ER, TrainR, and TestR, while the editing
module has a greater influence on SR and GR.

4.4.2 Cost analysis
Regarding editing efficiency, we note that the ef-
ficiency of the existing continuous editing method,
T-Patcher, gradually decreases as the number of ed-
its increases. Our tests found that using T-Patcher
to modify 1000 edits on an A100 GPU takes 2-3
days. On the other hand, RASE can perform edits
at a stable speed. It takes approximately 50 seconds
to modify a data. On GPT-2 XL, our efficiency re-
mains consistent with ROME and MEMIT, but our
method enables more sustained and reliable modifi-
cations. The time required to continuously modify
1000 edits is shown in Table 5.

Table 5: Time cost for different Editor on 1000 edits.

Methods Time

FT 2 days
ROME < 1 days
MEMIT < 1 days

T-Patcher 3 days
Ours < 1 days

Regarding the Extra memory cost, our re-
trieval augmented framework uses additional mem-
ory to store previous edits to achieve sequential

model editing. For R-Patcher, we save extra neu-
rons for each edit, while for R-ROME, we save
weight offsets for each edit. In T-Patcher, a portion
of the training data is sampled to preserve locality
to calculate memory loss. We estimate that storing
40,000 data would require approximately 120MB
of space, and additional costs would be associated
with maintaining the memory. Similarly, ROME
also requires around 160MB of additional storage
to maintain locality. In contrast, we use memory
to save the previous edits. The cost for 1000 edits
with R-ROME is 75MB, and 300MB for R-Patcher.
Furthermore, the increase in memory usage is a
fixed cost that does not increase with the number
of edits.

Regarding the Editing layer, we follow the
same settings as T-Patcher and ROME regarding
the editing layer. For T-Patcher, we edit the FFN
(Feed-Forward Network) in the last layer of the
Transformer. For ROME, in GPT2-XL, we edit
the FFN layer in the 17th layer. However, as Hase
et al. (2023) suggests that "Many layers could store
a fact, and it happens that some do." Therefore,
there may be better choices for continuous editing
than continuously modifying a specific layer. It
would be beneficial to explore more flexible editing
strategies by incorporating interpretability in the
future.

4.4.3 Case study
Figure 4 gives a sense of how RASE would perform
in practice, our approach can accurately modify
X1-X3 without being affected by the content in
memory K4, thus keeping X4 unchanged. On the
hand, while T-Patcher can also correct X1-X3, it
makes a mistake on X4, due to the influence of X3.
This is why we adopt retrieval enhancement instead
of directly modifying the model parameters.

5 Related Works

5.1 Knowledge Editing

Editing parametric knowledge is not as straight
forward (Pan et al., 2023) as editing (Wang et al.,
2009, 2010, 2014) knowledge graphs (Pan et al.,
2017a,b). For editing parametric knowledge, a
natural way is to use constrained fine-tuning to
update parameters based on new examples (Zhu
et al., 2020). However, in PLMs, a minor param-
eter change could change the model’s predictions
on many samples. Then, De Cao et al. (2021);
Mitchell et al. (2022a); Han et al. (2023) trained a

Inputs:

X1: Which team does Messi play for?

X2: In which team does Messi play?

X3: Which team does Kylian Mbappé play for?

X4: What country does Kylian Mbappé play in?

Pre-Edit model output:

LMs(X1) = A1: Paris Saint-Germain. (out of data)

LMs(X2) = A2: Paris Saint-Germain. (out of data)

LMs(X3) = A3: Edmonton Oilers. (Wrong)

LMs(X4) = A3: French. (Right)

Editing Steps 1:

Suppose we have modified the following 4 pieces of data

consecutively: (Enc(x) denotes the representation after encoding x

using the Encoder)

K1: Enc(Messi win the 2022 FIFA World Cup.) -- V1

K2: Enc(Messi Played for Inter Miami.) -- V2

K3: Enc(Mbappé played for Paris Saint-Germain) -- V3

K4: Enc(Messi is from Argentina.) -- V4

Editing Steps 2:

Retrieve whether there is information

related to input in the memory.

Retrieval Results:

X1:K2,V2

X2:K2,V2

X3:K3,V3

X4:None,None

Editing Step 3:

Apply each retrieval result to LMs and Inference. Our method: the post-edit model output sequence is:

LMs(X1,V2) = A1:Inter Miami. (Edit Success!)

LMs(X2,V2) = A2:Inter Miami. (Edit Success!)

LMs(X3,V3) = A3:Paris Saint-Germain. (Edit Success!)

LMs(X4,None) = A4:French (Remain)

As for the T-Patcher post-edit model, its results are as follows:

LMs(X1) = A1:Inter Miami. (Edit Success!)

LMs(X2) = A2:Inter Miami. (Edit Success!)

LMs(X3) = A3:Paris Saint-Germain. (Edit Success!)

LMs(X4) = A4: Paris (affects!)

Figure 4: Example of Editing Steps.

Hyper-network to predict the parameter shift. Other
methods like Meng et al. (2022, 2023) proposed a
direct editing method and achieved great results on
batch editing. More recently, some methods have
developed external modules for edits and do not re-
quire access to base model parameters (Dong et al.,
2022; Mitchell et al., 2022b). In order to apply the
editing to real-world challenges better, Huang et al.
(2023) proposed the Sequential Model Editing task
and trained Transformer-Patcher, achieving edit the
model up to a thousand times continuously.

5.2 Contrastive Learning

The key idea of contrastive learning (CL) is to pull
semantically similar samples close and keep differ-
ent samples apart (Hadsell et al., 2006; Chen et al.,
2020). By employing contrastive learning objec-
tives, Gao et al. (2021); Yan et al. (2021); Chuang
et al. (2022); Zhou et al. (2022) fine-tuned the pre-
trained language models, resulting in significant
advancements in learning unsupervised sentence
embeddings. In order to alleviate the need for an an-
notated dataset, Gao et al. (2021); Liu et al. (2021)
proposed a simple contrastive learning framework
that used dropout noise within transformer layers
to generate positive pairs. Nishikawa et al. (2022)
proposed a contrastive learning method for learn-
ing sentence embeddings between sentences and
their related entities sampled from Wikidata.

5.3 Retrieval-augmented language model

Retrieval augmentation can enhance language mod-
els’ performance without significantly increasing
the parameters and computation (Tirumala et al.,
2022; Mialon et al., 2023). Khandelwal et al.
(2020) increased PLMs memorization capacity by

accessing memory units and an external look-up ta-
ble. Borgeaud et al. (2022); Lazaridou et al. (2022);
Izacard et al. (2022b) showed that retrieval im-
proves performance across a variety of tasks such
as question answering (Kwiatkowski et al., 2019),
fact checking (Thorne et al., 2018b), dialogue (Di-
nan et al., 2019). Mitchell et al. (2022b) proposed
a memory-based approach for knowledge editing.
Inspired by retrieval, we view the editing task as
a retrieval and augmentation process, construct a
memory to store editing data, apply a certain modi-
fication through retrieval, and achieving stable and
continuous editing. It is worth noting that, the edit-
ing is motivated by a list of bad cases of the form
(question, wrong-answer, correct-answer), where
the correct-answer is the knowledge that we men-
tioned above. Therefore,we only retrieve from all
the facts related to the data that needs to be mod-
ified. And we assume that we have known all the
erroneous and their corresponding correct answers.

6 CONCLUSION

This paper focuses on sequential model editing and
proposes RASE, a retrieval augmented sequential
model editing framework, to enhance the perfor-
mance of existing editors in a plug-and-play man-
ner, and achieve efficient, stable, and expansible
Sequence Model Editing. We construct a fact-patch
memory in a self-supervised way and utilize the
memory to enhance the model’s continuous edit-
ing capability. During editing, we use fact infor-
mation related to the modified data as prompt to
enhance the generalization of the editor. RASE has
achieved favourable results under different scales
of language models and varying numbers of edits.
Additionally, it can be flexibly applied to different
editors and integrating with large language models
like ChatGPT can further enhance editing perfor-
mance.

In the future, on the one hand, we plan to inves-
tigate knowledge editing for some complex tasks,
such as reasoning. And explore how to integrate
retrieval methods with model editing better. On
the other hand, we might look into the connections
between editing parametric knowledge and knowl-
edge editing for uncertain knowledge graphs (Pan
et al., 2005; Stoilos et al., 2006; Pan et al., 2007;
Qi et al., 2007; Şensoy et al., 2013).

Acknowledgements

This work has been supported by the Sci-
ence and Technology Cooperation and Ex-
change Special Project of ShanXi Province
(No.202204041101016), by the National Natural
Science Foundation of China (No.62076155), by
the Key Research and Development Program of
Shanxi Province (No.202102020101008), and by
the Chang Jiang Scholars Program (J2019032).

Limitations

Our method focuses on editing factual knowledge,
which is relatively easy to formalize and evaluate.
Future work need to develop universal approaches
that can edit all kinds of knowledge such as lan-
guage and common sense knowledge in the same
way. Additionally, the current metric for judging
successful modifications is limited to whether the
current input has been corrected. However, deter-
mining whether the model understands the under-
lying facts remains challenging and requires more
rigorous evaluation metrics.

References
Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-

mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In
Proceedings of the 37th International Conference
on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 1597–1607.
PMLR.

Zhuo Chen, Jiaoyan Chen, Yuxia Geng, Jeff Z. Pan,
Zonggang Yuan, and Huajun Chen. 2021. Zero-shot
Visual Question Answering Using Knowledge Graph.
In Proc. of ISWC2021.

Zhuo Chen, Yufeng Huang, Jiaoyan Chen, Yuxia Geng,
Yin Fang, Jeff Z. Pan, Ningyu Zhang, and Wen Zhang.
2022. Lako: Knowledge-driven Visual Question An-
swering via Late Knowledge-to-text Injection. In
Proc. of IJCKG2022, pages 20–29.

Yung-Sung Chuang, Rumen Dangovski, Hongyin Luo,
Yang Zhang, Shiyu Chang, Marin Soljačić, Shang-
Wen Li, Scott Yih, Yoon Kim, and James Glass. 2022.
Diffcse: Difference-based contrastive learning for
sentence embeddings. In Proceedings of the 2022

Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4207–4218.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021. Edit-
ing factual knowledge in language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6491–
6506.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2019. Wizard
of wikipedia: Knowledge-powered conversational
agents. In International Conference on Learning
Representations.

Qingxiu Dong, Damai Dai, Yifan Song, Jingjing Xu,
Zhifang Sui, and Lei Li. 2022. Calibrating factual
knowledge in pretrained language models. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2022, pages 5937–5947, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

R. Hadsell, S. Chopra, and Y. LeCun. 2006. Dimension-
ality reduction by learning an invariant mapping. In
2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’06),
volume 2, pages 1735–1742.

Xiaoqi Han, Ru Li, Xiaoli Li, and Jeff Z Pan. 2023. A
divide and conquer framework for knowledge editing.
Knowledge-Based Systems, 279:110826.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghan-
deharioun. 2023. Does localization inform editing?
surprising differences in causality-based localization
vs. knowledge editing in language models. arXiv
preprint arXiv:2301.04213.

Jie He, Víctor Gutiérrez-Basulto, and Jeff Z. Pan. 2023.
BUCA: A Binary Classification Approach to Un-
supervised Commonsense Question Answering. In
Proc. of ACL2023.

Nan Hu, Yike Wu, Guilin Qi, Dehai Min, Jiaoyan Chen,
Jeff Z Pan, and Zafar Ali. 2023. An Empirical Study
of Pre-trained Language Models in Simple Knowl-
edge Graph Question Answering. In Journal of
World Wide Web, pages 1–32.

https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://openreview.net/forum?id=r1l73iRqKm
https://aclanthology.org/2022.findings-emnlp.438
https://aclanthology.org/2022.findings-emnlp.438
https://doi.org/10.1109/CVPR.2006.100
https://doi.org/10.1109/CVPR.2006.100

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022a. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lucas
Hosseini, Fabio Petroni, Timo Schick, Jane Dwivedi-
Yu, Armand Joulin, Sebastian Riedel, and Edouard
Grave. 2022b. Atlas: Few-shot learning with re-
trieval augmented language models. arXiv preprint
arXiv, 2208.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. 2020. Generalization
through memorization: Nearest neighbor language
models. In International Conference on Learning
Representations.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
Questions: A Benchmark for Question Answering
Research. Transactions of the Association for Com-
putational Linguistics, 7:453–466.

Angeliki Lazaridou, Elena Gribovskaya, Wojciech
Stokowiec, and Nikolai Grigorev. 2022. Internet-
augmented language models through few-shot
prompting for open-domain question answering.
arXiv preprint arXiv:2203.05115.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancouver,
Canada. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7871–7880.

Fangyu Liu, Ivan Vulić, Anna Korhonen, and Nigel
Collier. 2021. Fast, effective, and self-supervised:
Transforming masked language models into universal
lexical and sentence encoders. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 1442–1459, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359–17372.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass edit-
ing memory in a transformer. In International Con-
ference on Machine Learning.

Grégoire Mialon, Roberto Dessì, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381–2391, Brussels, Belgium. Association
for Computational Linguistics.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, pages 15817–15831.
PMLR.

Sosuke Nishikawa, Ryokan Ri, Ikuya Yamada, Yoshi-
masa Tsuruoka, and Isao Echizen. 2022. Ease:
Entity-aware contrastive learning of sentence em-
bedding. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 3870–3885.

J. Z. Pan, G. Vetere, J.M. Gomez-Perez, and H. Wu, ed-
itors. 2017a. Exploiting Linked Data and Knowledge
Graphs for Large Organisations. Springer.

Jeff Z. Pan, Simon Razniewski, Jan-Christoph Kalo,
Sneha Singhania, Jiaoyan Chen, Stefan Dietze, Hajira
Jabeen, Janna Omeliyanenko, Wen Zhang, Matteo
Lissandrini, ussa Biswas, Gerard de Melo, Angela
Bonifati, Edlira Vakaj, Mauro Dragoni, and amien
Graux. 2023. Large language models and knowledge
graphs: Opportunities and challenges. Transactions
on Graph Data and Knowledge.

Jeff Z Pan, Giorgos Stamou, Vassilis Tzouvaras, and
Ian Horrocks. 2005. f-SWRL: A Fuzzy Extension of
SWRL. In Proc. of ICANN2005.

https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/2021.emnlp-main.109
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260

Jeff Z. Pan, Giorgos B. Stamou, Giorgos Stoilos, and Ed-
ward Thomas. 2007. Expressive querying over fuzzy
dl-lite ontologies. In Description Logics, volume 250
of CEUR Workshop Proceedings. CEUR-WS.org.

J.Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer,
F. Lin, and Y. Zhao. 2017b. Reasoning Web: Logical
Foundation of Knowledge Graph Construction and
Querying Answering. Springer.

Guilin Qi, Jeff Z. Pan, and Qiu Ji. 2007. A possibilis-
tic extension of description logics. In Description
Logics, volume 250 of CEUR Workshop Proceedings.
CEUR-WS.org.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin,
Sergei Popov, and Artem Babenko. 2019. Editable
neural networks. In International Conference on
Learning Representations.

Giorgos Stoilos, Giorgos B. Stamou, and Jeff Z. Pan.
2006. Handling imprecise knowledge with fuzzy
description logic. In Description Logics, volume 189
of CEUR Workshop Proceedings. CEUR-WS.org.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018a.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018b.
Fever: a large-scale dataset for fact extraction and
verification. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
809–819.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. Advances in Neural Informa-
tion Processing Systems, 35:38274–38290.

Kewen Wang, Zhe Wang, Rodney Topor, Jeff Z. Pan,
and Grigoris Antoniou. 2009. Concept and role for-
getting in alc ontologies. In Proceedings of the 8th
International Semantic Web Conference (ISWC2009),
volume 5318 of Lecture Notes in Computer Science.

Kewen Wang, Zhe Wang, Rodney W. Topor, Jeff Z. Pan,
and Grigoris Antoniou. 2014. Eliminating Concepts
and Roles from Ontologies in Expressive Descriptive
Logics. Comput. Intell., 30(2):205–232.

Zhe Wang, Kewen Wang, Rodney W. Topor, and Jeff Z.
Pan. 2010. Forgetting for knowledge bases in dl-lite.
Ann. Math. Artif. Intell., 58(1-2):117–151.

Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang,
Wei Wu, and Weiran Xu. 2021. Consert: A con-
trastive framework for self-supervised sentence repre-
sentation transfer. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 5065–5075.

Kun Zhou, Beichen Zhang, Wayne Xin Zhao, and Ji-
Rong Wen. 2022. Debiased contrastive learning of
unsupervised sentence representations. In Proceed-
ings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6120–6130.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.

Murat Şensoy, Achille Fokoue, Jeff Z. Pan, Timothy J
Norman, Yuqing Tang, Nir Oren, and Katia Sycara.
2013. Reasoning about uncertain information and
conflict resolution through trust revision. In Proc. of
IFAAMAS2013.

http://dblp.uni-trier.de/db/conf/dlog/dlog2007.html#PanSST07
http://dblp.uni-trier.de/db/conf/dlog/dlog2007.html#PanSST07
http://dblp.uni-trier.de/db/conf/dlog/dlog2007.html#QiPJ07
http://dblp.uni-trier.de/db/conf/dlog/dlog2007.html#QiPJ07
http://dblp.uni-trier.de/db/conf/dlog/dlog2006.html#StoilosSP06
http://dblp.uni-trier.de/db/conf/dlog/dlog2006.html#StoilosSP06
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
http://data.semanticweb.org/conference/iswc/2009/paper/research/423
http://data.semanticweb.org/conference/iswc/2009/paper/research/423
http://dblp.uni-trier.de/db/journals/ci/ci30.html#WangWTPA14
http://dblp.uni-trier.de/db/journals/ci/ci30.html#WangWTPA14
http://dblp.uni-trier.de/db/journals/ci/ci30.html#WangWTPA14
http://dblp.uni-trier.de/db/journals/amai/amai58.html#WangWTP10
http://arxiv.org/abs/2012.00363

A Contrastive Learning for Embedding

To learn sentence and fact representation, we train-
ing two Encoders Encf (·) and Encs(·) to get
the fact embedding Ef and sentence embedding
Es respectively. We construct a minibatch con-
taining L facts, for each fact fi, there are S
corresponding positive sentence si

j , i ∈ [1, L],
j ∈ [1, S] 1, and any sentence unrelated to fi
and any fact other than fi serve as negative ex-
amples for fi. The input batch is denoted as X =
[f1, s1

1, s1
2, ..., s1

S , ..., fL, sL
1, sL

2, ..., sL
S]. We

train Encf (·) and Encs(·) using three contrastive
losses and use RoBERTa (Liu et al., 2019) as
the baseline PLMs. For convenience, we use f
and s denote the Embedding Ef = Encf (f) and
Es = Encs(s) respectively:

Facts Contrastive Learning (F2F) aims to learn
fact embedding in an unsupervised way. Given two
embedding with different dropout masks fi and f+

i ,
the training loss is:

LossF2F = −log
esim(fi,f

+
i)/τ∑L

j=1 e
sim(fi,fj)/τ

, (6)

where τ is a temperature hyper-parameter, and
sim(·) is the cosine similarity.

Sentences Contrastive Learning (S2S) aims to
learn sentence embedding in an unsupervised way.
Since there are S sentences in the same batch which
are both related to the same fi, we treat S sentences
as a group and learn sentence representations by
the loss:

LossS2S = −log
esim(sg ,s

+
g)/τ∑L

j=1 e
sim(sg ,sj)/τ

, (7)

where sg = Pool(s1i , s
2
i , ..., s

S
i) is the mean repre-

sentation of a group of inputs related to the same
factual fi, Pool(·) is the mean-pooling function,
and s+g is the dropout represents about sg.

Contrastive Learning between Sentence and
Fact (S2F) pulls the embedding of inputs and their
related fact close while keeping unrelated facts
apart. We use a margin-based similarity to in-
crease the similarity between negative samples and
weaken the similarity between positive samples, to
ensuring that the similarity of positive samples is

1As shown in Figure 3, the fact is "Iphone 14 is developed
by Apple Inc.", and the postive sentence is "Iphone 14 was
created by?", the negative sentence is "What club does Messi
play for?".

higher than a certain threshold:

LossS2F = −log
ePs(s∗i ,fi,m)

ePs(s∗i ,fi,m) +
∑L

j ̸=i e
Ns(s∗i ,fj ,n)

,

(8)
where ∗ ∈ [1, S], m,n is the margin value for posi-
tive and negative pairs. Ps(·) and Ns(·) are denoted
as the positive and negative similarity scores re-
spectively.

Ps(s∗i , fi,m) = (cos(s∗i , fi)−m)/τ (9)

For negative pairs, we will them a punishment
when h = cos(s∗i , fi)− cos(s∗i , fj) less than m:

Ns(s∗i , fj , n) =

{
(cos(s∗i , fj) + n)/τ, h < m,

cos(s∗i , fj)/τ, else.
(10)

In summary, our total loss for Contrastive Learn-
ing is:

Losscl = λ1LossF2F + λ2LossS2S + λ3LossS2F ,
(11)

where λi is hyper-parameters.
We train the encoder separately on ZsRE and

FEVER datasets. It is worth noting that the dataset
used for training the encoder and the dataset used
for editing are sampled separately. And these en-
coders are pre-trained before the editing process.
During editing, we utilize these encoders only. The
L is 64, and the maximum value of S is 5.

B Detail of the base editor

Transformer-Patcher In this paper, we follow
(Huang et al., 2023), use Transformer-Patcher as
a based editor because it only requires training a
certain number of neurons for each edit and insert-
ing them at a designated layer of the Transformer.
In contrast to Huang et al. (2023), the patch used
in our paper does not require additional memory
to store training data to satisfy locality. Moreover,
to enhance the generalization of the editor, we pro-
pose a fact-guided editor. We concatenate the fac-
tual information obtained through retrieval with the
input data as a prompt to improve the generaliza-
tion of the editing process.

For an edit (xe, yxe) and the fact describe Fxe ,
the input for the edit is Xe = [xe;Fxe], and then we
add few neurons to the FFN of special Transformer
layers to alter the output of the edit. Formally,
denote the hidden state of Xe is h, for a standard

FFN in Transformer blocks, the output of FFN(h)
is calculated by:

a = Act(h ·K+ bk), (12)

FFN(h) = a ·V + bv, (13)

where Act(·) is a non-linear activation function
such as Relu, K ∈ Rd1∗d2 and V ∈ Rd2∗d1 are the
weight matrix of two linear in FFN respectively,
bk and bv are two bias vectors. After add extra
neurons (Kn ∈ Rd1∗n,vn ∈ Rn∗d2 , bn) in the
FFN, the new output of FFNn(h) is calculated by:

[a an] = Act(h · [K kn] + [bk bk]), (14)

FFNn(h) = [a an] ·
[
V
vn

]
+ bv. (15)

Substituting the Eq. (13) into Eq. (15) and calcu-
lating the following:

FFNn(h) = FFN(h) + an · vn. (16)

After training, we use target label yxe and the edited
output uxe to calculate the loss le:

le = L(yxe , uxe), (17)

where L(·) is a loss function (e.g. The Cross En-
tropy Loss).

Rank-One Model Editing (ROME) (Meng
et al., 2022) applies a rank one edit to the down-
projection matrix in a MLP layer in the model. It
views the linear operate in Transformer with pa-
rameter W as a key-value store for a set of vector
keys K = [k1, k2, ...kn] and corresponding vector
values V = [v1, v2, ..., vn], by solving WK ≈ V .
Each ki and vi denote a question and answer, re-
spectively. Then for a new key-value pair (k∗, v∗),
we can insert this new data into the target layer by
solving an optimization:

minimize||ŴK − V ||,
such that Ŵk∗ = v∗,

by setting Ŵ = W + Λ(C−1k∗)
T ,

(18)

where W is the weight matrix for the original
linear, C = KKT is s a constant that we pre-
cache by estimating the uncentered covariance
of k from a sample of Wikidata text, and Λ =
(v∗ −Wk∗)/(C

−1k∗)
Tk∗ is a vector proportional

to the residual error of the new key-value pair on
the original memory matrix. k∗ is the average value
over a small set of texts ending with the subject s,
and v∗ is learning by optimization. In this paper,
we use the ROME as one of the base editors be-
cause it does not need extra training and editing
each data efficiently.

C Memory maintenance and usage

To further enhance the efficiency of memory re-
trieval, we employ the following methods to main-
tain the memory.

1) Adding: When a new edit has never appeared
in the memory, we store the corresponding key-
value pair. The key is the fact embedding about
the edit and Encoder by the fact encoder Encf (·),
and the value is the editing operation and the fact
description for the edit.

2) Updating: When the key of a new edit is
similar or identical to an existing key in the memory
M , we merge the corresponding modification data
with the existing one in the memory and train them
together.

After the facts-patch memory is constructed, we
will use the query module (section 3.2) to judge
if each input needs to be edited, If not, the input
will calculate by the original LMs. Once the in-
put is the edit, we will apply the corresponding
value to LMs temporarily. For T-Patch, we insert
the trained extra neurons to the last layer’s FFN of
Transformer; for ROME, we use the k∗ and v∗ to
calculate the parameter shift △W and replace the
LMs parameters W of layer l by Ŵ = W +△W .
Once the current edit computation is completed,
the model will be reset. Therefore, when we can
successfully identify which data requires modifica-
tion, our method ensures that the performance of
the model on unmodified data remains unaffected.

D Constructing questions through
ChatGPT

For an input s: "Brigitte Macron is married to some-
one who is President of the French Republic." we
use our score function (cf.(3)) to select the Top-K
facts, the result is:
Facts = ["Brigitte Macron is the fiancee of

Emmanuel Macron.", "Brigitte Macron is en-
gaged.", "Brigitte Macron was born on April
23, 1953.", "Peggy Sue Got Married is a
1933 American film."] with the similar score
[0.939, 0.917, 0.731, 0.359, 0.354, 0.346].

However, the fact "Brigitte Macron is the fi-
ancee of Emmanuel Macron." is not equivalent
to "Brigitte Macron is married to someone who is
President of the French Republic.", so our method
should not edit this input. However, due to the sim-
ilar high score, our query function chooses the first
fact as the key and edits this data, influencing the
result of the language model.

For this instance, we constructed a multiple-
choice question as a prompt:

Question: Which of the following sentence ex-
presses the same meaning as the sentence "Brigitte
Macron is married to someone who is President of
the French Republic.", If there is no answer, reply
"None".

Option:
A): Brigitte Macron is the fiancee of Emmanuel

Macron.
B): Brigitte Macron is engaged.
C): Brigitte Macron was born on April 23, 1953.
D): Peggy Sue Got Married is a 1933 American

film.
Then, we utilize ChatGPT to answer the question

and combine the answer as retrieval results with
our framework, enabling a better assessment of
whether the data needs modification.

E Details of Experiments setting

We evaluate our models on fact-checking dataset
FEVER (Thorne et al., 2018a) and Zero-Shot Rela-
tion Extraction (ZsRE) dataset (Levy et al., 2017).
We apply the BERT-base model Devlin et al. (2019)
at the FEVER dataset. For ZsRE, we apply the
BART-base model Lewis et al. (2020). We use the
same data splits for both datasets as Huang et al.
(2023). We use the original validate and employ
it as Dtest and the original DTrain is split into an
edited set Dedit, a new training set D′

train and a new
validation Dval in a ratio (0.8:0.8:0.1 for FEVER
and 0.9:0.075:0.025 for ZsRE).

We denote the initial model as f0 which is
trained on D′

train and validated on Dval. Then
the model f0 is sequentially edited on Dedit. For
FEVER, the accuracy of the initial model is 87.6%
on the edited dataset, 94.6% on the train dataset,
and we get 10496 instances for the edited dataset;
the mistake data is about 1300. For ZsRE, the
accuracy of the initial model is 47.1% on the
edited dataset and 56.9% on the training dataset;
as a result, we get 5352 instances for the edited
dataset, and the mistake data is about 2800. For
both datasets, we randomly sampled a subset from
D′
train with the size of 10,000 as Dtr, and we

training the fact Encoder and sentence Encoder
on D′

train without Dtr and validate on Dval.
And suppose there are T mistakes in Dedit, I

represents the indicator function, after editing the
t-th edit example (xt, yxt), we obtain a post-edit
model ft, and we use the following rate to evaluate

our method.
Success Rate (SR): For each edit, we test if the

post-edit model ft outputs the desired prediction:

SR =
1

T

T∑
t=0

I(ft(xt) = yxt). (19)

Edit Retain Rate (ER): After edited T edits, we
evaluate how many past edits are retained by the
final model fT :

ER =
1

T

T∑
t=0

I(fT (xt) = yxt). (20)

Generalization Rate (GR): After edited T edits,
we evaluate if fT is edited success on the equivalent
dataset of the edit example in Dedit:

GR =
1

TNt

T∑
t=0

Nt∑
i=0

I(fT (x
i
t) = yxi

t
), (21)

where Nt is the number of the t-th edit equivalent
input.

Training Retain Rate (TrainR): After edited
T edits, we compare the performance of the final
model of fT and the initial model f0 on subdataset
Dtr which is randomly sampled from D′

train.

TrainR =

∑
(x,y)∈Dtr

I(fT (x) = y)∑
(x,y)∈Dtr

I(f0(x) = y)
. (22)

Test Retain Rate (TestR): After edited T edits,
we compare the performance of the final model
of fT and the initial model f0 on original validate
dataset Dtest.

TrainR =

∑
(x,y)∈Dtest

I(fT (x) = y)∑
(x,y)∈Dtest

I(f0(x) = y)
. (23)

Our baselines include:

• Fine-Tuning (FT) (Zhu et al., 2020): Directly
fine-tunes the model on the edit example.

• FT with KL divergence (FT+KL) (Zhu et al.,
2020): Fine-tunes the model on the edit ex-
ample with an extra Kullback-Leibler (KL)
constrained.

• MEND (Mitchell et al., 2022a): Using a hyper-
network to learn a parameter shift and then
apply it to the model.

• SERA (Mitchell et al., 2022b): A variant of
a memory-based model editor, which is pro-
vided by Huang et al. (2023).

• ROME (Meng et al., 2022): A Locate and Edit
method for decoder-only models.

• MEMIT (Meng et al., 2023): A method exten-
sion of ROME that modifies the MLP weights
of a range of critical layers.

• T-Patcher (Huang et al., 2023): A sequential
editing method which adds and trains a few
neurons in models.

Figure 5: Case in ZsRE.

F Dataset Samples

Figure 5 shows an example in ZsRE. For the triplet
information involved in the question "<Cari Leke-
busch, date_of_birth, 1972>", we convert it into
a similar question format "Cari Lekebusch || When
did Cari Lekebusch get born? || 1972" and use it
as a factual description. When using facts to en-
hance generalization, we remove the labels: "Cari
Lekebusch || When did Cari Lekebusch get born?".

Figure 6 shows an example in FEVER. The struc-
ture for FEVER is similar to ZsRE, but the differ-
ence is that we construct fact_rep_use based on
the statements and actual facts from FEVER. e.g.
For the fact: <Amerigo Vespucci,place_of_birth,
Italian>, we use the fact represent: "Amerigo
Vespucci || Amerigo Vespucci was Spanish. ||
False", due to the claim is "Amerigo Vespucci was
Spanish.".

Figure 6: Case in FEVER.

