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Abstract

Generative steganography has emerged as an active research area, yet its practical
system is constrained by the inherent secret payload limitation caused by low
entropy in generating stego texts. This payload limitation necessitates the use of
lengthy stego texts or frequent transmissions, which increases the risk of suspicion
by adversaries. Previous studies have mainly focused on payload enhancement
through optimized entropy utilization while overlooking the crucial role of secret
message processing. To address this gap, we propose StegoZip, a framework that
leverages large language models to optimize secret message processing. StegoZip
consists of two core components: semantic redundancy pruning and index-based
compression coding. The former dynamically prunes the secret message to extract
a low-semantic representation, whereas the latter further compresses it into com-
pact binary codes. When integrated with state-of-the-art steganographic methods
under lossless decoding, StegoZip achieves 2.5× the payload of the baselines
while maintaining comparable processing time in practice. This enhanced payload
significantly improves covertness by mitigating the risks associated with frequent
transmissions while maintaining provable content security.

1 Introduction

Steganography is an information-hiding technique that enables covert communication by imper-
ceptibly modifying cover data to avoid detection by adversaries [1–3]. For example, to establish
collaboration with target customers while preventing detection by competitors, a company may em-
ploy steganography to transmit commercial information through public channels by embedding trade
secrets into innocuous cover data. Unlike cryptography, which secures content through encryption,
steganography ensures security by eliminating physical or statistical traces of hidden information in
the cover data, thereby avoiding suspicion from adversaries at the behavioral level [4–6].

Linguistic steganography, which exploits text as the most prevalent communication medium, as
shown in Figure 1, typically follows two core phases during message encoding [7–9]: 1) Message
Processing: preprocessing secret messages through compression, encryption, and format conversion.
2) Message Embedding: most of these methods adopt channel coding methods to embed messages
while balancing imperceptibility and payload, exemplified by Syndrome-Trellis Codes (STC) [10]
and Steganographic Polar Codes (SPC) [11]. After transmission of the stego texts via the public
channel, authorized receivers can reconstruct the secret message by applying inverse transformations
using shared keys. However, traditional modification-based methods [10, 11] invariably introduce
detectable statistical discrepancies between the cover texts and the stego texts [12–15].

∗Corresponding authors: Kejiang Chen chenkj@ustc.edu.cn;

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Jungle0430/StegoZip
mailto:chenkj@ustc.edu.cn


Public
Channel

Message
Embedding

Message
De-Preoceesing

Secret
Message

Stego
Text

Secret
Message

Message
Processing

Message
Extraction

Figure 1: The general process of linguistic steganography.

With breakthroughs in generative large language models (LLMs) [16], a transformative paradigm
shift has emerged in the field of steganography. These models not only generate texts that are
closely aligned with human text distributions but also, more importantly, explicitly output token-level
sampling probability distributions. By embedding secret messages while maintaining the original
distributions and sampling randomness, it is feasible to develop provably secure steganography [6, 17–
24]. For example, Discop [23] generates multiple “distribution copies” for a given probability
distribution and employs the index values of these copies to encode secret messages. SparSamp [24]
achieves efficient message embedding by combining sparse sampling with message-derived random
numbers, significantly reducing computational complexity while maintaining security.

However, practical steganographic systems are still constrained by the relatively low secret payload,
which is defined as the ratio of the secret message length to the stego text length. To transmit the
secret message, the stego text often has to be considerably longer than the secret message itself.
Consequently, the sender must either use lengthy stego texts or multiple transmissions to ensure the
integrity of the secret message. These anomalous behaviors are more likely to expose the purpose of
steganography or necessitate more complex compensatory actions.

While state-of-the-art (SOTA) methods enhance payload through iterative embedding [18, 21–24] or
sampling distribution optimization [25–27], they focus mainly on the message embedding phase, i.e.,
how to leverage the statistical characteristics of cover texts to embed secret messages more efficiently.
This singular focus, however, is still bound by the limitations of entropy and overlooks critical
opportunities for message processing optimization by LLMs, particularly in terms of redundancy
elimination and semantic compression of secret messages before embedding operations.

On the basis of these insights, we propose StegoZip, a framework designed to address the payload
limitations in practical linguistic steganography through LLM-driven secret message automated
processing. The framework consists of two key components: Dynamic Semantic Redundancy
Pruning (DSRP) and Index-Based Compression Coding (ICC). DSRP uses LLMs to analyze semantic
redundancy in original messages, dynamically removing low-information elements to generate pruned,
low-semantic content. In addition, a restorer fine-tuned on public datasets can losslessly reconstruct
the original semantic richness from the pruned content. Moreover, inspired by Shannon’s information
theory [28] and advancing existing LLM-based compression methods [29], ICC further compresses
low-semantic content into compact index sequences. Furthermore, after pseudo-randomization,
StegoZip maintains the security of the underlying steganographic algorithm during secret message
embedding. In summary, our main contributions are as follows:

• We reveal the communication risks arising from the payload limitations in practical linguistic
steganographic systems, highlighting that inefficient message processing optimization restricts the
capacity of secure covert communication.

• We propose StegoZip, a framework for secret message automated processing that enhances payload
in SOTA steganographic systems while maintaining security during secret message embedding.

• By incorporating StegoZip into SOTA steganographic systems, we achieve 2.5× the payload of the
baselines while preserving a comparable steganographic processing time for lossless reconstruction
of secret messages, demonstrating practical viability for real-world deployment.

2 Related Work

2.1 Generative Linguistic Steganography

Linguistic steganography hides secret messages within a cover text. Traditional methods, e.g.,
Syndrome-Trellis Codes (STC) [10], and Steganographic Polar Codes (SPC) [11], achieve this by
modifying components of the cover text. However, these methods often induce statistical deviations
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from the natural distribution, making the stego text vulnerable to detection by adversaries. In
contrast, generative language modeling has revolutionized the field by enabling the embedding
of secret messages into generative data [17]. These models learn the underlying distributions of
natural language and serve as effective sampling mechanisms, producing content that is increasingly
statistically indistinguishable from human text. This capability forms the foundation for secure
steganography, as it allows for secret messages to be embedded during the token generation process
without disrupting the statistical properties of the output [18, 30]. By iteratively sampling from
explicit probability distributions over tokens, generative models ensure both security and naturalness
in the resulting stego text.

Recent advances in generative linguistic steganography have capitalized on these principles. Notable
examples include ADG [20], which partitions the vocabulary into clusters of similar probabilities and
uses the cluster indices to represent secret messages. Meteor [21] employs range-reversible sampling
that encodes messages as sampling interval offsets while compressing code length via shared prefixes.
iMEC [22] attains near-theoretical embedding limits by iteratively optimizing message encoding
paths based on minimum entropy coupling theory, maximizing embedding capacity with minimal
distortion. Discop [23] takes a novel method by generating multiple “distribution copies” from a given
probability distribution and encoding secret messages via indices of these copies. SparSamp [24]
combines sparse sampling with message-derived random numbers, drastically reducing computational
complexity while preserving high levels of security.

While these state-of-the-art (SOTA) methods have significantly improved payload through iterative
embedding [18, 21–24] or sampling distribution optimization [25–27], they are still constrained
by the inherently low entropy in the probabilities of text generation. This limitation caps payload
efficiency, as the distribution of natural language tokens leaves little room for substantial expansion.
However, the advent of large-scale language models presents transformative opportunities not only
in optimizing the embedding stage but also in rethinking the processing and compression of secret
messages. In light of this, we propose StegoZip for advanced message processing and compression.

3 Methodology

3.1 Overview

As shown in Figure 2, StegoZip operates through two LLM-driven components: Dynamic Semantic
Redundancy Pruning (DSRP) and Index-Based Compressed Coding (ICC). The process begins with
the use of LLMs to systematically eliminate redundant, low-information elements via semantic
pruning. To prevent the removal of critical information, this step incorporates entity detection and
self-checking mechanisms. Once semantic pruning is complete, the framework employs the LLM
again to perform probability-driven index-based compression, producing rank sequences. These
sequences undergo binary encoding and pseudo-randomization, resulting in pseudo-random bit
streams. The resulting bit streams are then embedded into cover texts through a steganographic
embedding algorithm, enabling secure and covert transmission over public communication channels.

The authorized receiver, equipped with prior knowledge of the steganographic embedding method,
binary encoding schema, and LLM configurations, performs the reverse transformations to decode
the compressed messages. After successful extraction, a shared semantic restorerR, fine-tuned on
public datasets, losslessly reconstructs the original secret messages in a context-aware manner. To
maintain synchronization between the sender and receiver, the sender also uses R as the LLM for
both DSRP and ICC. Further details of each module are described in the following sections.

3.2 Private Restorer in StegoZip Framework

The private restorerR serves as a core component of the StegoZip framework, derived through fine-
tuning a base language model. In natural communication, rich semantic content enables the receiver to
fully understand the sender’s perspective. However, such semantic abundance introduces significant
redundancy, which increases the payload burden during transmission over public channels. Thus, this
redundancy limits practical applications in resource-constrained communication scenarios, e.g., covert
communication. To address this, the framework harnesses the advanced language comprehension
capabilities of LLMs to perform semantic pruning, retaining only the most critical elements of the
secret messages for public transmission.
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Figure 2: The framework of StegoZip comprises two core components: Dynamic Semantic Redun-
dancy Pruning (DSRP) and Index-Based Compressed Coding (ICC).

However, relying solely on human perception to interpret the pruned messages can lead to ambiguity
or misunderstanding, as the compressed content may lack sufficient contextual clarity. To address this
issue, the framework harnesses the context-aware capabilities of LLMs to reconstruct the original
rich semantics from the compressed messages. Notably, deploying large-scale LLMs in covert
communication scenarios is often impractical because of their substantial computational and resource
requirements, whereas smaller models (e.g., 3B, 7B) lack the capacity to reliably comprehend and
execute restoration tasks. To balance these constraints, the framework fine-tunes a smaller base LLM,
creating a private shared restorer model R used by both the sender and receiver to ensure lossless
synchronization and significantly enhance communication fidelity. The fine-tuning process involves
three key steps: Self-Information Calculation, Semantic Pruning, and Instruction Fine-tuning.

Self-Information Calculation. Instruction fine-tuning begins by constructing a dataset tailored for
semantic restoration. This necessitates preparing paired data where the input comprises text with low
semantic content, while the output retains rich semantic details. Given a public text dataset Dp, for
each sample xp ∈ Dp designated as output, its compressed content serves as the corresponding input.
This is achieved by leveraging the concept of self-information from information theory to measure
the information content of each lexical unit (e.g., words or any meaningful segments derived from
tokenization) in xp. This metric quantifies the significance of a lexical unit based on its sampling
probability as determined by the base language model. For each lexical unit u ∈ xp consisting of k
tokens u = {w(1), ..., w(k)}, its self-information Ilex(u) is calculated as:

Ilex(u) =

k∑
i=1

I
(
w(i)

)
=

k∑
i=1

(
− logP (w(i))

)
=

k∑
i=1

(
− log p(w(i) | w<t)

)
, (1)

where p(w(i) | w<t) is the conditional probability of the t-th token w(i) sampled, given its preceding
tokens w<t as estimated by the LLM. The less likely a token is to be sampled, the greater its
self-information.

Self-Information

Compressed Dataset

System:You are a text restoration specialist. Your task is to ONLY fill in the missing
content within square brackets [] in the input text. Requirements:
1. Strictly preserve all existing text and punctuation outside brackets.
2. Maintain original text structure and formatting.
User: You'd better choose Paul [] even [] [] [] watched [].
Assistant:You'd better choose Paul [Verhoeven's] even [if] [you] [have] watched [it].

Instruction Fine-tuning Dataset

Base Model
Private

Restorer

Figure 3: Fine-tuning restorerR.

Semantic Pruning. Once the self-information of all lexical
units in xp is calculated, units with low information are removed
through α-quantile pruning:

Dc =
{
xp ⊙ 1

(
Ilex(u) > τα, ∀u ∈ xp

) ∣∣ xp ∈ Dp

}
, (2)

where ⊙ denotes element-wise multiplication, 1(·) is an indi-
cator function, and τα represents the α-quantile satisfying:

τα = inf

{
τ ∈ R

∣∣∣∣ 1

|xp|
∑
u∈xp

1
(
Ilex(u) ≤ τ

)
≥ α

}
. (3)

Instruction Fine-tuning. After semantic pruning, the semantic-
compressed dataset Dc, combined with the original dataset Dp, is used to construct the instruction
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fine-tuning dataset Dft through template-based pairing, as illustrated in Figure 3. The base LLM
is fine-tuned to reconstruct rich semantics by inserting words within square brackets “[ ]”, without
altering or deleting any existing content in the compressed text. This ensures precise restoration
while preserving the original structure. The fine-tuned restorerR, shared by both sender and receiver,
enables lossless and synchronized semantic reconstruction in the StegoZip framework.

3.3 Dynamic Semantic Redundancy Pruning

With the shared private restorerR established, the StegoZip module integrates seamlessly into the
steganographic system, employing a dynamic pruning mechanism through two phases similar to the
restorer fine-tuning process: Self-Information Calculation and Semantic Pruning.

For a secret message m, its compressed form mc is derived usingR and self-information processing:
mc = m ⊙ 1

(
Ilex(u) > τ

′

α

)
. Here, τ

′

α is a dynamic threshold that adjusts based on the average
self-information of m and the empirical fine-tuning dataset Dp:

τ ′α = τα ·
(
1− η · Ī(m)− Ī(Dp)

Ī(Dp)

)
, (4)

where τα is the predefined threshold from Eq. (3). Ī(m) is the average self-information of secret
message m and Ī(Dp) is the average self-information of Ī(xp) from the public dataset Dp. This
ensures dynamic adjustment of the pruning ratio based on the entropy of m, preventing excessive
pruning in short, high-entropy texts. Extremely high self-information values (∞) are ignored.

However, this process risks losing critical information, e.g., names, numbers, or other key entities.
To address this, entity detection is performed prior to pruning, ensuring that essential details are
preserved intact, with their self-information designated as infinity∞. Additionally, to guarantee that
the recipient can reconstruct the message without loss, the sender conducts a self-checking process.
Using the restorerR, the sender attempts to reconstruct the original secret messages. Any portions
that cannot be accurately aligned are replaced with their original content and marked with square
brackets “[ ]”, as shown in Figure 2. Through this careful preprocessing, the resulting compressed
secret messages m′

c retain low semantic redundancy while safeguarding crucial elements. Moreover,
having been exposed to numerous instances of compressed text during fine-tuning, R is better
equipped to compress text when using the same prefix in subsequent encoding tasks through ICC.

3.4 Index-Based Compressed Coding

After dynamic semantic pruning, the compressed message m′
c is transformed into binary codes

via probability-driven index encoding. Inspired by LLMzip [29], this method leverages the token
prediction capabilities of the LLM to achieve high compression ratios.

Let the tokenized sentence be represented as Wc = {w1, ..., ws} of length s, where each wt ∈Wc

denotes as a token. The rank of each token wt is defined as its sorted index when the vocabulary V is
ordered by descending conditional probability:

r(wt) = 1 +
∑

w′∈V\{wt}

1 (p (w′ | w<t) > p (wt | w<t)) , (5)

where 1(·) is an indicator function. This probability-driven token-rank mapping ensures efficient
compression, as tokens with higher probabilities are assigned lower ranks. Since the fine-tuned
restorerR has been exposed to numerous instances of semantic pruning text with the same template
prefix, it is particularly effective at encoding such texts, thereby achieving a higher compression rate.

The rank sequence is then converted into bit format B via Huffman encoding, a lossless compression
method that minimizes the bit form of frequent ranks. To ensure secure steganographic embedding,
the bit sequence B is pseudo-randomized. This is achieved by performing an XOR operation between
B and a pseudo-random binary key K, which is generated by a secure stream encryption algorithm,
e.g., ChaCha20 [31]. The resulting pseudo-random bit stream S is then embedded into the cover text
via a secure steganographic embedding function, ensuring provable security while maintaining the
integrity of the compressed message. For a detailed proof of security, please refer to Appendix A.
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3.5 Secret Message Restoration

The decoding framework enables lossless reconstruction of the secret message through invertible
transformations mirroring the encoding process. For the stego text xs, the embedded bit stream S
is extracted via the negotiated steganographic extraction function. The receiver then reverses the
pseudo-randomization using cryptographically synchronized parameters and Huffman decoding with
the same shared codebook to obtain the original rank sequences. Furthermore, the receiver replicates
the index-based compression coding generation process via inverse rank-token mapping, converting
each rank into its corresponding token to reconstruct the semantic pruning message m′

c.

Since m′
c may lack sufficient semantic detail for complete comprehension, the shared restorer R

employs instruction-guided semantic expansion to restore the full secret message. During this step,
m′

c is split into the compressed representation mc and the portion marked during the sender’s self-
checking process in the DSRP phase. The restorer synchronizes with the sender’s self-checking
process, producing the intermediary text mr with the same errors. Finally, the marked portions are
used to correct any errors in mr, ensuring the complete restoration of the original secret message.

4 Experiments

4.1 Implementation Details

LLMs. In this paper, we utilize two widely used LLMs: Qwen2.5-7B [32] and DeepSeek-R1-Distill-
Llama-8B (DS-Llama-8B) [33] for index-based coding and restoration tasks, and greedy sampling
is employed. To prevent fine-tuning that could compromise the security of the original generative
steganography algorithm, we use separate LLaMA2-7B [34] for stego text generation. In this process,
random sampling with a temperature of 0.9 is applied, without incorporating top-p or top-k sampling.
We use LoRA [35] to fine-tune the base LLMs for two epochs, and more detailed experimental
settings are shown in the Appendix C.

Datasets. Text datasets are used to fine-tune the restorer and generate stego text. For fine-tuning, the
IMDb [36] dataset (average length: 1,300 characters) is split into 25,000 training texts and 25,000
test texts, but only 2,000 are randomly sampled for testing. For the AGNews [37] dataset (average
length: 241 characters), only the “business” category is selected and divided into 30,000 training
texts and 1,900 test texts. For stego text generation, the WikiText-2-v1 [38] dataset is used. Texts are
randomly sampled, and the first two sentences are extracted as prompts to guide generation.

Baselines. In the main experiment, the parameters for the proposed Dynamic Semantic Redundancy
Pruning are set to α = 0.4 and η = 1.0. To the best of our knowledge, existing linguistic stegano-
graphic systems do not specifically address message processing. Therefore, we adopt a common
setup, using Huffman compression after tokenizing the original secret messages as the baseline
message processing. The tokenizers [32, 33] we use employ Byte Pair Encoding (BPE) [39] based on
bytes, which inherently provides some degree of compression. We consider SOTA methods for the
underlying generative steganography: Discop [23] and SparSamp [24]. For a fair comparison, we
evaluate performance using sentences that do not have token ambiguity [40, 41].

Evaluation metrics. We evaluate StegoZip from both efficiency and semantic retention perspectives:

1. Efficiency: We divide the efficiency into payload and processing time. The payload refers to the
ratio of the secret message length to the stego text length, which is the most important metric for
assessing StegoZip’s compression capability. The processing time encompasses the average encoding
time, which spans from processing the secret message to the completion of generating the stego
text, and the average decoding time, which involves extracting the bit stream from the stego text and
restoring the original secret message.

2. Semantic Retention: We evaluate the semantic retention from restored and compressed messages
at the word and semantic levels via the metric Rouge1 [42] and BERTScore [43]. Rouge−1 calculates
the proportion of single words from the original secret message that appear in the target secret
message, whereas BERTScore, which leverages BERT’s contextual embeddings to calculate the
similarity between the original and target secret messages, provides a measure of semantic similarity.
Higher values of these metrics are better.
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Table 1: The efficiency of StegoZip: StegoZip significantly enhances the payload while maintaining
a comparable steganographic processing time cycle.

Model Dataset Steganography Payload (%) ↑ Encoding Time (s) ↓ Decoding Time (s) ↓

Qwen2.5-7B
[32]

AGNews
[37]

Discop [23] 18.91 14.82 14.93
+ StegoZip 45.23 (↑ 26.32) 12.94 (↓ 1.88) 12.73 (↓ 2.20)

SparSamp [24] 19.03 10.55 10.61
+ StegoZip 44.49 (↑ 25.46) 11.23 (↑ 0.68) 11.15 (↑ 0.54)

IMDb
[36]

Discop [23] 18.30 70.20 69.21
+ StegoZip 49.64 (↑ 31.34) 56.62 (↓ 13.58) 54.91 (↓ 14.3)

SparSamp [24] 19.12 63.12 63.04
+ StegoZip 49.74 (↑ 30.62) 55.67 (↓ 7.45) 52.36 (↓ 10.68)

DS-
Llama-8B

[33]

AGNews
[37]

Discop [23] 18.75 14.98 14.30
+ StegoZip 44.83 (↑ 26.08) 12.33 (↓ 2.65) 11.95 (↓ 2.35)

SparSamp [24] 18.48 10.16 10.18
+ StegoZip 43.60 (↑ 25.12) 10.62 (↑ 0.46) 10.61 (↑ 0.43)

IMDb
[36]

Discop [23] 18.33 68.15 69.23
+ StegoZip 49.31 (↑ 30.98) 55.91 (↓ 12.24) 53.47 (↓ 15.76)

SparSamp [24] 19.76 61.55 60.93
+ StegoZip 49.41 (↑ 29.65) 49.56 (↓ 11.99) 46.46 (↓ 14.47)

Table 2: Before StegoZip can reconstruct secret messages losslessly (achieving a metric score of
1.0000), compressed secret messages still retain a high degree of semantic preservation. Below, R / C
denotes the semantic retention of restored/compressed secret messages relative to the original.

Model Dataset Rouge1 (R / C) BERTScore (R / C)

Qwen2.5-7B [32] AGNews [37] 1.0000/0.8485 1.0000/0.9633

IMDb [36] 1.0000/0.9445 1.0000/0.9835

DS-Llama-8B [33] AGNews [37] 1.0000/0.8658 1.0000/0.9664

IMDb [36] 1.0000/0.9185 1.0000/0.9758

4.2 Main Performance of StegoZip

Efficiency of StegoZip. The experimental results in Table 1 demonstrate that the proposed StegoZip
framework significantly enhances the original steganographic system, achieving a 2.5× the payload
of the baselines. This improvement is attributed to the integration of Dynamic Semantic Redundancy
Pruning (DSRP) and probability-driven Index Compression Coding (ICC), which collaboratively
compresses lexical units in secret messages with high efficiency. When dealing with longer secret
messages (the average character count of the IMDb dataset is five times that of the AGNews dataset),
StegoZip demonstrates better compression performance due to the availability of richer contextual
information. Complementing these results, Table 2 provides a rigorous evaluation of message fidelity,
where both the restored and compressed secret messages are compared to the original using Rouge1
(word-level similarity) and BERTScore (semantic-level alignment). The results confirm that StegoZip
achieves lossless reconstruction of secret messages at the receiver end, whereas the compression
process preserves the core semantic meaning of the original content. Overall, the StegoZip framework
harnesses the advanced semantic understanding capabilities of LLMs to eliminate low-information
units in secret messages, encoding them into a densely packed and secure binary bit stream. This
ensures efficient representation without compromising the lossless decoding process. By doing so,
the method significantly reduces the payload burden for covert communication over public channels,
while simultaneously enhancing both security and efficiency.

Time Consumption. Although StegoZip introduces additional preprocessing steps, including Self-
Checking, ICC, De-ICC, and Restore, which may appear time-intensive, the results in Table 1
and Figure 4 reveal that the optimized payload efficiency ensures a comparable steganographic
embedding and extraction time. This is attributed to the reduced amount of binary code that needs
to be embedded per stego text, significantly decreasing the time required for both the embedding and
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Table 3: Efficiency comparison of LLMs of varying sizes in compression and restoration.
Model Size Payload (%)↑ Encoding Time (s)↓ Decoding Time (s)↓ Rouge1 ↓ BERTScore ↓
Qwen2.5-0.5B 40.21 8.53 8.56 0.9251 0.9801
Qwen2.5-1.5B 41.15 9.23 9.08 0.8982 0.9753
Qwen2.5-3B 41.92 9.56 9.47 0.8884 0.9705
Qwen2.5-7B 45.23 12.94 12.73 0.8485 0.9633
Qwen2.5-14B 46.09 21.54 21.51 0.8428 0.9611

extraction processes. Moreover, the increased payload efficiency enhances security by reducing the
amount of stego text required for transmission. At the behavioral level, this reduction minimizes
the likelihood of arousing suspicion from adversaries under equivalent communication requirements
when compared with traditional methods. These advancements position StegoZip as a practical and
effective solution for balancing capacity, efficiency, and security in linguistic steganography systems.

4.3 Parameter Tuning and Resultant Impact

Pruning Quantile α. We investigate the impact of the self-information pruning quantile α on both
the steganographic payload and the semantic preservation of compressed secret messages. Within the
range α ∈ [0.25, 0.45], as shown in Figure 5, the key semantic information in the compressed text is
progressively reduced as α increases. A moderate pruning ratio enhances the payload as the pruning
effect becomes more pronounced. However, excessive pruning disrupts the restorer R’s ability to
effectively reconstruct the original semantics. This leads to increased errors during self-checking and
more extensive corrections, ultimately resulting in a decreased payload. Striking an optimal balance
for α is therefore critical, as it directly determines the trade-off between payload and semantic fidelity.

Adaptive Coefficient η. The adaptive coefficient η plays an important role in shaping the performance
of StegoZip within the DSRP module. As shown in Figure 6, the model navigates the trade-off
between compression efficiency and semantic resilience as η increases. Lower values of η favor
aggressive compression, maximizing efficiency but risking over-compression, which may result in the
loss of essential semantic information and hinder accurate restoration. Conversely, higher η values are
more cautious, prioritizing the preservation of semantic integrity at the cost of reduced compression
efficiency. Moreover, different samples exhibit varying levels of complexity and information density,
necessitating dynamic adjustments to η to meet diverse compression demands. This adaptability
ensures that StegoZip achieves a balance between compression and semantic restoration, enhancing
its versatility across diverse scenarios.

Model Size of LLMs. We examine the influence of large language model size on performance in
compression and restoration tasks, and the results are shown in Table 3. As model size increases, the
payload clearly tends to increase. This can be attributed to larger models, with their more complex
architectures and greater number of parameters, being better equipped to capture richer semantic

8



Table 4: The generalization of the RestorerR across different domain datasets.
TrainSet\TestSet AGNews-business AGNews-world AGNews-Mixed IMDb Mixed

AGNews-business 45.23 45.32 43.48 50.32 47.26
AGNews-world 44.90 47.69 44.28 49.53 46.94
AGNews-Mixed 46.01 47.03 45.08 50.49 47.70

IMDb 40.85 41.31 41.59 49.74 44.87
Mixed 44.82 45.07 43.87 50.01 45.73

Table 5: Ablation study on the components of StegoZip, where “w/o” indicates not employed.
Model Discop+StegoZip w/o DSRP w/o instruction in ICC w/o R in ICC w/o ICC Discop

Qwen2.5-7B 45.23 31.78 42.71 40.05 23.17 18.19
DS-Llama-8B 44.83 30.22 41.13 38.91 22.54 18.30

information and patterns. As a result, they can effectively prune more redundant semantics during
compression. However, the encoding and decoding times also increase with model size. Hence, in
practical applications, larger models with higher payloads are better suited for tasks where real-time
processing is not critical. On the other hand, smaller models, which offer faster processing times, are
more appropriate for scenarios requiring quick responses.

4.4 Cross-Domain Transferability Analysis

Initially, fine-tuning the small-scale LLMs aimed solely to enable them to understand the restoration
task, without accounting for the domain of the secret messages. Nonetheless, given the specialized
nature of covert communications, interacting parties can often predict the domain of the covert
information. We analyze the impact of domain differences between the dataset used to train the
restorer and the test set on the payload, as shown in Table 4. For this study, we compare categories
including business and world within the AGNews dataset [37], which share some similarities, against
the IMDb dataset [36], which differs significantly in both content and style. Additionally, we test a
mixed configuration where both datasets are combined in equal proportions. While cross-domain
differences do not affect the lossless reconstruction of messages, they can slightly reduce the payload,
and hybrid training substantially mitigates this effect. These results highlight the resilience of the
StegoZip across domains, with hybrid training maintaining a high payload despite domain shifts.

4.5 Ablation Study

We conduct ablation experiments on the AGNews dataset [37] to assess the importance of each
component in the StegoZip, as shown in Table 5. The results confirm that both DSRP and ICC are
critical to the framework’s performance. Notably, incorporating an instruction template during ICC
enables the restorerR to predict subsequent compressed content more accurately. This improvement
can be attributed to providing the restorer with a priori knowledge of the format and content of
compressed secret messages, particularly tokens used for marking. These findings underscore the
significance of each component in achieving both high compression and restoration fidelity.

4.6 Steganalysis Experiment

To further verify the security of StegoZip, we conduct steganalysis experiments. We generate 1,000
cover texts and 1,000 stego texts using LLaMA2-7B [34] and employ three steganalysis analyzers:
TS-FCN [44], LSTMATT [45], and SeSy [12]. The datasets are split into training, validation, and
testing sets with a ratio of 3:1:1. The experiments are configured with a learning rate of 3× 10−5

and trained for five epochs. To ensure robustness, the process is repeated five times, and the average
accuracy on the test set is used as the steganalysis accuracy metric. For the restorerR, we use the
fine-tuned Qwen2.5-7B [32] model. It is important to note that the provable security here refers to
being indistinguishable from normal generated text, not from human-written text. Provably secure
steganography involves disguising steganographic behavior as normal generated text, as detailed in
Appendix A and in previous works [23, 24].
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Table 6: Steganalysis accuracy with and without using StegoZip.
Method TS-FCN [44](%) LSTMATT [45](%) SeSy [12](%)

Discop 51.25±2.77 50.70±3.02 49.20±2.23
Discop + StegoZip 50.90±2.15 52.35±2.71 51.30±0.92
SparSamp 51.40±1.64 49.85±1.99 49.10±2.08
SparSamp + StegoZip 49.80±1.42 52.35±1.57 50.05±1.66

The classification accuracy of steganalysis is close to 50%, as shown in Table 6, indicating that stego
texts and cover texts cannot be reliably distinguished. The experimental results demonstrate that
StegoZip maintains a comparable security level to scenarios without using StegoZip. This further
validates the consistency of the security of steganographic systems equipped with StegoZip with that
of existing underlying steganographic algorithms.

5 Limitations

While StegoZip significantly enhances the payload of linguistic steganographic systems, its reliance
on LLMs for message compression and reconstruction inevitably introduces additional computational
overhead, even if the overall steganographic processing time remains comparable. Furthermore, its
dependency on high-precision LLMs limits its applicability in resource-constrained environments or
scenarios lacking advanced computational infrastructure [46]. Future research could aim to optimize
StegoZip’s computational efficiency, making it more adaptable to diverse operational contexts.

6 Conclusion

In this paper, we introduce StegoZip, a novel framework that leverages large language models for
dynamic semantic redundancy pruning and index-based compression coding. By incorporating it
into advanced steganographic systems, we achieve a payload that is 2.5 times the original size while
maintaining comparable steganographic processing time. This advancement not only enhances the
efficiency of the steganographic embedding process but also reduces the frequency of communication
between parties, significantly lowering the risk of suspicion by adversaries. StegoZip paves the
way for secure and efficient covert communication, demonstrating the transformative potential of
advanced processing techniques in modern steganographic frameworks.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The key contributions and scope are outlined in both the section abstract and
the introduction (Section 1). We introduce StegoZip, a framework that boosts payload
in steganographic systems by 2.5x while preserving security and efficient processing, ad-
dressing communication risks from payload limitations, and enabling practical real-world
deployment.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made

in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our method are discussed in the fifth section of the paper,
Limitations (Section 5). Inevitably, StegoZip introduces new processing times and requires
sufficient computational resources to run LLM.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The experimental part of the paper confirms the significant increase in payload
for the same processing time (Section 4.2) and gives a proof of security in the appendix
(Section A).
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will disclose the source code and dataset processing methodology upon
acceptance of the paper, and the datasets used are all public datasets. In addition, the main
experimental setups in the paper are described in detail in Section 4.1 of the main text and
Section C in the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will disclose the source code and dataset processing methodology upon
acceptance of the paper, and the datasets used are all public datasets. In addition, the main
experimental setups in the paper are described in detail in Section 4.1 of the main text and
Section C in the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the main configurations in the Implementation Details (Sec-
tion 4.1) and give a more detailed setup in the Appendix (Section C). For the selection
of some parameters, we also conduct experiments in Section 4.3, Parameter Tuning and
Resultant Impact.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [No]

Justification: Error bars are not reported because it would be too computationally expensive.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the computer resources in the Implementation Details (Section 4.1)
and our experiments report the time needed (Section 4.2).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The intent of this paper is to secure covert communications to maintain public
privacy, without deviation from moral principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).
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10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The abstract and introduction sections (Section 1) of the paper discuss the
potential positive societal impacts of this paper. The intent of this paper is to secure covert
communications to maintain public privacy.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper presents a processing method aimed at ensuring secure covert
communication. And the datasets and models used were all publicly released.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: All assets are open source and are properly cited.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: If the code is considered as a new asset, it will be open-sourced after the paper
is accepted.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: [NA]
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: For paper writing, we strictly adhere to the principle of using LLMs only for
minor language editing tasks, such as grammar correction and word choice refinement. For
the development of our proposed framework, StegoZip, we have harnessed the capabilities
of LLMs to efficiently perform critical tasks related to recovery, text compression, and stego
text generation.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.

A Proof of the Security of StegoZip

A.1 Provably Secure Steganography

Empirical steganographic schemes (e.g., STC [10] and SPC [11]) inherently permit an adversary to
distinguish between cover and stego texts with a non-negligible advantage, undermining their security.
In contrast, provably secure steganography aims to either eliminate this advantage completely,
achieving information-theoretic security [5], or reduce it to a negligible level within the framework
of computational security [6].

Let the cover channel, denoted as CH, represent the conditional probability distribution of cover
signals C given the history H. Assuming access to a perfect sampler M that precisely adheres to
the distribution CH, we define MCH

b as the process that samples a segment of the cover output of
length b. A steganographic system (stegosystem) is formally described as a triple of algorithms
(KGen,Embed,Extract), corresponding to key generation, embedding, and extraction, respectively.
The key generation algorithm produces a key K as follows:

K ← KGen(κ), (6)

where κ is a security parameter. Given a secret message m, a historyH, and access to the sampler
M , the embedding algorithm generates a sequence:

s1 | s2 | · · · | ss ← EmbedM (K,m,H), (7)

where the sequence length is s. The extraction algorithm, which uses the negoriated key K and
historyH, reconstructs the hidden message m̃ from the stego text:

m̃← ExtractM
(
K, EmbedM (K,m,H), H

)
. (8)
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Within computational security, the notion of a distinguishing game is employed, wherein an adversary
W attempts to differentiate the cover distribution C from the stego distribution S. Specifically,
the adversary seeks to distinguish between (i) samples generated through secret-message-driven
embedding Embed and (ii) samples generated by a standard random sampling process O consistent
with the cover distribution. The adversary’s distinguishing advantage is defined as:

ASS
C,S(W ) =

∣∣∣∣∣ Pr
K,M, Embed

[
WM, Embed(K,·,·) = 1

]
− Pr

M,O

[
WM,O(·,·) = 1

]∣∣∣∣∣, (9)

where the probabilities are computed over the randomness of K, M , Embed, and O. A stegosystem
is deemed computationally secure if, for every probabilistic polynomial-time adversary W , this
advantage remains negligible in the security parameter κ:

ASS
C,S(W ) < negl(κ). (10)

A.2 StegoZip Maintains the Security of the Underlying Steganographic Algorithm

To ensure that the bitstream processed by StegoZip can be securely embedded using established
provably secure steganographic embedding methods, the bitstream must first undergo pseudo-
randomization. This is typically achieved through an XOR operation with a pseudo-random binary
keystream generated by a secure stream encryption algorithm, e.g., CHACHA20 [31]. Below, we
provide a proof that this process maintains the security of the underlying steganographic algorithm.

The proof proceeds by contradiction. Assume that the stego text xs generated by the StegoZip
framework and the normally generated cover text xc are distinguishable, that is:∣∣∣∣∣Pr [AD(xs) = 1]− Pr [AD(xc) = 1]

∣∣∣∣∣ ≥ δ, (11)

where δ is non-negligible with respect to the key K. For tokens w generated at each step under history
H, this assumption implies the following:∣∣∣∣∣Pr [APH(ws) = 1]− Pr [APH(wc) = 1]

∣∣∣∣∣ ≥ δ. (12)

In a generative provably secure steganographic embedding algorithm, the addition of a token to the
stego sequence involves two sampling stages. The first stage, which is controlled by the stegano-
graphic embedding algorithm and driven by message bits, determines the region of sampling. For
example, ADG [20] selects a cluster, Discop [23] determines which distribution copies to access,
and SparSamp [24] decides whether to apply an offset. The second stage occurs within vstega,
driven by pseudo-random numbers r generated by a cryptographically secure pseudo-random number
generator (CSPRNG). For simplicity, we let S(r, P ) denote sampling from P via r, and let E(m,P )
represent the steganographic embedding algorithm, where m is the secret message encrypted via the
cryptographic algorithm mentioned before.

Using the law of total probability, the adversary’s decision on ws can be expressed as:

Pr [APH(ws) = 1] = Pr
[
APH(ws) = 1 | APH(vws

stega) = 1
]
Pr

[
APH(vws

stega) = 1
]

+ Pr
[
APH(ws) = 1 | APH(vws

stega) = 0
]
Pr

[
APH(vws

stega) = 0
]
,

(13)

where ws = S(r, pmstega) and vws
stega = E(m,P ). Similarly, since the probabilities of tokens remain

unchanged before and after steganographic embedding, a single normal generation of samples is
equivalent to two independent sampling processes using random numbers. For the normal cover text,
the adversary’s decision on wc can be expressed as:

Pr [APH(wc) = 1] = Pr [APH(wc) = 1 | APH(vwc
cover) = 1] Pr [APH(vwc

cover) = 1]

+ Pr [APH(wc) = 1 | APH(vwc
cover) = 0] Pr [APH(vwc

cover) = 0] ,
(14)

where vwc
cover = S(r1, P ) and wc = S(r2, pcover). Here, r1 and r2 are independent random variables

corresponding to the two-stage sampling process, each of which is uniformly distributed as r1, r2
i.i.d.∼

U [0, 1).
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To satisfy Eq. 12, the adversary must be able to distinguish between E(m,P ) and S(r1, P ) in
polynomial time, or between S(r, pmstega) and S(r2, pcover). However, since a CSPRNG is used
in our synchronous sampling function, the generated r is indistinguishable from a truly random
sequence in polynomial time. Thus, the latter condition cannot hold.

Regarding the former condition, the bitstream m generated by StegoZip is pseudo-randomized,
rendering it indistinguishable from a uniform random bitstream within polynomial time. Moreover,
the employed provably secure steganographic algorithm guarantees that the adversary cannot achieve
a non-negligible advantage δ′ in distinguishing between E(m,P ) and S(r1, P ) in polynomial time:∣∣∣∣∣Pr [APH(vws

stega) = 1
]
− Pr [APH(vwc

cover) = 1]

∣∣∣∣∣ < negl(κ). (15)

Since neither condition can be satisfied, Eq. 12 is invalid, contradicting the assumption in Eq. 11.
Therefore, StegoZip, when integrated with any computationally secure steganographic algorithm,
constitutes a computationally secure steganographic system.

B Ethics Considerations

In this paper, we propose the StegoZip framework to enhance the payload of linguistic steganography,
specifically for scientific research and educational purposes. We strictly adhere to established scientific
research regulations to ensure data privacy and security throughout the experimental process, and
we rigorously avoid any violation of personal privacy or engagement in illegal activities. We are
committed to responsibly advancing academic research in information security and ensuring that our
contributions positively impact society.

C More Experiment Settings

C.1 Model Fine-tuning

The restorer is fine-tuned to help small-scale LLMs grasp the restoration task effectively. To maintain
consistency across multiple runs, a random seed of 42 is employed. The training process adopts a
micro-batch size of 32 and an overall batch size of 64, necessitating the use of gradient accumulation
steps computed as the ratio of the overall batch size to the micro-batch size. The model is trained for
2 epochs, with the learning rate set at 3× 10−5.

For the IMDb dataset, the sequence length is cut or filled at 512 tokens, while for the AGNews dataset,
the sequence length is limited to 256 tokens. The LoRA (Low-Rank Adaptation) parameters are care-
fully configured with LORA_R = 16, LORA_ALPHA = 32, and a dropout rate of 0.05. Fine-tuning
targets specific modules, including {q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj}.
To optimize computational efficiency while maintaining model performance, the model is loaded in
int8 precision. The dataset is split into training and validation sets in a ratio of 4:1.

The instruction used for fine-tuning, illustrated in Figure 3, is crafted to guide the model in performing
text restoration tasks. Specifically, the instruction reads: “You are a text restoration specialist. Your
task is to ONLY fill in the missing content within square brackets [ ] in the input text. Requirements: 1.
Strictly preserve all existing text and punctuation outside brackets. 2. Maintain original text structure
and formatting.” To ensure stable fine-tuning and prevent the model from altering content outside the
“[ ]”, 10% of the fine-tuning dataset is constructed with inputs and outputs that remain identical.

To enable the model to reliably identify the conclusion of its response, an “[END]” marker is appended
to the end of responses in the training dataset. During inference, this “[END]” flag also serves as a
termination signal for the model’s outputs.

All our experiments are conducted on a hardware platform equipped with an Intel(R) Xeon(R) Gold
6130 CPU operating at 2.10 GHz, 256 GB of RAM, and NVIDIA A6000 GPU cards. Training the
Qwen2.5-7B [32] and DeepSeek-R1-Distill-Llama-8B [33] models on the AGNews dataset requires
approximately 6 hours, while training on the IMDb dataset takes around 10 hours.
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C.2 Model Inference

During the model inference phase, the model is loaded in the FP32 format to accommodate the high-
precision probabilistic sorting required by index compression coding. When the restorer is tasked
with reconstructing high semantic information, greedy sampling is employed to ensure deterministic
and accurate outputs. We do not use the chain-of-thought feature of the DeepSeek-R1-Distill-Llama-
8B [33] model, given its status as a widely adopted text-generation model. Its language patterns and
knowledge acquired during pre-training remain highly effective even after fine-tuning, particularly
for restoration tasks requiring the handling of complex semantics. Furthermore, if inference functions
or other advanced features are to be introduced in the future, the model’s existing architectural
foundation provides an extensible and optimizable framework, facilitating seamless integration and
enhancement. After fine-tuning, the model will not initiate its response with “<think>\n” at the
beginning of every output.

C.3 Marker Compression Processing

To manage vacant positions awaiting restoration, we represent them using brackets “[ ]”. However,
during the Index-Based Compressed Coding process, instead of transforming the “[ ]” into its rank,
we replace it with a separator symbol to generate a rank sequence optimized for better compression.

For example, consider the sequence “(x1, x2, [ ], x4, x5, [ ], [ ], [ ], x9)”, where xi represents a lexical
unit. Initially, the positions of “[ ]” are recorded, and the sequence is transformed into a rank sequence
“39⊔ 23⊔ 3⊔ 19⊔ 6⊔ 4⊔ 5⊔ 3⊔ 7”, which is stored as a string with ranks separated by the symbol
“⊔”. Next, the recorded positions of “[ ]” are replaced with consecutive separators, resulting in a
modified sequence “39 ⊔ 23 ⊔ ⊔ 19 ⊔ 6 ⊔ ⊔ ⊔ ⊔ ⊔ 7”. The vacancies are then identified by the
successive separators.

This processed sequence is subsequently subjected to Huffman encoding, yielding a highly com-
pressed bit stream. By adopting this method, we ensure accurate localization of vacant positions
while significantly improving the compression rate.

C.4 Steganography

Discop. We adhere strictly to the official open-source repository of Discop2. Specifically, we utilize
the Huffman tree-enhanced version to maximize the payload and seamlessly integrate it into our
codebase.

SparSamp. Similarly, we follow the official open-source repository of SparSamp3, adopting the
configuration with block_size = 32 and incorporating it into our codebase.

Stego Texts Generation. During the generation of stego text, random sampling with a temperature
of 0.9 is applied to introduce controlled variability, while avoiding the use of top-p or top-k sampling
techniques to maintain alignment with the original framework.

C.5 Token Ambuguity

Mainstream provably secure generative linguistic steganographic methods [20–24] rely on the precise
alignment of token paths between the sender and receiver to achieve successful decoding. However,
this requirement becomes challenging in LLMs because of token ambiguity caused by byte-pair
encoding (BPE) [39]. BPE generates non-prefix-free vocabularies, allowing multiple tokenization
paths to represent the same input sequence. To address this issue, alternative strategies such as
word-based tokenizers, character-based tokenization, or disambiguation algorithms [40, 41] can be
employed to reduce token ambiguity. In our main experiments, we ensure fairness by evaluating
performance via sentences without token ambiguity.

2The repository of Discop [23] is available at: https://github.com/comydream/Discop
3The repository of SparSamp [24] is available at: https://zenodo.org/records/15025436
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Figure 7: The impact of fine-tuning epochs on
the StegoZip payload.
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D More Experiment Results

D.1 Epochs of Fine-tuning

We analyze the impact of fine-tuning epochs forR to understand the core restoration task, as shown
in Figure 7. The results of the AGNews [37] and IMDB [36] (Qwen2.5-7B [32]/DeepSeek-R1-Distill-
Llama-8B [33] models) show that the performance saturates after two epochs, with minimal gains
beyond, making two epochs optimal for efficiency and effectiveness. Moreover, this implies that the
task is relatively simple for the model to learn.

D.2 Temperature in Generating Stego Texts

We analyze the impact of temperature in stego text generation on the payload performance of StegoZip,
as illustrated in Figure 8. Lower temperatures (e.g., 0.7) produce more deterministic outputs, which
results in a reduced payload. Conversely, higher temperatures increase the variability in the generated
text, thereby enhancing the embedding flexibility and improving the steganographic embedding
payload capacity. Notably, the integration of StegoZip with Discop significantly boosts payload
performance. Specifically, StegoZip in conjunction with Discop [23] achieves more than double the
payload compared with using Discop alone, highlighting the remarkable effectiveness of StegoZip.

D.3 Visual Quality

Secret Messages:

Treasuries Benefit on Spike in Crude Oil NEW YORK (Reuters) - Treasury debt prices climbed on
Monday as investors bet oil prices near record highs might dent U.S. consumption and force the
Federal Reserve to slow the pace of interest rate hikes.

Stego Text generated by Discop:

Ernest William Hornung ( 7 June 1866 – 22 March 1921 ) was an English author and poet known
for writing the A. J. Raffles series of stories about a gentleman thief in late 19th @-@ century
London. Hornung ’s portrait of the city of London and its inhabitants is one that has since come to
be recognised as a classic, similar to Dicken’s portrayal of the same area. Other reviewers of the
same book describe a delicate, yet entertaining character which only Hornung could have portrayed.
Chapter 7 – from Raffles of the Palace Guard by Harry H. Burns, who wrote some historical novels of
the Scramble for Africa in the 1800s. The return of the Strand and other places of London to Raffles
reveals the complex social mix of the city. By the 1890s, London had been transformed into a city
for conspicuous consumption, with the rich lording it over the poor. Buildings - as Chancery Lane
shows - where mostly taken over by the middle and upper-class and further alienated the working
poor, while a few areas, like Covent Garden, remained as the traditional working-class area, with its
bars, theatres, and clubs. In terms of the embellishment of London, however, Raffles cannot compete
with the grand flamboyance of the Victorians. The atmosphere is still dark though, yet reminds us that
it is only dark because Raffles is a figure of light. Raffles himself is described as the main characters
of London, a character who thinks for others, and lives by the block like the other hundreds of
bachelors, who all have names and individual personalities, except that they do not have the talent to
be heroes.Stanley Richards wrote about some of this in his review of Raffles of the Palace Guard : "As

Stego Text generated by Discop+StegoZip:
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Ernest William Hornung ( 7 June 1866 – 22 March 1921 ) was an English author and poet known
for writing the A. J. Raffles series of stories about a gentleman thief in late 19th @-@ century
London. And a much superior man of letters to most of the other popular novelists who now draw
their living from the public .Ḧornung published nearly sixty novels and novellas and several short
story collections, as well as contributing to some periodicals.His works were internationally popular,
and his novels were translated into many languages, including Spanish , French and German .While
the origins of the works of Arthur Conan Doyle ’s detective Sherlock Holmes have been the subject of
some controversy, the background to Hornung ’s creation of Raffles has,
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