

000 001 002 003 004 005 NEAR-OPTIMAL ONLINE DEPLOYMENT AND ROUT- 006 ING FOR STREAMING LLMS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024

ABSTRACT

025 The rapid pace at which new large language models (LLMs) appear, and older
026 ones become obsolete, forces providers to manage a streaming inventory under
027 a strict concurrency cap and per-query cost budgets. We cast this as an online
028 decision problem that couples *stage-wise deployment* (at fixed maintenance windows)
029 with *per-query routing* among live models. We introduce `StageRoute`,
030 a hierarchical algorithm that (i) optimistically selects up to M_{\max} models for the
031 next stage using reward upper-confidence and cost lower-confidence bounds, and
032 (ii) routes each incoming query by solving a budget- and throughput-constrained
033 bandit subproblem over the deployed set. We prove a regret of $\tilde{\mathcal{O}}(T^{2/3})$ with a
034 matching lower bound, establishing near-optimality, and validate the theory em-
035 pirically: `StageRoute` tracks a strong oracle under tight budgets across diverse
036 workloads.

1 INTRODUCTION

025 The proliferation of LLMs has transformed a broad array of applications, delivering unprecedented
026 advances in natural-language understanding and generation (Radford et al., 2019; Brown et al., 2020;
027 Wang et al., 2023b; , 2023; Chowdhery et al., 2023; Touvron et al., 2023). Yet LLMs differ markedly
028 in both performance and cost: some offer state-of-the-art capabilities at a premium, while others are
029 more affordable but less effective. Practitioners therefore face a continual accuracy-expenditure
030 tradeoff when deciding which models to operate and when to use them. This has motivated *LLM*
031 *routing* (Ding et al., 2024; Hu et al., 2024), where a system chooses, query by query, which model
032 to invoke to maximize task quality under cost constraints. However, focusing solely on per-query
033 routing overlooks a more fundamental decision that precedes it: **which models are deployed at all.**

034 In practice, the operational landscape is unusually fluid. New models arrive continuously with dis-
035 tinct accuracy, latency, and pricing profile (Feng et al., 2025), while production systems must respect
036 hard limits such as rate ceilings and deployment quotas. For example, Azure OpenAI Service caps
037 each resource at 32 standard and 5 fine-tuned deployments by default, and enforces model-specific
038 rate ceilings (e.g., for GPT-4.1: 1,000 requests per minute (RPM) and 1M tokens per minute (TPM))
039 (Microsoft Azure, 2025). This confluence of a dynamic model pool and strict operational caps re-
040 casts the problem into two timescales: a slower *stage-wise* deployment process that decides which
041 models stay alive under a concurrency cap, and a faster *per-query* routing process that assigns each
042 request among the currently deployed models while meeting budget and throughput constraints. *The*
043 *deployment choice is foundational, since it determines the entire action space for any routing policy.*
044 Table 1 maps recent LLM routing systems to three axes and highlights a gap in current approaches.

045 We study this setting as *an online decision problem* that couples two intertwined choices (Figure 1):
046 (1) *stage-wise deployment* at fixed update points, where the operator decides which models to deploy
047 for the next stage subject to a hard concurrency cap and deployment costs. This high-stakes decision
048 defines the *action set* for the subsequent execution of (2) *per-query routing*, where each incoming
049 query is sent to one of the currently deployed models to maximize quality while obeying a long-term
050 cost budget and per-model throughput limits. Unlike approaches that assume a static model pool or
051 rely on fully offline retraining, our framework admits streaming arrivals of new LLMs and enforces
052 *active-set replacement*: admitting a newcomer may require evicting an incumbent for the rest of the
053 stage. This mirrors real service constraints while enabling continual adaptation.

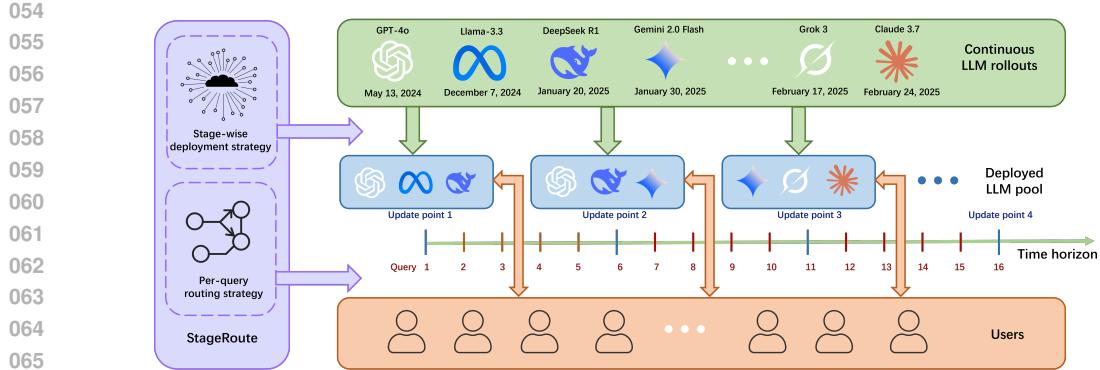


Figure 1: The StageRoute workflow. Newly released LLMs (green) continually enter the candidate pool. At each scheduled update point, StageRoute deploys up to M_{\max} models (blue). Between updates, each query is routed among the current deployment (orange). This two-level loop assimilates fresh models, enforces cost/throughput constraints, and adapts routing in real time.

Three features make this problem technically distinct. First, the hard concurrent-deployment cap induces an *irreversible* exploration-exploitation tradeoff: activating an uncertain model can mean dropping a known, reliable one for an entire stage. Second, decisions occur on two timescales: infrequent, strategic deployment choices constrain frequent, tactical per-query routing. Third, the system must jointly respect a long-term cost budget and per-model throughput limits while selecting a small operational subset under uncertainty. Classical multi-armed bandits (MAB), budgeted formulations (BwK), combinatorial bandits (CMAB), and standard streaming bandits each capture parts of this picture, but none natively address *the combination of dynamic availability, staged commitment, and an explicit concurrency cap on the active set*.

To address these challenges, we introduce StageRoute, an algorithm that mirrors the problem’s hierarchy (Figure 1). At each update boundary, a *deployment phase* selects the active set for the next stage using optimistic estimates of model quality (UCB) and conservative estimates of cost (LCB), honoring the global budget, per-model throughput limits, and the M_{\max} concurrency cap. Within the stage, each query triggers a *routing phase*: a linear program over the *currently deployment* returns a distribution that maximizes estimated quality under the same constraints, and the query is dispatched by sampling accordingly. *This two-level loop links strategic deployment to fine-grained, adaptive routing, allowing the system to assimilate new information both across and within stages.*¹

Our contributions in this paper are summarized as follows:

- **Problem formulation.** To our knowledge, we are the first to formalize the *online LLM deployment and routing problem with streaming arrivals*, explicitly modeling a hard concurrency cap, one-time deployment costs, per-model throughput limits, and a long-term cost budget, with stage-level commitment and per-query routing.

- **Algorithm.** We introduce StageRoute, which (i) selects an active set at each update using optimistic performance (UCB) and conservative cost (LCB) estimates under the budget, throughput limits, and the M_{\max} concurrency cap, and (ii) routes each query by solving a budget–throughput LP over the *currently deployed* models. *The design is modular: the routing step can incorporate contextual estimators when features are available, while the deployment step remains unchanged; throughput limits naturally throttle load to mitigate latency spikes.*

- **Theoretical guarantees.** We prove a regret bound of $\tilde{\mathcal{O}}(\sqrt{M_{\max}KT}) + \tilde{\mathcal{O}}(NT/(M_{\max}K))$, where T, K, M_{\max}, N are the numbers of queries, update stages, the concurrency cap and arriving models, respectively. The first term captures the statistical learning cost of routing within the deployed set; it grows with the number of active models M_{\max} , stages K , and horizon T . The second term is a structural *model-discovery bottleneck* that quantifies the difficulty of discovering strong newcomers when only M_{\max} models can be live across K stages as N models arrive. Balancing the

¹Relative to nearby bandit frameworks: static-pool routing assumes fixed arms; BwK models consumable budgets but not stage-level active-set replacement; CMAB selects superarms from a fixed base set without streaming arrivals or stage commitment; streaming bandits allow arrivals but do not couple stage-level support selection with per-query routing under both a budget and per-model capacity. See Appendix A for more details.

108
 109
 110
 111
 112 Table 1: Comparison of LLM routing frameworks. `StageRoute` is the first to address the full
 113 real-world setting: a dynamic model pool with streaming arrivals, paired with dynamic stage-wise
 114 deployment under a concurrency cap (M_{\max}) and cost- and throughput-aware routing.
 115
 116
 117
 118
 119
 120
 121
 122

Approach	Streaming LLM Models	Dynamic Deployment (with M_{\max} cap)	Cost & Budget Aware	Throughput Limits	Source
LLM-Blender	—	—	—	—	Jiang et al. (2023)
AutoMix	—	—	—	—	Aggarwal et al. (2024)
Hybrid-LLM	—	—	—	—	Ding et al. (2024)
Zooter	—	—	—	—	Lu et al. (2024)
RouterDC	—	—	—	—	Chen et al. (2024)
TensorOpera Router	—	—	✓	—	Stripelis et al. (2024)
RouteLLM	—	—	✓	—	Ong et al. (2025)
MESS+	—	—	✓	—	Woisetschläger et al. (2025)
UniRoute	✓	—	✓	—	Jitkrittum et al. (2025)
CSCR	✓	—	✓	—	Shirkavand et al. (2025)
StageRoute (ours)	✓	✓	✓	✓	This paper

123
 124 two yields a near-optimal $\tilde{\mathcal{O}}(T^{2/3})$ order, and we give a matching $\Omega(T^{2/3})$ lower bound via a staged-
 125 arrival construction. Analytically, we use LP-duality sensitivity with an explicit *support* (active-set)
 126 constraint and a regret decomposition that separates routing and deployment across stages.

127 • **Empirical evaluation.** Simulations show `StageRoute` tracks a strong oracle under tight budgets
 128 and is robust across key parameters. We evaluate on *true per-query* scores and costs (RouterBench)
 129 across diverse queries, tasks, and languages, demonstrating effectiveness in realistic settings.

2 SYSTEM MODEL

130 We study an *online LLM routing framework*: at each round t , a query arrives and must be routed
 131 to a suitable LLM. New models may appear at any time, yet they can be *activated* only at discrete
 132 deployment intervals (Figure 1). We describe each component of the model in detail.

133 **Rounds (Queries).** Let T denote the total number of user queries, indexed by $[T] = \{1, 2, \dots, T\}$.
 134 At each time step $t \in [T]$, a query arrives and is immediately routed to an LLM m_t chosen from the
 135 currently deployed models according to the algorithm’s policy.

136 **LLM Pool and Deployment Schedule.** Let \mathcal{M}_t be the set of all LLM models that exist and could,
 137 in principle, be deployed by time t . Each model m has an *availability time* t_m ; hence $m \in \mathcal{M}_t$
 138 exactly when $t \geq t_m$. Deployment changes occur only at discrete intervals, a schedule determined
 139 by the algorithm. The algorithm partitions the time horizon T into K equal-length stages, where K
 140 is a tunable hyperparameter of the algorithm. Each stage thus consists of T/K rounds (assuming T
 141 is divisible by K). The start of stage k is $\tau_k = (k-1)T/K + 1, k = 1, \dots, K$. Let M_{\max} be the
 142 *concurrency cap*, i.e., the maximum number of models that can be deployed simultaneously. At each
 143 update point τ_k , the algorithm \mathcal{A} selects a deployed set $\mathcal{D}_k(\mathcal{A}) \subseteq \mathcal{M}_{\tau_k}$ such that $|\mathcal{D}_k(\mathcal{A})| \leq M_{\max}$,
 144 which then remains fixed for all $t \in [\tau_k, \tau_{k+1})$. Queries arriving during that stage must be routed to
 145 models in the active set $\mathcal{D}_k(\mathcal{A})$. Thus \mathcal{M}_t is the *available pool* at time t , while $\mathcal{D}_k(\mathcal{A})$ is the *active*
 146 subset that can actually serve queries during stage k .

147 **Operational Performance and Cost.** An LLM’s per-prompt quality varies with the input. However,
 148 over a long time horizon, it can be reasonably modeled as a random variable centered around a stable
 149 mean (Ding et al., 2024). Formally, each model m has an unknown performance distribution $\nu_m(\cdot)$
 150 supported on $[0, 1]$. When m is selected at time t , the observed score $r_t \in [0, 1]$ is drawn from $\nu_m(\cdot)$
 151 with mean $\mu_m = \mathbb{E}_{x \sim \nu_m(\cdot)}[x]$. Invoking model m on a query also incurs an *operational cost* c_{m_t}
 152 that combines: (i) *Input Cost*: $c_{m_t}^{(\text{in})} = (\# \text{ tokens of input at time } t) \times p_{\text{in}}$, where p_{in} is the per-token
 153 input price; (ii) *Output Cost*: $c_{m_t}^{(\text{out})} = (\# \text{ tokens of response by } m \text{ for query } t) \times p_{\text{out}}$, with output
 154 length drawn from a model-specific distribution $\xi_m(\cdot)$ and unit price p_{out} .

155 Thus the total cost is $c_{m_t} = c_{m_t}^{(\text{in})} + c_{m_t}^{(\text{out})}$. Because the output token count $c_{m_t}^{(\text{out})}$ depends on the
 156 specific model and query and is sampled from $\xi_m(\cdot)$, the total operational cost c_{m_t} for a query
 157 handled by model m_t is itself a *random variable*. Operational cost c_{m_t} is inherently bounded by
 158 per-token pricing and practical limits on sequence length and generation (e.g., context-window and
 159 token caps). Hence we assume $c_{m_t} \in [c_1, c_2]$ for known constants $0 < c_1 \leq c_2 < \infty$.

Constraints: Budget and Throughput. When a query arrives at time t , with stage index k such that $\tau_k \leq t < \tau_{k+1}$, the algorithm \mathcal{A} selects a model $m_t \in \mathcal{D}_k(\mathcal{A})$. It then observes the reward $r_t \sim \nu_{m_t}(\cdot)$ and incurs cost c_{m_t} . The goal is to maximize average reward subject to two main constraints:

(1) *Budget constraint*: $\mathbb{E}\left[\frac{1}{T} \sum_{t=1}^T c_{m_t}\right] \leq b + o(1)$. We use an average cost constraint instead of a hard budget constraint because for long-running systems, it provides a degree of flexibility. From a theoretical analysis perspective, since the estimation errors for both performance and cost are governed by the same concentration inequalities, the expected budget violation is upper-bounded by the order of the performance regret. This makes the average cost constraint asymptotically equivalent to a hard constraint for a near-optimal algorithm.

(2) *Per-model throughput limit*: For each deployed LLM model m , we specify a throughput limit α_m . Let $p_t(m)$ be the probability that the routing policy assigns the query at time t to model m . While t lies in stage k , the policy must satisfy $p_t(m) \leq \alpha_m, \forall m \in \mathcal{D}_k(\mathcal{A})$. This constraint caps the instantaneous load share each model may receive. For a deterministic decision m_t , where $p_t(m_t) = 1$, the requirement reduces to $\alpha_{m_t} \geq 1$. Such limits reflect real-world restrictions like API rate limits (RPM/TPM), bandwidth, or licensing, preventing any single model from being overwhelmed. Hence the deployed set's aggregate throughput must be sufficient to serve every arrival, a condition we formalize next.

Assumption 1 (Feasibility). *The constraints are feasible. At every time t , there exists a subset $\mathcal{S} \subseteq \mathcal{M}_t$ with $|\mathcal{S}| \leq M_{\max}$ such that $\sum_{m \in \mathcal{S}} \alpha_m \geq 1$. The budget b is also large enough to admit a non-trivial routing policy. When required, we assume Slater's condition holds, guaranteeing strong duality for the associated optimization problems.*

Performance Maximization and Regret. The goal is to maximize the *expected cumulative performance*, $\mathbb{E}[\sum_{t=1}^T \mu_{m_t}]$ subject to: (i) *Deployment Choice*: At each update τ_k , select a deployed set $\mathcal{D}_k(\mathcal{A}) \subseteq \mathcal{M}_{\tau_k}$ with $|\mathcal{D}_k(\mathcal{A})| \leq M_{\max}$; (ii) *Model Selection*: For $t \in [\tau_k, \tau_{k+1})$, choose $m_t \in \mathcal{D}_k(\mathcal{A})$ using probabilities $p_t(m)$ that sum to 1; (iii) *Throughput Constraint*: Ensure $p_t(m) \leq \alpha_m$ for every deployed model m ; and (iv) *Budget Constraint*: Maintain $\mathbb{E}\left[\frac{1}{T} \sum_{t=1}^T c_{m_t}\right] \leq b + o(1)$.

We measure the online policy's performance against an optimal offline benchmark. The foundation of this benchmark is the *Optimal Performance Rate Function*, $V(b, \mathcal{S})$. Given any candidate model set \mathcal{S} and per-query budget b , let $V(b, \mathcal{S})$ denote the maximum expected reward per query, which serves as an upper bound for any algorithm operating under these constraints:

$$V(b, \mathcal{S}) = \max_{p \in \Delta(\mathcal{S})} \left\{ \sum_{m \in \mathcal{S}} \mu_m p(m) \mid \sum_{m \in \mathcal{S}} \mathbb{E}[c_m] p(m) \leq b, \sum_{m \in \mathcal{S}} p(m) = 1, 0 \leq p(m) \leq \alpha_m \text{ for } m \in \mathcal{S}, |\text{supp}(p)| \leq M_{\max} \right\}. \quad (1)$$

Here, $\Delta(\mathcal{S})$ is the set of probability distributions over \mathcal{S} ; $p(m)$ is the probability of selecting model m ; and $\mathbb{E}[c_m]$ is its expected cost. The support constraint $|\text{supp}(p)| \leq M_{\max}$ limits the number of models with positive probability to M_{\max} , capturing the combinatorial selection of the best M_{\max} models to use for routing from the entire available pool \mathcal{M}_{τ_k} . If no feasible distribution exists or if $(\mathcal{S} = \emptyset)$, we set $V(b, \mathcal{S}) = 0$.

The *time-varying offline optimum* is $\text{OPT}^* = \sum_{k=1}^K (\tau_{k+1} - \tau_k) \cdot V(b, \mathcal{M}_{\tau_k})$, where $(\tau_{k+1} - \tau_k)$ is the length (number of queries) of stage k . The regret of an online policy \mathcal{A} is

$$\text{Regret}(\mathcal{A}) = \text{OPT}^* - \mathbb{E}\left[\sum_{t=1}^T \mu_{m_t}\right], \quad (2)$$

i.e., the expected performance gap between \mathcal{A} and the clairvoyant benchmark, where the expectation is over the algorithm's random choices and outcome variability.

3 STAGEROUTE: STAGE-BASED LLM DEPLOYMENT AND ROUTING

We introduce `StageRoute` (Algorithm 1), a two-level hierarchy that unifies deployment and per-query routing in one algorithm: (i) *Strategic layer*. At each discrete update point τ_k , the algorithm

216 **Algorithm 1** StageRoute: stage-based LLM deployment (active-set selection) and online query
 217 routing
 218
 219 **Require:** Update points $\{\tau_1, \dots, \tau_K\}$; budget b ; concurrency cap M_{\max}
 220 1: **Initialize:** Prior parameter estimates; $\tau_0 \leftarrow 0$; $\mathcal{D}_0(\mathcal{A}) \leftarrow \emptyset$
 221 2: **//Stage-wise Deployment Phase:**
 222 3: **for** $k = 1$ to K **do**
 223 4: Incorporate newly available models $\{m \mid t_m \leq \tau_k < t_m + (\tau_k - \tau_{k-1})\}$; initialize their
 224 parameters
 225 5: Solve DeployOPT (3) for d^* and set $\mathcal{D}_k(\mathcal{A}) \leftarrow \{m \mid d_m^* > 0\}$
 226 6: **//Per-query Routing Phase (for query at time t):**
 227 7: **for** $t = \tau_k$ to $\tau_{k+1} - 1$ (or to T if $k = K$) **do**
 228 8: Compute routing distribution p_t^* by solving RouteOPT (7)
 229 9: Sample $m_t \sim p_t^*$ and route the query to it
 10: Observe reward r_t and cost c_t ; update statistics for m_t
 11: **end for**
 12: **end for**
 231
 232

233 decides which models to deploy, adapting to newly available LLMs while respecting the budget and
 234 operational constraints. (ii) *Tactical layer*: Between updates, it routes every incoming query in real
 235 time among the currently deployed models. The system starts with prior parameter estimates, an
 236 empty unexplored-model list, $\tau_0 = 0$, and an empty initial deployment $\mathcal{D}_0(\mathcal{A})$. It then proceeds
 237 through K stages, and at the start of each stage k ($t = \tau_k$), the algorithm executes two phases in
 238 sequence: **model deployment** followed by **request routing**.

239 **Model Deployment Phase (Stage Start).** At each update point τ_k , StageRoute first incorporates
 240 any newly available models (those with $\tau_{k-1} < t_m \leq \tau_k$) and initializes their parameter estimates.
 241 With the enlarged pool \mathcal{M}_{τ_k} , StageRoute solves the deployment optimization in Eq. (3) to pick
 242 the models for stage k :

$$\text{DeployOPT: } \max_{d \in \Delta(\mathcal{M}_{\tau_k})} \left\{ \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m^U d_m \mid \sum_{m \in \mathcal{M}_{\tau_k}} c_m^L d_m \leq b, \sum_{m \in \mathcal{M}_{\tau_k}} d_m = 1, \right. \\ \left. 0 \leq d_m \leq \alpha_m \text{ for } m \in \mathcal{M}_{\tau_k}, |\text{supp}(d)| = \min(M_{\max}, |\mathcal{M}_{\tau_k}|) \right\}. \quad (3)$$

248 This optimization problem is a Mixed-Integer Program (MIP). The combinatorial nature arises from
 249 the cardinality constraint on the support of d , which limits the number of active models. A standard
 250 way to formulate this is by introducing a binary activation variable $z_m \in \{0, 1\}$ for each model. The
 251 full stage- k deployment problem can then be written as:

$$\max_{d, z} \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m^U d_m, \quad \text{s.t.} \quad \sum_m c_m^L d_m \leq b, \sum_m d_m = 1, 0 \leq d_m \leq \alpha_m z_m, \\ \sum_m z_m = \min(M_{\max}, |\mathcal{M}_{\tau_k}|), z_m \in \{0, 1\}.$$

252 Here, the binary variables z_m explicitly select which models are live for the stage, while the continuous
 253 variables d_m represent an optimistic deployment mix. The solution to this MIP d^* maximizes
 254 an optimistic performance surrogate using UCBs for rewards (μ_m^U) and LCBs for costs (c_m^L), which
 255 are derived from data up to τ_k . Specifically, let $\bar{\mu}_m(\tau_k)$ and $\bar{c}_m(\tau_k)$ be the empirical mean reward
 256 and cost of model m based on $N_m(\tau_k)$ selections observed up to τ_k . Define the UCBs and LCBs as:

$$\mu_m^U := \text{proj}_{[0,1]}(\bar{\mu}_m(\tau_k) + 2f_{rad}(\bar{\mu}_m(\tau_k), N_m(\tau_k) + 1)), \quad (4)$$

$$c_m^L := \text{proj}_{[c_1, c_2]}(\bar{c}_m(\tau_k) - 2f_{rad}(\bar{c}_m(\tau_k), N_m(\tau_k) + 1)), \quad (5)$$

257 where $\text{proj}_{[a,b]}$ is a projection function onto the interval $[a, b]$ and $f_{rad}(v, n) = \sqrt{\frac{\gamma v}{n}} + \frac{\gamma}{n}$ (for some
 258 $\gamma > 0$) is a confidence radius function.

259 The deployment optimization in Eq. (3) maximizes expected utility subject to the budget b , per-
 260 model throughput limits α_m , and the concurrency cap $|\text{supp}(d)| = \min(M_{\max}, |\mathcal{M}_{\tau_k}|)$. Its solution

270 d^* determines the active set for stage k :
 271

$$\mathcal{D}_k(\mathcal{A}) \leftarrow \{m \in \mathcal{M}_{\tau_k} \mid d_m^* > 0\}. \quad (6)$$

273 Crucially, the values d_m^* are *not* used as routing probabilities; they serve only to select the most
 274 promising feasible models. The deployment set $\mathcal{D}_k(\mathcal{A})$ remains fixed until the next update point
 275 τ_{k+1} .

276 **Request Routing Phase (Intra-Stage).** For each query arriving at time $t \in [\tau_k, \tau_{k+1})$,
 277 StageRoute performs four steps: (1) *Routing LP*. It solves the linear program (LP) in Eq. (7)
 278 to compute the optimal routing distribution $p_t^* = (p_t^*(m))_{m \in \mathcal{D}_k(\mathcal{A})}$ over the *currently deployed*
 279 models $\mathcal{D}_k(\mathcal{A})$.
 280

$$\text{RouteOPT: } \max_{p_t \in \Delta(\mathcal{D}_k(\mathcal{A}))} \left\{ \sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m^U p_t(m) \mid \sum_{m \in \mathcal{D}_k(\mathcal{A})} c_m^L p_t(m) \leq b, \right. \\ \left. \sum_{m \in \mathcal{D}_k(\mathcal{A})} p_t(m) = 1, 0 \leq p_t(m) \leq \alpha_m \text{ for } m \in \mathcal{D}_k(\mathcal{A}) \right\}. \quad (7)$$

286 This LP maximizes the expected reward by combining the current UCBs for reward (μ_m^U) and LCBs
 287 for cost (c_m^L) while enforcing the per-query budget b (through the cost bounds) and each model’s
 288 throughput limit α_m . (2) *Model selection*. Sample $m_t \sim p_t^*$ and serve the query. (3) *Feedback*.
 289 StageRoute observes the realized reward r_t and cost c_t . (4) *Update*. Refresh $\bar{\mu}_{m_t}$, \bar{c}_{m_t} , N_{m_t} and
 290 recompute $\mu_{m_t}^U$, $c_{m_t}^L$ for subsequent routing and the next deployment decision.
 291

292 **Algorithmic Innovations.** While StageRoute builds on the principle of “optimism in the face
 293 of uncertainty”, its architecture is tailored to dynamic LLM deployment and departs from standard
 294 bandit formulations. First, it imposes a hierarchical decision structure that mirrors operational prac-
 295 tice: the deployment decision is a high-stakes, combinatorial choice whose consequences persist for
 296 an entire stage, a form of long-term commitment absent from standard, per-round bandits. Second,
 297 staged updates create a structured delay in acting on feedback. Information about non-deployed
 298 models cannot influence decisions until the next stage, inducing an exploration-exploitation trade-
 299 off that requires anticipating performance over the whole stage, not just the next round. Finally,
 300 StageRoute decouples deployment from routing execution: DeployOPT determines only the
 301 active set $\mathcal{D}_k(\mathcal{A})$, while the per-query policy is recomputed online via RouteOPT. This separation
 302 enables rapid query-level adaptation even when the underlying infrastructure remains fixed during a
 303 stage.
 304

305 4 THEORETICAL RESULTS

306 We analyze StageRoute (Algorithm 1) by deriving an upper bound on its cumulative regret and a
 307 matching lower bound that applies to any online algorithm for this problem. Together, these results
 308 show that StageRoute is near-optimal in the worst case.
 309

4.1 UPPER BOUND

311 **Theorem 1.** Consider StageRoute running for T queries divided into K stages, with a concur-
 312 rency cap M_{\max} and $N = |\mathcal{M}_T|$ total models arriving over time. Set the confidence parameter to
 313 $\gamma = \Theta(\log(NT/\delta))$ to obtain overall confidence $1 - \delta$. Then the expected regret is bounded by:
 314

$$\text{Regret}(\text{StageRoute}) \leq \mathcal{O} \left(\sqrt{M_{\max}KT \log(NT/\delta)} + \frac{NT}{M_{\max}K} \right).$$

315 Choosing $K = \Theta(T^{1/3})$ and $M_{\max} = \Omega(N^{2/3})$ yields $\text{Regret}(\text{StageRoute}) \leq \tilde{\mathcal{O}}(N^{1/3}T^{2/3})$.
 316

317 The two terms in the bound reflect complementary sources of difficulty. The first term,
 318 $\tilde{\mathcal{O}}(\sqrt{M_{\max}KT})$, is the statistical learning cost of routing within the deployed set. The second
 319 term, $\tilde{\mathcal{O}}(NT/(M_{\max}K))$, is a structural *model-discovery bottleneck*: when only M_{\max} models can
 320 be active at a time across K stages, exploration is throttled. Strong late-arriving models can be
 321 missed unless sufficient deployment slots and update frequency are provisioned. Balancing these
 322 two terms gives the near-optimal $\tilde{\mathcal{O}}(T^{2/3})$ rate, which matches the lower bound in Theorem 2.
 323

324 **Practical guidance.** The bound yields an actionable rule: to approach the optimal rate, set the
 325 number of stages to approximately $K \approx T^{1/3}$ (implying a stage length of $T^{2/3}$) and provision a
 326 concurrency cap M_{\max} large enough to track new arrivals (ideally $M_{\max} \approx N^{2/3}$ when feasible).
 327 However, updating more frequently ($K \gg T^{1/3}$) is also ill-advised. Even if it does not increase
 328 regret, it cannot offer further asymptotic improvement due to the lower bound, while needlessly
 329 incurring significant computational and operational overhead with each additional deployment stage.
 330 This underscores that *exploration capacity*, defined by the concurrency cap and update frequency,
 331 is itself a scarce system resource to be optimized. Relying on only a few “top” models is provably
 332 suboptimal in a dynamic model pool.

333 **Why existing analyses do not apply.** Classical MAB and BwK typically assume per-round choices
 334 from a static set and lack a hard *concurrency cap*; CMAB selects superarms from a fixed base set and
 335 does not model stage-level commitment; streaming bandits allow arrivals but do not couple stage-
 336 committed deployment with budget and per-model throughput constraints. Our setting is distinct
 337 due to: (i) a concurrency cap that explicitly constrains the support of the deployment optimization,
 338 (ii) stage-committed deployment that induces a structured delay in acting on new information, and
 339 (iii) the simultaneous enforcement of a long-term budget and per-model throughput limits.

340 **Proof ideas and new technical elements.** Our proof introduces a *virtual optimal* deployment set to
 341 bridge the offline benchmark and the online policy, yielding a clean regret decomposition into stage-
 342 level deployment regret and intra-stage routing regret. The routing term is handled with standard
 343 confidence arguments. The deployment term requires two new ingredients: (a) a quantification of
 344 the *model-discovery bottleneck* caused by the limited concurrency cap and discrete updates (showing
 345 how the $NT/(M_{\max}K)$ term arises), and (b) a support-aware sensitivity analysis of the deployment
 346 LP (via its dual), bounding how UCB/LCB estimation errors perturb the optimal active set under
 347 the concurrency constraint. Together, these yield Theorem 1. These elements differ fundamentally
 348 from standard learning-regret analyses and may inform further work on staged, combinatorial online
 349 decision problems. Complete details appear in Appendix C.

351 4.2 LOWER BOUND

353 **Theorem 2.** *For any online policy \mathcal{A} and any choice of update frequency K and concurrency cap
 354 M_{\max} , there exists a stochastic, piecewise-stationary LLM-routing instance such that the expected
 355 regret against the time-varying oracle satisfies*

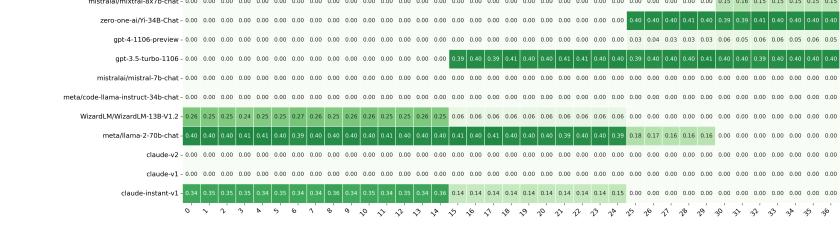
$$356 \quad 357 \quad \text{Regret}(\mathcal{A}) \geq \Omega(T^{2/3}).$$

358 This $\Omega(T^{2/3})$ bound captures the intrinsic difficulty of continually tracking the best model as ca-
 359 pabilities evolve. The construction mirrors real LLM ecosystems: in each *batch* a (newer) model
 360 is marginally stronger than the rest, and the identity of the strongest model changes over batches.
 361 Importantly, the *baseline level* of rewards also drifts upward over time, reflecting that even “weaker”
 362 new releases can outperform old ones. This is unlike classic lower bounds that keep suboptimal arms
 363 at a fixed mean (e.g., $1/2$) and change only the identity of the best arm.

365 **Proof ideas and Intuition.** We construct a family of “streaming” instances that mimics a live LLM
 366 marketplace: the time horizon is split into approximately $T^{1/3}$ epochs, in each batch a different
 367 model is slightly better than the others, and the whole performance frontier drifts upward across
 368 batches (so even “weaker” newcomers can surpass yesterday’s best). We choose the batch length
 369 and performance gaps so that any algorithm cannot reliably identify it with the limited information
 370 available before the epoch ends. Because the identity of the best model changes next batch, infor-
 371 mation gained earlier quickly goes stale. Any policy is thus forced into repeated “partial discovery”,
 372 incurring a nontrivial loss in each batch, and summing over all batches yields total regret on the
 373 order of $T^{2/3}$. Full details are given in Appendix D.

374 **New technical elements.** Two aspects differ from standard MAB/CMAB lower bounds: (i) we do
 375 not use a fixed baseline where only the identity of the best arm flips. Here the *entire* frontier drifts,
 376 matching LLM practice; and (ii) the hardness persists even if the system can redeploy every round
 377 and keep all models live, so the rate is intrinsic to tracking an evolving frontier, not an artifact of
 378 staging or capacity limits.

(a) The decision heatmap of StageRoute.



(b) The decision heatmap of the optimal Oracle.

Figure 2: Comparison of decision heatmaps for StageRoute and the Oracle with $M_{\max} = 5$, $b = 0.001$, update interval=1000. Darker colors indicate higher selection probabilities.

Discussion. Theorem 2 conveys a practical message: even with aggressive adaptivity and large live sets, there is a fundamental rate limit on how quickly a system can keep up as the performance frontier shifts. Our upper bound matches this lower bound up to logarithmic factors with respect to the number of queries T , establishing near-optimality.

5 EXPERIMENTS

Datasets and Candidate LLMs. We evaluate on RouterBench (Hu et al., 2024), covering 36,497 queries across eight datasets in English and Chinese (commonsense, knowledge, dialogue, math, code, and RAG). Each query includes responses from 11 LLMs with per-query scores and costs. Full dataset descriptions and the model list appear in Appendix E.

Baselines. We compare StageRoute against three baselines. The first is an *oracle* that, with full knowledge of all performance and cost statistics, always selects the optimal deployment set, serving as an upper bound on achievable performance. The second is a *greedy* strategy that, at each update point, selects the M_{\max} models with the highest utility, computed as the ratio between the UCB of performance and the LCB of cost. This approach can be viewed as a variant of a UCB algorithm where selection is based on the UCB of the utility metric. The third baseline is a *uniform sampling* strategy, which randomly selects models for deployment and may substantially exceed the budget. To our knowledge, no existing methods are specifically designed for this LLM deployment problem.

Implementation Details. We simulate a total of $T = 36,497$ rounds. In each round, a query is sampled uniformly at random from the dataset. The algorithm then selects a model to serve the query and subsequently receives the performance score and associated cost. Initially, 5 models are available. Thereafter, for every 5,000 queries, a new model becomes eligible for deployment, following the release-date ordering in Table 3. We set the confidence parameter $\gamma = 0.1$. All reported results are averaged over 10 independent runs. The experiments involve solving mixed-integer programming (MIP) subproblems using the Gurobi Optimizer (v12.0.1, academic license) on a machine equipped with a 12th Gen Intel(R) Core(TM) i9-12900HX processor.

Computational Overhead. Our two-stage design keeps the computational overhead low, allowing the entire experimental run to complete in under 10 minutes. The deployment MIP is solved only

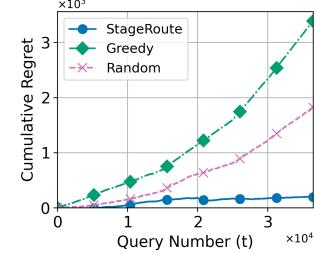


Figure 3: Cumulative regret.

infrequently on small instances (taking sub-seconds), while the per-query routing involves a tiny LP over the active set that executes in milliseconds. Therefore, using either Gurobi or an open-source solver (e.g., CBC, GLPK, HiGHS) is feasible. Furthermore, since parameters change only slightly between iterations, we can leverage warm-starting to further accelerate computation. For the routing LP, we can reuse the previous basis or solution; similarly, for the deployment MIP, we can provide the prior active set as an initial feasible solution (MIP start), given the minimal changes to the candidate pool.

Overall Performance. We first present the main results under a representative setting ($M_{\max} = 5$, $b = 0.001$, update interval=1000), and then conduct a detailed sensitivity analysis across key hyperparameters. Figure 3 shows the cumulative regret under this default configuration. Across all settings we test (see Figure 5 for a full overview), our algorithm exhibits consistently slow regret growth, substantially outperforming the baselines. Notably, while the uniform sampling strategy appears to outperform the greedy baseline in some cases, this is an artifact of its tendency to significantly overspend the budget, an issue we will analyze further in the performance-cost evolution.

Optimal Model Set Identification. As our work emphasizes the importance of deployment, we first analyze whether StageRoute can identify the optimal model set. Figure 2 compares the decision probabilities of StageRoute and the Oracle under the representative setting mentioned above. The horizontal axis represents deployment intervals, while the vertical axis (bottom to top) corresponds to the model arrival order. It is evident that when a new model arrives, StageRoute initially explores it before quickly converging to the new optimal model set, closely mirroring the Oracle’s behavior. This confirms that our deployment strategy is effective at tracking the optimal available model set.

Performance-Cost Evolution. To further validate our algorithm’s efficiency, Figure 4 illustrates the performance-cost trajectory for each algorithm, again under the same representative setting. Colors transition from blue (initial stages) to red (final stages). The figure shows that, except during initial exploration and periods when new models arrive, the operating points of our algorithm closely track those of the Oracle. In contrast, the greedy strategy proves overly conservative, while uniform sampling consistently violates the budget for suboptimal performance. These observations reinforce our central claim: selecting a high-quality set of models for deployment is fundamental to achieving efficient routing, and StageRoute successfully balances high performance with strict budget adherence.

Sensitivity Analysis. We now analyze StageRoute’s sensitivity to key hyperparameters.

(1) *Impact of M_{\max} .* Figures 3, 5a, and 5b present results for different M_{\max} values under a budget of $b = 0.001$ and an update interval of 1000. The results demonstrate that StageRoute adapts well to this parameter, maintaining robust performance across all settings.

(2) *Effect of Deployment Update Interval.* Figures 3, 5c, and 5d illustrate the impact of varying the deployment update interval with $M_{\max} = 5$ and $b = 0.001$. An interval of 1000 rounds yields the lowest regret, highlighting the importance of selecting an appropriate update frequency.

(3) *Effect of Budget Constraint.* Figures 3 and 5e compare performance under different budget constraints. Counterintuitively, a more relaxed budget leads to higher regret. This phenomenon can be attributed to two factors. First, a larger budget also raises the performance of the Oracle, making the benchmark more challenging. Second, we use a fixed confidence radius γ for all settings; in practice, increasing γ in proportion to the budget may be beneficial.

Extending to State-of-the-Art Models. To verify that our StageRoute framework applies to the latest, most powerful models, we conduct additional simulations incorporating recent LLMs. These results, detailed in Appendix E, confirm that StageRoute continues to achieve minimal regret.

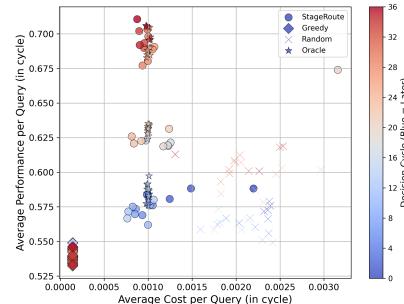


Figure 4: Performance-cost evolution of different algorithms.

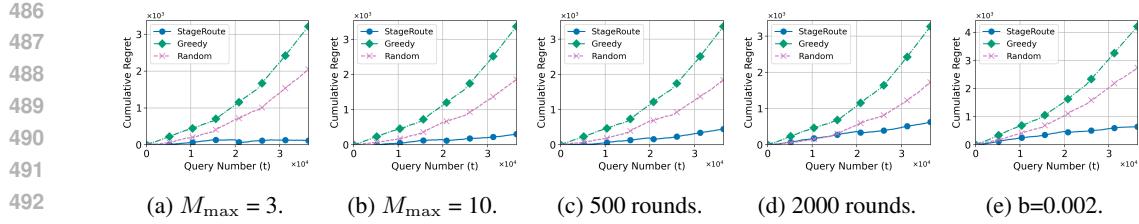


Figure 5: Cumulative regret under varying hyperparameters. The default setting is $M_{\max} = 5$, update interval = 1000 rounds, and $b = 0.001$ (Figure 3).

6 CONCLUSION

In this paper, we introduced StageRoute, a novel framework for online LLM deployment and routing. We are the first to formalize this problem in a dynamic setting with streaming LLM model arrivals, addressing the challenge of selecting an optimal deployment set under a strict concurrency cap. Our algorithm manages deployment at discrete stages while tactically routing queries in real time, respecting both budget and per-model throughput limits. We established the near-optimality of our algorithm with theoretical analysis, including matching upper and lower bounds, and demonstrated its practical effectiveness through extensive experiments on real-world benchmarks.

ETHICS STATEMENT

This research focuses on the operational efficiency of LLM systems. By making deployment and routing more cost-effective, our work can broaden access to AI technologies and reduce energy consumption. However, we acknowledge that increased accessibility may also lower the barrier for malicious use of LLMs. Our framework does not mitigate the inherent risks of language models, such as bias or misinformation generation, and should be implemented alongside robust safety and content moderation protocols.

REPRODUCIBILITY STATEMENT

All experimental parameters are detailed in Section 5. The source code and data used for our experiments will be made publicly available upon publication. All theoretical proofs are provided in the appendix.

REFERENCES

OpenAI (2023). GPT-4 technical report. *CoRR*, abs/2303.08774, 2023.

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited rounds of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In *Proceedings of the 30th Conference on Learning Theory*, pp. 39–75, 2017.

Arpit Agarwal, Sanjeev Khanna, and Prathamesh Patil. A sharp memory-regret trade-off for multi-pass streaming bandits. In *Proceedings of the 35th Conference on Learning Theory*, pp. 1423–1462, 2022.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappagantu, Yiming Yang, Shyam Upadhyay, Manaal Faruqui, and Mausam. Automix: Automatically mixing language models. In *Advances in Neural Information Processing Systems 38*, 2024.

Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knapsacks. In *Conference on Economics and Computation*, pp. 989–1006. ACM, 2014.

Sepehr Assadi and Chen Wang. Exploration with limited memory: streaming algorithms for coin tossing, noisy comparisons, and multi-armed bandits. In *Proceedings of the 52nd Symposium on Theory of Computing*, pp. 1237–1250, 2020.

540 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-Time Analysis of the Multiarmed Bandit
 541 Problem. *Machine Learning*, 47(2):235–256, 2002.
 542

543 Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
 544 Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
 545 models. *arXiv preprint arXiv:2108.07732*, 2021.

546 Moshe Babaioff, Shaddin Dughmi, Robert D. Kleinberg, and Aleksandrs Slivkins. Dynamic pricing
 547 with limited supply. *ACM Trans. Economics and Comput.*, 3(1):4:1–4:26, 2015.
 548

549 Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks.
 550 In *Proceedings of the 45th Symposium on Theory of Computing*, pp. 207–216. IEEE, 2013.

551 Martino Bernasconi, Matteo Castiglioni, Andrea Celli, and Federico Fusco. Bandits with replenish-
 552 able knapsacks: the best of both worlds. In *Proceedings of the 12th International Conference on*
 553 *Learning Representations*, 2024.

554 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
 555 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, and
 556 Ariel Herbert-Voss et al. Language models are few-shot learners. In *Advances in Neural Infor-
 557 mation Processing Systems* 33, 2020.

558 Nicolò Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. In *Proceedings of the 22nd Con-
 559 ference on Learning Theory*, 2009.

560 Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
 561 reducing cost and improving performance. *arXiv preprint arXiv:2305.05176*, 2023.

562 Lixing Chen, Jie Xu, and Zhuo Lu. Contextual combinatorial multi-armed bandits with volatile
 563 arms and submodular reward. In *Advances in Neural Information Processing Systems* 31, pp.
 564 3251–3260, 2018.

565 Shuhao Chen, Weisen Jiang, Baijiong Lin, James T. Kwok, and Yu Zhang. Routerdc: Query-based
 566 router by dual contrastive learning for assembling large language models. In *Advances in Neural*
 567 *Information Processing Systems* 38, 2024.

568 Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
 569 and applications. In *Proceedings of the 30th International Conference on Machine Learning*,
 570 volume 28, pp. 151–159, 2013.

571 Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
 572 Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
 573 Chatbot arena: An open platform for evaluating llms by human preference, 2024.

574 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
 575 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, and Sebastian Gehrmann et al. Palm:
 576 Scaling language modeling with pathways. *J. Mach. Learn. Res.*, 24:240:1–240:113, 2023.

577 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
 578 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
 579 *arXiv preprint arXiv:1803.05457*, 2018.

580 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 581 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
 582 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

583 Xiangxiang Dai, Jin Li, Xutong Liu, Anqi Yu, and John Lui. Cost-effective online multi-llm selec-
 584 tion with versatile reward models. *arXiv preprint arXiv:2405.16587*, 2024.

585 Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
 586 V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: cost-efficient and quality-aware
 587 query routing. In *Proceedings of the 12th International Conference on Learning Representations*,
 588 2024.

594 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
 595 Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
 596 Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellar, Kevin Robinson, Kathleen
 597 Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and
 598 Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In *Proceedings
 599 of the 39th International Conference on Machine Learning*, pp. 5547–5569, 2022.

600 William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
 601 models with simple and efficient sparsity. *J. Mach. Learn. Res.*, 23:120:1–120:39, 2022.

602 Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for LLM selections.
 603 In *Proceedings of the 13th International Conference on Learning Representations*, 2025.

604 Hengquan Guo and Xin Liu. On stochastic contextual bandits with knapsacks in small budget
 605 regime. In *Proceedings of the 13th International Conference on Learning Representations*, 2025.

606 Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
 607 Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In
 608 *Proceedings of the 12th International Conference on Learning Representations*, 2024.

609 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 610 Steinhardt. Measuring massive multitask language understanding. In *Proceedings of the 9th
 611 International Conference on Learning Representations*, 2021.

612 Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
 613 Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-LLM routing
 614 system. In *Agentic Markets Workshop at ICML 2024*, 2024.

615 Nicole Immorlica, Karthik Abinav Sankararaman, Robert Schapire, and Aleksandrs Slivkins. Ad-
 616 versarial bandits with knapsacks. In *Proceedings of the 51st Symposium on Theory of Computing*,
 617 pp. 202–219. IEEE, 2019.

618 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
 619 with pairwise ranking and generative fusion. In *Proceedings of the 61st Annual Meeting of the
 620 Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 14165–14178, 2023.

621 Tianyuan Jin, Keke Huang, Jing Tang, and Xiaokui Xiao. Optimal streaming algorithms for multi-
 622 armed bandits. In *Proceedings of the 38th International Conference on Machine Learning*, pp.
 623 5045–5054, 2021.

624 Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang,
 625 Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar. Uni-
 626 versal model routing for efficient LLM inference. *CoRR*, abs/2502.08773, 2025.

627 Thomas Kesselheim and Sahil Singla. Online learning with vector costs and bandits with knapsacks.
 628 In *Proceedings of the 32nd Conference on Learning Theory*, pp. 2286–2305, 2020.

629 Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In
 630 Cynthia Dwork (ed.), *Proceedings of the 40th Symposium on Theory of Computing*, pp. 681–690.
 631 ACM, 2008.

632 Shaoang Li, Lan Zhang, Junhao Wang, and Xiang-Yang Li. Tight memory-regret lower bounds for
 633 streaming bandits. *arXiv preprint arXiv:2306.07903*, 2023.

634 Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
 635 bandits. In *Proceedings of the 33rd International Conference on Machine Learning*, volume 48,
 636 pp. 1245–1253, 2016.

637 Yang Li. LLM bandit: Cost-efficient LLM generation via preference-conditioned dynamic routing.
 638 *CoRR*, abs/2502.02743, 2025.

639 Xutong Liu, Siwei Wang, Jinhang Zuo, Han Zhong, Xuchuang Wang, Zhiyong Wang, Shuai Li,
 640 Mohammad Hajiesmaili, John C. S. Lui, and Wei Chen. Combinatorial multivariant multi-armed
 641 bandits with applications to episodic reinforcement learning and beyond. In *Proceedings of the
 642 41st International Conference on Machine Learning*, 2024.

648 Xutong Liu, Xiangxiang Dai, Jinhang Zuo, Siwei Wang, Carlee Joe-Wong, John C. S. Lui, and
 649 Wei Chen. Offline learning for combinatorial multi-armed bandits. In *Proceedings of the 42nd*
 650 *International Conference on Machine Learning*, 2025.

651 Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
 652 Routing to the expert: Efficient reward-guided ensemble of large language models. In *Proceedings*
 653 *of the 2024 Conference of the North American Chapter of the Association for Computational*
 654 *Linguistics: Human Language Technologies*, pp. 1964–1974, 2024.

655 Microsoft Azure. Azure openai service quotas and limits, 2025. URL <https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits?tabs=REST>. Accessed: 2025-05-12.

656 Quang H Nguyen, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V Chawla, and
 657 Khoa D Doan. Metallm: A high-performant and cost-efficient dynamic framework for wrapping
 658 llms. *arXiv preprint arXiv:2407.10834*, 2024.

659 Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
 660 M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs from preference data. In
 661 *TProceedings of the 13th International Conference on Learning Representations*, 2025.

662 Manhin Poon, Xiangxiang Dai, Xutong Liu, Fang Kong, John C. S. Lui, and Jinhang Zuo. On-
 663 line multi-lm selection via contextual bandits under unstructured context evolution. *CoRR*,
 664 abs/2506.17670, 2025.

665 Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application
 666 on diversified online recommendation. In *Proceedings of the 2014 SIAM International Conference*
 667 *on Data Mining*, pp. 461–469, 2014.

668 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 669 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

670 Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
 671 sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In
 672 *Advances in Neural Information Processing Systems 34*, pp. 8583–8595, 2021.

673 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 674 sarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.

675 Yuming Shao and Zhixuan Fang. Linear streaming bandit: Regret minimization and fixed-budget
 676 epsilon-best arm identification. In *Proceedings of the 39th Conference on Artificial Intelligence*,
 677 pp. 20354–20361, 2025.

678 Reza Shirkavand, Shangqian Gao, Peiran Yu, and Heng Huang. Cost-aware contrastive routing for
 679 llms. *CoRR*, abs/2508.12491, 2025.

680 Aleksandrs Slivkins. Introduction to multi-armed bandits. *Foundations and Trends® in Machine*
 681 *Learning*, 12(1-2):1–286, 2019.

682 Dimitris Stripelis, Zhaozhuo Xu, Zijian Hu, Alay Diliphai Shah, Han Jin, Yuhang Yao, Jipeng
 683 Zhang, Tong Zhang, Salman Avestimehr, and Chaoyang He. Tensoropera router: A multi-model
 684 router for efficient LLM inference. In *Proceedings of the 2024 Conference on Empirical Methods*
 685 *in Natural Language Processing*, pp. 452–462, 2024.

686 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 687 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
 688 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 689 language models. *CoRR*, abs/2302.13971, 2023.

690 Chen Wang. Tight regret bounds for single-pass streaming multi-armed bandits. In *Proceedings of*
 691 *the 40th International Conference on Machine Learning*, pp. 35525–35547, 2023.

692 Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
 693 Fusing models with complementary expertise. *arXiv preprint arXiv:2310.01542*, 2023a.

702 Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu,
 703 and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. *arXiv preprint*
 704 *arXiv:2502.18482*, 2025.

705 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
 706 Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-
 707 guage models. In *Proceedings of the 11th International Conference on Learning Representations*,
 708 2023b.

710 Herbert Woisetschläger, Ryan Zhang, Shiqiang Wang, and Hans-Arno Jacobsen. Dynamically
 711 learned test-time model routing in language model zoos with service level guarantees. *CoRR*,
 712 *abs/2505.19947*, 2025.

713 Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades
 714 with mixture of thought representations for cost-efficient reasoning. In *Proceedings of the 12th*
 715 *International Conference on Learning Representations*, 2024.

717 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 718 chine really finish your sentence? In *Proceedings of the 57th Annual Meeting of the Association*
 719 *for Computational Linguistics*, 2019.

720 Yi-Kai Zhang, De-Chuan Zhan, and Han-Jia Ye. Capability instruction tuning: A new paradigm for
 721 dynamic LLM routing. In *Proceedings of the 39th Conference on Artificial Intelligence*, 2025.

723 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 724 Zi Lin, Zuoquan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 725 chatbot arena. *Advances in Neural Information Processing Systems* 36, pp. 46595–46623, 2023.

726 Xiaoyi Zhu and Zengfeng Huang. Lipschitz bandits in optimal space. In *Proceedings of the 13th*
 727 *International Conference on Learning Representations*, 2025.

729 Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
 730 EmbedLLM: Learning compact representations of large language models. In *Proceedings of the*
 731 *13th International Conference on Learning Representations*, 2025.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A RELATED WORK
757758 A.1 LLM ROUTING
759

760 The central aim of LLM routing is to strike the best balance between task performance (e.g., response
761 quality or accuracy) and operational metrics such as cost and latency (Ding et al., 2024; Aggarwal
762 et al., 2024). Existing work follows three main architectural patterns. Ensemble strategies query
763 multiple models in parallel to boost robustness, at the expense of higher cost and latency Wang et al.
764 (2023a); Jiang et al. (2023). Cascade strategies issue queries sequentially—typically starting with a
765 cheaper model and escalating only when necessary—thereby reducing cost but sometimes increasing
766 latency (Chen et al., 2023; Gupta et al., 2024; Yue et al., 2024; Aggarwal et al., 2024). Direct-routing
767 strategies train a policy or classifier that selects a single LLM per query (Ong et al., 2025; Feng
768 et al., 2025; Zhang et al., 2025; Zhuang et al., 2025). Benchmark suites such as RouterBench (Hu
769 et al., 2024) facilitate systematic comparison of these approaches. Related work on mixture-of-
770 experts (MoE) models explores routing within a single large model (Du et al., 2022; Fedus et al.,
771 2022; Riquelme et al., 2021). More recently, bandit formulations have been applied to static LLM
772 routing (Wang et al., 2025; Dai et al., 2024; Li, 2025; Nguyen et al., 2024; Poon et al., 2025).
773 Most prior studies, however, assume a fixed set of available models and focus solely on per-query
774 decisions. In contrast, our work model a dynamic model pool with streaming arrivals and introduce
775 staged deployment updates, where the active model set is subject to online selection under a strict
776 concurrency cap, cost budget, and throughput limits. To our knowledge, we are the first to formalize
777 and solve this more realistic and challenging problem.

778 A.2 MULTI-ARMED BANDITS
779

780 Our formulation builds on the multi-armed-bandit (MAB) paradigm, where an agent maximizes its
781 cumulative payoff through exploration and exploitation in online environment (Auer et al., 2002;
782 Slivkins, 2019). Three MAB extensions are especially pertinent: (i) *Bandits with knapsacks (BwK)*.
783 Here each arm pull yields a reward and consumes limited resources from one or more budgets; the
784 objective is to maximize total reward without overspending (Badanidiyuru et al., 2013; Agrawal &
785 Devanur, 2014; Immorlica et al., 2019; Kesselheim & Singla, 2020; Bernasconi et al., 2024; Guo &
786 Liu, 2025). Our long-term cost constraint fits naturally into this framework. (2) *Streaming bandits*.
787 In this setting new arms arrive over time—often under memory or attention limits—so the agent
788 must adapt to a continually expanding action set (Assadi & Wang, 2020; Jin et al., 2021; Agarwal
789 et al., 2022; Wang, 2023; Li et al., 2023; Shao & Fang, 2025; Zhu & Huang, 2025). The steady
790 appearance of new LLMs places our problem squarely in this category. (3) *Combinatorial Multi-
791 Armed Bandits (CMAB)*. The algorithm faces a fixed, known set of base arms from which superarms
792 (subsets) are chosen in each round (Cesa-Bianchi & Lugosi, 2009; Chen et al., 2013; Qin et al.,
793 2014; Li et al., 2016; Chen et al., 2018; Liu et al., 2024; 2025).

794 The core distinctions arise from the two-level structure and unique constraints inherent to the re-
795 alistic online LLM deployment and routing problem. Standard models like BwK and streaming
796 bandits lack the combinatorial selection. While CMAB addresses superarm selection, it is funda-
797 mentally misaligned with our problem’s dynamics: it assumes a static set of base arms and makes
798 per-round decisions, whereas our core challenges are a dynamic model pool and staged, irreversible
799 commitment, where a deployed set remains fixed for a long duration. The regret is thus a function
800 not only of the chosen set but also of the tactical routing policy executed over thousands of queries
801 within that stage. This stateful, hierarchical structure is beyond the scope of traditional bandit for-
802 mulations. Due to these fundamental differences, existing algorithms and regret analyses are not
803 applicable. Our work bridges this gap by developing a new framework and novel analytical tools
804 tailored to the unique challenges of online LLM deployment and routing problem.

805
806
807
808
809

810 **B SUMMARY OF NOTATION**
811812 Table 2: Table of Notation Used in the System Model and Algorithms
813

815 Symbol	816 Description
<i>General Parameters & Indices</i>	
$817 T; t \in [T]$	Total queries (horizon T); t is query index in $[T] = \{1, \dots, T\}$.
$818 K; k \in [K]$	Total deployment stages (K); k is stage index.
$819 \tau_k$	Start time step of stage k ; k -th deployment update point, $\tau_k = (k - 1)T/K + 1$.
$820 \tau_0$	Initial time for the algorithm, typically 0.
$821 \mathcal{A}$	The online deployment and routing algorithm.
<i>LLMs: Availability & Deployment</i>	
$823 m; t_m$	An individual LLM m ; and its availability time t_m .
$824 \mathcal{M}_t, \mathcal{M}_{\tau_k}$	Set of LLMs available at time t , and specifically at start of stage k .
$825 M_{\max}$	Maximum number of LLMs that can be simultaneously deployed.
$826 d = (d_m)$	Deployment decision variable vector in DeployOPT over \mathcal{M}_{τ_k} .
$827 d^* = (d_m^*)$	Optimal deployment decision vector from DeployOPT (Eq. 3) at τ_k .
$828 \mathcal{D}_0(\mathcal{A})$	Initial set of deployed LLMs by algorithm \mathcal{A} (typically empty).
$829 \mathcal{D}_k(\mathcal{A})$	Set of LLMs deployed by \mathcal{A} in stage k (derived from $d_m^* > 0$).
<i>LLM Performance & Operational Costs</i>	
$832 \nu_m(\cdot), \mu_m$	Performance distribution for LLM m (on $[0, 1]$) and its mean $\mu_m = \mathbb{E}_{x \sim \nu_m(\cdot)}[x]$.
$833 r_t$	Realized performance from model m_t for query t , $r_t \sim \nu_{m_t}(\cdot)$.
$834 \bar{\mu}_m(\tau_k), \mu_m^U$	Empirical mean performance (from $N_m(\tau_k)$ obs. up to τ_k) and UCB for μ_m .
$835 p_{\text{in}}, p_{\text{out}}$	Per-token prices for input and output.
$836 c_{m_t}^{(\text{in})}, c_{m_t}^{(\text{out})}; c_{m_t}$	Input cost, output cost; and total cost $c_{m_t} = c_{m_t}^{(\text{in})} + c_{m_t}^{(\text{out})}$ for m_t on query t .
$837 \xi_m(\cdot)$	True (unknown) distribution of output token length for LLM m .
$838 \mathbb{E}[c_m]$	True expected operational cost of LLM m .
$839 \bar{c}_m(\tau_k)$	Empirical mean operational cost of LLM m based on $N_m(\tau_k)$ selections up to τ_k .
$840 c_m^L$	Lower Confidence Bound (LCB) on the expected operational cost $\mathbb{E}[c_m]$.
$841 c_1, c_2$	Fixed lower and upper bounds for any c_{m_t} , $0 < c_1 \leq c_2 < \infty$.
<i>Routing & Constraints</i>	
$842 m_t$	LLM selected by the algorithm to handle query t .
$843 p_t(m)$	Probability assigned by a routing policy to LLM $m \in \mathcal{D}_k(\mathcal{A})$ for query t .
$844 p_t^* = (p_t^*(m))$	Optimal routing probabilities from RouteOPT (Eq. 7).
$845 b$	Long-term average operational cost budget per query.
$846 \alpha_m$	Throughput limit (maximum load share / selection probability constraint) for LLM m .
$847 \Delta(\mathcal{S})$	Set of all probability distributions over a set of LLMs \mathcal{S} .
<i>Parameter Estimation & Confidence Bounds</i>	
$849 N_m(\tau_k)$	Number of times LLM m has been selected and observed up to τ_k .
$850 f_{\text{rad}}(v, n), \gamma$	Confidence radius function $f_{\text{rad}}(v, n) = \sqrt{\gamma v/n} + \gamma/n$ (with parameter $\gamma > 0$).
$851 \text{proj}_{[a, b]}(x)$	Projection of value x onto the interval $[a, b]$.
<i>Offline Benchmark & Regret</i>	
$854 V(b, \mathcal{S})$	Optimal Performance Rate Function: max expected performance from set \mathcal{S} .
$855 \text{supp}(p)$	Support of a probability distribution p .
856OPT^*	Expected cumulative reward of the time-varying offline optimal policy.
$857 \text{Regret}(\mathcal{A})$	Regret of online algorithm \mathcal{A} .

859
860
861
862
863

864 **C TECHNICAL ANALYSIS**
 865

866 In this section, we analyze the regret of StageRoute (Algorithm 1). Recall that in our setting,
 867 let $N = |\mathcal{M}_T|$ denote the total number of models that may arrive over the course of the time
 868 horizon. We assume that N is significantly larger than M_{\max} , the maximum number of models that
 869 can be deployed simultaneously. Moreover, the number of update points K is assumed to be much
 870 smaller than the total number of queries T . These assumptions reflect practical constraints: it is
 871 typically infeasible to deploy all available models—including those released in the future—due to
 872 resource limitations, and continuously updating the deployed LLM pool in real time is operationally
 873 impractical.

874 **C.1 CONCENTRATION INEQUALITY**
 875

876 We employ the following standard concentration inequality and related supporting lemmas.

877 **Lemma 1** (Kleinberg et al. (2008); Babaioff et al. (2015)). *Consider a sequence of random variables*
 878 x_1, x_2, \dots, x_n . *Let $\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$ be the empirical average and $v = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[x_i | x_1, \dots, x_{i-1}]$*
 879 *(if $i = 1$, the expectation is unconditional). If the values x_i are in $[0, 1]$ (e.g., performance r_t , or*
 880 *cost c_t under our assumption), then for each $\gamma > 0$,*

$$881 \mathbb{P}[|v - \bar{x}| \leq f_{rad}(\bar{x}, n) \text{ and } f_{rad}(\bar{x}, n) \leq 3f_{rad}(v, n)] \geq 1 - \exp(-\Omega(\gamma)), \quad (8)$$

882 where $f_{rad}(v, n) = \sqrt{\frac{\gamma v}{n}} + \frac{\gamma}{n}$. This result also holds if x_1, \dots, x_n are independent samples from a
 883 distribution with mean v and values in $[0, 1]$.
 884

885 For clarity and to simplify the application of concentration inequalities, we assume throughout this
 886 analysis that all operational costs c_{m_t} are bounded such that $0 < c_1 \leq c_{m_t} \leq c_2 \leq 1$. This ensures
 887 that costs, like rewards (which are in $[0, 1]$), fall within a $[0, 1]$ range (or a sub-interval thereof). This
 888 assumption does not affect the order of the regret bounds, as any scaling factors related to a broader
 889 cost range would typically be absorbed into the constants within the $\mathcal{O}(\cdot)$ notation.

890 **Lemma 2** (Babaioff et al. (2015), adapted). *Let $\mathcal{D}_k(\mathcal{A})$ be the set of deployed models in stage k .
 891 For any vectors $\mathbf{a} = (a_m)_{m \in \mathcal{D}_k(\mathcal{A})}$ and $\mathbf{n} = (n_m)_{m \in \mathcal{D}_k(\mathcal{A})}$ where $a_m, n_m \geq 0$,*

$$892 \sum_{m \in \mathcal{D}_k(\mathcal{A})} f_{rad}(a_m, n_m) n_m \leq \sqrt{\gamma M_k \left(\sum_{m \in \mathcal{D}_k(\mathcal{A})} a_m n_m \right)} + \gamma M_k.$$

893 where $M_k = |\mathcal{D}_k(\mathcal{A})|$.

894 **Lemma 3** (Babaioff et al. (2015), adapted). *Let $\hat{\mu}_m(t) = (\sum_{s < t: m_s = m} r_s) / (N_m(t) + 1)$ be the empirical average performance and $\hat{c}_m(t) = (\sum_{s < t: m_s = m} c_s) / (N_m(t) + 1)$ be the empirical average cost for model $m \in \mathcal{D}_k(\mathcal{A})$ based on $N_m(t)$ plays before time t within the current stage k . Then, for every $m \in \mathcal{D}_k(\mathcal{A})$ and time $t \in [\tau_k, \tau_{k+1})$, with probability $1 - e^{-\Omega(\gamma)}$ (i.e., on the event \mathcal{E}):*

$$901 |\hat{\mu}_m(t) - \mu_m| \leq 2f_{rad}(\hat{\mu}_m(t), N_m(t) + 1) \quad (9)$$

$$902 |\hat{c}_m(t) - \mathbb{E}[c_m]| \leq 2f_{rad}(\hat{c}_m(t), N_m(t) + 1) \quad (10)$$

903 *Proof.* Follows from applying Lemma 1 to the sequence of observed performances r_s (for $m_s = m$) and observed costs c_s (for $m_s = m$). For a fixed model m , the rewards r_s (when $m_s = m$) are i.i.d. samples from $\nu_m(\cdot)$ with mean μ_m . Similarly, costs c_s (when $m_s = m$) are effectively i.i.d. samples with mean $\mathbb{E}[c_m]$. Thus, the conditional expectation $\mathbb{E}[x_i | x_1, \dots, x_{i-1}]$ in Lemma 1 becomes the true mean μ_m (or $\mathbb{E}[c_m]$). The derivation is analogous to Lemma 4.3 of Babaioff et al. (2015). For instance, for performance:

$$904 \begin{aligned} |\hat{\mu}_m(t) - \mu_m| &= \left| \frac{\sum_{s < t: m_s = m} r_s}{N_m(t) + 1} - \frac{(N_m(t) + 1)\mu_m}{N_m(t) + 1} \right| \\ 905 &\leq \frac{N_m(t)}{N_m(t) + 1} f_{rad}(\hat{\mu}_m(t), N_m(t)) + \frac{\mu_m}{N_m(t) + 1} \quad (\text{from Lemma 1 structure}) \\ 906 &\leq f_{rad}(\hat{\mu}_m(t), N_m(t) + 1) + \frac{\mu_m}{N_m(t) + 1} \\ 907 &\leq 2f_{rad}(\hat{\mu}_m(t), N_m(t) + 1) \end{aligned}$$

908 The argument for cost is similar due to the assumption $c_m \in [c_1, c_2] \subseteq [0, 1]$. \square
 909

918 C.2 REGRET DECOMPOSITION WITH TIME-VARYING BENCHMARK
919

920 To analyze the regret of `StageRoute` (Algorithm 1) over the horizon T , we decompose the total
921 regret into components corresponding to the model deployment and request routing phases.

922 **Definition 1** (Optimal Performance within Deployed Set). *For a given stage k (time interval
923 $[\tau_k, \tau_{k+1}]$ of length $T_k = \tau_{k+1} - \tau_k$) where `StageRoute` (during its Model Deployment Phase)
924 deploys the set $\mathcal{D}_k = \mathcal{D}_k(\mathcal{A}) \subseteq \mathcal{M}_{\tau_k}$, $V(b, \mathcal{D}_k)$ represents the optimal expected reward per query
925 achievable using only models from the deployed set \mathcal{D}_k . The total optimal expected performance
926 within this stage using \mathcal{D}_k is $OPT_k = T_k \cdot V(b, \mathcal{D}_k)$. Note that \mathcal{D}_k is determined by `StageRoute`
927 based on \mathcal{M}_{τ_k} and estimates available at τ_k . Thus, \mathcal{D}_k and consequently $V(b, \mathcal{D}_k)$ (and OPT_k) are
928 random variables, dependent on the algorithm's choices and observations up to time τ_k .*

929 **Definition 2** (Algorithm Performance). *Let $ALGO$ be the total expected reward accumulated by the
930 algorithm over the horizon T :*

$$931 ALGO = \sum_{t=1}^T r_t = \sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t.$$

935 Let $ALGO_k = \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t$ be the reward accumulated by the algorithm during stage k .

937 **Lemma 4** (Regret Decomposition with Time-Varying Benchmark). *The total expected regret
938 $\mathcal{R}(T) = OPT^* - \mathbb{E}[ALGO]$ of `StageRoute`, compared against the optimal time-varying bench-
939 mark $OPT^* = \sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k})$, can be decomposed as:*

$$941 \mathcal{R}(T) = \underbrace{\mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} (V(b, \mathcal{D}_k) - r_t) \right]}_{\mathcal{R}_{\text{routing}}(T)} + \underbrace{\mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} (V(b, \mathcal{M}_{\tau_k}) - V(b, \mathcal{D}_k)) \right]}_{\mathcal{R}_{\text{deploy}}(T)}$$

945 where:

- 948 • $\mathcal{R}_{\text{routing}}(T)$ is the total expected routing regret, accumulating the per-query difference be-
949 between the optimal expected performance with the deployed set $V(b, \mathcal{D}_k)$ and the realized
950 reward r_t , summed over all queries and stages.
- 951 • $\mathcal{R}_{\text{deploy}}(T)$ is the total expected deployment regret, accumulating the per-query difference in
952 optimal expected performance achievable with the full set of available models $V(b, \mathcal{M}_{\tau_k})$
953 versus the deployed set $V(b, \mathcal{D}_k)$, summed over all queries and stages.

955 *Proof.* We start with the definition of the total expected regret:

$$957 \mathcal{R}(T) = OPT^* - \mathbb{E}[ALGO].$$

959 Using the definition $OPT^* = \sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k})$ and $ALGO = \sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t$:

$$961 \mathcal{R}(T) = \sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k}) - \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t \right].$$

964 Note that \mathcal{M}_{τ_k} (the set of models available at time τ_k) depends on the fixed model arrival times t_m
965 and the stage start time τ_k . According to the system model (Section 2), $\tau_k = (k-1)T/K + 1$
966 and the stage length $T_k = (\tau_{k+1} - \tau_k) = T/K$ are deterministic. Consequently, the set \mathcal{M}_{τ_k}
967 and the benchmark value $V(b, \mathcal{M}_{\tau_k})$ are deterministic for each stage k . The randomness in the
968 regret decomposition arises from the algorithm's choices, specifically the selection of \mathcal{D}_k (which
969 determines $V(b, \mathcal{D}_k)$) and the subsequent routing decisions leading to the realized rewards r_t .

971 Since $V(b, \mathcal{M}_{\tau_k})$ is deterministic for each k and constant for $t \in [\tau_k, \tau_{k+1} - 1]$,
972 the sum $\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k})$ is also deterministic. Thus, it can be written as

972 $\mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k}) \right]$. We add and subtract the term $\mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{D}_k) \right]$:

$$\begin{aligned}
\mathcal{R}(T) &= \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k}) \right] - \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t \right] \\
&= \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{M}_{\tau_k}) \right] - \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{D}_k) \right] \\
&\quad + \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{D}_k) \right] - \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t \right].
\end{aligned}$$

Now, we combine terms using the linearity of expectation:

$$\mathcal{R}(T) = \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} (V(b, \mathcal{M}_{\tau_k}) - V(b, \mathcal{D}_k)) \right] \\ + \mathbb{E} \left[\sum_{k=1}^K \sum_{t=\tau_k}^{\tau_{k+1}-1} (V(b, \mathcal{D}_k) - r_t) \right].$$

This expression matches the claimed decomposition, identifying the deployment regret $\mathcal{R}_{\text{deploy}}(T)$ and the routing regret $\mathcal{R}_{\text{routing}}(T)$ as defined in the lemma statement. Alternatively, letting $\text{OPT}_k = T_k V(b, \mathcal{D}_k) = \sum_{t=\tau_k}^{\tau_{k+1}-1} V(b, \mathcal{D}_k)$ and $\text{ALGO}_k = \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t$, the routing regret can be written as $\mathbb{E}[\sum_{k=1}^K (\text{OPT}_k - \text{ALGO}_k)]$. Similarly, the deployment regret can be written as $\mathbb{E}[\sum_{k=1}^K T_k (V(b, \mathcal{M}_{\tau_k}) - V(b, \mathcal{D}_k))]$. \square

This decomposition provides an accurate picture of the algorithm's performance. The deployment regret $\mathcal{R}_{\text{deploy}}(T)$ isolates the loss incurred specifically by `StageRoute`'s potentially suboptimal selection \mathcal{D}_k (during its Model Deployment Phase) from the available set \mathcal{M}_{τ_k} , measured against the best possible rate $V(b, \mathcal{M}_{\tau_k})$ achievable with those available models. Bounding $\mathcal{R}_{\text{deploy}}(T)$ involves analyzing how effectively the Model Deployment Phase of `StageRoute` identifies the optimal subset of size at most M_{\max} from \mathcal{M}_{τ_k} based on its estimates. The routing regret $\mathcal{R}_{\text{routing}}(T)$ remains the sum of per-query differences between the optimal expected performance using the deployed models \mathcal{D}_k and the actual realized rewards r_t . Lemma 11 (or subsequent analysis) addresses the term $\mathbb{E}[\sum_{t=\tau_k}^{\tau_{k+1}-1} (V(b, \mathcal{D}_k) - r_t) \mid \mathcal{D}_k]$ which contributes to $\mathcal{R}_{\text{routing}}(T)$.

C.3 ANALYSIS OF DEPLOYMENT REGRET

We now analyze the deployment regret component $\mathcal{R}_{\text{deploy}}(T)$ as defined in Lemma 4:

$$\mathcal{R}_{\text{deploy}}(T) = \mathbb{E} \left[\sum_{k=1}^K T_k (V(b, \mathcal{M}_{\tau_k}) - V(b, \mathcal{D}_k)) \right].$$

This quantity captures the cumulative expected performance loss across all stages, incurred when the *StageRoute* algorithm selects a subset \mathcal{D}_k at stage k based on estimated model statistics at time τ_k , instead of deploying the optimal subset from the full set of available models \mathcal{M}_{τ_k} .

The deployment regret arises from two complementary sources:

1. **Parameter Uncertainty:** Inaccurate estimates of model performance (μ_m) and cost ($\mathbb{E}[c_m]$) may result in suboptimal deployment decisions. This source corresponds to models that have already been deployed in one or more of the previous $k - 1$ stages.
2. **Model Discovery Bottleneck:** The constraint that at most M_{\max} models can be deployed concurrently may exclude promising but underexplored models—particularly newly arrived ones—from being included in \mathcal{D}_k . This prevents timely evaluation and utilization, contributing to additional regret. This case pertains to models that have not been selected in any of the preceding $k - 1$ stages.

These two components are complementary in nature and together constitute the total deployment regret $\mathcal{R}_{\text{deploy}}(T)$. In the following analysis, we will provide regret bounds for each source.

For the analysis, we recall that $V(b, \mathcal{S})$ is the optimal performance rate for a model set \mathcal{S} (defined in Section 2). Let $V_k^* = V(b, \mathcal{M}_{\tau_k})$ be the optimal rate achievable using all models available at the start of stage k , and $V_k = V(b, \mathcal{D}_k)$ be the optimal rate achievable using the subset $\mathcal{D}_k \subseteq \mathcal{M}_{\tau_k}$ selected by `StageRoute`. V_k^* is deterministic given τ_k , while V_k (through \mathcal{D}_k) is a random variable. A key assumption for bounding the deployment regret due to parameter uncertainty involves the Lagrange multipliers associated with the budget constraint in the definition of V_k^* . Let $\lambda_k^* \geq 0$ be this optimal Lagrange multiplier. We assume that λ_k^* is uniformly bounded by a constant Λ for all k . This is a common assumption in the analysis of learning algorithms with budget constraints and is often justified when standard regularity conditions (such as Slater's condition, which we assume in Assumption 1) hold for the underlying optimization problems, particularly given that our problem parameters (rewards, costs, α_m) are bounded and expected costs $\mathbb{E}[c_m]$ are lower-bounded by $c_1 > 0$.

Confidence Bounds and Good Event. Let τ_k be the start of stage k . $N_m(\tau_k)$ is the play count for model m before τ_k . Define confidence radii using Lemma 1 and 3 with $\gamma = \Theta(\log(NT/\delta))$:

$$\begin{aligned} \text{rad}_\mu(m, \tau_k) &= 2f_{\text{rad}}(\bar{\mu}_m(\tau_k), N_m(\tau_k) + 1) \\ \text{rad}_c(m, \tau_k) &= 2f_{\text{rad}}(\bar{c}_m(\tau_k), N_m(\tau_k) + 1) \quad (\text{Since costs } c_m \in [c_1, c_2] \subseteq [0, 1]) \end{aligned}$$

Let \mathcal{E}_k be the good event at time τ_k where, for all $m \in \mathcal{M}_{\tau_k}$, the confidence bounds based on γ hold:

$$\begin{aligned} \mu_m &\leq \mu_m^U(\tau_k) \quad \text{and} \quad \mu_m^U(\tau_k) \leq \mu_m + \text{rad}_\mu(m, \tau_k) \\ \mathbb{E}[c_m] - \text{rad}_c(m, \tau_k) &\leq c_m^L(\tau_k) \quad \text{and} \quad c_m^L(\tau_k) \leq \mathbb{E}[c_m] \end{aligned}$$

Let $\mathcal{E} = \cap_{k=1}^K \mathcal{E}_k$. By a union bound over all N models in the universe \mathcal{M}_T and K stages, $\mathbb{P}(\mathcal{E}) \geq 1 - \delta$. We condition the analysis on \mathcal{E} . (Note: μ_m^U is $\bar{\mu}_m(\tau_k) + 2f_{\text{rad}}(\bar{\mu}_m(\tau_k), N_m(\tau_k) + 1)$ and c_m^L is $\bar{c}_m(\tau_k) - 2f_{\text{rad}}(\bar{c}_m(\tau_k), N_m(\tau_k) + 1)$ as per Eq. (6,7) in the algorithm description, projected onto $[0, 1]$ and $[c_1, c_2]$ respectively. The inequalities above capture the desired properties on the good event \mathcal{E}_k).

Bounding the Per-Stage Deployment Gap due to Estimation Uncertainty.

Lemma 5 (Per-Stage Deployment Gap Bound). *Let $V_k^* = V(b, \mathcal{M}_{\tau_k})$ be the optimal rate with available models at stage k . Let $\mathcal{D}_k = \text{supp}(d^*)$ be the set selected by the Model Deployment Phase of `StageRoute` based on \mathcal{M}_{τ_k} and estimates at τ_k , via solution d^* (from Eq. equation 3). Let $V_k = V(b, \mathcal{D}_k)$. On the good event \mathcal{E}_k , the deployment gap for stage k is bounded as:*

$$V_k^* - V_k \leq \sum_{m \in \mathcal{M}_{\tau_k}} (\text{rad}_\mu(m, \tau_k) + \lambda_k^* \text{rad}_c(m, \tau_k)) d_m^*$$

where λ_k^* is the optimal dual variable for the budget constraint in the problem defining V_k^* , assumed to be $\leq \Lambda$.

Proof. Let $d^{\text{opt},k}$ be an optimal solution achieving $V_k^* = V(b, \mathcal{M}_{\tau_k})$. Let d^* be the solution found by `StageRoute`'s Model Deployment Phase (using Eq. equation 3) at τ_k when optimizing over \mathcal{M}_{τ_k} using $\mu_m^U(\tau_k)$ and $c_m^L(\tau_k)$. Let $\mathcal{D}_k = \text{supp}(d^*)$. Let $V_k = V(b, \mathcal{D}_k)$.

On the event \mathcal{E}_k , the confidence bounds hold for all $m \in \mathcal{M}_{\tau_k}$. Specifically, $\mu_m \leq \mu_m^U(\tau_k) \leq \mu_m + \text{rad}_\mu(m, \tau_k)$ and $\mathbb{E}[c_m] - \text{rad}_c(m, \tau_k) \leq c_m^L(\tau_k) \leq \mathbb{E}[c_m]$. The true optimal solution $d^{\text{opt},k}$ for the set \mathcal{M}_{τ_k} satisfies $\sum_{m \in \mathcal{M}_{\tau_k}} \mathbb{E}[c_m] d_m^{\text{opt},k} \leq b$, uses $\leq M_{\text{max}}$ models from \mathcal{M}_{τ_k} , etc. Since $c_m^L(\tau_k) \leq \mathbb{E}[c_m]$ on \mathcal{E}_k , we have $\sum_{m \in \mathcal{M}_{\tau_k}} c_m^L(\tau_k) d_m^{\text{opt},k} \leq \sum_{m \in \mathcal{M}_{\tau_k}} \mathbb{E}[c_m] d_m^{\text{opt},k} \leq b$. Thus, $d^{\text{opt},k}$ is a feasible solution for the optimization problem solved by `StageRoute` (Eq. equation 3 applied to \mathcal{M}_{τ_k}).

By the optimality of d^* for `StageRoute`'s deployment objective over \mathcal{M}_{τ_k} :

$$\sum_{m \in \mathcal{M}_{\tau_k}} \mu_m^U(\tau_k) d_m^* \geq \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m^U(\tau_k) d_m^{\text{opt},k} \quad (11)$$

1080 Using the confidence bounds on \mathcal{E}_k for $m \in \mathcal{M}_{\tau_k}$:

$$\begin{aligned} 1082 \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m^U(\tau_k) d_m^* &\leq \sum_{m \in \mathcal{M}_{\tau_k}} (\mu_m + \text{rad}_\mu(m, \tau_k)) d_m^* = \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m d_m^* + \sum_{m \in \mathcal{M}_{\tau_k}} \text{rad}_\mu(m, \tau_k) d_m^* \\ 1083 \\ 1084 \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m^U(\tau_k) d_m^{\text{opt},k} &\geq \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m d_m^{\text{opt},k} = V_k^* \\ 1085 \\ 1086 \end{aligned}$$

1087 Substituting these into Eq. equation 11:

$$1088 \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m d_m^* + \sum_{m \in \mathcal{M}_{\tau_k}} \text{rad}_\mu(m, \tau_k) d_m^* \geq V_k^* \\ 1089 \\ 1090$$

1091 Rearranging:

$$1092 \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m d_m^* \geq V_k^* - \sum_{m \in \mathcal{M}_{\tau_k}} \text{rad}_\mu(m, \tau_k) d_m^* \quad (12) \\ 1093 \\ 1094$$

This bounds the true performance of the distribution d^* chosen by the algorithm. Now we relate this to $V_k = V(b, \mathcal{D}_k)$, the optimal performance within the chosen set $\mathcal{D}_k = \text{supp}(d^*) \subseteq \mathcal{M}_{\tau_k}$. The distribution d^* is supported on \mathcal{D}_k and uses at most M_{\max} models (due to the constraint in Eq. equation 3). We examine its feasibility w.r.t. the true budget constraint. On \mathcal{E}_k :

$$1098 \sum_{m \in \mathcal{D}_k} \mathbb{E}[c_m] d_m^* \leq \sum_{m \in \mathcal{D}_k} (c_m^L(\tau_k) + \text{rad}_c(m, \tau_k)) d_m^* \leq b + \sum_{m \in \mathcal{D}_k} \text{rad}_c(m, \tau_k) d_m^* \\ 1099 \\ 1100$$

1101 Let $\delta_c(d^*) = \sum_{m \in \mathcal{D}_k} \text{rad}_c(m, \tau_k) d_m^*$. Using sensitivity analysis/duality, relating $V_k = V(b, \mathcal{D}_k)$ to the performance of d^* which is feasible for budget $b + \delta_c(d^*)$:

$$1103 V_k = V(b, \mathcal{D}_k) \geq V(b + \delta_c(d^*), \mathcal{D}_k) - \lambda_k^* \delta_c(d^*) \\ 1104 \\ 1105$$

where $\lambda_k^* \leq \Lambda$. Since d^* is feasible for $V(b + \delta_c(d^*), \mathcal{D}_k)$:

$$1106 V(b + \delta_c(d^*), \mathcal{D}_k) \geq \sum_{m \in \mathcal{D}_k} \mu_m d_m^* = \sum_{m \in \mathcal{M}_{\tau_k}} \mu_m d_m^* \\ 1107 \\ 1108$$

1109 Combining these:

$$\begin{aligned} 1110 V_k &\geq \left(\sum_{m \in \mathcal{M}_{\tau_k}} \mu_m d_m^* \right) - \lambda_k^* \delta_c(d^*) \\ 1111 \\ 1112 &\geq \left(V_k^* - \sum_{m \in \mathcal{M}_{\tau_k}} \text{rad}_\mu(m, \tau_k) d_m^* \right) - \lambda_k^* \sum_{m \in \mathcal{D}_k} \text{rad}_c(m, \tau_k) d_m^* \quad (\text{Using Eq. equation 12}) \\ 1113 \\ 1114 \\ 1115 \\ 1116 \end{aligned}$$

1117 Rearranging gives the result (noting $d_m^* = 0$ for $m \notin \mathcal{D}_k$):

$$1118 V_k^* - V_k \leq \sum_{m \in \mathcal{M}_{\tau_k}} \text{rad}_\mu(m, \tau_k) d_m^* + \lambda_k^* \sum_{m \in \mathcal{D}_k} \text{rad}_c(m, \tau_k) d_m^* \\ 1119 \\ 1120$$

1121 Since $d_m^* = 0$ for $m \notin \mathcal{D}_k$, the second sum can also be written over \mathcal{M}_{τ_k} :

$$1122 V_k^* - V_k \leq \sum_{m \in \mathcal{M}_{\tau_k}} (\text{rad}_\mu(m, \tau_k) + \lambda_k^* \text{rad}_c(m, \tau_k)) d_m^* \\ 1123 \\ 1124$$

1125 \square

1126 **Cumulative Deployment Regret from Estimation Uncertainty.** Summing the per-stage deployment gaps caused by estimation errors gives the learning component of the deployment regret.

1127 **Lemma 6** (Deployment Regret from Estimation Uncertainty). *Assume the optimal dual variables λ_k^* are uniformly bounded by Λ . Let K be the total number of stages. Set the confidence parameter $\gamma = \Theta(\log(NT/\delta))$, where $N = |\mathcal{M}_T|$. Then the component of total expected deployment regret due to parameter uncertainty, denoted $\mathcal{R}_{\text{deploy,learn}}(T)$, is bounded by:*

$$1133 \mathcal{R}_{\text{deploy,learn}}(T) \leq \mathcal{O} \left(\sqrt{T \log(NT/\delta) \cdot \min(N, KM_{\max})} + M_{\max} K \log(NT/\delta) \right).$$

1134 *Proof.* The total expected deployment regret due to parameter uncertainty is given by
 1135

$$1136 \quad \mathcal{R}_{\text{deploy,learn}}(T) = \mathbb{E} \left[\sum_{k=1}^K T_k (V(b, \mathcal{M}_{\tau_k}) - V(b, \mathcal{D}_k)) \right],$$

1139 where $V_k^* = V(b, \mathcal{M}_{\tau_k})$ and $V_k = V(b, \mathcal{D}_k)$. We condition on the good event $\mathcal{E} = \cap_{k=1}^K \mathcal{E}_k$, which
 1140 holds with probability at least $1 - \delta$. On this event, the confidence bounds for μ_m and $\mathbb{E}[c_m]$ hold
 1141 for all models m and stages k . From Lemma 5, on event \mathcal{E}_k :

$$1142 \quad V_k^* - V_k \leq \sum_{m \in \mathcal{M}_{\tau_k}} (\text{rad}_{\mu}(m, \tau_k) + \lambda_k^* \text{rad}_c(m, \tau_k)) d_{k,m}^*.$$

1145 Let $C_m(\tau_k) = \text{rad}_{\mu}(m, \tau_k) + \Lambda \text{rad}_c(m, \tau_k)$, using the uniform bound $\lambda_k^* \leq \Lambda$. Since $d_{k,m}^* = 0$ for
 1146 $m \notin \mathcal{D}_k = \text{supp}(d_k^*)$, we have:

$$1148 \quad T_k (V_k^* - V_k) \leq T_k \sum_{m \in \mathcal{D}_k} C_m(\tau_k) d_{k,m}^*.$$

1150 The term $d_{k,m}^*$ represents the selection weight for model m in the deployment optimization at
 1151 stage k . Thus, $\sum_{m \in \mathcal{D}_k} C_m(\tau_k) d_{k,m}^*$ is a weighted average of the combined confidence radii for
 1152 the deployed models. We are considering the case where the model has already been selected
 1153 in the previous $k - 1$ stages. Thus, we can bound the sum of $T_k (V_k^* - V_k)$ by terms related to
 1154 $\sum_{k=1}^K \sum_{m \in \mathcal{D}_k} n_{k,m} C_m(\tau_k)$. Specifically,

$$1157 \quad \sum_{k=1}^K T_k (V_k^* - V_k) \leq \mathcal{O}(1) \sum_{k=1}^K \sum_{m \in \mathcal{D}_k} n_{k,m} C_m(\tau_k).$$

1159 Let's analyze the sum $S = \sum_{k=1}^K \sum_{m \in \mathcal{D}_k} n_{k,m} C_m(\tau_k)$. Recall $C_m(\tau_k) =$
 1160 $2f_{\text{rad}}(\bar{\mu}_m(\tau_k), N_m(\tau_k) + 1) + 2\Lambda f_{\text{rad}}(\bar{c}_m(\tau_k), N_m(\tau_k) + 1)$. Since rewards $\bar{\mu}_m(\tau_k) \in [0, 1]$ and
 1161 costs $\bar{c}_m(\tau_k) \in [c_1, c_2] \subseteq [0, 1]$ (with $c_1 > 0$), we have $f_{\text{rad}}(v, n) = \sqrt{\frac{\gamma v}{n}} + \frac{\gamma}{n} \leq \sqrt{\frac{\gamma}{n}} + \frac{\gamma}{n}$ for
 1162 $v \in [0, 1]$. So, $C_m(\tau_k) \leq 2(1 + \Lambda) \left(\sqrt{\frac{\gamma}{N_m(\tau_k) + 1}} + \frac{\gamma}{N_m(\tau_k) + 1} \right)$. Let $C' = 2(1 + \Lambda)$.

$$1165 \quad S \leq C' \sum_{k=1}^K \sum_{m \in \mathcal{D}_k} n_{k,m} \left(\sqrt{\frac{\gamma}{N_m(\tau_k) + 1}} + \frac{\gamma}{N_m(\tau_k) + 1} \right).$$

1168 We can rewrite the sum by first summing over all models $m \in \mathcal{M}_T$ (the set of all N possible
 1169 models) and then over the stages k in which m was deployed and played:

$$1171 \quad S \leq C' \sum_{m \in \mathcal{M}_T} \sum_{k: m \in \mathcal{D}_k \text{ and } n_{k,m} > 0} n_{k,m} \left(\sqrt{\frac{\gamma}{N_m(\tau_k) + 1}} + \frac{\gamma}{N_m(\tau_k) + 1} \right).$$

1174 For a fixed model m , let $N_m(T)$ be the total number of times it is played up to T . Let n_{m,s_j} be the
 1175 number of times m is played during the j -th stage (denoted s_j) in which it is deployed. Let $\bar{N}_m(\tau_{s_j})$
 1176 be the total number of plays of m before stage s_j . The sum for model m is:

$$1178 \quad S_m = \sum_{j=1}^{K'_m} n_{m,s_j} \left(\sqrt{\frac{\gamma}{N_m(\tau_{s_j}) + 1}} + \frac{\gamma}{N_m(\tau_{s_j}) + 1} \right),$$

1181 where K'_m is the number of stages model m is played. We use the standard inequalities for such
 1182 sums:

$$1184 \quad \begin{aligned} \bullet \quad & \sum_{j=1}^{K'_m} n_{m,s_j} \sqrt{\frac{\gamma}{N_m(\tau_{s_j}) + 1}} \leq \sqrt{\gamma} \sum_{i=1}^{N_m(T)} \frac{1}{\sqrt{(\text{plays of } m \text{ before current block}) + 1}} \leq \sqrt{\gamma} \cdot \\ & 2\sqrt{N_m(T)}. \end{aligned}$$

$$1185 \quad \bullet \quad \sum_{j=1}^{K'_m} n_{m,s_j} \frac{\gamma}{N_m(\tau_{s_j}) + 1} \leq \gamma \sum_{i=1}^{N_m(T)} \frac{1}{(\text{plays of } m \text{ before current block}) + 1} \leq \gamma \cdot (1 + \ln N_m(T)).$$

1188 So, $S_m \leq \mathcal{O}(\sqrt{\gamma N_m(T)} + \gamma \log N_m(T))$. (We absorb constants into $\mathcal{O}(\cdot)$ for now, and will re-
 1189 introduce C' later). Thus, $S \leq C' \sum_{m \in \mathcal{M}_T \text{ s.t. } N_m(T) > 0} \mathcal{O}(\sqrt{\gamma N_m(T)} + \gamma \log N_m(T))$.
 1190

1191 The sum is over models that were actually played. Let $\mathcal{M}_P = \{m \in \mathcal{M}_T \mid N_m(T) > 0\}$. The
 1192 number of models in \mathcal{D}_k is $|\mathcal{D}_k| \leq M_{\max}$. So, $\sum_{m \in \mathcal{M}_P} \sqrt{N_m(T)} \leq \sqrt{|\mathcal{M}_P| \sum_{m \in \mathcal{M}_P} N_m(T)} =$
 1193 $\sqrt{|\mathcal{M}_P| T}$ by Cauchy-Schwarz. Since at most M_{\max} models are deployed in any stage, and there
 1194 are K stages, the number of distinct models ever deployed is $|\mathcal{M}_P| \leq \min(N, K M_{\max})$.
 1195

1196 The sum $\sum_{m \in \mathcal{M}_P} \log N_m(T)$. If $N_m(T) \geq 1$, then $\log N_m(T) \geq 0$. This sum is at most
 1197 $M_{\max} \log(T/M_{\max})$ if M_{\max} models share T plays, or more generally bounded by $M_{\max} K$ (if
 1198 each of M_{\max} models gets played at least once in each of K stages, its $\log N_m(T)$ contributes, and
 1199 $N_m(T)$ could be small). A more careful bound for the sum of log terms: $\sum_{m \in \mathcal{M}_P} \log N_m(T) \leq$
 1200 $M_{\max} K \log T$. So, $S \leq C' \left(\mathcal{O}(\sqrt{\gamma T \cdot \min(N, K M_{\max})}) + \mathcal{O}(\gamma M_{\max} K) \right)$. The log terms are
 1201 typically absorbed into the γ term. The expectation $\mathbb{E}[S]$ includes the good event (probability $1 - \delta$)
 1202 and the bad event (probability δ). On the bad event, the regret in one stage is at most T_k , so total T .
 1203 $\mathcal{R}_{\text{deploy,learn}}(T) \leq \mathbb{E}[S] + \delta T$. If $\delta = \mathcal{O}(1/T)$, then $\delta T = \mathcal{O}(1)$. Substituting $C' = 2(1 + \Lambda)$ and
 1204 $\gamma = \Theta(\log(NT/\delta))$, then we complete the proof. \square
 1205

1206 **Deployment Regret from Model Discovery Bottleneck.** The constraint of deploying at most
 1207 M_{\max} models simultaneously, $|\mathcal{D}_k(\mathcal{A})| \leq M_{\max}$, introduces a structural challenge, particularly
 1208 when new models frequently become available or the total pool of models \mathcal{M}_T is large. This chal-
 1209 lenge is the model discovery bottleneck: identifying truly superior models among many new, un-
 1210 evaluated candidates can be delayed.

1211 The StageRoute algorithm employs UCBs for rewards (μ_m^U) and LCBs for costs (c_m^L) in its
 1212 DeployOPT phase (Eq. equation 3). For a model m that is newly available at stage k (i.e., $t_m \leq \tau_k$
 1213 and its count of previous selections $N_m(\tau_k) = 0$), its initial empirical averages $\bar{\mu}_m(\tau_k)$ and $\bar{c}_m(\tau_k)$
 1214 are set based on priors. The confidence radius $f_{\text{rad}}(v, N_m(\tau_k) + 1) = \sqrt{\frac{\gamma v}{N_m(\tau_k) + 1}} + \frac{\gamma}{N_m(\tau_k) + 1}$
 1215 becomes large for $N_m(\tau_k) = 0$. Specifically, with $N_m(\tau_k) + 1 = 1$:

$$\begin{aligned} \mu_m^U(\tau_k) &= \text{proj}_{[0,1]} \left(\bar{\mu}_m(\tau_k) + 2 \left(\sqrt{\gamma \bar{\mu}_m(\tau_k)} + \gamma \right) \right), \\ c_m^L(\tau_k) &= \text{proj}_{[c_1, c_2]} \left(\bar{c}_m(\tau_k) - 2 \left(\sqrt{\gamma \bar{c}_m(\tau_k)} + \gamma \right) \right). \end{aligned}$$

1216 Assuming priors are chosen such that new models are treated optimistically (or if γ is sufficiently
 1217 large), $\mu_m^U(\tau_k)$ will be close to 1 (e.g., if $\bar{\mu}_m(\tau_k) = 0$, $\mu_m^U(\tau_k) = \text{proj}_{[0,1]}(2\gamma) \approx 1$ for appropriate
 1218 γ) and $c_m^L(\tau_k)$ will be close to c_1 (e.g., if $\bar{c}_m(\tau_k) = c_1$, $c_m^L(\tau_k) = \text{proj}_{[c_1, c_2]}(c_1 - 2(\sqrt{\gamma c_1} + \gamma)) \approx c_1$,
 1219 noting $c_1, c_2 \in [0, 1]$). Let these optimistic initial values be U_{init} and L_{init} respectively.

1220 Consider an update point τ_k . Let $\mathcal{N}_{\text{new},k} \subseteq \mathcal{M}_{\tau_k}$ be the set of models that are new at or before τ_k
 1221 and have not yet been deployed ($N_m(\tau_k) = 0$). All models in $\mathcal{N}_{\text{new},k}$ will have nearly identical,
 1222 highly optimistic $(\mu_m^U, c_m^L) \approx (U_{\text{init}}, L_{\text{init}})$ values. If the number of such equally optimistic new
 1223 models, $|\mathcal{N}_{\text{new},k}|$, plus other potentially optimistic (but previously explored) models, exceeds M_{\max} ,
 1224 the DeployOPT phase must select only M_{\max} models. If the new models in $\mathcal{N}_{\text{new},k}$ dominate the
 1225 selection pool due to their optimism, DeployOPT will choose M_{\max} models from $\mathcal{N}_{\text{new},k}$ (possibly
 1226 along with some already explored models). Crucially, if there are more than M_{\max} models within
 1227 $\mathcal{N}_{\text{new},k}$ (or a larger pool of similarly optimistic candidates) that yield effectively the same objective
 1228 value for DeployOPT (because their μ_m^U, c_m^L, α_m are similar), the selection among these specific
 1229 candidates becomes arbitrary (e.g., dependent on tie-breaking rules).
 1230

1231 A truly superior new model $m^* \in \mathcal{N}_{\text{new},k}$ might thus be part of a large batch of $N_{\text{batch}} > M_{\max}$
 1232 new models that all appear equally promising to DeployOPT. In this scenario, m^* might not be
 1233 selected for deployment in stage k , deferring its evaluation. This deferral means the system misses
 1234 the opportunity to benefit from m^* 's potentially high true performance μ_{m^*} for the duration of stage
 1235 k , which is $T_k = T/K$ rounds.

1236 **Lemma 7** (Model Discovery Bottleneck Regret). *Let M_{\max} be the maximum number of concur-
 1237 rently deployed models, T be the total time horizon, and K be the number of stages, with each stage*

1242 having $T_k = T/K$ rounds. The component of expected deployment regret due to the bottleneck in
 1243 discovering and evaluating all N models, denoted $\mathcal{R}_{\text{deploy,discovery}}(T)$, is bounded by:
 1244

$$1245 \quad \mathcal{R}_{\text{deploy,discovery}}(T) = \mathcal{O}\left(\frac{N \cdot (T/K)}{M_{\max}}\right) = \mathcal{O}\left(\frac{NT}{M_{\max}K}\right).$$

1248
 1249 *Proof.* Each of the N models in the universe \mathcal{M}_T needs to be deployed at least once to gather initial
 1250 empirical data and move its UCB/LCB estimates away from their initial purely optimistic values.
 1251 We are interested in the total regret incurred until all N models have had at least one such initial
 1252 deployment opportunity.

1253 Due to the constraint $|\mathcal{D}_k(\mathcal{A})| \leq M_{\max}$, at most M_{\max} distinct models can be deployed and evaluated
 1254 in any given stage k . If the system prioritizes exploring previously undeployed models (which is
 1255 encouraged by their optimistic UCB/LCB values), it will take a minimum of $K_{\text{explore}} = \lceil N/M_{\max} \rceil$
 1256 stages to ensure that every model in \mathcal{M}_T (assuming all become available early enough) has been
 1257 deployed at least once.

1258 Consider a discovery period spanning these first K_{explore} effective stages. During any given stage
 1259 $j \in [1, K_{\text{explore}}]$ within this period, if the set of M_{\max} models deployed, $\mathcal{D}_j(\mathcal{A})$, does not include
 1260 some model $m^* \in \mathcal{M}_T$ which is (a) available ($m^* \in \mathcal{M}_{\tau_j}$), (b) truly superior to at least one
 1261 deployed model $m' \in \mathcal{D}_j(\mathcal{A})$, and (c) m^* has not been deployed yet because it is waiting its turn
 1262 due to the arbitrary selection among many new, equally optimistic models, then regret is incurred.
 1263 The per-query regret in such a case can be up to 1 (if $\mu_{m^*} \approx 1$ and $\mu_{m'} \approx 0$).

1264 The total number of queries over these K_{explore} stages is $K_{\text{explore}} \cdot T_k = \lceil N/M_{\max} \rceil \cdot (T/K)$.
 1265 During this cumulative period, the system is effectively cycling through the N models. If the se-
 1266 lection process within each stage means that, on average, the deployed set is suboptimal because
 1267 truly good models are among the $(N - j \cdot M_{\max})$ yet to be tried, the system incurs regret. The
 1268 term $\mathcal{O}(NT/(M_{\max}K))$ represents the cumulative regret if, for a duration equivalent to N/M_{\max}
 1269 full stages (each of length T/K), the system operates with a deployed set that is, on average, $\mathcal{O}(1)$
 1270 worse per query than if all models had already been evaluated. This occurs because the M_{\max} slots
 1271 are occupied by models chosen optimistically, and a superior model might be consistently deferred
 1272 if it's part of a large pool of indistinguishably optimistic new models.

1273 More formally, consider the N models. Each requires roughly one exploration slot of duration T_k .
 1274 These N slots are processed in parallel groups of M_{\max} . This implies approximately N/M_{\max}
 1275 stages are spent ensuring all models receive initial evaluation. If, during these N/M_{\max} stages, the
 1276 average deployed set yields $\mathcal{O}(1)$ less reward per query compared to an optimal deployment (had all
 1277 models been known), the total regret from this discovery phase is $(N/M_{\max}) \cdot (T/K) \cdot \mathcal{O}(1)$. The
 1278 expectation $\mathbb{E}[\cdot]$ in $\mathcal{R}_{\text{deploy,discovery}}(T)$ averages over the random tie-breaking in DeployOPT when
 1279 faced with multiple equally optimistic new models, and the stochastic arrival pattern of models. The
 1280 $\mathcal{O}(\cdot)$ notation absorbs constants related to the maximum possible per-query regret (e.g., 1) and the
 1281 precise nature of average suboptimality during this discovery period. \square

1282
 1283 This component accounts for the scenarios where truly good models might be systematically delayed
 1284 in their initial deployment if they frequently arrive alongside many other new models, leading to
 1285 arbitrary choices among a large pool of initially indistinguishable (optimistic) candidates, subject to
 1286 the M_{\max} deployment limit over K stages.

1288 **Total Deployment Regret.** The total deployment regret $\mathcal{R}_{\text{deploy}}(T)$ is the sum of the regret from
 1289 parameter uncertainty (Lemma 6) and the regret from the model discovery bottleneck (Lemma 7).

1291 **Lemma 8** (Total Deployment Regret Bound). *Let N be the total number of models, M_{\max} the
 1292 maximum deployed models, T the horizon, and K the number of stages. Let $\gamma = \Theta(\log(NT/\delta))$.
 1293 The total expected deployment regret $\mathcal{R}_{\text{deploy}}(T)$ is bounded by:*

$$1294 \quad \mathcal{R}_{\text{deploy}}(T) \leq \mathcal{O}\left(\sqrt{T \log(NT/\delta) \cdot \min(N, KM_{\max})} + M_{\max}K \log(NT/\delta) + \frac{NT}{M_{\max}K}\right).$$

1296 *Proof.* The total deployment regret is the sum of the bounds from Lemma 6 and Lemma 7:
 1297

$$\begin{aligned}
 1298 \quad \mathcal{R}_{\text{deploy}}(T) &= \mathcal{R}_{\text{deploy,learn}}(T) + \mathcal{R}_{\text{deploy,discovery}}(T) \\
 1299 &\leq \mathcal{O}\left(\sqrt{T \log(NT/\delta) \cdot \min(N, KM_{\max})} + M_{\max}K \log(NT/\delta)\right) + \mathcal{O}\left(\frac{NT}{M_{\max}K}\right) \\
 1300 &= \mathcal{O}\left(\sqrt{T \log(NT/\delta) \cdot \min(N, KM_{\max})} + M_{\max}K \log(NT/\delta) + \frac{NT}{M_{\max}K}\right).
 \end{aligned}$$

1301
 1302
 1303
 1304
 1305 \square
 1306
 1307
 1308
 1309
 1310 The total deployment regret bound in Lemma 8 highlights two distinct challenges in the deployment
 1311 phase. The terms $\mathcal{O}(\sqrt{T \log(NT/\delta) \cdot \min(N, KM_{\max})})$ and $\mathcal{O}(M_{\max}K \log(NT/\delta))$ capture the
 1312 cost of learning the parameters of models that are considered for deployment. This cost depends
 1313 on the horizon T , the number of deployment slots M_{\max} , the number of stages K , and logarithmic
 1314 factors related to the total number of models N and confidence δ . The term $\mathcal{O}(NT/(M_{\max}K))$
 1315 reflects the structural cost imposed by the discovery bottleneck: when the universe of models N is
 1316 large compared to M_{\max} and the number of adaptation opportunities K , there is an inherent regret
 1317 incurred in sequentially exploring models to identify the best ones. This term can dominate if N is
 1318 very large or K is small, underscoring the importance of the deployment frequency and capacity in
 1319 dynamic LLM environments.
 1320

1321 C.4 BOUNDING THE TOTAL ROUTING REGRET

1322 We now bound the total routing regret term $\mathcal{R}_{\text{routing}}(T)$ identified in Lemma 4. This involves sum-
 1323 ming the per-stage regrets incurred by the Request Routing Phase of StageRoute due to using
 1324 estimated model parameters within the deployed sets \mathcal{D}_k . This part of the proof follows a similar
 1325 structure to the analysis of UCB-style algorithms for the Bandits with Knapsacks problem Agrawal
 1326 & Devanur (2014).
 1327

1328 **Lemma 9** (Performance Bound). *Let $ALGO_k = \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t$ be the total observed performance in
 1329 stage k . With probability at least $1 - (M_k T_k) \exp(-\mathcal{O}(\gamma))$,*
 1330

$$1331 \quad \left| \sum_{t=\tau_k}^{\tau_{k+1}-1} \left(r_t - \sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m^U(t) p_t^*(m) \right) \right| \leq \mathcal{O}\left(\sqrt{\gamma M_k ALGO_k} + \gamma M_k\right).$$

1332
 1333
 1334
 1335
 1336
 1337
 1338 *Proof.* The proof follows the structure of Lemma 4.4 in Babaioff et al. (2015), adapted to our nota-
 1339 tion for models $m \in \mathcal{D}_k(\mathcal{A})$ and performance μ_m , UCB $\mu_m^U(t)$, chosen model m_t , routing distribu-
 1340 tion p_t^* (from Eq. equation 7), and summing over $t \in [\tau_k, \tau_{k+1} - 1]$ (length T_k).
 1341

1342 We use Lemma 1 and Lemma 3 (for performance). High probability bounds analogous to (5) and
 1343 (6) in the source proof hold for sums over $t \in [\tau_k, \tau_{k+1} - 1]$:
 1344

$$\begin{aligned}
 1345 \quad \left| \sum_t (r_t - \mu_{m_t}) \right| &\leq \mathcal{O}(T_k \cdot f_{\text{rad}}(\frac{1}{T_k} \sum_t \mu_{m_t}, T_k)) \\
 1346 \quad \left| \sum_t \left(\sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m^U(t) p_t^*(m) - \mu_{m_t}^U(t) \right) \right| &\leq \mathcal{O}(T_k \cdot f_{\text{rad}}(\frac{1}{T_k} \sum_t \mu_{m_t}^U(t), T_k))
 \end{aligned}$$

1350 And analogous to (7) in the source, using Lemma 3 and Lemma 2:
1351

$$\begin{aligned}
1352 \quad & \left| \sum_{t=\tau_k}^{\tau_{k+1}-1} (\mu_{m_t} - \mu_{m_t}^U(t)) \right| \leq \sum_{t=\tau_k}^{\tau_{k+1}-1} |\mu_{m_t} - \mu_{m_t}^U(t)| \\
1353 \quad & \leq \mathcal{O} \left(\sum_{t=\tau_k}^{\tau_{k+1}-1} f_{rad}(\hat{\mu}_{m_t}(t), N_{m_t}(t) + 1) \right) \\
1354 \quad & \leq \mathcal{O} \left(\sum_{m \in \mathcal{D}_k(\mathcal{A})} \sum_{\text{plays } j \text{ of } m \text{ in stage } k} f_{rad}(\hat{\mu}_m(\text{at play } j), N_m(\text{at play } j) + 1) \right) \\
1355 \quad & \leq \mathcal{O} \left(\sum_{m \in \mathcal{D}_k(\mathcal{A})} \left(\sqrt{\gamma(N_m(\tau_{k+1}) - N_m(\tau_k))\mu_m} + \gamma \right) \right) \\
1356 \quad & \leq \mathcal{O} \left(\sqrt{\gamma M_k \left(\sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m(N_m(\tau_{k+1}) - N_m(\tau_k)) \right)} + \gamma M_k \right) \\
1357 \quad & \leq \mathcal{O} \left(\sqrt{\gamma M_k \left(\sum_{t=\tau_k}^{\tau_{k+1}-1} \mu_{m_t} \right)} + \gamma M_k \right)
\end{aligned}$$

1358 Let $A = \sum_{t=\tau_k}^{\tau_{k+1}-1} \sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m^U(t) p_t^*(m)$. Combining these bounds using the triangle inequality
1359 on $r_t - \sum_m \mu_m^U(t) p_t^*(m) = (r_t - \mu_{m_t}) + (\mu_{m_t} - \mu_{m_t}^U(t)) + (\mu_{m_t}^U(t) - \sum_m \mu_m^U(t) p_t^*(m))$, similar
1360 to the source proof structure, leads to an inequality relating A and $\sum r_t = \text{ALGO}_k$. If $\sum r_t \approx \sum \mu_{m_t}$ and $A \approx \sum \mu_{m_t}^U(t)$, then the difference $|\sum(\mu_{m_t} - \mu_{m_t}^U(t))|$ dominates. This typically
1361 leads to $A - \mathcal{O}(\sqrt{\gamma M_k A} + \gamma M_k) \leq \text{ALGO}_k$ (assuming μ^U are UCBs and $A \approx \sum \mu_{m_t}^U(t)$). This
1362 implies $\sqrt{A} \leq \sqrt{\text{ALGO}_k} + \mathcal{O}(\sqrt{\gamma M_k})$. Substituting this back into the bounds for the difference
1363 $|\text{ALGO}_k - A|$ yields the claimed result.
1364

$$1365 \quad \left| \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t - \sum_{t=\tau_k}^{\tau_{k+1}-1} \sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m^U(t) p_t^*(m) \right| \leq \mathcal{O}(\sqrt{\gamma M_k \text{ALGO}_k} + \gamma M_k).$$

□

1366 **Lemma 10** (Cost Bound). Let $\sum_{t=\tau_k}^{\tau_{k+1}-1} c_t$ be the total observed cost in stage k . Let $B_k = b \cdot T_k$ be
1367 the effective expected cost budget for the stage. With probability at least $1 - (M_k T_k) \exp(-\mathcal{O}(\gamma))$
1368 (i.e., on event \mathcal{E}),

$$1369 \quad \left| \sum_{t=\tau_k}^{\tau_{k+1}-1} \left(c_t - \sum_{m \in \mathcal{D}_k(\mathcal{A})} c_m^L(t) p_t^*(m) \right) \right| \leq \mathcal{O} \left(\sqrt{\gamma M_k B_k} + \gamma M_k \right).$$

1370 *Proof.* The proof mirrors that of Lemma 9 (and Lemma 4.5 in Babaioff et al. (2015)), replacing performance with cost, μ_m with $\mathbb{E}[c_m]$, $\mu_m^U(t)$ with $c_m^L(t)$, and r_t with c_t . The probability distribution p_t^* is from Eq. equation 7. Key steps involve bounding $|\sum c_t - \sum \mathbb{E}[c_{m_t}]|$,
1371 $|\sum(\sum_m c_m^L(t) p_t^*(m)) - \sum c_{m_t}^L(t)|$, and $|\sum \mathbb{E}[c_{m_t}] - \sum c_{m_t}^L(t)|$. The last term is bounded similarly
1372 using Lemma 3 and Lemma 2:

$$1373 \quad \left| \sum_{t=\tau_k}^{\tau_{k+1}-1} (\mathbb{E}[c_{m_t}] - c_{m_t}^L(t)) \right| \leq \mathcal{O} \left(\sqrt{\gamma M_k \left(\sum_{t=\tau_k}^{\tau_{k+1}-1} \mathbb{E}[c_{m_t}] \right)} + \gamma M_k \right).$$

1374 Let $A' = \sum_{t=\tau_k}^{\tau_{k+1}-1} \mathbb{E}[c_{m_t}]$. The algorithm ensures $\sum_{m \in \mathcal{D}_k(\mathcal{A})} c_m^L(t) p_t^*(m) \leq b$ at each step
1375 t . Summing over the stage gives $\sum_{t=\tau_k}^{\tau_{k+1}-1} \sum_{m \in \mathcal{D}_k(\mathcal{A})} c_m^L(t) p_t^*(m) \leq b \cdot T_k = B_k$. Let

1404 $X_c = \sum_{t=\tau_k}^{\tau_{k+1}-1} \sum_{m \in \mathcal{D}_k(\mathcal{A})} c_m^L(t) p_t^*(m)$. Then $\left| \sum_{t=\tau_k}^{\tau_{k+1}-1} c_t - X_c \right| \leq \mathcal{O}(\sqrt{\gamma M_k A'} + \gamma M_k)$
 1405 where A' is the sum of true expected costs. On event \mathcal{E} , $c_m^L(t) \leq \mathbb{E}[c_m]$, so $X_c \leq A'$. Also,
 1406 $A' \leq X_c + \mathcal{O}(\sqrt{\gamma M_k A'} + \gamma M_k)$. Since $X_c \leq B_k$, it follows that $A' \leq B_k + \mathcal{O}(\sqrt{\gamma M_k A'} + \gamma M_k)$.
 1407 This implies $\sqrt{A'} \leq \sqrt{B_k} + \mathcal{O}(\sqrt{\gamma M_k})$. Substituting this back into the concentration bounds for
 1408 $|\sum c_t - X_c|$ (and noting $A' \approx B_k$ in the error term's leading order) yields the final result. \square
 1409

1410 **Lemma 11** (Per-Stage Routing Regret Bound). *Let $OPT_k^{val} = \max_p \{ \sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m p(m) \mid$
 1411 $\sum_{m \in \mathcal{D}_k(\mathcal{A})} \mathbb{E}[c_m] p(m) \leq b, \sum p(m) = 1, 0 \leq p(m) \leq \alpha_m \}$ be the optimal expected reward
 1412 rate within stage k using $\mathcal{D}_k(\mathcal{A})$ and true parameters. Let $OPT_k = T_k \cdot OPT_k^{val}$ be the total optimal
 1413 expected performance in stage k . Let $ALGO_k = \sum_{t=\tau_k}^{\tau_{k+1}-1} r_t$. Assume $M_k \gamma \leq \mathcal{O}(B_k)$. Then, on
 1414 the event \mathcal{E} (implying high probability for the bounds within the stage), the routing regret for stage
 1415 k , conditioned on \mathcal{D}_k , is bounded by:*
 1416

$$\mathbb{E}[OPT_k - ALGO_k \mid \mathcal{D}_k] \leq \mathcal{O}(\sqrt{\gamma M_k OPT_k} + \gamma M_k)$$

1417 (The expectation is conditioned on the choice of \mathcal{D}_k , which itself depends on information up to τ_k).
 1418

1419 *Proof.* On event \mathcal{E} , the following hold:
 1420

1. $\mu_m^U(t) \geq \mu_m$ and $c_m^L(t) \leq \mathbb{E}[c_m]$ for all relevant m, t .
2. Lemma 9: $|\sum_t (r_t - \sum_m \mu_m^U(t) p_t^*(m))| \leq \mathcal{O}(\sqrt{\gamma M_k ALGO_k} + \gamma M_k)$.
3. Lemma 10: $|\sum_t (c_t - \sum_m c_m^L(t) p_t^*(m))| \leq \mathcal{O}(\sqrt{\gamma M_k B_k} + \gamma M_k)$. Also, $\sum_t c_t \leq B_k + \mathcal{O}(\sqrt{\gamma M_k B_k} + \gamma M_k)$.

1421 From the algorithm's choice of p_t^* (solving Eq. equation 7) and property (1):
 1422

$$\sum_{t=\tau_k}^{\tau_{k+1}-1} \sum_{m \in \mathcal{D}_k(\mathcal{A})} \mu_m^U(t) p_t^*(m) \geq OPT_k$$

1423 Combining this with property (2):
 1424

$$\begin{aligned} ALGO_k &= \sum_t r_t \geq \sum_t \sum_m \mu_m^U(t) p_t^*(m) - \mathcal{O}(\sqrt{\gamma M_k ALGO_k} + \gamma M_k) \\ &\geq OPT_k - \mathcal{O}(\sqrt{\gamma M_k ALGO_k} + \gamma M_k) \end{aligned}$$

1425 Rearranging and assuming $ALGO_k \leq OPT_k$ (regret is non-negative):
 1426

$$OPT_k - ALGO_k \leq \mathcal{O}(\sqrt{\gamma M_k ALGO_k} + \gamma M_k)$$

1427 If $ALGO_k \leq OPT_k$, then $\sqrt{ALGO_k} \leq \sqrt{OPT_k}$.
 1428

$$OPT_k - ALGO_k \leq \mathcal{O}(\sqrt{\gamma M_k OPT_k} + \gamma M_k)$$

1429 Taking expectation conditioned on \mathcal{D}_k (and implicitly on \mathcal{E} for the bounds to hold), the result follows.
 1430 The assumption $M_k \gamma \leq \mathcal{O}(B_k)$ is used in concentration bounds for costs. Moreover, since the
 1431 estimation errors for both performance and cost are governed by the same concentration inequalities,
 1432 the expected budget violation is on the same order as the regret. \square
 1433

1434 **Lemma 12** (Total Routing Regret Bound). *Let K be the total number of stages. Let $M_k = |\mathcal{D}_k| \leq$
 1435 M_{\max} . Let $\delta \in (0, 1)$ be the desired overall confidence. Set $\gamma = \Theta(\log(NT/\delta))$. Then the total
 1436 expected routing regret is bounded by:*
 1437

$$\mathcal{R}_{\text{routing}}(T) = \mathbb{E} \left[\sum_{k=1}^K (OPT_k - ALGO_k) \right] \leq \mathcal{O}(\sqrt{\gamma M_{\max} K T} + K \gamma M_{\max})$$

1438 Substituting $\gamma = \Theta(\log(NT/\delta))$, this becomes:
 1439

$$\mathcal{R}_{\text{routing}}(T) \leq \mathcal{O}(\sqrt{M_{\max} K T \log(NT/\delta)} + K M_{\max} \log(NT/\delta))$$

1458 *Proof.* From Lemma 4, $\mathcal{R}_{\text{routing}}(T) = \sum_{k=1}^K \mathbb{E}[\text{OPT}_k - \text{ALGO}_k]$. Here $\text{OPT}_k = T_k V(b, \mathcal{D}_k)$
 1459 and ALGO_k is the algorithm's reward in stage k . The outer expectation $\mathbb{E}[\cdot]$ averages over all
 1460 randomness, including \mathcal{D}_k and the failure of event \mathcal{E} (which occurs with probability $\leq \delta$). Using
 1461 law of total expectation: $\mathbb{E}[\text{OPT}_k - \text{ALGO}_k] = \mathbb{E}[\mathbb{E}[\text{OPT}_k - \text{ALGO}_k | \mathcal{D}_k]]$.

1462 We apply Lemma 11. Choosing $\gamma = \Theta(\log(NT/\delta))$ ensures that event \mathcal{E} holds with probability at
 1463 least $1 - \delta$. On \mathcal{E} :

$$1465 \mathbb{E}[\text{OPT}_k - \text{ALGO}_k | \mathcal{D}_k] \leq \mathcal{O}\left(\sqrt{\gamma M_k \text{OPT}_k} + \gamma M_k\right)$$

1466 Taking expectation over \mathcal{D}_k :

$$1468 \mathbb{E}[\text{OPT}_k - \text{ALGO}_k] \leq \mathcal{O}\left(\mathbb{E}\left[\sqrt{\gamma M_k \text{OPT}_k}\right] + \gamma \mathbb{E}[M_k]\right) + \delta \cdot T_k$$

1470 Summing this bound over all K stages:

$$1471 \mathcal{R}_{\text{routing}}(T) \leq \sum_{k=1}^K \mathcal{O}\left(\mathbb{E}\left[\sqrt{\gamma M_k \text{OPT}_k}\right] + \gamma \mathbb{E}[M_k]\right) + \delta T$$

1474 Using linearity of expectation, $M_k \leq M_{\max}$, Jensen's inequality ($\mathbb{E}[\sqrt{X}] \leq \sqrt{\mathbb{E}[X]}$), and $\mathbb{E}[M_k] \leq$
 1475 M_{\max} :

$$1477 \mathcal{R}_{\text{routing}}(T) \leq \mathcal{O}\left(\sum_{k=1}^K \mathbb{E}\left[\sqrt{\gamma M_{\max} \text{OPT}_k}\right] + \sum_{k=1}^K \gamma M_{\max}\right) + \delta T$$

$$1480 \leq \mathcal{O}\left(\sqrt{\gamma M_{\max}} \sum_{k=1}^K \sqrt{\mathbb{E}[\text{OPT}_k]} + K \gamma M_{\max}\right) + \delta T$$

1482 Applying Cauchy-Schwarz: $\left(\sum_{k=1}^K \sqrt{\mathbb{E}[\text{OPT}_k]}\right)^2 \leq K \sum_{k=1}^K \mathbb{E}[\text{OPT}_k]$. Thus,
 1484 $\sum_{k=1}^K \sqrt{\mathbb{E}[\text{OPT}_k]} \leq \sqrt{K \sum_{k=1}^K \mathbb{E}[\text{OPT}_k]}$. Since rewards are in $[0, 1]$, $V(b, \mathcal{D}_k) \leq 1$,
 1485 so $\text{OPT}_k = T_k V(b, \mathcal{D}_k) \leq T_k$. Summing over k : $\sum_{k=1}^K \text{OPT}_k \leq \sum_{k=1}^K T_k = T$. So,
 1487 $\sum_{k=1}^K \mathbb{E}[\text{OPT}_k] \leq T$. Substituting this upper bound:

$$1488 \mathcal{R}_{\text{routing}}(T) \leq \mathcal{O}\left(\sqrt{\gamma M_{\max} K T} + K \gamma M_{\max}\right) + \delta T$$

1490 If δ is chosen small enough, the δT term is absorbed. This establishes the first form of the bound.
 1491 Substituting $\gamma = \Theta(\log(NT/\delta))$ yields the second form. \square

1493 C.5 TOTAL REGRET BOUND

1494 The overall regret of StageRoute accounts for several sources of suboptimality. The total ex-
 1495 pected regret $\mathcal{R}(T)$ can now be understood as the sum of two main components:

- 1497 1. $\mathcal{R}_{\text{routing}}(T)$: The routing regret within deployed sets (Lemma 12).
- 1498 2. $\mathcal{R}_{\text{deploy}}(T)$: The total deployment regret, encompassing both learning uncertainty and
 1499 model discovery bottleneck (Lemma 8).

1501 Summing these bounds:

$$1502 \mathcal{R}(T) = \mathcal{R}_{\text{routing}}(T) + \mathcal{R}_{\text{deploy}}(T)$$

$$1503 \leq \mathcal{O}\left(\sqrt{M_{\max} K T \log(NT/\delta)} + K M_{\max} \log(NT/\delta)\right)$$

$$1505 + \mathcal{O}\left(\sqrt{T \log(NT/\delta) \cdot \min(N, K M_{\max})} + M_{\max} K \log(NT/\delta) + \frac{NT}{M_{\max} K}\right)$$

1508 Combining terms, and noting that for $K \geq 1$, $\sqrt{M_{\max} K T \log(NT/\delta)}$ dominates or is equivalent
 1509 to $\sqrt{T \log(NT/\delta) \cdot \min(N, K M_{\max})}$ and $K M_{\max} \log(NT/\delta)$:

$$1511 \mathcal{R}(T) \leq \mathcal{O}\left(\sqrt{M_{\max} K T \log(NT/\delta)} + \frac{NT}{M_{\max} K}\right).$$

1512 **D LOWER BOUND FOR ONLINE LLM ROUTING**
 1513

1514 We establish a lower bound on the regret for any online LLM routing policy. The construction
 1515 considers a scenario where the set of competitive models and their performances can evolve over
 1516 time, divided into batches. Within each batch, the algorithm faces a sequential decision problem of
 1517 selecting the best among M available models, where the identity of the best model is unknown and
 1518 can change from batch to batch. To isolate the learning challenge, we make several simplifications.
 1519 We assume each model invocation incurs a unit cost ($c_{m_t} = 1$), rendering the budget constraint
 1520 trivial if the per-query budget $b \geq 1$. We also assume that the system can always deploy any of
 1521 the M models under consideration in a given batch ($M_{\max} \geq M$) and that there are no per-model
 1522 capacity limits ($\alpha_m = 1$ for all m). The core difficulty then lies in continuously learning and
 1523 adapting to the best-performing model(s) in each batch.

1524 The proof strategy is to construct a class of adversarial problem instances. We will demonstrate
 1525 that any online algorithm \mathcal{A} must incur significant regret on at least one instance within this class.
 1526 This argument adapts a batch-based structure common in analyses of learning problems with non-
 1527 stationary environments.

1528 **Step 1: Construction of Hard Problem Instances.** Let $\epsilon > 0$ be a small parameter, which will
 1529 be determined later. The total time horizon of T queries is partitioned into N_B contiguous batches,
 1530 denoted $\mathcal{B}_1, \dots, \mathcal{B}_{N_B}$. Each batch j consists of $\Delta = T/N_B$ queries. For simplicity, we assume T is
 1531 an integer multiple of N_B .

1532 For each batch $j \in \{1, \dots, N_B\}$, we consider a set of M models available to the algorithm \mathcal{A} .
 1533 These models are indexed $i \in \{1, \dots, M\}$ specifically for the current batch j . The performance
 1534 characteristics of these M models are defined as follows: one model is designated as the “strong”
 1535 model, and the remaining $M-1$ models are “weak”. Let $s_j \in \{1, \dots, M\}$ be the index of this strong
 1536 model in batch j , chosen uniformly at random by the adversary and unknown to the algorithm. The
 1537 reward r_t obtained from selecting a model at query $t \in \mathcal{B}_j$ is drawn from a Bernoulli distribution:

1538

- 1539 • If model m_{s_j} (the strong model for batch j , with index s_j) is chosen, $r_t \sim \text{Bernoulli}(\mu_H^{(j)})$,
 1540 where the mean reward is $\mu_H^{(j)} = \frac{1}{2} + j\epsilon$.
- 1541 • If any other model m_i (where $i \in \{1, \dots, M\}$ and $i \neq s_j$) from the set of M models for
 1542 batch j is chosen, $r_t \sim \text{Bernoulli}(\mu_L^{(j)})$, where the mean reward is $\mu_L^{(j)} = \frac{1}{2} + (j-1)\epsilon$.

1543 Rewards from different queries are assumed to be independent. The crucial gap in expected reward
 1544 between the strong model and any weak model in batch j is $\mu_H^{(j)} - \mu_L^{(j)} = \epsilon$. To ensure that all mean
 1545 rewards $\mu_H^{(j)}$ and $\mu_L^{(j)}$ lie comfortably within the interval $[0, 1]$, we impose the condition $N_B\epsilon \leq \frac{1}{4}$.
 1546 This ensures $\mu_H^{(N_B)} = \frac{1}{2} + N_B\epsilon \leq \frac{1}{2} + \frac{1}{4} = \frac{3}{4} < 1$, and the smallest mean, $\mu_L^{(1)} = \frac{1}{2} + (1-1)\epsilon = \frac{1}{2}$,
 1547 is also valid.

1548 A complete problem instance is characterized by a sequence of strong model indices
 1549 $(s_1, s_2, \dots, s_{N_B})$. The actual underlying LLMs corresponding to these indices could differ from
 1550 batch to batch, but in each batch j , the algorithm \mathcal{A} faces a choice among M options with the
 1551 specified reward structure, and s_j is unknown.

1552 **Step 2: Per-Batch Regret from Identification Difficulty.** Fix a batch $j \in \{1, \dots, N_B\}$, and let
 1553 s_j^* denote the true index of the strong model, unknown to algorithm \mathcal{A} . To identify $m_{s_j^*}$ (mean
 1554 $\mu_H^{(j)}$) from the $M-1$ weak models (mean $\mu_L^{(j)}$, gap ϵ) with a constant probability $p_{\text{succ}} < 1$ (e.g.,
 1555 $p_{\text{succ}} = 3/4$), any algorithm requires a query complexity of $\Omega(M\epsilon^{-2})$ Agarwal et al. (2017); Li
 1556 et al. (2023). This implies there is a universal constant $c_S > 0$ such that at least $c_S M \epsilon^{-2}$ queries
 1557 are necessary to achieve success probability p_{succ} .

1558 We set the batch length $\Delta = (c_S/2)M\epsilon^{-2}$. Since $c_S/2 < c_S$, this choice of Δ is insufficient
 1559 for reliable identification with probability p_{succ} . Consequently, algorithm \mathcal{A} fails to identify $m_{s_j^*}$
 1560 within Δ queries with at least a constant probability $p_{\text{fail}} \geq 1 - p_{\text{succ}}$ (e.g., setting $p_{\text{succ}} = 3/4$
 1561 gives $p_{\text{fail}} \geq 1/4$). Let $\mathcal{E}_{\text{fail}}$ denote this event of identification failure.

Let $N_{j,weak}$ be the number of queries to weak models in batch j . Conditional on \mathcal{E}_{fail} , the algorithm lacks knowledge of s_j^* . In such a state of confusion (especially when $M \geq 2$), it is expected to select weak models a significant fraction of the time. For instance, if choices upon failure are made nearly uniformly among the M models, weak models are selected $\frac{M-1}{M}\Delta$ times in expectation. Since $M \geq 2$, $(M-1)/M \geq 1/2$. Thus, we can state that $\mathbb{E}[N_{j,weak} | \mathcal{E}_{fail}] \geq c_F\Delta$ for a chosen constant $c_F \geq 1/2$. By the law of total expectation, and since $\mathbb{E}[N_{j,weak} | \mathcal{E}_{fail}^c] \geq 0$:

$$\mathbb{E}[N_{j,weak}] = \mathbb{P}(\mathcal{E}_{fail})\mathbb{E}[N_{j,weak} | \mathcal{E}_{fail}] + \mathbb{P}(\mathcal{E}_{fail}^c)\mathbb{E}[N_{j,weak} | \mathcal{E}_{fail}^c] \geq p_{fail} \cdot c_F\Delta.$$

Using $p_{fail} \geq 1/4$ and $c_F \geq 1/2$, this gives $\mathbb{E}[N_{j,weak}] \geq \frac{1}{4} \cdot \frac{1}{2}\Delta = \frac{\Delta}{8}$. The expected regret in batch j (for a fixed s_j^* , averaged over \mathcal{A} 's randomness) is $R_j(s_j^*) = \epsilon\mathbb{E}[N_{j,weak}] \geq \epsilon(\Delta/8)$. Since this lower bound does not depend on the specific index s_j^* , and the adversary chooses s_j^* uniformly, the expected regret in batch j (averaged over s_j^* and \mathcal{A}) is $\mathbb{E}_{\tilde{s}_j}[R_j] \geq \frac{1}{8}\epsilon\Delta$.

Step 3: Regret Along the Horizon and Parameter Choice. The expected regret in each batch j is $\mathbb{E}_{\tilde{s}_j}[R_j] \geq \frac{1}{8}\epsilon\Delta$. The total expected regret over N_B batches for algorithm \mathcal{A} is $R_T(\mathcal{A}) = \sum_{j=1}^{N_B} \mathbb{E}_{\tilde{s}_j}[R_j] \geq N_B \frac{1}{8}\epsilon\Delta$. Since $N_B = T/\Delta$, we have $R_T(\mathcal{A}) \geq (T/\Delta)\frac{1}{8}\epsilon\Delta = \frac{1}{8}T\epsilon$.

We have set the batch length $\Delta = (c_S/2)M\epsilon^{-2}$ in Step 2. The other primary constraint, from Step 1, is $N_B\epsilon \leq 1/4$, which implies $(T/\Delta)\epsilon \leq 1/4$. Substituting $\Delta = (c_S/2)M\epsilon^{-2}$ into this constraint:

$$\frac{T}{(c_S/2)M\epsilon^{-2}}\epsilon \leq \frac{1}{4} \implies \frac{2T\epsilon^3}{c_S M} \leq \frac{1}{4} \implies \epsilon^3 \leq \frac{c_S M}{8T}.$$

To maximize the lower bound on regret $\frac{1}{8}T\epsilon$, we choose ϵ to be as large as possible, subject to this constraint. We set $\epsilon = \left(\frac{c_S M}{8T}\right)^{1/3}$. This choice ensures $\epsilon^3 = \frac{c_S M}{8T}$.

Substituting this ϵ into the total regret expression:

$$R_T(\mathcal{A}) \geq \frac{1}{8}T\left(\frac{c_S M}{8T}\right)^{1/3} = \frac{1}{8}T\frac{c_S^{1/3}M^{1/3}}{8^{1/3}T^{1/3}} = \frac{1}{8}\frac{c_S^{1/3}}{2}M^{1/3}T^{2/3} = \frac{c_S^{1/3}}{16}M^{1/3}T^{2/3}.$$

Since $c_S > 0$ is a universal constant from the identification complexity, let $C = c_S^{1/3}/16$. Then $C > 0$. Thus, $R_T(\mathcal{A}) \geq CM^{1/3}T^{2/3}$.

Finally, we verify the conditions on our parameter choices:

1. Value of Δ : $\epsilon^2 = \left(\frac{c_S M}{8T}\right)^{2/3}$. $\Delta = (c_S/2)M\epsilon^{-2} = (c_S/2)M\left(\frac{c_S M}{8T}\right)^{-2/3} = (c_S/2)M\frac{(8T)^{2/3}}{(c_S M)^{2/3}} = (c_S/2)M\frac{8^{2/3}T^{2/3}}{c_S^{2/3}M^{2/3}} = (c_S/2)M\frac{4T^{2/3}}{c_S^{2/3}M^{2/3}} = \frac{c_S}{2}\frac{4M^{1/3}T^{2/3}}{c_S^{2/3}} = 2c_S^{1/3}M^{1/3}T^{2/3}$. Let $c_\Delta = 2c_S^{1/3}$. So $\Delta = c_\Delta M^{1/3}T^{2/3}$. We need $1 \leq \Delta \leq T$ for Δ to be a valid batch length. $\Delta \leq T \implies c_\Delta M^{1/3}T^{2/3} \leq T \implies M^{1/3} \leq T^{1/3}/c_\Delta \implies T \geq (c_\Delta M^{1/3})^3 = c_\Delta^3 M$. This implies T must be sufficiently large relative to M . $\Delta \geq 1$ generally holds for large T if $M \geq 1$.

2. Constraint $N_B\epsilon \leq 1/4$: This constraint was used to determine the choice of ϵ . With $\epsilon^3 = \frac{c_S M}{8T}$:

$$\frac{T\epsilon^3}{(c_S/2)M} = \frac{T\left(\frac{c_S M}{8T}\right)}{(c_S/2)M} = \frac{c_S M/8}{c_S M/2} = \frac{1/8}{1/2} = \frac{1}{4}.$$

Thus, $(T/\Delta)\epsilon = N_B\epsilon = 1/4$ is satisfied by this construction.

All conditions are met for suitable choices of T relative to M , given the universal constant $c_S > 0$ and our choices for p_{fail} (e.g., $1/4$) and c_F (e.g., $1/2$) which determine the factor $1/8$ in the per-batch regret. Thus, for any online routing algorithm \mathcal{A} , there exists a problem instance in our constructed class for which its expected regret is bounded below by $R_T(\mathcal{A}) \geq CM^{1/3}T^{2/3}$ for some constant $C > 0$ (specifically $C = c_S^{1/3}/16$). For a fixed number of models $M \geq 2$. In this case, the lower bound becomes $\Omega(T^{2/3})$, matching the statement in Theorem 2.

This completes the proof.

1620 **E EXPERIMENTAL DETAILS**
16211622 This appendix provides additional details on the experimental setup, benchmarks, and results pre-
1623 sented in Section 5.
16241625 **E.1 REAL-WORLD BENCHMARK: ROUTERBENCH**
16261627 **Dataset Details.** Our primary evaluation is based on the RouterBench dataset (Hu et al., 2024), a
1628 comprehensive benchmark with 36,497 queries sampled from eight diverse NLP datasets. These
1629 datasets cover both Chinese and English and span a broad spectrum of tasks: commonsense reasoning
1630 (HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC Challenge (Clark
1631 et al., 2018)), knowledge-based understanding (MMLU (Hendrycks et al., 2021)), open-domain di-
1632 alogue (MT-Bench (Zheng et al., 2023)), mathematical reasoning (GSM8K (Cobbe et al., 2021)),
1633 code generation (MBPP (Austin et al., 2021)), and retrieval-augmented generation (RAG).
16341635 **Candidate LLMs and Metrics.** For each query, RouterBench provides pre-computed responses
1636 from the 11 LLMs listed in Table 3. The table shows the models ordered by their release date, along
1637 with their average performance score and average cost per query across the entire dataset.
16381639 Table 3: List of LLMs sorted by release date, along with their per-query average performance score
1640 and average cost.
1641

Model	Avg Performance	Avg Cost
claude-instant-v1	0.5900	\$0.001236
claude-v1	0.6480	\$0.005870
claude-v2	0.5116	\$0.006153
meta/llama-2-70b-chat	0.6059	\$0.001337
WizardLM/WizardLM-13B-V1.2	0.5392	\$0.000142
meta/code-llama-instruct-34b-chat	0.5040	\$0.000550
mistralai/mistral-7b-chat	0.4999	\$0.000139
gpt-3.5-turbo-1106	0.6867	\$0.000709
gpt-4-1106-preview	0.8048	\$0.007943
zero-one-ai/Yi-34B-Chat	0.7153	\$0.000558
mistralai/mixtral-8x7b-chat	0.6504	\$0.000414

1657 **E.2 ADDITIONAL SIMULATION RESULTS**
16581659 To validate our framework’s applicability to the rapidly evolving frontier of SOTA models, we con-
1660 structed a synthetic benchmark using 15 recent, high-performance LLMs.
16611662 **Candidate LLMs and Metrics.** We consider a set of 15 LLMs, summarized in Table 4, ordered by
1663 their official release dates. For each model, we report both performance metrics Chiang et al. (2024)
1664 and associated costs. No single metric can capture the full complexity of LLM performance. We
1665 chose Elo / area scores as they are community standards (e.g., Chatbot Arena), ensuring transparency
1666 and reproducibility. Importantly, our framework is metric-agnostic. The performance signal can
1667 be replaced by any other quantifiable performance measure, such as task-specific accuracy, user
1668 satisfaction scores, or a composite utility function combining multiple objectives.
16691670 Note that the naming of AI models can be highly nuanced, and multiple versions may exist
1671 under a similar label. For example, for Gemini 2.5 Pro, we used data corresponding to the
1672 Gemini-2.5-Pro-Preview-05-06 version. Additionally, performance scores may fluctuate
1673 over time due to model updates, shifts in the user voting population, or changes in evaluation bench-
marks. Similarly, costs may vary across time or across versions. The data reported here corresponds
to the specific versions and conditions used in our experiments.
1674

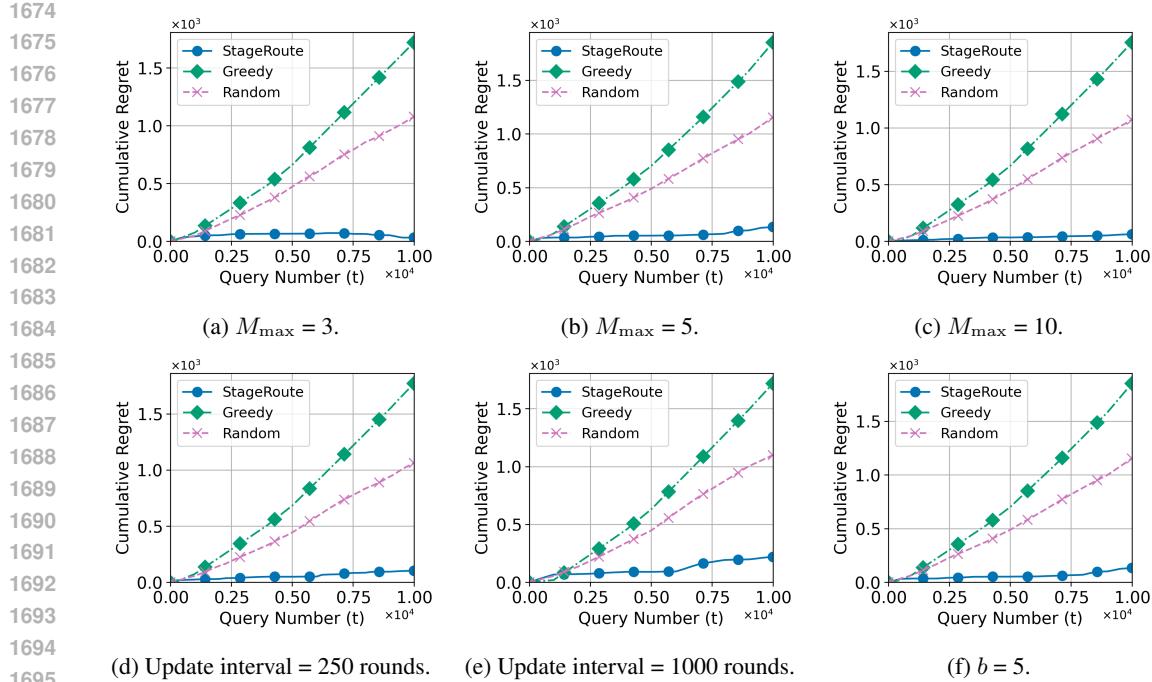


Figure 6: Regret with varying parameters.

Simulation Setup. These 15 models are introduced sequentially, with the first 5 available at time $t = 1$ and one additional model becoming available every 1,000 rounds until all are accessible. Each model's performance is normalized to lie within the $[0, 1]$ interval. For each model m , we set its budget weight parameter $\alpha_m = 0.4$, except for Yi-Lightning, for which we set $\alpha_m = 1$. This is because Yi-Lightning is the cheapest model initially available to the algorithm, ensuring the feasibility of the mixed-integer optimization problem in every round. At each round, if the algorithm selects a model, it receives a noisy performance and cost observation, where the noise is sampled from a Gaussian distribution centered around the true value. In any real-world application, LLM performance metrics are inherently bounded. Our simulation implicitly respects the $[0, 1]$ range by clipping noisy rewards to this interval, with the noise variance chosen such that the probability of generating values outside the range is negligible.

Sensitivity Analysis. Figure 6 presents the sensitivity analysis for StageRoute on the synthetic benchmark. The results are consistent with our findings on RouterBench, demonstrating the robustness of our algorithm across different model suites and settings. StageRoute consistently achieves low regret, adapting effectively to the concurrency cap, update interval, and budget.

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we used large language models solely to assist with polishing the writing.

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744 Table 4: LLM comparison by release date: performance (Arena Score/Elo Chiang et al. (2024)) and
 1745 output cost (per 1M tokens).

Model	Performance	Cost
GPT-4o	1336	\$10.00
Gemini-1.5-pro-002	1302	\$5.00
Yi-Lightning	1287	\$0.14
o1-mini	1304	\$0.60
Llama 3.3 70B Instruct	1257	\$0.40
DeepSeek-R1	1358	\$0.55
Gemini 2.0 Flash	1380	\$1.50
Claude 3.7 Sonnet	1300	\$15.00
Hunyuan-turbos	1296	\$0.28
Deepseek-v3	1373	\$0.28
Llama-4-Maveric	1417	\$0.82
GPT-4.1	1366	\$8.00
Grok-3-preview	1403	\$15.00
o3 by OpenAI	1413	\$40.00
Gemini-2.5-Pro	1446	\$10.00

1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781