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ABSTRACT

The rapid pace at which new large language models (LLMs) appear, and older
ones become obsolete, forces providers to manage a streaming inventory under
a strict concurrency cap and per-query cost budgets. We cast this as an online
decision problem that couples stage-wise deployment (at fixed maintenance win-
dows) with per-query routing among live models. We introduce StageRoute,
a hierarchical algorithm that (i) optimistically selects up to M,.x models for the
next stage using reward upper-confidence and cost lower-confidence bounds, and
(ii) routes each incoming query by solving a budget- and throughput-constrained
bandit subproblem over the deployed set. We prove a regret of @(T 2/3) with a
matching lower bound, establishing near-optimality, and validate the theory em-
pirically: StageRoute tracks a strong oracle under tight budgets across diverse
workloads.

1 INTRODUCTION

The proliferation of LLMs has transformed a broad array of applications, delivering unprecedented
advances in natural-language understanding and generation (Radford et al.,[2019; Brown et al.,[2020;
Wang et al.,|2023b; | [2023} (Chowdhery et al., 2023} [Touvron et al.,2023). Yet LLMs differ markedly
in both performance and cost: some offer state-of-the-art capabilities at a premium, while others are
more affordable but less effective. Practitioners therefore face a continual accuracy-expenditure
tradeoff when deciding which models to operate and when to use them. This has motivated LLM
routing (Ding et al.| 2024} |Hu et al., 2024)), where a system chooses, query by query, which model
to invoke to maximize task quality under cost constraints. However, focusing solely on per-query
routing overlooks a more fundamental decision that precedes it: which models are deployed at all.

In practice, the operational landscape is unusually fluid. New models arrive continuously with dis-
tinct accuracy, latency, and pricing profile (Feng et al.,|2025), while production systems must respect
hard limits such as rate ceilings and deployment quotas. For example, Azure OpenAl Service caps
each resource at 32 standard and 5 fine-tuned deployments by default, and enforces model-specific
rate ceilings (e.g., for GPT-4.1: 1,000 requests per minute (RPM) and 1M tokens per minute (TPM))
(Microsoft Azure, 2025). This confluence of a dynamic model pool and strict operational caps re-
casts the problem into two timescales: a slower stage-wise deployment process that decides which
models stay alive under a concurrency cap, and a faster per-query routing process that assigns each
request among the currently deployed models while meeting budget and throughput constraints. The
deployment choice is foundational, since it determines the entire action space for any routing policy.
Table 1| maps recent LLM routing systems to three axes and highlights a gap in current approaches.

We study this setting as an online decision problem that couples two intertwined choices (Figure [I)):
(1) stage-wise deployment at fixed update points, where the operator decides which models to deploy
for the next stage subject to a hard concurrency cap and deployment costs. This high-stakes decision
defines the action set for the subsequent execution of (2) per-query routing, where each incoming
query is sent to one of the currently deployed models to maximize quality while obeying a long-term
cost budget and per-model throughput limits. Unlike approaches that assume a static model pool or
rely on fully offline retraining, our framework admits streaming arrivals of new LLMs and enforces
active-set replacement: admitting a newcomer may require evicting an incumbent for the rest of the
stage. This mirrors real service constraints while enabling continual adaptation.
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Figure 1: The StageRoute workflow. Newly released LLMs (green) continually enter the can-
didate pool. At each scheduled update point, StageRoute deploys up to My,.x models (blue).
Between updates, each query is routed among the current deployment (orange). This two-level loop
assimilates fresh models, enforces cost/throughput constraints, and adapts routing in real time.

Three features make this problem technically distinct. First, the hard concurrent-deployment cap
induces an irreversible exploration-exploitation tradeoff: activating an uncertain model can mean
dropping a known, reliable one for an entire stage. Second, decisions occur on two timescales:
infrequent, strategic deployment choices constrain frequent, tactical per-query routing. Third, the
system must jointly respect a long-term cost budget and per-model throughput limits while select-
ing a small operational subset under uncertainty. Classical multi-armed bandits (MAB), budgeted
formulations (BwK), combinatorial bandits (CMAB), and standard streaming bandits each capture
parts of this picture, but none natively address the combination of dynamic availability, staged com-
mitment, and an explicit concurrency cap on the active set.

To address these challenges, we introduce StageRoute, an algorithm that mirrors the problem’s
hierarchy (Figure[T). At each update boundary, a deployment phase selects the active set for the next
stage using optimistic estimates of model quality (UCB) and conservative estimates of cost (LCB),
honoring the global budget, per-model throughput limits, and the M, concurrency cap. Within the
stage, each query triggers a routing phase: a linear program over the currently deployment returns a
distribution that maximizes estimated quality under the same constraints, and the query is dispatched
by sampling accordingly. This two-level loop links strategic deployment to fine-grained, adaptive
routing, allowing the system to assimilate new information both across and within stages.

Our contributions in this paper are summarized as follows:

o Problem formulation. To our knowledge, we are the first to formalize the online LLM deployment
and routing problem with streaming arrivals, explicitly modeling a hard concurrency cap, one-
time deployment costs, per-model throughput limits, and a long-term cost budget, with stage-level
commitment and per-query routing.

e Algorithm. We introduce StageRoute, which (i) selects an active set at each update using
optimistic performance (UCB) and conservative cost (LCB) estimates under the budget, throughput
limits, and the M,,,x concurrency cap, and (ii) routes each query by solving a budget—throughput
LP over the currently deployed models. The design is modular: the routing step can incorporate
contextual estimators when features are available, while the deployment step remains unchanged;
throughput limits naturally throttle load to mitigate latency spikes.

e Theoretical guarantees. We prove a regret bound of O(v/MyaxKT) + O(NT/(MyaxK)),
where T', K, M,,x, N are the numbers of queries, update stages, the concurrency cap and arriving
models, respectively. The first term captures the statistical learning cost of routing within the de-
ployed set; it grows with the number of active models M, stages K, and horizon T". The second
term is a structural model-discovery bottleneck that quantifies the difficulty of discovering strong
newcomers when only M, models can be live across K stages as N models arrive. Balancing the

'Relative to nearby bandit frameworks: static-pool routing assumes fixed arms; BwK models consumable
budgets but not stage-level active-set replacement; CMAB selects superarms from a fixed base set without
streaming arrivals or stage commitment; streaming bandits allow arrivals but do not couple stage-level support
selection with per-query routing under both a budget and per-model capacity. See Appendix@for more details.
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Table 1: Comparison of LLM routing frameworks. StageRoute is the first to address the full
real-world setting: a dynamic model pool with streaming arrivals, paired with dynamic stage-wise
deployment under a concurrency cap (Mpax) and cost- and throughput-aware routing.

Streaming Dynamic Deployment  Cost & Budget ~ Throughput

Approach LLM Models (with Mmax cap) Aware Limits Source
LLM-Blender - - - - Jiang et al.|(2023)
AutoMix - - - - Aggarwal et al.|(2024)
Hybrid-LLM - - - - Ding et al.|[(2024)
Zooter - - - - Lu et al.|(2024)
RouterDC - - - - Chen et al.|(2024)
TensorOpera Router - - v - Stripelis et al.|(2024)
RouteLLM — — v - Ong et al.|(2025)
MESS+ - — v - Woisetschlager et al.|(2025)
UniRoute v — v - Jitkrittum et al.|(2025)
CSCR v - v - Shirkavand et al.|(2025)
StageRoute (ours) v v v v This paper

two yields a near-optimal O(T2/3) order, and we give a matching (T2/3) lower bound via a staged-
arrival construction. Analytically, we use LP-duality sensitivity with an explicit support (active-set)
constraint and a regret decomposition that separates routing and deployment across stages.

e Empirical evaluation. Simulations show StageRoute tracks a strong oracle under tight budgets
and is robust across key parameters. We evaluate on true per-query scores and costs (RouterBench)
across diverse queries, tasks, and languages, demonstrating effectiveness in realistic settings.

2 SYSTEM MODEL

We study an online LLM routing framework: at each round ¢, a query arrives and must be routed
to a suitable LLM. New models may appear at any time, yet they can be activated only at discrete
deployment intervals (Figure[I)). We describe each component of the model in detail.

Rounds (Queries). Let 7" denote the total number of user queries, indexed by [T] = {1,2,...,T}.
At each time step ¢ € [T, a query arrives and is immediately routed to an LLM m; chosen from the
currently deployed models according to the algorithm’s policy.

LLM Pool and Deployment Schedule. Let M, be the set of all LLM models that exist and could,
in principle, be deployed by time ¢. Each model m has an availability time t,,; hence m € M;
exactly when ¢ > t,,. Deployment changes occur only at discrete intervals, a schedule determined
by the algorithm. The algorithm partitions the time horizon 7" into K equal-length stages, where K
is a tunable hyperparameter of the algorithm. Each stage thus consists of 7'/ K rounds (assuming 7'
is divisible by K'). The start of stage kis 7, = (k — 1)T/K 4+ 1,k = 1,..., K. Let My,ax be the
concurrency cap, i.e., the maximum number of models that can be deployed simultaneously. At each
update point 7%, the algorithm A selects a deployed set Dy, (A) C M., such that | Dy (A)| < Mmax,
which then remains fixed for all ¢ € |7y, Tg+1). Queries arriving during that stage must be routed to
models in the active set Dy (A). Thus M, is the available pool at time t, while Dy, (\A) is the active
subset that can actually serve queries during stage k.

Operational Performance and Cost. An LLM’s per-prompt quality varies with the input. However,
over a long time horizon, it can be reasonably modeled as a random variable centered around a stable
mean (Ding et al.,[2024). Formally, each model m has an unknown performance distribution v, ()
supported on [0, 1]. When m is selected at time ¢, the observed score r; € [0, 1] is drawn from v, ()

with mean f1,,, = Eg.,, ()[z]. Invoking model m on a query also incurs an operational cost ¢y,
that combines: (i) Input Cost: cgﬁ) = (# tokens of input at time t) X pin, Where p;, is the per-token
input price; (ii) Output Cost: cfﬁ?t) = (#tokens of response by m for query t) X Pout, With output

length drawn from a model-specific distribution ,,, () and unit price poyt.

Thus the total cost is ¢,,, = cgifi) + cﬁﬁft). Because the output token count CSSE“ depends on the
specific model and query and is sampled from &,,(-), the total operational cost ¢,,, for a query
handled by model m; is itself a random variable. Operational cost ¢,,, is inherently bounded by
per-token pricing and practical limits on sequence length and generation (e.g., context-window and
token caps). Hence we assume ¢,,, € [c1, ¢2] for known constants 0 < ¢ < ¢3 < o0.
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Constraints: Budget and Throughput. When a query arrives at time ¢, with stage index & such
that 7, < t < 741, the algorithm A selects a model m; € Dy (.A). It then observes the reward
T4 ~ U, (-) and incurs cost ¢,,,. The goal is to maximize average reward subject to two main
constraints:

(1) Budget constraint: E[% 3°]_ ¢n,] < b+ o(1). We use an average cost constraint instead of a
hard budget constraint because for long-running systems, it provides a degree of flexibility. From a
theoretical analysis perspective, since the estimation errors for both performance and cost are gov-
erned by the same concentration inequalities, the expected budget violation is upper-bounded by the
order of the performance regret. This makes the average cost constraint asymptotically equivalent
to a hard constraint for a near-optimal algorithm.

(2) Per-model throughput limit: For each deployed LLM model m, we specify a throughput limit
Q. Let py(m) be the probability that the routing policy assigns the query at time ¢ to model m.
While ¢ lies in stage k, the policy must satisfy p;(m) < a;,, Vm € Dy (.A). This constraint caps the
instantaneous load share each model may receive. For a deterministic decision m;, where p;(m;) =
1, the requirement reduces to «,,, > 1. Such limits reflect real-world restrictions like API rate
limits (RPM/TPM), bandwidth, or licensing, preventing any single model from being overwhelmed.
Hence the deployed set’s aggregate throughput must be sufficient to serve every arrival, a condition
we formalize next.

Assumption 1 (Feasibility). The constraints are feasible. At every time t, there exists a subset
S C My with |S| < Mmay such that ), s iy > 1. The budget b is also large enough to admit a
non-trivial routing policy. When required, we assume Slater’s condition holds, guaranteeing strong
duality for the associated optimization problems.

Performance Maximization and Regret. The goal is to maximize the expected cumulative per-

formance, ]E[Zz;l Lm,] subject to: (i) Deployment Choice: At each update 7, select a deployed
set Di(A) C M., with |Dy(A)] < Mpax; (il) Model Selection: For t € |1y, Tg41), choose my €
Dy (A) using probabilities p;(m) that sum to 1; (iii) Throughput Constraint: Ensure p;(m) < ayy,

for every deployed model 1n; and (iv) Budget Constraint: Maintain E[L S ¢,,,,] <b+o(1).
We measure the online policy’s performance against an optimal offline benchmark. The foundation
of this benchmark is the Optimal Performance Rate Function, V (b, S). Given any candidate model

set S and per-query budget b, let V' (b, S) denote the maximum expected reward per query, which
serves as an upper bound for any algorithm operating under these constraints:

V(b,S) = ma { . ’ Efenp(m) < b, _
(6,8) = max Zup Z cmlp(m) < b, > p(m)
mes (1)
0 < p(m) < ayy, form € S, |supp(p)| < Mmax}.
Here, A(S) is the set of probability distributions over S; p(m) is the probability of selecting model
m; and E[c,,] is its expected cost. The support constraint [supp(p)| < Mpax limits the number of
models with positive probability to M, .x, capturing the combinatorial selection of the best M, ax

models to use for routing from the entire available pool M, . If no feasible distribution exists or if
(S=2),wesetV(h,S)=0

The time-varying offline optimum is OPT* = Zle(mﬂ —7%) - V(b, M,), where (Tj41 — Tk ) is
the length (number of queries) of stage k. The regret of an online policy A is

T
Regret(A) = OPT* — E [Z umt] : 2)
t=1

i.e., the expected performance gap between .4 and the clairvoyant benchmark, where the expectation
is over the algorithm’s random choices and outcome variability.

3 STAGEROUTE: STAGE-BASED LLLM DEPLOYMENT AND ROUTING

We introduce StageRoute (Algorithm|[I)), a two-level hierarchy that unifies deployment and per-
query routing in one algorithm: (i) Strategic layer. At each discrete update point 7, the algorithm
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Algorithm 1 StageRoute: stage-based LLM deployment (active-set selection) and online query
routing

Require: Update points {7y, ..., Tk }; budget b; concurrency cap M,ax
1: Inmitialize: Prior parameter estimates; 1o < 0; Do (A) < 0
2: //Stage-wise Deployment Phase:
3: fork=1to K do
4:  Incorporate newly available models {m | t,, < 7% < tm+ (7x — Tk—1)}; initialize their
parameters
5 Solve DeployOPT (3)) for d* and set Dy (A) < {m | d¥, > 0}
6:  //Per-query Routing Phase (for query at time ¢):
7 fort =71,to7m11 —1(orto T if k= K) do
8 Compute routing distribution p; by solving RouteOPT

0 %

Sample m; ~ p; and route the query to it
10: Observe reward 7; and cost c;; update statistics for my
11:  end for
12: end for

decides which models to deploy, adapting to newly available LLMs while respecting the budget and
operational constraints. (ii) Tactical layer. Between updates, it routes every incoming query in real
time among the currently deployed models. The system starts with prior parameter estimates, an
empty unexplored-model list, 79 = 0, and an empty initial deployment Dy(.A). It then proceeds
through K stages, and at the start of each stage k (t = 7), the algorithm executes two phases in
sequence: model deployment followed by request routing.

Model Deployment Phase (Stage Start). At each update point 7%, St ageRout e first incorporates
any newly available models (those with 7,1 < t,,, < 71) and initializes their parameter estimates.
With the enlarged pool M, , StageRoute solves the deployment optimization in Eq. (@) to pick
the models for stage k:

DeployOPT: din%t( { Z ,ugndm‘ Z cfndmgb, Z dym =1,
€A(M=) meMa, meM., meMo, (3)

0 < dm < am form € MTk? \supp(d)\ = min(Mma)u |M7'k |)}

This optimization problem is a Mixed-Integer Program (MIP). The combinatorial nature arises from
the cardinality constraint on the support of d, which limits the number of active models. A standard
way to formulate this is by introducing a binary activation variable z,, € {0, 1} for each model. The
full stage-k deployment problem can then be written as:

mdax Z ,ugldm, s.t. Zcfndm <, de =1, 0<dpy < amzm,

WLEMTk m m
Z Zm = min(Mmax; |M‘rk |)/ Zm € {07 1}
m

Here, the binary variables z,,, explicitly select which models are live for the stage, while the contin-
uous variables d,,, represent an optimistic deployment mix. The solution to this MIP d* maximizes
an optimistic performance surrogate using UCBs for rewards (uU,) and LCBs for costs (cL), which
are derived from data up to 7. Specifically, let fi,,(7x) and ,,(7%) be the empirical mean reward
and cost of model m based on N, (7%) selections observed up to 7. Define the UCBs and LCBs as:

/J'rlez = proj[O,l] (/jm(Tk) + 2frad(/jm(7-k)7Nm(Tk) + 1)) ’ S

Cr, = PrOj(e, cy) (Em (k) = 2frad(Cm (7). Nn(7e) + 1), (5)
where projy, ;) is a projection function onto the interval [a, b] and frqa(v,n) = /L* +  (for some
~ > 0) is a confidence radius function.

The deployment optimization in Eq. (3) maximizes expected utility subject to the budget b, per-
model throughput limits «,,, and the concurrency cap |supp(d)| = min(Mpax, |[M-, ]). Its solution
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d* determines the active set for stage k:

Di(A) « {m e M, |d;, > 0}. (6)
Crucially, the values d, are not used as routing probabilities; they serve only to select the most
promising feasible models. The deployment set Dy (.A) remains fixed until the next update point
Tk+1-
Request Routing Phase (Intra-Stage). For each query arriving at time ¢ € [T, Tk41),
StageRoute performs four steps: (1) Routing LP. It solves the linear program (LP) in Eq.

to compute the optimal routing distribution p; = (p;(m))mep, (4) over the currently deployed
models Dy (A).

RouteOPT: max { % / l ﬁ: , <,
) PtEA(Dy(A)) Z Hm Pt () Z Cmpi(m) <
meDy(A) meDy,(A) -
Z pe(m) =1,0 < p(m) < apy formeDk(A)}_

This LP maximizes the expected reward by combining the current UCBs for reward (1Y) and LCBs
for cost (c%) while enforcing the per-query budget b (through the cost bounds) and each model’s
throughput limit av,,. (2) Model selection. Sample m; ~ p; and serve the query. (3) Feedback.
StageRoute observes the realized reward r; and cost ¢;. (4) Update. Refresh fi,,,, Cm,, Ny, and

recompute u%t, c{;“ for subsequent routing and the next deployment decision.

Algorithmic Innovations. While StageRoute builds on the principle of “optimism in the face
of uncertainty”, its architecture is tailored to dynamic LLM deployment and departs from standard
bandit formulations. First, it imposes a hierarchical decision structure that mirrors operational prac-
tice: the deployment decision is a high-stakes, combinatorial choice whose consequences persist for
an entire stage, a form of long-term commitment absent from standard, per-round bandits. Second,
staged updates create a structured delay in acting on feedback. Information about non-deployed
models cannot influence decisions until the next stage, inducing an exploration-exploitation trade-
off that requires anticipating performance over the whole stage, not just the next round. Finally,
StageRoute decouples deployment from routing execution: DeployOPT determines only the
active set Dy (.A), while the per-query policy is recomputed online via Rout eOPT. This separation
enables rapid query-level adaptation even when the underlying infrastructure remains fixed during a
stage.

4 THEORETICAL RESULTS

We analyze StageRoute (Algorithm[I) by deriving an upper bound on its cumulative regret and a
matching lower bound that applies to any online algorithm for this problem. Together, these results
show that StageRoute is near-optimal in the worst case.

4.1 UPPER BOUND

Theorem 1. Consider StageRoute running for T' queries divided into K stages, with a concur-
rency cap Myax and N = | M| total models arriving over time. Set the confidence parameter to
v = O(log(NT/6)) to obtain overall confidence 1 — 6. Then the expected regret is bounded by:

NT
Regret(StageRoute) < O (\/MmaxKTlog(NT/é) + ZWK) )
max

Choosing K = O(T*/3) and My = Q(N?/3) yields Regret(StageRoute) < O (N1/3T2/3),

The two terms in the bound reflect complementary sources of difficulty. The first term,
(’)( My K T), is the statistical learning cost of routing within the deployed set. The second
term, O(N T/(Myax K )), is a structural model-discovery bottleneck: when only M., models can

be active at a time across K stages, exploration is throttled. Strong late-arriving models can be
missed unless sufficient deployment slots and update frequency are provisioned. Balancing these

two terms gives the near-optimal o (T2/3) rate, which matches the lower bound in Theorem
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Practical guidance. The bound yields an actionable rule: to approach the optimal rate, set the
number of stages to approximately K ~ T'/% (implying a stage length of 72/3) and provision a
concurrency cap M.« large enough to track new arrivals (ideally My,.x =~ N 2/3 when feasible).
However, updating more frequently (K > T'/3) is also ill-advised. Even if it does not increase
regret, it cannot offer further asymptotic improvement due to the lower bound, while needlessly
incurring significant computational and operational overhead with each additional deployment stage.
This underscores that exploration capacity, defined by the concurrency cap and update frequency,
is itself a scarce system resource to be optimized. Relying on only a few “top” models is provably
suboptimal in a dynamic model pool.

Why existing analyses do not apply. Classical MAB and BwK typically assume per-round choices
from a static set and lack a hard concurrency cap; CMAB selects superarms from a fixed base set and
does not model stage-level commitment; streaming bandits allow arrivals but do not couple stage-
committed deployment with budget and per-model throughput constraints. Our setting is distinct
due to: (i) a concurrency cap that explicitly constrains the support of the deployment optimization,
(ii) stage-committed deployment that induces a structured delay in acting on new information, and
(iii) the simultaneous enforcement of a long-term budget and per-model throughput limits.

Proof ideas and new technical elements. Our proof introduces a virtual optimal deployment set to
bridge the offline benchmark and the online policy, yielding a clean regret decomposition into stage-
level deployment regret and intra-stage routing regret. The routing term is handled with standard
confidence arguments. The deployment term requires two new ingredients: (a) a quantification of
the model-discovery bottleneck caused by the limited concurrency cap and discrete updates (showing
how the NT'/(Mpax K ) term arises), and (b) a support-aware sensitivity analysis of the deployment
LP (via its dual), bounding how UCB/LCB estimation errors perturb the optimal active set under
the concurrency constraint. Together, these yield Theorem [I] These elements differ fundamentally
from standard learning-regret analyses and may inform further work on staged, combinatorial online
decision problems. Complete details appear in Appendix [C|

4.2 LOWER BOUND

Theorem 2. For any online policy A and any choice of update frequency K and concurrency cap
Miax, there exists a stochastic, piecewise-stationary LLM-routing instance such that the expected
regret against the time-varying oracle satisfies

Regret(A) > Q(T%/3).

This Q(TQ/ 3) bound captures the intrinsic difficulty of continually tracking the best model as ca-
pabilities evolve. The construction mirrors real LLM ecosystems: in each batch a (newer) model
is marginally stronger than the rest, and the identity of the strongest model changes over batches.
Importantly, the baseline level of rewards also drifts upward over time, reflecting that even “weaker”
new releases can outperform old ones. This is unlike classic lower bounds that keep suboptimal arms
at a fixed mean (e.g., 1/2) and change only the identity of the best arm.

Proof ideas and Intuition. We construct a family of “streaming” instances that mimics a live LLM
marketplace: the time horizon is split into approximately 7''/3 epochs, in each batch a different
model is slightly better than the others, and the whole performance frontier drifts upward across
batches (so even “weaker” newcomers can surpass yesterday’s best). We choose the batch length
and performance gaps so that any algorithm cannot reliably identify it with the limited information
available before the epoch ends. Because the identity of the best model changes next batch, infor-
mation gained earlier quickly goes stale. Any policy is thus forced into repeated “partial discovery”,
incurring a nontrivial loss in each batch, and summing over all batches yields total regret on the
order of T2/3. Full details are given in Appendix

New technical elements. Two aspects differ from standard MAB/CMAB lower bounds: (i) we do
not use a fixed baseline where only the identity of the best arm flips. Here the entire frontier drifts,
matching LLM practice; and (ii) the hardness persists even if the system can redeploy every round
and keep all models live, so the rate is intrinsic to tracking an evolving frontier, not an artifact of
staging or capacity limits.
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(a) The decision heatmap of StageRoute.
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(b) The decision heatmap of the optimal Oracle.

Figure 2: Comparison of decision heatmaps for StageRoute and the Oracle with M,,x = 5,b =
0.001, update interval=1000. Darker colors indicate higher selection probabilities.

Discussion. Theorem [2]conveys a practical message: even with aggressive adaptivity and large live
sets, there is a fundamental rate limit on how quickly a system can keep up as the performance
frontier shifts. Our upper bound matches this lower bound up to logarithmic factors with respect to
the number of queries 7', establishing near-optimality.

5 EXPERIMENTS

Datasets and Candidate LLMs. We evaluate on RouterBench 2024), covering 36,497
queries across eight datasets in English and Chinese (commonsense, knowledge, dialogue, math,
code, and RAG). Each query includes responses from 11 LLMs with per-query scores and costs.
Full dataset descriptions and the model list appear in Appendix [E]

Baselines. We compare St ageRoute against three baselines. The first is an oracle that, with full
knowledge of all performance and cost statistics, always selects the optimal deployment set, serving
as an upper bound on achievable performance. The second is a greedy strategy that, at each update
point, selects the M. models with the highest utility, computed as the ratio between the UCB of
performance and the LCB of cost. This approach can be viewed as a variant of a UCB algorithm
where selection is based on the UCB of the utility metric. The third baseline is a uniform sampling
strategy, which randomly selects models for deployment and may substantially exceed the budget.
To our knowledge, no existing methods are specifically designed for this LLM deployment problem.

Implementation Details. We simulate a total of 7' = 36,497 a0’ y
rounds. In each round, a query is sampled uniformly at random 5 3{ 7§ gaog™ i
from the dataset. The algorithm then selects a model to serve the g | ¢ Random #
query and subsequently receives the performance score and asso- ¢ 2 ‘/ ;
ciated cost. Initially, 5 models are available. Thereafter, for ev- = ‘/' I
ery 5,000 queries, a new model becomes eligible for deployment, £ 11 rarea
following the release-date ordering in Table 3] We set the con-  © » ,,-jff,/"x

fidence parameter v = 0.1. All reported results are averaged o > 3
over 10 independent runs. The experiments involve solving mixed- Query Number (t) ~ x10*

integer programming (MIP) subproblems using the Gurobi Opti-
mizer (v12.0.1, academic license) on a machine equipped with a  Figure 3: Cumulative regret.
12th Gen Intel(R) Core(TM) i9-12900HX processor.

Computational Overhead. Our two-stage design keeps the computational overhead low, allowing
the entire experimental run to complete in under 10 minutes. The deployment MIP is solved only
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infrequently on small instances (taking sub-seconds), while the per-query routing involves a tiny
LP over the active set that executes in milliseconds. Therefore, using either Gurobi or an open-
source solver (e.g., CBC, GLPK, HiGHS) is feasible. Furthermore, since parameters change only
slightly between iterations, we can leverage warm-starting to further accelerate computation. For
the routing LP, we can reuse the previous basis or solution; similarly, for the deployment MIP, we
can provide the prior active set as an initial feasible solution (MIP start), given the minimal changes
to the candidate pool.

Overall Performance. We first present the main results under a representative setting (Mp,x =
5,b = 0.001, update interval=1000), and then conduct a detailed sensitivity analysis across key
hyperparameters. Figure [3]shows the cumulative regret under this default configuration. Across all
settings we test (see Figure [5] for a full overview), our algorithm exhibits consistently slow regret
growth, substantially outperforming the baselines. Notably, while the uniform sampling strategy
appears to outperform the greedy baseline in some cases, this is an artifact of its tendency to signifi-
cantly overspend the budget, an issue we will analyze further in the performance-cost evolution.

Optimal Model Set Identification. As our work emphasizes the importance of deployment, we
first analyze whether StageRoute can identify the optimal model set. Figure [2] compares the
decision probabilities of StageRoute and the Oracle under the representative setting mentioned
above. The horizontal axis represents deployment intervals, while the vertical axis (bottom to top)
corresponds to the model arrival order. It is evident that when a new model arrives, StageRoute
initially explores it before quickly converging to the new optimal model set, closely mirroring the
Oracle’s behavior. This confirms that our deployment strategy is effective at tracking the optimal
available model set.

Performance-Cost Evolution. To further validate our al-
gorithm’s efficiency, Figure[]illustrates the performance-
cost trajectory for each algorithm, again under the same
representative setting. Colors transition from blue (initial
stages) to red (final stages). The figure shows that, except
during initial exploration and periods when new mod-
els arrive, the operating points of our algorithm closely
track those of the Oracle. In contrast, the greedy strategy
proves overly conservative, while uniform sampling con- i
sistently violates the budget for suboptimal performance. — oss5) 0
These observations reinforce our central claim: select- Auerage Cost per Query (n cycte

ing a high-quality set of models for deployment is funda-
mental to achieving efficient routing, and StageRoute
successfully balances high performance with strict budget
adherence.
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Figure 4: Performance-cost evolution of
different algorithms.

Sensitivity Analysis. We now analyze StageRoute’s sensitivity to key hyperparameters.

(1) Impact of Myyax. Figures[3] 52} and[5b]present results for different M, values under a budget
of b = 0.001 and an update interval of 1000. The results demonstrate that StageRoute adapts
well to this parameter, maintaining robust performance across all settings.

(2) Effect of Deployment Update Interval. Figures 3] [5c| and [5d|illustrate the impact of varying the
deployment update interval with My, = 5 and b = 0.001. An interval of 1000 rounds yields the
lowest regret, highlighting the importance of selecting an appropriate update frequency.

(3) Effect of Budget Constraint. Figures [3] and [5¢] compare performance under different budget
constraints. Counterintuitively, a more relaxed budget leads to higher regret. This phenomenon can
be attributed to two factors. First, a larger budget also raises the performance of the Oracle, making
the benchmark more challenging. Second, we use a fixed confidence radius  for all settings; in
practice, increasing vy in proportion to the budget may be beneficial.

Extending to State-of-the-Art Models. To verify that our StageRoute framework applies to the
latest, most powerful models, we conduct additional simulations incorporating recent LLMs. These
results, detailed in Appendix [E] confirm that StageRoute continues to achieve minimal regret.
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Figure 5: Cumulative regret under varying hyperparameters. The default setting is My,.x = 5,
update interval = 1000 rounds, and b = 0.001 (Figure EI)

6 CONCLUSION

In this paper, we introduced StageRoute, a novel framework for online LLM deployment and
routing. We are the first to formalize this problem in a dynamic setting with streaming LLM model
arrivals, addressing the challenge of selecting an optimal deployment set under a strict concurrency
cap. Our algorithm manages deployment at discrete stages while tactically routing queries in real
time, respecting both budget and per-model throughput limits. We established the near-optimality
of our algorithm with theoretical analysis, including matching upper and lower bounds, and demon-
strated its practical effectiveness through extensive experiments on real-world benchmarks.

ETHICS STATEMENT

This research focuses on the operational efficiency of LLM systems. By making deployment and
routing more cost-effective, our work can broaden access to Al technologies and reduce energy
consumption. However, we acknowledge that increased accessibility may also lower the barrier for
malicious use of LLMs. Our framework does not mitigate the inherent risks of language models,
such as bias or misinformation generation, and should be implemented alongside robust safety and
content moderation protocols.

REPRODUCIBILITY STATEMENT

All experimental parameters are detailed in Section[5} The source code and data used for our exper-
iments will be made publicly available upon publication. All theoretical proofs are provided in the
appendix.
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A RELATED WORK

A.1 LLM ROUTING

The central aim of LLM routing is to strike the best balance between task performance (e.g., response
quality or accuracy) and operational metrics such as cost and latency (Ding et al., [2024; |/Aggarwal
et al.| [2024). Existing work follows three main architectural patterns. Ensemble strategies query
multiple models in parallel to boost robustness, at the expense of higher cost and latency [Wang et al.
(2023a); Jiang et al.|(2023)). Cascade strategies issue queries sequentially—typically starting with a
cheaper model and escalating only when necessary—thereby reducing cost but sometimes increasing
latency (Chen et al.,|2023;|Gupta et al.|[2024; |Yue et al.| 2024} |Aggarwal et al.| 2024])).Direct-routing
strategies train a policy or classifier that selects a single LLM per query (Ong et al., 2025} [Feng
et al., [2025; |[Zhang et al., 2025; |Zhuang et al., [2025)). Benchmark suites such as RouterBench (Hu
et al) [2024) facilitate systematic comparison of these approaches. Related work on mixture-of-
experts (MoE) models explores routing within a single large model (Du et al., 2022} [Fedus et al.,
2022; Riquelme et al., [2021). More recently, bandit formulations have been applied to static LLM
routing (Wang et al.| 2025 Dai et al.l [2024; [Li, [2025; [Nguyen et al.l [2024; [Poon et al., 2025).
Most prior studies, however, assume a fixed set of available models and focus solely on per-query
decisions. In contrast, our work model a dynamic model pool with streaming arrivals and introduce
staged deployment updates, where the active model set is subject to online selection under a strict
concurrency cap, cost budget, and throughput limits. To our knowledge, we are the first to formalize
and solve this more realistic and challenging problem.

A.2 MULTI-ARMED BANDITS

Our formulation builds on the multi-armed-bandit (MAB) paradigm, where an agent maximizes its
cumulative payoff through exploration and exploitation in online environment (Auer et al., 2002;
Slivkins| |2019). Three MAB extensions are especially pertinent: (i) Bandits with knapsacks (BwK).
Here each arm pull yields a reward and consumes limited resources from one or more budgets; the
objective is to maximize total reward without overspending (Badanidiyuru et al., 2013} Agrawal &
Devanur, 2014} Immorlica et al.,2019; Kesselheim & Singla, [2020; |Bernascont et al., 2024; Guo &
Liul 2025). Our long-term cost constraint fits naturally into this framework. (2) Streaming bandits.
In this setting new arms arrive over time—often under memory or attention limits—so the agent
must adapt to a continually expanding action set (Assadi & Wang, [2020; [Jin et al., |2021; |Agarwal
et al.| [2022; Wang| 2023} [Li et al., 2023} [Shao & Fangl [2025; [Zhu & Huang| [2025). The steady
appearance of new LLMs places our problem squarely in this category. (3) Combinatorial Multi-
Armed Bandits (CMAB). The algorithm faces a fixed, known set of base arms from which superarms
(subsets) are chosen in each round (Cesa-Bianchi & Lugosil 2009} [Chen et al.l 2013} |Qin et al.}
2014; L1 et al., 2016} |Chen et al., 2018} |L1u et al., 2024 2025).

The core distinctions arise from the two-level structure and unique constraints inherent to the re-
alistic online LLM deployment and routing problem. Standard models like BWK and streaming
bandits lack the combinatorial selection. While CMAB addresses superarm selection, it is funda-
mentally misaligned with our problem’s dynamics: it assumes a static set of base arms and makes
per-round decisions, whereas our core challenges are a dynamic model pool and staged, irreversible
commitment, where a deployed set remains fixed for a long duration. The regret is thus a function
not only of the chosen set but also of the tactical routing policy executed over thousands of queries
within that stage. This stateful, hierarchical structure is beyond the scope of traditional bandit for-
mulations. Due to these fundamental differences, existing algorithms and regret analyses are not
applicable. Our work bridges this gap by developing a new framework and novel analytical tools
tailored to the unique challenges of online LLM deployment and routing problem.
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B SUMMARY OF NOTATION

Table 2: Table of Notation Used in the System Model and Algorithms

Symbol Description

General Parameters & Indices

Tt e [T Total queries (horizon T'); ¢ is query index in [T'] = {1,...,T}.

K;k € [K] Total deployment stages (K); k is stage index.

Tk Start time step of stage k; k-th deployment update point, 7, = (k — 1)T'/K + 1.
To Initial time for the algorithm, typically 0.

A The online deployment and routing algorithm.

LLMs: Availability & Deployment

m; tm An individual LLM m; and its availability time t,,.

My, M, Set of LLMs available at time ¢, and specifically at start of stage k.

Minax Maximum number of LLMs that can be simultaneously deployed.

d=(dn) Deployment decision variable vector in DeployOPT over M, .

d* = (d;) Optimal deployment decision vector from DeployOPT (Eq. [3) at 7.

Do(A) Initial set of deployed LLMs by algorithm A (typically empty).

Dy (A) Set of LLMs deployed by A in stage k (derived from d, > 0).

LLM Performance & Operational Costs

Vi (*)y o, Performance distribution for LLM m (on [0, 1]) and its mean ji,,, = E,,, () [2].
T Realized performance from model m; for query ¢, 7y ~ vy, (+).

o (T8, 1Y, Empirical mean performance (from N,, (7x) obs. up to 7x) and UCB for pi,,.
Dins Pout Per-token prices for input and output.

cﬁ,ﬁ), cﬁﬁ?t); cm, Input cost, output cost; and total cost ¢,,,, = chlfi) + cg,??t) for m; on query t.
Em() True (unknown) distribution of output token length for LLM m.

Elcm] True expected operational cost of LLM m.

Cm (T) Empirical mean operational cost of LLM m based on N,,,(7}) selections up to 7.
ck Lower Confidence Bound (LCB) on the expected operational cost E[c;,].

c1,Co Fixed lower and upper bounds for any ¢;,,, 0 < ¢; < c2 < o0.

Routing & Constraints

my LLM selected by the algorithm to handle query t.

pe(m) Probability assigned by a routing policy to LLM m € Dy (.A) for query t.

p; = (pf(m)) Optimal routing probabilities from RouteOPT (Eq. .

b Long-term average operational cost budget per query.

Qm, Throughput limit (maximum load share / selection probability constraint) for LLM m.
A(S) Set of all probability distributions over a set of LLMs S.

Parameter Estimation & Confidence Bounds

Ny (71) Number of times LLLM m has been selected and observed up to 7.

fraa(v,m), vy Confidence radius function fr.q(v,n) = \/yv/n + v/n (with parameter v > 0).
proji, 4 () Projection of value z onto the interval [a, b].

Offline Benchmark & Regret

V(b,S) Optimal Performance Rate Function: max expected performance from set S.
supp(p) Support of a probability distribution p.

OPT* Expected cumulative reward of the time-varying offline optimal policy.
Regret(.A) Regret of online algorithm A.
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C TECHNICAL ANALYSIS

In this section, we analyze the regret of StageRoute (Algorithm [I)). Recall that in our setting,
let N = | M| denote the total number of models that may arrive over the course of the time
horizon. We assume that N is significantly larger than M., the maximum number of models that
can be deployed simultaneously. Moreover, the number of update points K is assumed to be much
smaller than the total number of queries 7. These assumptions reflect practical constraints: it is
typically infeasible to deploy all available models—including those released in the future—due to
resource limitations, and continuously updating the deployed LLM pool in real time is operationally
impractical.

C.1 CONCENTRATION INEQUALITY

We employ the following standard concentration inequality and related supporting lemmas.
Lemma 1 (Kleinberg et al.|(2008); Babaioff et al.|(2015))). Consider a sequence of random variables

T1,%2,...,Tn. Let T = L3 x; be the empirical average and v = L 3" | Elw;|2y, ..., zi-1]
(ifi = 1, the expectanon is unconditional). If the values x; are in [0, ﬁ (e.g., performance 1y, or

cost ¢y under our assumption), then for each v > 0,

Pllv — 2| < fraa(@,n) and fraa(2,n) < 3frea(v,n)] > 1 — exp(—Q(7)), (8)
where frqq(v,n) = /1> + L. This result also holds if x1, . .., x, are independent samples from a

distribution with mean v and values in [0, 1].

For clarity and to simplify the application of concentration inequalities, we assume throughout this
analysis that all operational costs ¢,,,, are bounded such that 0 < ¢; < ¢, < ¢2 < 1. This ensures
that costs, like rewards (which are in [0, 1)), fall within a [0, 1] range (or a sub-interval thereof). This
assumption does not affect the order of the regret bounds, as any scaling factors related to a broader
cost range would typically be absorbed into the constants within the O(+) notation.

Lemma 2 (Babaioff et al.|(2015), adapted). Ler Dy (.A) be the set of deployed models in stage k.
For any vectors a = (am)mep, (A) AMd 1 = (M) mep,, (A) Where .y, iy, > 0,

Z fTad(am» nm)nm S ’YMk Z AmNim + ’yMk
meDy(A) meDy(A)
where My, = |Dy(A)|.
Lemma 3 (Babaioff et al.| (2015), adapted). Let finn(t) = (3, 1. —pm s)/ (Nin(t) + 1) be the em-
pirical average performance and ¢y, (t) = (3, 4., —m Cs)/ (N (t) + 1) be the empirical average
cost for model m € Dy (A) based on N,,(t) plays before time t within the current stage k. Then,
for every m € Dy (A) and time t € [13,, Ti11), with probability 1 — e=*") (i.e., on the event £):
| (t) = bm] < 2fraa(fim(t), N (t) + 1) 9
|em(t) — Elem]| < 2fraa(ém(t), Nm(t) + 1) (10)

Proof. Follows from applying Lemmal[I]to the sequence of observed performances r, (for my = m)
and observed costs ¢, (for my = m). For a fixed model m, the rewards r; (when mys = m) are i.i.d.
samples from v, () with mean t,,,. Similarly, costs c; (When mg = m) are effectively i.i.d. samples
with mean E[c,,]. Thus, the conditional expectation E[z;|z1, ..., x;_1] in Lemma [I| becomes the
true mean i, (or E[c,,]). The derivation is analogous to Lemma 4.3 of Babaioff et al. (2015)). For
instance, for performance:

Zs<t:mg:m T's (Nm(t) + 1)Mm

Amt - Hm| = : -
(1) = 1| = | =3 53T Non(t) + 1

Nin (1)
T Np(t) +1

< frad(ﬂm (t)7 Nrn (t) + 1) +

< 2frad(fim (), N (t) + 1)
The argument for cost is similar due to the assumption ¢,,, € [c1, ¢2] C [0, 1]. O

)
frad(fum(t), Nim (t)) + # (from Lemmal[Il structure)
Hm

Np(t) +1
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C.2 REGRET DECOMPOSITION WITH TIME-VARYING BENCHMARK

To analyze the regret of StageRoute (Algorithm[I)) over the horizon T', we decompose the total
regret into components corresponding to the model deployment and request routing phases.

Definition 1 (Optimal Performance within Deployed Set). For a given stage k (time interval
[Tks Tk+1) Of length Ty, = Ty41 — T1) where StageRoute (during its Model Deployment Phase)
deploys the set Dy, = Dy,(A) C M,,, V(b,Dy,) represents the optimal expected reward per query
achievable using only models from the deployed set Dy. The total optimal expected performance
within this stage using Dy, is OPTy, = Ty, - V (b, D). Note that Dy, is determined by St ageRoute
based on M, and estimates available at Ty,. Thus, Dy, and consequently V (b, Dy,) (and OPT},) are
random variables, dependent on the algorithm’s choices and observations up to time Ty.

Definition 2 (Algorithm Performance). Let ALGO be the total expected reward accumulated by the
algorithm over the horizon T':

T K Tr41—1
M60-3 =33 n
t=1 k=1 t=my
Let ALGOy, = Zit_fl ry be the reward accumulated by the algorithm during stage k.

Lemma 4 (Regret Decomposition with Time-Varying Benchmark). The total expected regret
R(T) = OPT* — IE[ALGO} of StageRoute, compared against the optimal time-varying bench-

mark OPT" = Tk“ y V (b, M,,), can be decomposed as:
k 1 k D

K Tk+1— 1 K Tk41— 1
EIY Y (Vo Dp)—r)|[+E D > (V(b,My,) = V(b,Dr))
k=1 t=7k k=1 t=7g

7?rn)uling (T) 7?«dcploy (T)

where:

* Rrouting(T') is the total expected routing regret, accumulating the per-query difference be-
tween the optimal expected performance with the deployed set V (b, D) and the realized
reward ry, summed over all queries and stages.

* Raeploy(T') is the total expected deployment regret, accumulating the per-query difference in
optimal expected performance achievable with the full set of available models V (b, M.,))
versus the deployed set V (b, Dy,), summed over all queries and stages.

Proof. We start with the definition of the total expected regret:
R(T) = OPT* — E[ALGO].

Using the definition OPT* = Z,I::l S e LY (b, M, ) and ALGO = Zk (STl

t=T t=Ty

K Tey1—1 K Tk+1—1
35 v -2 |3S ]
k=1 t=mx k=1 t=Tg

Note that M, (the set of models available at time 7;) depends on the fixed model arrival times ¢,,
and the stage start time 7;. According to the system model (Section , 7 =k-1DT/K+1
and the stage length T}, = (7441 — 7%) = T/K are deterministic. Consequently, the set M,
and the benchmark value V' (b, M, ) are deterministic for each stage k. The randomness in the
regret decomposition arises from the algorithm’s choices, specifically the selection of Dy, (which
determines V' (b, Dy)) and the subsequent routing decisions leading to the realized rewards r;.

Since V(b,M,,) is deterministic for each %k and constant for ¢t € [rg, Tky1 — 1),
the sum Y r ZZ;*TL_l V(b,M;,) is also deterministic. = Thus, it can be written as
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E Zkl-(:l STy, Mfk)] We add and subtract the term [Zk P s LV (b, Dk)} :

K Tr41—1 K Try1—1
E[Z > Vb My, E[Z > rt]

k=1 t=Tg k=1 t=7k
K Tr1—1 K Th+1—1
=E|> ) VM) E[Z > V(b,Dy)
k=1 t=Tx k=1 t=Tx
K Tr+1—1 K Tr+1—1
+ED Y V(b,Dk)l =1
k=1 t=7g k=1 t=7g

Now, we combine terms using the linearity of expectation:

K Tr41—1
= Z Z bMTk - (b7Dk))]
k=1 t=Ty
K Tk+1—1
23S oy —m].
k=1 t=1y

This expression matches the claimed decomposition, identifying the deployment regret Repioy (1')
and the routing regret Rrouing(1") as defined in the lemma statement. Alternatively, letting

OPT, = TRV (b,Dy) = T’”_‘*ifl V(b,Dy) and ALGO,, = Ti*ifl ry, the routing regret can

t=T t=T

be written as I[“E[Zle(OPT;C — ALGOy)]. Similarly, the deployment regret can be written as
K
ER k=1 Th(V (b, M) = V(b Di))]- 0

This decomposition provides an accurate picture of the algorithm’s performance. The deployment
regret Raeploy (17) isolates the loss incurred specifically by StageRoute’s potentially suboptimal
selection Dy, (during its Model Deployment Phase) from the available set M, , measured against the
best possible rate V' (b, M, ) achievable with those available models. Bounding R gepioy (1") involves
analyzing how effectively the Model Deployment Phase of StageRoute identifies the optimal
subset of size at most M. from M, based on its estimates. The routing regret Ryouting (I') remains
the sum of per-query differences between the optimal expected performance using the deployed
models Dy, and the actual realized rewards r;. Lemma (or subsequent analysis) addresses the

term [E] Zit;fl(V(b, Dy) — r¢) | Dy] which contributes to Rrouting (1')-

C.3 ANALYSIS OF DEPLOYMENT REGRET

We now analyze the deployment regret component Repioy (1) as defined in LemmaE}

Rdeploy Z Tk b Mﬂc) - (ba Dk))

This quantity captures the cumulative expected performance loss across all stages, incurred when
the StageRoute algorithm selects a subset Dy, at stage k based on estimated model statistics at
time 7, instead of deploying the optimal subset from the full set of available models M, .

The deployment regret arises from two complementary sources:

1. Parameter Uncertainty: Inaccurate estimates of model performance (u,,) and cost
(E[¢r,]) may result in suboptimal deployment decisions. This source corresponds to models
that have already been deployed in one or more of the previous k — 1 stages.

2. Model Discovery Bottleneck: The constraint that at most M,,x models can be deployed
concurrently may exclude promising but underexplored models—particularly newly ar-
rived ones—from being included in Dy. This prevents timely evaluation and utilization,
contributing to additional regret. This case pertains to models that have not been selected
in any of the preceding k£ — 1 stages.
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These two components are complementary in nature and together constitute the total deployment
regret Reploy (1'). In the following analysis, we will provide regret bounds for each source.

For the analysis, we recall that V' (b, S) is the optimal performance rate for a model set S (defined
in Section . Let V,* = V(b, M, ) be the optimal rate achievable using all models available at
the start of stage k, and V;, = V' (b, Dj,) be the optimal rate achievable using the subset Dy, C M.,
selected by StageRoute. V;* is deterministic given 7, while V}, (through Dy,) is a random vari-
able. A key assumption for bounding the deployment regret due to parameter uncertainty involves
the Lagrange multipliers associated with the budget constraint in the definition of V;*. Let A} > 0
be this optimal Lagrange multiplier. We assume that A} is uniformly bounded by a constant A for
all k. This is a common assumption in the analysis of learning algorithms with budget constraints
and is often justified when standard regularity conditions (such as Slater’s condition, which we as-
sume in Assumption [T) hold for the underlying optimization problems, particularly given that our
problem parameters (rewards, costs, ;) are bounded and expected costs E[c,,] are lower-bounded
by c; > 0.

Confidence Bounds and Good Event. Let 7, be the start of stage k. N,, (7% ) is the play count for
model m before 7. Define confidence radii using Lemma [I]and[3|with v = ©(log(NT/§)):

rad#(m,Tk) = 2 frad(fim (7)), N (T1) + 1)

rad.(m, %) = 2frad(Cm(7r), N (7%) + 1) (Since costs ¢, € [c1,¢2] C [0, 1])
Let & be the good event at time 75, where, for all m € M,,, the confidence bounds based on y
hold:

pom < pig (k) and g (7k) < pn + rad,, (m, 7))
E[cym] — rade(m, 7) < ¢ (1) and & (1) < Elen)

Let £ = ﬂszlc‘)k. By a union bound over all N models in the universe M and K stages, P(£) >
1 — 6. We condition the analysis on €. (Note: 1Y is fiy, (7x) + 2 fraa(fim (Tk); Non (1) + 1) and cZ,
18 € (7)) — 2 frad (Cm(Tk)s Nm(71) + 1) as per Eq. (6,7) in the algorithm description, projected onto
[0,1] and [c1, co] respectively. The inequalities above capture the desired properties on the good
event &).

Bounding the Per-Stage Deployment Gap due to Estimation Uncertainty.

Lemma 5 (Per-Stage Deployment Gap Bound). Let V¥ = V(b, M., ) be the optimal rate with
available models at stage k. Let Dy, = supp(d*) be the set selected by the Model Deployment Phase
of StageRoute based on M, and estimates at Ty, via solution d* (from Eq. equation . Let
Vie = V (b, Dy). On the good event &y, the deployment gap for stage k is bounded as:

Vi =V < Z (rad, (m, ) + Agrad.(m, 7)) d,,
meM,

where X}, is the optimal dual variable for the budget constraint in the problem defining V', assumed
to be < A.

Proof. Let d°P“* be an optimal solution achieving V;* = V(b, M., ). Let d* be the solution found
by StageRoute’s Model Deployment Phase (using Eq. equation [3)) at 75, when optimizing over
M., using ;¥ (1) and cZ (73,). Let Dy, = supp(d*). Let Vi, = V (b, Dy,).

On the event &, the confidence bounds hold for all m € M,,. Specifically, p,, < Y () <
pm + 1ad, (m, 1) and Elc,,] — rad.(m, 1) < ¢k (1) < Eley,]. The true optimal solution d°Pt*
for the set M, satisfies >\, ]E[cm]d?ﬁt’k < b, uses < M,.x models from M., , etc. Since
- /
ck (1) < Eley) on &, wehave 32, v ek (m)dibtt < Eley|d%" < b. Thus, doPoF
Tk Tk
is a feasible solution for the optimization problem solved by StageRoute (Eq. equation [3|applied

to M;,).
By the optimality of d* for StageRoute’s deployment objective over M, :

S b mdn, = > b () dpek (11)

meMr, meMr,
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Using the confidence bounds on & for m € M, :

Z M?n(Tk)drn = Z (M77L+radu(m77-k m — Z ,Umd + Z rad m Tk

meM, meM, meM, meM,
U opt,k opt,k __ y/*

ST RUEERE > S pd =V

meM-, meMr,

Substituting these into Eq. equation[TT}

S byt Y radum, s, > Vi

meM, meM,
Rearranging:
S bmdl, =V = Y rad,(m,7)d, (12)
meMr, meMr,

This bounds the true performance of the distribution d* chosen by the algorithm. Now we relate
this to V;, = V(b, Dy), the optimal performance within the chosen set Dy, = supp(d*) C M.,.
The distribution d* is supported on Dy, and uses at most M, ,x models (due to the constraint in
Eq. equation [3). We examine its feasibility w.r.t. the true budget constraint. On &j:

> Elewmlds, < Y (ch(m) +rade(m, 7))dy, <b+ Y rade(m, 7)dp,
mEDyg mEDy mEDy

Let 6.(d*) = >_,,cp, radc(m, 74)dy,. Using sensitivity analysis/duality, relating Vi, = V (b, Dy,) to
the performance of d* which is feasible for budget b + J.(d*):

Vie =V (b,Dx) > V(b+6.(d"), Dy) — \6c(d¥)
where A} < A. Since d* is feasible for V(b + d.(d*), Dy):

V(b+6.(d > pmdyy =Y pmd,

meDy WEMT’C
Combining these:
meM,
> V- Z rad, (m, 13,)d Z rad.(m, 7y)d;, (Using Eq. equation|[12))
meM, meDy,

Rearranging gives the result (noting d, = 0 for m ¢ Dy):

Vi -V < Z rad,, (m, 7)d}, + A, Z rad.(m, 3, )d},
meM., meEDy

Since d}, = 0 for m ¢ Dy, the second sum can also be written over M., :

Vi=Ve< > (rady(m,7) + Arade(m, 7)) di,
meMr,

O

Cumulative Deployment Regret from Estimation Uncertainty. Summing the per-stage deploy-
ment gaps caused by estimation errors gives the learning component of the deployment regret.

Lemma 6 (Deployment Regret from Estimation Uncertainty). Assume the optimal dual variables
Ay are uniformly bounded by A. Let K be the total number of stages. Set the confidence parameter

= O(log(NT/$)), where N = | Mr|. Then the component of total expected deployment regret
due to parameter uncertainty, denoted Rdeploy,leam(T), is bounded by:

Reaeplogicarn(T) < O (\/T 1og(NT/3) - min(N, K M) + Munax K 1og(NT/5)) .
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Proof. The total expected deployment regret due to parameter uncertainty is given by
Rdeploy,leam Z Tk b Mm) - V(b7 Dk)) )

where V;* = V (b, M, ) and Vj, = V (b, D). We condition on the good event & = NK_ &, which
holds with probability at least 1 — §. On this event, the confidence bounds for ., and E[c,,] hold
for all models m and stages k. From Lemmal5] on event £j:

Vi = Vi< > (rad,(m, 7)) + Nprade(m, 7)) dj, .,
meM,

Let Cp, (7)) = rad,(m, 7) + Arad.(m, 7), using the uniform bound \;; < A. Since dj, ,, = 0 for
m ¢ Dy, = supp(d},), we have:

Tk(Vk* — Vk) < Ty Z C’m(Tk)dz,’m'

meDy

The term dj, ,,, represents the selection weight for model m in the deployment optimization at
stage k. Thus, > mep, Cm(Tk)dy, ,,, is a weighted average of the combined confidence radii for
the deployed models. We are considering the case where the model has already been selected

in the previous k£ — 1 stages. Thus, we can bound the sum of T} (V,* — V},) by terms related to
Z,If:l ZmeDk 1k, mCm (T1). Specifically,

K
S H0E - 2OMY X menC
k=1

k=1meDy
Let’s analyze the sum S = Zszl > ey, WhmCom (7). Recall Cp, (1) =
2 frad(fm (Tk)s N (7)) + 1) + 2A fraa(Cm (1), N (1) + 1). Since rewards fi,, (7%) € [0, 1] and

costs € (k) € [c1,c2] C [0,1] (with ¢; > 0), we have frqq(v,n) = /2> + 1 < \/g—i— I for

v €[0,1): 80, Cn(m) <201+ A) (/5 Zoyer + woyrr ) Let € = 2(1+ A).

' v v
S<CZZ"’W( (Tk)+1+Nm(Tk)+1>'

k=1 meDy

We can rewrite the sum by first summing over all models m € M (the set of all N possible
models) and then over the stages &k in which m was deployed and played:

’ Y Y
S 3 2 "’”“( Nm<m)+1+Nm<m>+1>'

meMr k:m€EDy, and ny, m >0

For a fixed model m, let N,,,(T") be the total number of times it is played up to T". Let n,, ,; be the
number of times 1 is played during the j-th stage (denoted s;) in which it is deployed. Let N, (7s;)
be the total number of plays of m before stage s;. The sum for model m is:

Z’" Y y
Sm = nmysj ( + ) )
j=1 Nm(TsJ-) + 1 N?n(Ts]-) + 1

where K, is the number of stages model m is played. We use the standard inequalities for such
sums:

K, ~ m ( 1
2721 T, s, N (TSj )+1 - f Z \/(plays of m before current block)+1 - ﬂ
2 /N (T).

’

K., 1
* Z] 1Mm,s; N, (Ts‘ < ’YZ’L 1 (plays of m before current block)+1 <7 (1 +1In Nm(T))
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So, S < O(W/YNm(T) + vlog Ny, (T)). (We absorb constants into O(-) for now, and will re-
introduce C” later). Thus, S < C" Y, c v, o N, (1)>0 OV YN (T) + v1og N (T)).

The sum is over models that were actually played. Let Mp = {m € My | N,,,(T) > 0}. The

number of models in Dy, is [Dy| < Mmax- S0, > c g vV Nm(T) < \/|./\/lp| Yomemp Nm(T) =

v/ |Mp|T by Cauchy-Schwarz. Since at most M., models are deployed in any stage, and there
are K stages, the number of distinct models ever deployed is |[Mp| < min(N, K Myax)-

The sum >, log Ny (T). If Ny(T) > 1, then log Ny, (T) > 0. This sum is at most
Miax 10g(T /Mnax) if Minax models share T plays, or more generally bounded by My, K (f
each of M,,., models gets played at least once in each of K stages, its log N,,,(T) contributes, and
Ny (T') could be small). A more careful bound for the sum of log terms: >\, log Ny, (T) <

My KlogT. So, S < ' (O(\/WT -min(N, K Myay)) + O(VMmaxK)) The log terms are

typically absorbed into the ~y term. The expectation E[S] includes the good event (probability 1 — d)
and the bad event (probability §). On the bad event, the regret in one stage is at most 7%, so total 7.
Reeployearn(T') < E[S] 4 0T. If 6 = O(1/T), then 6T = O(1). Substituting C’ = 2(1 + A) and
v = O(log(NT/$)), then we complete the proof. O

Deployment Regret from Model Discovery Bottleneck. The constraint of deploying at most
Max models simultaneously, |Dy(A)] < Mpax, introduces a structural challenge, particularly
when new models frequently become available or the total pool of models M1 is large. This chal-
lenge is the model discovery bottleneck: identifying truly superior models among many new, un-
evaluated candidates can be delayed.

The StageRoute algorithm employs UCBs for rewards (u,) and LCBs for costs (cL) in its

DeployOPT phase (Eq. equation[3). For a model m that is newly available at stage k (i.e., t,,, < 7
and its count of previous selections N, (1) = 0), its initial empirical averages fi,,, (1) and &, (%)

are set based on priors. The confidence radius f,q4(v, Non(7k) +1) = /5 (12)+1 + % (;Yk)+1

becomes large for N,,,(73) = 0. Specifically, with Ny, (1) +1 = 1:
(i) = projfo,y (iim (i) +2 (V3iim(78) +7) )
Ch(71) = P10, ) (em(7) = 2 (VAEm(7) +7) )

Assuming priors are chosen such that new models are treated optimistically (or if v is sufficiently
large), pY (71.) will be close to 1 (e.g., if fim (7x) = 0, %, (7%) = proj 0,1](27) = 1 for appropriate

7) and c& (1) will be close to ¢; (e.g., if &, (1) = c1, ¢k (14) = Projj,, «,1(c1—2(y/7e1+7)) = e,
noting ¢, ¢ca € [0, 1]). Let these optimistic initial values be U;,;+ and L;,,;; respectively.

Consider an update point 7. Let Nyeq x € M., be the set of models that are new at or before 7
and have not yet been deployed (N, (1) = 0). All models in Nnew,k will have nearly identical,
highly optimistic (u%, cfn) ~ (Uinit, Linit) values. If the number of such equally optimistic new
models, |NV,ew k|, plus other potentially optimistic (but previously explored) models, exceeds My ax,
the DeployOPT phase must select only M,,,x models. If the new models in Nnew}k dominate the
selection pool due to their optimism, DeployOPT will choose My,ax models from N,,eq, 1, (possibly
along with some already explored models). Crucially, if there are more than M, models within
Npew,k (or alarger pool of similarly optimistic candidates) that yield effectively the same objective
value for DeployOPT (because their u%, c#, Q. are similar), the selection among these specific

candidates becomes arbitrary (e.g., dependent on tie-breaking rules).

A truly superior new model m* & Nnew,k might thus be part of a large batch of Nygicp, > Mpax
new models that all appear equally promising to DeployOPT. In this scenario, m* might not be
selected for deployment in stage k, deferring its evaluation. This deferral means the system misses
the opportunity to benefit from m™*’s potentially high true performance fi,,,« for the duration of stage
k, which is T}, = T'// K rounds.

Lemma 7 (Model Discovery Bottleneck Regret). Let M,,x be the maximum number of concur-
rently deployed models, T' be the total time horizon, and K be the number of stages, with each stage
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having Ty, = T /K rounds. The component of expected deployment regret due to the bottleneck in
discovering and evaluating all N models, denoted Rdeploy,discovery(T), is bounded by:

N - (T/K) NT
Racptoseovry (1) = O <me> -9 (MmXK) '

Proof. Each of the N models in the universe M needs to be deployed at least once to gather initial
empirical data and move its UCB/LCB estimates away from their initial purely optimistic values.
We are interested in the total regret incurred until all N models have had at least one such initial
deployment opportunity.

Due to the constraint | D (A)| < Max, at most M,y distinct models can be deployed and evalu-
ated in any given stage k. If the system prioritizes exploring previously undeployed models (which is
encouraged by their optimistic UCB/LCB values), it will take a minimum of K.zpiore = [N/Mmax]
stages to ensure that every model in M (assuming all become available early enough) has been
deployed at least once.

Consider a discovery period spanning these first K.qpi0re effective stages. During any given stage
J € [1, Kegpiore) Within this period, if the set of M, models deployed, D, (.A), does not include
some model m* € M which is (a) available (m* € M), (b) truly superior to at least one
deployed model m’ € D;(.A), and (c) m™* has not been deployed yet because it is waiting its turn
due to the arbitrary selection among many new, equally optimistic models, then regret is incurred.
The per-query regret in such a case can be up to 1 (if pi+ ~ 1 and iy, = 0).

The total number of queries over these Keypiore Stages is Kegpiore Tk = [N/Mmax| - (T/K).
During this cumulative period, the system is effectively cycling through the N models. If the se-
lection process within each stage means that, on average, the deployed set is suboptimal because
truly good models are among the (N — j - Mp,.x) yet to be tried, the system incurs regret. The
term O(NT/(MpmaxK)) represents the cumulative regret if, for a duration equivalent to N/M,.x
full stages (each of length 7'/ K), the system operates with a deployed set that is, on average, O(1)
worse per query than if all models had already been evaluated. This occurs because the M, ,x slots
are occupied by models chosen optimistically, and a superior model might be consistently deferred
if it’s part of a large pool of indistinguishably optimistic new models.

More formally, consider the N models. Each requires roughly one exploration slot of duration 7.
These N slots are processed in parallel groups of My,.x. This implies approximately N/M,ax
stages are spent ensuring all models receive initial evaluation. If, during these N/M,,.x stages, the
average deployed set yields O(1) less reward per query compared to an optimal deployment (had all
models been known), the total regret from this discovery phase is (N/Mpax) - (T/K) - O(1). The
expectation E[-] in Raeploy.discovery (I') averages over the random tie-breaking in DeployOPT when
faced with multiple equally optimistic new models, and the stochastic arrival pattern of models. The
O(+) notation absorbs constants related to the maximum possible per-query regret (e.g., 1) and the
precise nature of average suboptimality during this discovery period.

This component accounts for the scenarios where truly good models might be systematically delayed
in their initial deployment if they frequently arrive alongside many other new models, leading to
arbitrary choices among a large pool of initially indistinguishable (optimistic) candidates, subject to
the My,ax deployment limit over K stages.

Total Deployment Regret. The total deployment regret Rgepioy () is the sum of the regret from
parameter uncertainty (Lemma[6)) and the regret from the model discovery bottleneck (Lemma 7).

Lemma 8 (Total Deployment Regret Bound). Let N be the total number of models, My .x the
maximum deployed models, T' the horizon, and K the number of stages. Let v = ©(log(NT/9)).
The total expected deployment regret Raepioy(T") is bounded by:

NT
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Proof. The total deployment regret is the sum of the bounds from Lemma [6]and Lemma 7}

Rdeploy(T) - Rdeploy,leam(T) + Rdeploy,discovery (T)

<O (\/T log(NT/(S) ’ min(N’ KMrnax) + Minax K log(NT/(S)) +0 (MNTK>

NT
e <\/T log(NT/8) - min(N, K M) + Munax K 10g(NT/3) + K) :

The total deployment regret bound in Lemma [§] highlights two distinct challenges in the deployment

phase. The terms O(+/T log(NT/5) - min(N, K Myax)) and O(Mpax K log(NT/§)) capture the
cost of learning the parameters of models that are considered for deployment. This cost depends
on the horizon 7', the number of deployment slots M, ., the number of stages K, and logarithmic
factors related to the total number of models N and confidence §. The term O(NT/(MumaxK))
reflects the structural cost imposed by the discovery bottleneck: when the universe of models /V is
large compared to M.« and the number of adaptation opportunities K, there is an inherent regret
incurred in sequentially exploring models to identify the best ones. This term can dominate if NV is
very large or K is small, underscoring the importance of the deployment frequency and capacity in
dynamic LLM environments.

C.4 BOUNDING THE TOTAL ROUTING REGRET

We now bound the total routing regret term Ryouing (1") identified in Lemma This involves sum-
ming the per-stage regrets incurred by the Request Routing Phase of StageRoute due to using
estimated model parameters within the deployed sets Dy. This part of the proof follows a similar
structure to the analysis of UCB-style algorithms for the Bandits with Knapsacks problem |Agrawal
& Devanur (2014).

Lemma 9 (Performance Bound). Let ALGOy, = ZT’“% ! ry be the total observed performance in
stage k. With probability at least 1 — (M} Ty,) exp(—O(7)),

Tk-+171
oo lrn- Y Whpim) || <o (\/kaALGOk + ka) .
t=Tk meDy (A)

Proof. The proof follows the structure of Lemma 4.4 in|Babaioff et al.| (2015), adapted to our nota-
tion for models m € Dy (A) and performance fi,,,, UCB p%, (t), chosen model my, routing distribu-
tion p; (from Eq. equation , and summing over ¢t € [7y, Tp+1 — 1] (length T},).

We use Lemma [T] and Lemma [3] (for performance). High probability bounds analogous to (5) and
(6) in the source proof hold for sums over ¢ € 1y, Tr+1 — 1]:

Z(Tt - /-Mnt)

t

S US dwim) - ul, ) )| < OTk - fraal Zum

meDy (A)

< O Tk f’!lld Zurntka
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And analogous to (7) in the source, using Lemma 3|and Lemma 2}

Tk+171 Tk,+171
D (e = i )] <> |ty — i ()]
t:Tk t:Tk
Tk+171
O < Z frad(ﬂmt (t)v Nmt (t) + 1))
t=T7g
<ol Y > fraa(fum (at play j), Ny (at play j) + 1)

m€Dy (A) plays j of m in stage k

<o Y (VAiulrr) = Nalm)iim +7)

meDy (A)

<0 ~M;, Z o (N (Tie41) — N (730)) | + v M,
meDy (A)

Tk+171
<0 My ( Z ,ttmt> + v M,

t=71

Let A= S 7kttt D meDy(A) pl (t)p; (m). Combining these bounds using the triangle inequality

t=T7g
on 7y — 3, 1Y (P (m) = (1t — pim,) + (o, — 15 (8)) + (15, (6) = 3, 1, (£)p; (m)), similar
to the source proof structure, leads to an inequality relating A and > r; = ALGOy. If > ry =
> im, and A &~ Y u,l{“ (), then the difference | > (tim, — ps, (£))| dominates. This typically

leads to A — O(\/YM A + yMj;) < ALGOy, (assuming p¥ are UCBs and A ~ Y ul, (t)). This

implies VA < / ALGOk + O(+/yMj). Substituting this back into the bounds for the difference
|ALGO), — A| yields the claimed result.

Tr+1—1 Te+1—1
Z Ty — Z Z um )p; (m)| < O(\/vM ALGOy, + vMy,).
t=Tk t=1k mEDx(A)

O

Lemma 10 (Cost Bound). Let ZT"“ ¢, be the total observed cost in stage k. Let B, = b- T}, be

the effective expected cost budget for the stage. With probability at least 1 — (M Ty) exp(—O(7))
(i.e., on event ),

Tk+1 —1

o e X ch@pitm) || <0 (VAMB + M)

t=Ty meDy (A)

Proof. The proof mirrors that of Lemma E] (and Lemma 4.5 in [Babaioff et al.| (2015))), replac-
ing performance with cost, g, with Elc,,], p% (t) with cZ (), and r; with ¢;. The probabil-
ity distribution p; is from Eq. equation Key steps involve bounding | > ¢; — Y Elep,]|s
I, ek (@)pr(m) =3 ck ()], and | Y- Eley,,]— > ¢k (¢)]. The last term is bounded similarly
using Lemma [3]and Lemma 2}

Tr41—1 Tr41—1
Y (Elem,] =, ()] < O | 7My, ( > E[Cmt]> + My
t=Ty t=Tk
Let A" = :’“;171 Elem,]. The algorithm ensures .. cp, (4 ck (t)p;(m) < b at each step

t. Summing over the stage gives /""" 1Zmepk(A) cktpr(m) < b- T, = Bj. Let
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Xc = Zit';il ZmE'Dk(A) Can(t)P?(m) Then Tk+1 1 - Xc’ § O(V PyMkA/ + "YMk)
where A’ is the sum of true expected costs. On event 5, cfn(t) < Elew], so X. < A’. Also,
A < X+ O(/yMpA"+~vMy). Since X. < By, it follows that A’ < By, + O(V/yM A’ +~vMjy,).
This implies VA’ < /By, + O(v/YMj,). Substituting this back into the concentration bounds for
| >~ ¢: — X.| (and noting A’ & By, in the error term’s leading order) yields the final result. O

Lemma 11 (Per-Stage Routing Regret Bound). Let OPT,“;” = maxp{zmepk( A tmp(m) |
2 meny(A) Elemlp(m) < b3 p(m) = 1,0 < p(m) < ou,} be the optimal expected reward
rate within stage k using Dy (A) and true parameters. Let OPTk = Ty, - OPTY™ be the total optimal

expected performance in stage k. Let ALGOy, = Zﬁ“ ry. Assume My < O(By). Then, on

the event £ (implying high probability for the bounds within the stage), the routing regret for stage
k, conditioned on Dy, is bounded by:

E[OPT;, — ALGO;, | D] < O ( YMOPTy + ka)

(The expectation is conditioned on the choice of Dy, which itself depends on information up to Ty).
Proof. On event &, the following hold:

1. 1Y () > pm and ¢k (t) < Ele,,] for all relevant m, .
2 Lemma |55, (r, — 55,0 15 (1)pi (m)] < O(yAMZALGOR + AMy).

3. Lemmal|l0} | Y, (e — X, ek ()p;(m))| < O(VAMBy, + vMy). Also, >, ¢; < By +
O(VYMy By + v My,).
From the algorithm’s choice of p; (solving Eq. equation [7) and property (1):

Tk+171

> Y. wl(®)pi(m) > OPT,

t=7Tr meDy(A)

Combining this with property (2):

ALGOy, = > 1 > Y Y ul (t)p (m) — O(\/yMyALGOx, + v My,)
t t m

ALGOk > OPTk — O(\/ ’YMkALGOk + ’YMk)
Rearranging and assuming ALGO;, < OPT}, (regret is non-negative):

OPTk — ALGOk < O(\/ ’}/Mk-ALGOk + ’YMk)
If ALGO,, < OPT}, then v/ALGO,, < 1/OPT},.

OPT}, — ALGO}, < O(+/vMOPT, + vM},)

Taking expectation conditioned on Dy, (and implicitly on £ for the bounds to hold), the result fol-
lows. The assumption M}y < O(Bjy) is used in concentration bounds for costs. Moreover, since the
estimation errors for both performance and cost are governed by the same concentration inequalities,
the expected budget violation is on the same order as the regret. O

Lemma 12 (Total Routing Regret Bound). Ler K be the total number of stages. Let My, = |Dy| <
Max. Let 6 € (0,1) be the desired overall confidence. Set v = O(log(NT/d)). Then the total
expected routing regret is bounded by:

K
> (OPT), — ALGO,)
k=1

Substituting v = O(log(NT/J)), this becomes:

Reouing (T) = E O (VoM KT + Ky M )

Reuing(T) < O (/M KT Tog(NT/8) + K My log(NT/9))
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Proof. From Lemma Rerouting(T) = Zszl E[OPT; — ALGOg]. Here OPT, = T,V (b, D)
and ALGOy, is the algorithm’s reward in stage k. The outer expectation E[-] averages over all
randomness, including Dy, and the failure of event £ (which occurs with probability < §). Using
law of total expectation: E[OPT;, — ALGOy] = E[E[OPT;, — ALGOy, | Dx]l.

We apply Lemma|[11} Choosing v = ©(log(NT'/d)) ensures that event &£ holds with probability at
least1 — 4. On &:

E[OPT; — ALGO}, | D] < O (kaTTk + ka)

Taking expectation over Dy:

E[OPT). — ALGOy] < O (E [\/AMOPTy | +vEIM] ) +3 - Ty

Summing this bound over all K stages:
K

Riouing(T) <> O (]E [«/WMkOPTk} T W]E[Mk]) 46T

k=1

Using linearity of expectation, My < M.y, Jensen’s inequality (E[\/f | < VE[X]), and E[M}] <
Mmax:

K K
Rrouting(T) <O <Z]E [\/ ’VMmaxOPTk:} + Z’VMmax> + 0T
k=1

k=1
K
<0 (x/vaax > VE[OPT] + Kvaax> +0T
k=1

Applying Cauchy-Schwarz: (Zszl /E[OPT])? < K Zszl E[OPT}]. Thus,
Zszly/E[OPTk] < \/KZJ§:1 E[OPTy]. Since rewards are in [0,1], V(b,Dy) < 1,
so OPT;, = TV (b,D;) < Ty Summing over k: Yo OPT, < Y T, = T. So,
Zle E[OPTy] < T Substituting this upper bound:

7?/rouling(T) S O (\/ ’VMmaxKT + K'YMmax) + orT

If § is chosen small enough, the §7" term is absorbed. This establishes the first form of the bound.
Substituting v = O(log(NT/§)) yields the second form. O

C.5 TOTAL REGRET BOUND

The overall regret of StageRoute accounts for several sources of suboptimality. The total ex-
pected regret R(T") can now be understood as the sum of two main components:

1. Rmming(T): The routing regret within deployed sets (Lemma .

2. Raeploy(T): The total deployment regret, encompassing both learning uncertainty and
model discovery bottleneck (Lemma g)).

Summing these bounds:
R(T) = Rrouting(T) + Rdeploy(T)
<0 <\/MmaxKT 10g(NT/8) + K Muax 1og(NT/5))

+0 <\/T 10g(N'T/5) - min(N, K Myay) + Munax K log(NT/5) + MNTK)

Combining terms, and noting that for K > 1, \/ Miyax KT log(NT/6) dominates or is equivalent
to /Tlog(NT/6) - min(N, K Myax) and K Myyax log(NT/5):

NT
< .
R(T) <O <\/MmaxKT log(NT/5) + T K)
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D LOWER BOUND FOR ONLINE LLM ROUTING

We establish a lower bound on the regret for any online LLM routing policy. The construction
considers a scenario where the set of competitive models and their performances can evolve over
time, divided into batches. Within each batch, the algorithm faces a sequential decision problem of
selecting the best among M available models, where the identity of the best model is unknown and
can change from batch to batch. To isolate the learning challenge, we make several simplifications.
We assume each model invocation incurs a unit cost (¢,,, = 1), rendering the budget constraint
trivial if the per-query budget b > 1. We also assume that the system can always deploy any of
the M models under consideration in a given batch (M,,x > M) and that there are no per-model
capacity limits (o, = 1 for all m). The core difficulty then lies in continuously learning and
adapting to the best-performing model(s) in each batch.

The proof strategy is to construct a class of adversarial problem instances. We will demonstrate
that any online algorithm .4 must incur significant regret on at least one instance within this class.
This argument adapts a batch-based structure common in analyses of learning problems with non-
stationary environments.

Step 1: Construction of Hard Problem Instances. Let ¢ > 0 be a small parameter, which will
be determined later. The total time horizon of T" queries is partitioned into Np contiguous batches,
denoted By, . .., Bn,. Each batch j consists of A = T'/Np queries. For simplicity, we assume T is
an integer multiple of Np.

For each batch j € {1,..., N}, we consider a set of M models available to the algorithm .A.
These models are indexed ¢ € {1,..., M} specifically for the current batch j. The performance
characteristics of these M models are defined as follows: one model is designated as the “strong”
model, and the remaining /M —1 models are “weak”. Let s; € {1,..., M} be the index of this strong
model in batch j, chosen uniformly at random by the adversary and unknown to the algorithm. The
reward 7, obtained from selecting a model at query ¢ € B; is drawn from a Bernoulli distribution:

¢ If model my; (the strong model for batch j, with index s;) is chosen, r; ~ Bernoulli(,ug)),

where the mean reward is ug) = % + je.

* If any other model m; (where ¢ € {1,..., M} and i # s;) from the set of M/ models for
batch j is chosen, r; ~ Bernoulli(,u(L])), where the mean reward is ,u(LJ) =1+(-1e

Rewards from different queries are assumed to be independent. The crucial gap in expected reward
between the strong model and any weak model in batch j is ug) — u(Lj) = €. To ensure that all mean
rewards ug) and u(Lj) lie comfortably within the interval [0, 1], we impose the condition Nge < i.

This ensures ugVB) = 2+ Npe < 1+ 1 =2 < 1, and the smallest mean, MS;I) =1+(1-1)e=3,

2
is also valid.

A complete problem instance is characterized by a sequence of strong model indices
(81,82,...,8Ny). The actual underlying LLMs corresponding to these indices could differ from
batch to batch, but in each batch j, the algorithm .4 faces a choice among M options with the
specified reward structure, and s; is unknown.

Step 2: Per-Batch Regret from Identification Difficulty. Fix a batch j € {1,..., N}, and let
s; denote the true index of the strong model, unknown to algorithm A. To identify ms» (mean
ug)) from the M — 1 weak models (mean ,u(Lj), gap €) with a constant probability pg,.. < 1 (e.g.,
Psuce = 3/4), any algorithm requires a query complexity of Q(Me~2) |Agarwal et al. (2017); [Li
et al.[(2023). This implies there is a universal constant cs > 0 such that at least cgMe™“ queries
are necessary to achieve success probability psqcc.

We set the batch length A = (cg/2)Me 2. Since c¢s/2 < cg, this choice of A is insufficient
for reliable identification with probability ps,... Consequently, algorithm A fails to identify M

within A queries with at least a constant probability preii > 1 — Psuce (€.8., Setting psyce = 3 /4
gives prqit > 1/4). Let E54,; denote this event of identification failure.
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Let Nj wear be the number of queries to weak models in batch j. Conditional on 4, the algorithm
lacks knowledge of s7. In such a state of confusion (especially when M > 2), it is expected to select
weak models a significant fraction of the time. For instance, if choices upon failure are made nearly
uniformly among the M models, weak models are selected %A times in expectation. Since
M >2,(M —1)/M > 1/2. Thus, we can state that E[N; ycqk|Efait] > crA for a chosen constant
cr > 1/2. By the law of total expectation, and since E[N; ycqk \Ej‘z’ail] >0:

E[Njweak] = P(Efait) E[Njweak|Erait] + P(EFain EINj weak|Efait] = Prait - crA.

Using prqi > 1/4 and cp > 1/2, this gives E[N; yeqr] > % . %A = %. The expected regret in
batch j (for a fixed s}, averaged over A’s randomness) is 1;(s}) = €E[Nj wear] > €(A/8). Since
this lower bound does not depend on the specific index s7, and the adversary chooses s} uniformly,

the expected regret in batch j (averaged over s and A) is E;, [R;] > %EA.

Step 3: Regret Along the Horizon and Parameter Choice. The expected regret in each batch
Jis Eg, [R;] > %eA. The total expected regret over Np batches for algorithm A is Rp(A) =

SV Es,[Rj] > NpieA. Since Np = T/A, we have Ry (A) > (T/A)seA = {Te.

We have set the batch length A = (cg/2)Me~2 in Step 2. The other primary constraint, from
Step 1, is Nge < 1/4, which implies (T/A)e < 1/4. Substituting A = (cg/2)Me~2 into this
constraint:
T L e 1y esM
— < = = €
(cs/2)Me=2 — 4 csM — 4 - 8T

To maximize the lower bound on regret %Te, we choose ¢ to be as large as possible, subject to this

cs M 1/3 : : 3 __ csM
€20) """, This choice ensures € = <52%.

constraint. We set € = (

Substituting this € into the total regret expression:

1_(ecsM A 615/3M1/3 lc}.;/3 1 cd?

> T — I8 7 _ 28 pzY/372/3 — 28 pp1/372/3
Br(4) 2 3 ( 8T ) 87 8BTS — 8 2 16

Since c¢g > 0 is a universal constant from the identification complexity, let C' = cls/ 3 /16. Then

C > 0. Thus, Rr(A) > CMY/3T2/3,

Finally, we verify the conditions on our parameter choices:

L Value of A: & = ()7 A = (es/2)Me? = (es/M(s5) " =

(8T)2/3 N 82/32/3 4T2/3 _ eg AMY/3T2/3
(03/2)M(05M)2/3 = (CS/Q)Mcé/st/s = (05/2)MC§/3M2/3 = 5 IE

202/3M1/3T2/3. Letca = 2015/3. SO A = caAMY3T2/3 Weneed1 < A < T for A to
be a valid batch length. A < T = caAMY3T?3 < T = MY3 <T'3/ch =
T > (eaM'/?)3 = ¢} M. This implies 7' must be sufficiently large relative to M. A > 1
generally holds for large 7" if M > 1.

2. Constraint Nge < 1/4: This constraint was used to determine the choice of . With
3 _ csM.
€’ = 5=
8T

Té T(%) esM/8 1/8 1

(cs/2)M — (cs/2)M — csM/2  1/2 4
Thus, (T/A)e = Npe = 1/4 is satisfied by this construction.

All conditions are met for suitable choices of T relative to M, given the universal constant cg > 0
and our choices for psqy (e.g., 1/4) and cr (e.g., 1/2) which determine the factor 1/8 in the per-
batch regret. Thus, for any online routing algorithm A, there exists a problem instance in our
constructed class for which its expected regret is bounded below by Ry (A) > CM/3T?%/3 for
some constant C' > 0 (specifically C' = cg/ 3 /16). For a fixed number of models M > 2. In this

case, the lower bound becomes Q(T2/ 3), matching the statement in Theorem

This completes the proof.
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E EXPERIMENTAL DETAILS

This appendix provides additional details on the experimental setup, benchmarks, and results pre-
sented in Section [3

E.1 REAL-WORLD BENCHMARK: ROUTERBENCH

Dataset Details. Our primary evaluation is based on the RouterBench dataset (Hu et al., [2024), a
comprehensive benchmark with 36,497 queries sampled from eight diverse NLP datasets. These
datasets cover both Chinese and English and span a broad spectrum of tasks: commonsense reason-
ing (HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., [2021)), ARC Challenge (Clark:
et al.| 2018))), knowledge-based understanding (MMLU (Hendrycks et al.}|2021))), open-domain di-
alogue (MT-Bench (Zheng et al., 2023)), mathematical reasoning (GSM8K (Cobbe et al.| |2021)),
code generation (MBPP (Austin et al.,[2021))), and retrieval-augmented generation (RAG).

Candidate LLMs and Metrics. For each query, RouterBench provides pre-computed responses
from the 11 LLMs listed in Table[3] The table shows the models ordered by their release date, along
with their average performance score and average cost per query across the entire dataset.

Table 3: List of LLMs sorted by release date, along with their per-query average performance score
and average cost.

Model Avg Performance Avg Cost
claude-instant-v1 0.5900 $0.001236
claude-v1 0.6480 $0.005870

claude-v2 0.5116 $0.006153
meta/llama-2-70b-chat 0.6059 $0.001337
WizardLM/WizardLM-13B-V1.2 0.5392 $0.000142
meta/code-llama-instruct-34b-chat 0.5040 $0.000550
mistralai/mistral-7b-chat 0.4999 $0.000139
gpt-3.5-turbo-1106 0.6867 $0.000709
gpt-4-1106-preview 0.8048 $0.007943
zero-one-ai/Yi-34B-Chat 0.7153 $0.000558
mistralai/mixtral-8x7b-chat 0.6504 $0.000414

E.2 ADDITIONAL SIMULATION RESULTS

To validate our framework’s applicability to the rapidly evolving frontier of SOTA models, we con-
structed a synthetic benchmark using 15 recent, high-performance LLMs.

Candidate LLMs and Metrics. We consider a set of 15 LLMs, summarized in Table E], ordered by
their official release dates. For each model, we report both performance metrics (Chiang et al.[(2024)
and associated costs. No single metric can capture the full complexity of LLM performance. We
chose Elo / area scores as they are community standards (e.g., Chatbot Arena), ensuring transparency
and reproducibility. Importantly, our framework is metric-agnostic. The performance signal can
be replaced by any other quantifiable performance measure, such as task-specific accuracy, user
satisfaction scores, or a composite utility function combining multiple objectives.

Note that the naming of Al models can be highly nuanced, and multiple versions may exist
under a similar label. For example, for Gemini 2.5 Pro, we used data corresponding to the
Gemini-2.5-Pro-Preview-05-06 version. Additionally, performance scores may fluctuate
over time due to model updates, shifts in the user voting population, or changes in evaluation bench-
marks. Similarly, costs may vary across time or across versions. The data reported here corresponds
to the specific versions and conditions used in our experiments.
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Figure 6: Regret with varying parameters.

Simulation Setup. These 15 models are introduced sequentially, with the first 5 available at time
t = 1 and one additional model becoming available every 1,000 rounds until all are accessible.
Each model’s performance is normalized to lie within the [0, 1] interval. For each model m, we
set its budget weight parameter «,, = 0.4, except for Yi-Lightning, for which we set o, = 1.
This is because Yi-Lightning is the cheapest model initially available to the algorithm, ensuring the
feasibility of the mixed-integer optimization problem in every round. At each round, if the algorithm
selects a model, it receives a noisy performance and cost observation, where the noise is sampled
from a Gaussian distribution centered around the true value. In any real-world application, LLM
performance metrics are inherently bounded. Our simulation implicitly respects the [0, 1] range by
clipping noisy rewards to this interval, with the noise variance chosen such that the probability of
generating values outside the range is negligible.

Sensitivity Analysis. Figure [6] presents the sensitivity analysis for StageRoute on the synthetic
benchmark. The results are consistent with our findings on RouterBench, demonstrating the ro-
bustness of our algorithm across different model suites and settings. StageRoute consistently
achieves low regret, adapting effectively to the concurrency cap, update interval, and budget.

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we used large language models solely to assist with polishing
the writing.
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Table 4: LLM comparison by release date: performance (Arena Score/Elo|Chiang et al.[(2024)) and
output cost (per 1M tokens).

Model Performance  Cost
GPT-40 1336 $10.00
Gemini-1.5-pro-002 1302 $5.00
Yi-Lightning 1287 $0.14
ol-mini 1304 $0.60
Llama 3.3 70B Instruct 1257 $0.40
DeepSeek-R1 1358 $0.55
Gemini 2.0 Flash 1380 $1.50
Claude 3.7 Sonnet 1300 $15.00
Hunyuan-turbos 1296 $0.28
Deepseek-v3 1373 $0.28
Llama-4-Maveric 1417 $0.82
GPT-4.1 1366 $8.00
Grok-3-preview 1403 $15.00
03 by OpenAl 1413 $40.00
Gemini-2.5-Pro 1446 $10.00

33



	Introduction
	System Model
	StageRoute: Stage-Based LLM Deployment and Routing
	Theoretical Results
	Upper Bound
	Lower Bound

	Experiments
	Conclusion
	Related Work
	LLM Routing
	Multi-armed Bandits

	Summary of Notation
	Technical Analysis
	Concentration Inequality
	Regret Decomposition with Time-Varying Benchmark
	Analysis of Deployment Regret
	Bounding the Total Routing Regret
	Total Regret Bound

	Lower Bound for Online LLM Routing
	Experimental Details
	Real-World Benchmark: RouterBench
	Additional Simulation Results

	The Use of Large Language Models

