
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEAR-OPTIMAL ONLINE DEPLOYMENT AND ROUT-
ING FOR STREAMING LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid pace at which new large language models (LLMs) appear, and older
ones become obsolete, forces providers to manage a streaming inventory under
a strict concurrency cap and per-query cost budgets. We cast this as an online
decision problem that couples stage-wise deployment (at fixed maintenance win-
dows) with per-query routing among live models. We introduce StageRoute,
a hierarchical algorithm that (i) optimistically selects up to Mmax models for the
next stage using reward upper-confidence and cost lower-confidence bounds, and
(ii) routes each incoming query by solving a budget- and throughput-constrained
bandit subproblem over the deployed set. We prove a regret of Õ(T 2/3) with a
matching lower bound, establishing near-optimality, and validate the theory em-
pirically: StageRoute tracks a strong oracle under tight budgets across diverse
workloads.

1 INTRODUCTION

The proliferation of LLMs has transformed a broad array of applications, delivering unprecedented
advances in natural-language understanding and generation (Radford et al., 2019; Brown et al., 2020;
Wang et al., 2023b; , 2023; Chowdhery et al., 2023; Touvron et al., 2023). Yet LLMs differ markedly
in both performance and cost: some offer state-of-the-art capabilities at a premium, while others are
more affordable but less effective. Practitioners therefore face a continual accuracy-expenditure
tradeoff when deciding which models to operate and when to use them. This has motivated LLM
routing (Ding et al., 2024; Hu et al., 2024), where a system chooses, query by query, which model
to invoke to maximize task quality under cost constraints. However, focusing solely on per-query
routing overlooks a more fundamental decision that precedes it: which models are deployed at all.

In practice, the operational landscape is unusually fluid. New models arrive continuously with dis-
tinct accuracy, latency, and pricing profile (Feng et al., 2025), while production systems must respect
hard limits such as rate ceilings and deployment quotas. For example, Azure OpenAI Service caps
each resource at 32 standard and 5 fine-tuned deployments by default, and enforces model-specific
rate ceilings (e.g., for GPT-4.1: 1,000 requests per minute (RPM) and 1M tokens per minute (TPM))
(Microsoft Azure, 2025). This confluence of a dynamic model pool and strict operational caps re-
casts the problem into two timescales: a slower stage-wise deployment process that decides which
models stay alive under a concurrency cap, and a faster per-query routing process that assigns each
request among the currently deployed models while meeting budget and throughput constraints. The
deployment choice is foundational, since it determines the entire action space for any routing policy.
Table 1 maps recent LLM routing systems to three axes and highlights a gap in current approaches.

We study this setting as an online decision problem that couples two intertwined choices (Figure 1):
(1) stage-wise deployment at fixed update points, where the operator decides which models to deploy
for the next stage subject to a hard concurrency cap and deployment costs. This high-stakes decision
defines the action set for the subsequent execution of (2) per-query routing, where each incoming
query is sent to one of the currently deployed models to maximize quality while obeying a long-term
cost budget and per-model throughput limits. Unlike approaches that assume a static model pool or
rely on fully offline retraining, our framework admits streaming arrivals of new LLMs and enforces
active-set replacement: admitting a newcomer may require evicting an incumbent for the rest of the
stage. This mirrors real service constraints while enabling continual adaptation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: The StageRoute workflow. Newly released LLMs (green) continually enter the can-
didate pool. At each scheduled update point, StageRoute deploys up to Mmax models (blue).
Between updates, each query is routed among the current deployment (orange). This two-level loop
assimilates fresh models, enforces cost/throughput constraints, and adapts routing in real time.

Three features make this problem technically distinct. First, the hard concurrent-deployment cap
induces an irreversible exploration-exploitation tradeoff: activating an uncertain model can mean
dropping a known, reliable one for an entire stage. Second, decisions occur on two timescales:
infrequent, strategic deployment choices constrain frequent, tactical per-query routing. Third, the
system must jointly respect a long-term cost budget and per-model throughput limits while select-
ing a small operational subset under uncertainty. Classical multi-armed bandits (MAB), budgeted
formulations (BwK), combinatorial bandits (CMAB), and standard streaming bandits each capture
parts of this picture, but none natively address the combination of dynamic availability, staged com-
mitment, and an explicit concurrency cap on the active set.

To address these challenges, we introduce StageRoute, an algorithm that mirrors the problem’s
hierarchy (Figure 1). At each update boundary, a deployment phase selects the active set for the next
stage using optimistic estimates of model quality (UCB) and conservative estimates of cost (LCB),
honoring the global budget, per-model throughput limits, and the Mmax concurrency cap. Within the
stage, each query triggers a routing phase: a linear program over the currently deployment returns a
distribution that maximizes estimated quality under the same constraints, and the query is dispatched
by sampling accordingly. This two-level loop links strategic deployment to fine-grained, adaptive
routing, allowing the system to assimilate new information both across and within stages.1

Our contributions in this paper are summarized as follows:

• Problem formulation. To our knowledge, we are the first to formalize the online LLM deployment
and routing problem with streaming arrivals, explicitly modeling a hard concurrency cap, one-
time deployment costs, per-model throughput limits, and a long-term cost budget, with stage-level
commitment and per-query routing.

• Algorithm. We introduce StageRoute, which (i) selects an active set at each update using
optimistic performance (UCB) and conservative cost (LCB) estimates under the budget, throughput
limits, and the Mmax concurrency cap, and (ii) routes each query by solving a budget–throughput
LP over the currently deployed models. The design is modular: the routing step can incorporate
contextual estimators when features are available, while the deployment step remains unchanged;
throughput limits naturally throttle load to mitigate latency spikes.

• Theoretical guarantees. We prove a regret bound of Õ
(√

MmaxKT
)
+ Õ

(
NT/(MmaxK)

)
,

where T,K,Mmax, N are the numbers of queries, update stages, the concurrency cap and arriving
models, respectively. The first term captures the statistical learning cost of routing within the de-
ployed set; it grows with the number of active models Mmax, stages K, and horizon T . The second
term is a structural model-discovery bottleneck that quantifies the difficulty of discovering strong
newcomers when only Mmax models can be live across K stages as N models arrive. Balancing the

1Relative to nearby bandit frameworks: static-pool routing assumes fixed arms; BwK models consumable
budgets but not stage-level active-set replacement; CMAB selects superarms from a fixed base set without
streaming arrivals or stage commitment; streaming bandits allow arrivals but do not couple stage-level support
selection with per-query routing under both a budget and per-model capacity. See Appendix A for more details.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Comparison of LLM routing frameworks. StageRoute is the first to address the full
real-world setting: a dynamic model pool with streaming arrivals, paired with dynamic stage-wise
deployment under a concurrency cap (Mmax) and cost- and throughput-aware routing.

Approach Streaming
LLM Models

Dynamic Deployment
(with Mmax cap)

Cost & Budget
Aware

Throughput
Limits Source

LLM-Blender – – – – Jiang et al. (2023)
AutoMix – – – – Aggarwal et al. (2024)
Hybrid-LLM – – – – Ding et al. (2024)
Zooter – – – – Lu et al. (2024)
RouterDC – – – – Chen et al. (2024)
TensorOpera Router – – ✓ – Stripelis et al. (2024)
RouteLLM – – ✓ – Ong et al. (2025)
MESS+ – – ✓ – Woisetschläger et al. (2025)
UniRoute ✓ – ✓ – Jitkrittum et al. (2025)
CSCR ✓ – ✓ – Shirkavand et al. (2025)
StageRoute (ours) ✓ ✓ ✓ ✓ This paper

two yields a near-optimal Õ(T 2/3) order, and we give a matching Ω(T 2/3) lower bound via a staged-
arrival construction. Analytically, we use LP-duality sensitivity with an explicit support (active-set)
constraint and a regret decomposition that separates routing and deployment across stages.

•Empirical evaluation. Simulations show StageRoute tracks a strong oracle under tight budgets
and is robust across key parameters. We evaluate on true per-query scores and costs (RouterBench)
across diverse queries, tasks, and languages, demonstrating effectiveness in realistic settings.

2 SYSTEM MODEL

We study an online LLM routing framework: at each round t, a query arrives and must be routed
to a suitable LLM. New models may appear at any time, yet they can be activated only at discrete
deployment intervals (Figure 1). We describe each component of the model in detail.

Rounds (Queries). Let T denote the total number of user queries, indexed by [T] = {1, 2, . . . , T}.
At each time step t ∈ [T], a query arrives and is immediately routed to an LLM mt chosen from the
currently deployed models according to the algorithm’s policy.

LLM Pool and Deployment Schedule. LetMt be the set of all LLM models that exist and could,
in principle, be deployed by time t. Each model m has an availability time tm; hence m ∈ Mt

exactly when t ≥ tm. Deployment changes occur only at discrete intervals, a schedule determined
by the algorithm. The algorithm partitions the time horizon T into K equal-length stages, where K
is a tunable hyperparameter of the algorithm. Each stage thus consists of T/K rounds (assuming T
is divisible by K). The start of stage k is τk = (k − 1)T/K + 1, k = 1, . . . ,K. Let Mmax be the
concurrency cap, i.e., the maximum number of models that can be deployed simultaneously. At each
update point τk, the algorithmA selects a deployed set Dk(A) ⊆Mτk such that |Dk(A)| ≤Mmax,
which then remains fixed for all t ∈ [τk, τk+1). Queries arriving during that stage must be routed to
models in the active set Dk(A). ThusMt is the available pool at time t, while Dk(A) is the active
subset that can actually serve queries during stage k.

Operational Performance and Cost. An LLM’s per-prompt quality varies with the input. However,
over a long time horizon, it can be reasonably modeled as a random variable centered around a stable
mean (Ding et al., 2024). Formally, each model m has an unknown performance distribution νm(·)
supported on [0, 1]. When m is selected at time t, the observed score rt ∈ [0, 1] is drawn from νm(·)
with mean µm = Ex∼νm(·)[x]. Invoking model m on a query also incurs an operational cost cmt

that combines: (i) Input Cost: c(in)mt =
(
tokens of input at time t

)
× pin, where pin is the per-token

input price; (ii) Output Cost: c(out)mt =
(
#tokens of response by m for query t

)
× pout, with output

length drawn from a model-specific distribution ξm(·) and unit price pout.

Thus the total cost is cmt
= c

(in)
mt + c

(out)
mt . Because the output token count c(out)mt depends on the

specific model and query and is sampled from ξm(·), the total operational cost cmt
for a query

handled by model mt is itself a random variable. Operational cost cmt
is inherently bounded by

per-token pricing and practical limits on sequence length and generation (e.g., context-window and
token caps). Hence we assume cmt

∈ [c1, c2] for known constants 0 < c1 ≤ c2 <∞.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Constraints: Budget and Throughput. When a query arrives at time t, with stage index k such
that τk ≤ t < τk+1, the algorithm A selects a model mt ∈ Dk(A). It then observes the reward
rt ∼ νmt

(·) and incurs cost cmt
. The goal is to maximize average reward subject to two main

constraints:

(1) Budget constraint: E
[
1
T

∑T
t=1 cmt

]
≤ b + o(1). We use an average cost constraint instead of a

hard budget constraint because for long-running systems, it provides a degree of flexibility. From a
theoretical analysis perspective, since the estimation errors for both performance and cost are gov-
erned by the same concentration inequalities, the expected budget violation is upper-bounded by the
order of the performance regret. This makes the average cost constraint asymptotically equivalent
to a hard constraint for a near-optimal algorithm.

(2) Per-model throughput limit: For each deployed LLM model m, we specify a throughput limit
αm. Let pt(m) be the probability that the routing policy assigns the query at time t to model m.
While t lies in stage k, the policy must satisfy pt(m) ≤ αm,∀m ∈ Dk(A). This constraint caps the
instantaneous load share each model may receive. For a deterministic decision mt, where pt(mt) =
1, the requirement reduces to αmt

≥ 1. Such limits reflect real-world restrictions like API rate
limits (RPM/TPM), bandwidth, or licensing, preventing any single model from being overwhelmed.
Hence the deployed set’s aggregate throughput must be sufficient to serve every arrival, a condition
we formalize next.
Assumption 1 (Feasibility). The constraints are feasible. At every time t, there exists a subset
S ⊆ Mt with |S| ≤Mmax such that

∑
m∈S αm ≥ 1. The budget b is also large enough to admit a

non-trivial routing policy. When required, we assume Slater’s condition holds, guaranteeing strong
duality for the associated optimization problems.

Performance Maximization and Regret. The goal is to maximize the expected cumulative per-
formance, E[

∑T
t=1 µmt] subject to: (i) Deployment Choice: At each update τk, select a deployed

set Dk(A) ⊆ Mτk with |Dk(A)| ≤ Mmax; (ii) Model Selection: For t ∈ [τk, τk+1), choose mt ∈
Dk(A) using probabilities pt(m) that sum to 1; (iii) Throughput Constraint: Ensure pt(m) ≤ αm

for every deployed model m; and (iv) Budget Constraint: Maintain E
[
1
T

∑T
t=1 cmt

]
≤ b+ o(1).

We measure the online policy’s performance against an optimal offline benchmark. The foundation
of this benchmark is the Optimal Performance Rate Function, V (b,S). Given any candidate model
set S and per-query budget b, let V (b,S) denote the maximum expected reward per query, which
serves as an upper bound for any algorithm operating under these constraints:

V (b,S) = max
p∈∆(S)

{ ∑
m∈S

µmp(m)
∣∣∣ ∑

m∈S
E[cm]p(m) ≤ b,

∑
m∈S

p(m) = 1,

0 ≤ p(m) ≤ αm for m ∈ S, |supp(p)| ≤Mmax

}
.

(1)

Here, ∆(S) is the set of probability distributions over S; p(m) is the probability of selecting model
m; and E[cm] is its expected cost. The support constraint |supp(p)| ≤ Mmax limits the number of
models with positive probability to Mmax, capturing the combinatorial selection of the best Mmax

models to use for routing from the entire available poolMτk . If no feasible distribution exists or if
(S = ∅), we set V (b,S) = 0.

The time-varying offline optimum is OPT∗ =
∑K

k=1(τk+1 − τk) · V (b,Mτk), where (τk+1 − τk) is
the length (number of queries) of stage k. The regret of an online policy A is

Regret(A) = OPT∗ − E
[T∑
t=1

µmt

]
, (2)

i.e., the expected performance gap betweenA and the clairvoyant benchmark, where the expectation
is over the algorithm’s random choices and outcome variability.

3 STAGEROUTE : STAGE-BASED LLM DEPLOYMENT AND ROUTING

We introduce StageRoute (Algorithm 1), a two-level hierarchy that unifies deployment and per-
query routing in one algorithm: (i) Strategic layer. At each discrete update point τk, the algorithm

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 StageRoute: stage-based LLM deployment (active-set selection) and online query
routing

Require: Update points {τ1, . . . , τK}; budget b; concurrency cap Mmax

1: Initialize: Prior parameter estimates; τ0 ← 0; D0(A)← ∅
2: //Stage-wise Deployment Phase:
3: for k = 1 to K do
4: Incorporate newly available models {m | tm ≤ τk < tm+(τk− τk−1)}; initialize their

parameters
5: Solve DeployOPT (3) for d∗ and set Dk(A)← {m | d∗m > 0}
6: //Per-query Routing Phase (for query at time t):
7: for t = τk to τk+1 − 1 (or to T if k = K) do
8: Compute routing distribution p∗t by solving RouteOPT (7)
9: Sample mt ∼ p∗t and route the query to it

10: Observe reward rt and cost ct; update statistics for mt

11: end for
12: end for

decides which models to deploy, adapting to newly available LLMs while respecting the budget and
operational constraints. (ii) Tactical layer. Between updates, it routes every incoming query in real
time among the currently deployed models. The system starts with prior parameter estimates, an
empty unexplored-model list, τ0 = 0, and an empty initial deployment D0(A). It then proceeds
through K stages, and at the start of each stage k (t = τk), the algorithm executes two phases in
sequence: model deployment followed by request routing.

Model Deployment Phase (Stage Start). At each update point τk, StageRoute first incorporates
any newly available models (those with τk−1 < tm ≤ τk) and initializes their parameter estimates.
With the enlarged poolMτk , StageRoute solves the deployment optimization in Eq. (3) to pick
the models for stage k:

DeployOPT: max
d∈∆(Mτk

)

{ ∑
m∈Mτk

µU
mdm

∣∣∣ ∑
m∈Mτk

cLmdm ≤ b,
∑

m∈Mτk

dm = 1,

0 ≤ dm ≤ αm for m ∈Mτk , |supp(d)| = min(Mmax, |Mτk |)
}
.

(3)

This optimization problem is a Mixed-Integer Program (MIP). The combinatorial nature arises from
the cardinality constraint on the support of d, which limits the number of active models. A standard
way to formulate this is by introducing a binary activation variable zm ∈ {0, 1} for each model. The
full stage-k deployment problem can then be written as:

max
d,z

∑
m∈Mτk

µU
mdm, s.t.

∑
m

cLmdm ≤ b,
∑
m

dm = 1, 0 ≤ dm ≤ αmzm,

∑
m

zm = min(Mmax, |Mτk |), zm ∈ {0, 1}.

Here, the binary variables zm explicitly select which models are live for the stage, while the contin-
uous variables dm represent an optimistic deployment mix. The solution to this MIP d∗ maximizes
an optimistic performance surrogate using UCBs for rewards (µU

m) and LCBs for costs (cLm), which
are derived from data up to τk. Specifically, let µ̄m(τk) and c̄m(τk) be the empirical mean reward
and cost of model m based on Nm(τk) selections observed up to τk. Define the UCBs and LCBs as:

µU
m := proj[0,1] (µ̄m(τk) + 2frad(µ̄m(τk), Nm(τk) + 1)) , (4)

cLm := proj[c1,c2] (c̄m(τk)− 2frad(c̄m(τk), Nm(τk) + 1)) , (5)

where proj[a,b] is a projection function onto the interval [a, b] and frad(v, n) =
√

γv
n + γ

n (for some
γ > 0) is a confidence radius function.

The deployment optimization in Eq. (3) maximizes expected utility subject to the budget b, per-
model throughput limits αm, and the concurrency cap |supp(d)| = min(Mmax, |Mτk |). Its solution

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

d∗ determines the active set for stage k:

Dk(A)← {m ∈Mτk | d∗m > 0}. (6)

Crucially, the values d∗m are not used as routing probabilities; they serve only to select the most
promising feasible models. The deployment set Dk(A) remains fixed until the next update point
τk+1.

Request Routing Phase (Intra-Stage). For each query arriving at time t ∈ [τk, τk+1),
StageRoute performs four steps: (1) Routing LP. It solves the linear program (LP) in Eq. (7)
to compute the optimal routing distribution p∗t = (p∗t (m))m∈Dk(A) over the currently deployed
models Dk(A).

RouteOPT: max
pt∈∆(Dk(A))

{ ∑
m∈Dk(A)

µU
mpt(m)

∣∣∣ ∑
m∈Dk(A)

cLmpt(m) ≤ b,

∑
m∈Dk(A)

pt(m) = 1, 0 ≤ pt(m) ≤ αm for m ∈ Dk(A)
}
.

(7)

This LP maximizes the expected reward by combining the current UCBs for reward (µU
m) and LCBs

for cost (cLm) while enforcing the per-query budget b (through the cost bounds) and each model’s
throughput limit αm. (2) Model selection. Sample mt ∼ p∗t and serve the query. (3) Feedback.
StageRoute observes the realized reward rt and cost ct. (4) Update. Refresh µ̄mt , c̄mt , Nmt and
recompute µU

mt
, cLmt

for subsequent routing and the next deployment decision.

Algorithmic Innovations. While StageRoute builds on the principle of “optimism in the face
of uncertainty”, its architecture is tailored to dynamic LLM deployment and departs from standard
bandit formulations. First, it imposes a hierarchical decision structure that mirrors operational prac-
tice: the deployment decision is a high-stakes, combinatorial choice whose consequences persist for
an entire stage, a form of long-term commitment absent from standard, per-round bandits. Second,
staged updates create a structured delay in acting on feedback. Information about non-deployed
models cannot influence decisions until the next stage, inducing an exploration-exploitation trade-
off that requires anticipating performance over the whole stage, not just the next round. Finally,
StageRoute decouples deployment from routing execution: DeployOPT determines only the
active set Dk(A), while the per-query policy is recomputed online via RouteOPT. This separation
enables rapid query-level adaptation even when the underlying infrastructure remains fixed during a
stage.

4 THEORETICAL RESULTS

We analyze StageRoute (Algorithm 1) by deriving an upper bound on its cumulative regret and a
matching lower bound that applies to any online algorithm for this problem. Together, these results
show that StageRoute is near-optimal in the worst case.

4.1 UPPER BOUND

Theorem 1. Consider StageRoute running for T queries divided into K stages, with a concur-
rency cap Mmax and N = |MT | total models arriving over time. Set the confidence parameter to
γ = Θ(log(NT/δ)) to obtain overall confidence 1− δ. Then the expected regret is bounded by:

Regret(StageRoute) ≤ O
(√

MmaxKT log(NT/δ) +
NT

MmaxK

)
.

Choosing K = Θ(T 1/3) and Mmax = Ω(N2/3) yields Regret(StageRoute) ≤ Õ
(
N1/3T 2/3

)
.

The two terms in the bound reflect complementary sources of difficulty. The first term,
Õ
(√

MmaxKT
)
, is the statistical learning cost of routing within the deployed set. The second

term, Õ
(
NT/(MmaxK)

)
, is a structural model-discovery bottleneck: when only Mmax models can

be active at a time across K stages, exploration is throttled. Strong late-arriving models can be
missed unless sufficient deployment slots and update frequency are provisioned. Balancing these
two terms gives the near-optimal Õ(T 2/3) rate, which matches the lower bound in Theorem 2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Practical guidance. The bound yields an actionable rule: to approach the optimal rate, set the
number of stages to approximately K ≈ T 1/3 (implying a stage length of T 2/3) and provision a
concurrency cap Mmax large enough to track new arrivals (ideally Mmax ≈ N2/3 when feasible).
However, updating more frequently (K ≫ T 1/3) is also ill-advised. Even if it does not increase
regret, it cannot offer further asymptotic improvement due to the lower bound, while needlessly
incurring significant computational and operational overhead with each additional deployment stage.
This underscores that exploration capacity, defined by the concurrency cap and update frequency,
is itself a scarce system resource to be optimized. Relying on only a few “top” models is provably
suboptimal in a dynamic model pool.

Why existing analyses do not apply. Classical MAB and BwK typically assume per-round choices
from a static set and lack a hard concurrency cap; CMAB selects superarms from a fixed base set and
does not model stage-level commitment; streaming bandits allow arrivals but do not couple stage-
committed deployment with budget and per-model throughput constraints. Our setting is distinct
due to: (i) a concurrency cap that explicitly constrains the support of the deployment optimization,
(ii) stage-committed deployment that induces a structured delay in acting on new information, and
(iii) the simultaneous enforcement of a long-term budget and per-model throughput limits.

Proof ideas and new technical elements. Our proof introduces a virtual optimal deployment set to
bridge the offline benchmark and the online policy, yielding a clean regret decomposition into stage-
level deployment regret and intra-stage routing regret. The routing term is handled with standard
confidence arguments. The deployment term requires two new ingredients: (a) a quantification of
the model-discovery bottleneck caused by the limited concurrency cap and discrete updates (showing
how the NT/(MmaxK) term arises), and (b) a support-aware sensitivity analysis of the deployment
LP (via its dual), bounding how UCB/LCB estimation errors perturb the optimal active set under
the concurrency constraint. Together, these yield Theorem 1. These elements differ fundamentally
from standard learning-regret analyses and may inform further work on staged, combinatorial online
decision problems. Complete details appear in Appendix C.

4.2 LOWER BOUND

Theorem 2. For any online policy A and any choice of update frequency K and concurrency cap
Mmax, there exists a stochastic, piecewise-stationary LLM-routing instance such that the expected
regret against the time-varying oracle satisfies

Regret(A) ≥ Ω(T 2/3).

This Ω(T 2/3) bound captures the intrinsic difficulty of continually tracking the best model as ca-
pabilities evolve. The construction mirrors real LLM ecosystems: in each batch a (newer) model
is marginally stronger than the rest, and the identity of the strongest model changes over batches.
Importantly, the baseline level of rewards also drifts upward over time, reflecting that even “weaker”
new releases can outperform old ones. This is unlike classic lower bounds that keep suboptimal arms
at a fixed mean (e.g., 1/2) and change only the identity of the best arm.

Proof ideas and Intuition. We construct a family of “streaming” instances that mimics a live LLM
marketplace: the time horizon is split into approximately T 1/3 epochs, in each batch a different
model is slightly better than the others, and the whole performance frontier drifts upward across
batches (so even “weaker” newcomers can surpass yesterday’s best). We choose the batch length
and performance gaps so that any algorithm cannot reliably identify it with the limited information
available before the epoch ends. Because the identity of the best model changes next batch, infor-
mation gained earlier quickly goes stale. Any policy is thus forced into repeated “partial discovery”,
incurring a nontrivial loss in each batch, and summing over all batches yields total regret on the
order of T 2/3. Full details are given in Appendix D.

New technical elements. Two aspects differ from standard MAB/CMAB lower bounds: (i) we do
not use a fixed baseline where only the identity of the best arm flips. Here the entire frontier drifts,
matching LLM practice; and (ii) the hardness persists even if the system can redeploy every round
and keep all models live, so the rate is intrinsic to tracking an evolving frontier, not an artifact of
staging or capacity limits.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) The decision heatmap of StageRoute.

(b) The decision heatmap of the optimal Oracle.

Figure 2: Comparison of decision heatmaps for StageRoute and the Oracle with Mmax = 5, b =
0.001, update interval=1000. Darker colors indicate higher selection probabilities.

Discussion. Theorem 2 conveys a practical message: even with aggressive adaptivity and large live
sets, there is a fundamental rate limit on how quickly a system can keep up as the performance
frontier shifts. Our upper bound matches this lower bound up to logarithmic factors with respect to
the number of queries T , establishing near-optimality.

5 EXPERIMENTS

Datasets and Candidate LLMs. We evaluate on RouterBench (Hu et al., 2024), covering 36,497
queries across eight datasets in English and Chinese (commonsense, knowledge, dialogue, math,
code, and RAG). Each query includes responses from 11 LLMs with per-query scores and costs.
Full dataset descriptions and the model list appear in Appendix E.

Baselines. We compare StageRoute against three baselines. The first is an oracle that, with full
knowledge of all performance and cost statistics, always selects the optimal deployment set, serving
as an upper bound on achievable performance. The second is a greedy strategy that, at each update
point, selects the Mmax models with the highest utility, computed as the ratio between the UCB of
performance and the LCB of cost. This approach can be viewed as a variant of a UCB algorithm
where selection is based on the UCB of the utility metric. The third baseline is a uniform sampling
strategy, which randomly selects models for deployment and may substantially exceed the budget.
To our knowledge, no existing methods are specifically designed for this LLM deployment problem.

Figure 3: Cumulative regret.

Implementation Details. We simulate a total of T = 36,497
rounds. In each round, a query is sampled uniformly at random
from the dataset. The algorithm then selects a model to serve the
query and subsequently receives the performance score and asso-
ciated cost. Initially, 5 models are available. Thereafter, for ev-
ery 5,000 queries, a new model becomes eligible for deployment,
following the release-date ordering in Table 3. We set the con-
fidence parameter γ = 0.1. All reported results are averaged
over 10 independent runs. The experiments involve solving mixed-
integer programming (MIP) subproblems using the Gurobi Opti-
mizer (v12.0.1, academic license) on a machine equipped with a
12th Gen Intel(R) Core(TM) i9-12900HX processor.

Computational Overhead. Our two-stage design keeps the computational overhead low, allowing
the entire experimental run to complete in under 10 minutes. The deployment MIP is solved only

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

infrequently on small instances (taking sub-seconds), while the per-query routing involves a tiny
LP over the active set that executes in milliseconds. Therefore, using either Gurobi or an open-
source solver (e.g., CBC, GLPK, HiGHS) is feasible. Furthermore, since parameters change only
slightly between iterations, we can leverage warm-starting to further accelerate computation. For
the routing LP, we can reuse the previous basis or solution; similarly, for the deployment MIP, we
can provide the prior active set as an initial feasible solution (MIP start), given the minimal changes
to the candidate pool.

Overall Performance. We first present the main results under a representative setting (Mmax =
5, b = 0.001, update interval=1000), and then conduct a detailed sensitivity analysis across key
hyperparameters. Figure 3 shows the cumulative regret under this default configuration. Across all
settings we test (see Figure 5 for a full overview), our algorithm exhibits consistently slow regret
growth, substantially outperforming the baselines. Notably, while the uniform sampling strategy
appears to outperform the greedy baseline in some cases, this is an artifact of its tendency to signifi-
cantly overspend the budget, an issue we will analyze further in the performance-cost evolution.

Optimal Model Set Identification. As our work emphasizes the importance of deployment, we
first analyze whether StageRoute can identify the optimal model set. Figure 2 compares the
decision probabilities of StageRoute and the Oracle under the representative setting mentioned
above. The horizontal axis represents deployment intervals, while the vertical axis (bottom to top)
corresponds to the model arrival order. It is evident that when a new model arrives, StageRoute
initially explores it before quickly converging to the new optimal model set, closely mirroring the
Oracle’s behavior. This confirms that our deployment strategy is effective at tracking the optimal
available model set.

Figure 4: Performance-cost evolution of
different algorithms.

Performance-Cost Evolution. To further validate our al-
gorithm’s efficiency, Figure 4 illustrates the performance-
cost trajectory for each algorithm, again under the same
representative setting. Colors transition from blue (initial
stages) to red (final stages). The figure shows that, except
during initial exploration and periods when new mod-
els arrive, the operating points of our algorithm closely
track those of the Oracle. In contrast, the greedy strategy
proves overly conservative, while uniform sampling con-
sistently violates the budget for suboptimal performance.
These observations reinforce our central claim: select-
ing a high-quality set of models for deployment is funda-
mental to achieving efficient routing, and StageRoute
successfully balances high performance with strict budget
adherence.

Sensitivity Analysis. We now analyze StageRoute’s sensitivity to key hyperparameters.

(1) Impact of Mmax. Figures 3, 5a, and 5b present results for different Mmax values under a budget
of b = 0.001 and an update interval of 1000. The results demonstrate that StageRoute adapts
well to this parameter, maintaining robust performance across all settings.

(2) Effect of Deployment Update Interval. Figures 3, 5c, and 5d illustrate the impact of varying the
deployment update interval with Mmax = 5 and b = 0.001. An interval of 1000 rounds yields the
lowest regret, highlighting the importance of selecting an appropriate update frequency.

(3) Effect of Budget Constraint. Figures 3 and 5e compare performance under different budget
constraints. Counterintuitively, a more relaxed budget leads to higher regret. This phenomenon can
be attributed to two factors. First, a larger budget also raises the performance of the Oracle, making
the benchmark more challenging. Second, we use a fixed confidence radius γ for all settings; in
practice, increasing γ in proportion to the budget may be beneficial.

Extending to State-of-the-Art Models. To verify that our StageRoute framework applies to the
latest, most powerful models, we conduct additional simulations incorporating recent LLMs. These
results, detailed in Appendix E, confirm that StageRoute continues to achieve minimal regret.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) Mmax = 3. (b) Mmax = 10. (c) 500 rounds. (d) 2000 rounds. (e) b=0.002.

Figure 5: Cumulative regret under varying hyperparameters. The default setting is Mmax = 5,
update interval = 1000 rounds, and b = 0.001 (Figure 3).

6 CONCLUSION

In this paper, we introduced StageRoute, a novel framework for online LLM deployment and
routing. We are the first to formalize this problem in a dynamic setting with streaming LLM model
arrivals, addressing the challenge of selecting an optimal deployment set under a strict concurrency
cap. Our algorithm manages deployment at discrete stages while tactically routing queries in real
time, respecting both budget and per-model throughput limits. We established the near-optimality
of our algorithm with theoretical analysis, including matching upper and lower bounds, and demon-
strated its practical effectiveness through extensive experiments on real-world benchmarks.

ETHICS STATEMENT

This research focuses on the operational efficiency of LLM systems. By making deployment and
routing more cost-effective, our work can broaden access to AI technologies and reduce energy
consumption. However, we acknowledge that increased accessibility may also lower the barrier for
malicious use of LLMs. Our framework does not mitigate the inherent risks of language models,
such as bias or misinformation generation, and should be implemented alongside robust safety and
content moderation protocols.

REPRODUCIBILITY STATEMENT

All experimental parameters are detailed in Section 5. The source code and data used for our exper-
iments will be made publicly available upon publication. All theoretical proofs are provided in the
appendix.

REFERENCES

OpenAI (2023). GPT-4 technical report. CoRR, abs/2303.08774, 2023.

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with limited rounds
of adaptivity: Coin tossing, multi-armed bandits, and ranking from pairwise comparisons. In
Proceedings of the 30th Conference on Learning Theory, pp. 39–75, 2017.

Arpit Agarwal, Sanjeev Khanna, and Prathamesh Patil. A sharp memory-regret trade-off for multi-
pass streaming bandits. In Proceedings of the 35th Conference on Learning Theory, pp. 1423–
1462, 2022.

Pranjal Aggarwal, Aman Madaan, Ankit Anand, Srividya Pranavi Potharaju, Swaroop Mishra, Pei
Zhou, Aditya Gupta, Dheeraj Rajagopal, Karthik Kappaganthu, Yiming Yang, Shyam Upadhyay,
Manaal Faruqui, and Mausam. Automix: Automatically mixing language models. In Advances
in Neural Information Processing Systems 38, 2024.

Shipra Agrawal and Nikhil R Devanur. Bandits with concave rewards and convex knapsacks. In
Conference on Economics and Computation, pp. 989–1006. ACM, 2014.

Sepehr Assadi and Chen Wang. Exploration with limited memory: streaming algorithms for coin
tossing, noisy comparisons, and multi-armed bandits. In Proceedings of the 52nd Symposium on
Theory of Computing, pp. 1237–1250, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-Time Analysis of the Multiarmed Bandit
Problem. Machine Learning, 47(2):235–256, 2002.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Moshe Babaioff, Shaddin Dughmi, Robert D. Kleinberg, and Aleksandrs Slivkins. Dynamic pricing
with limited supply. ACM Trans. Economics and Comput., 3(1):4:1–4:26, 2015.

Ashwinkumar Badanidiyuru, Robert Kleinberg, and Aleksandrs Slivkins. Bandits with knapsacks.
In Proceedings of the 45th Symposium on Theory of Computing, pp. 207–216. IEEE, 2013.

Martino Bernasconi, Matteo Castiglioni, Andrea Celli, and Federico Fusco. Bandits with replenish-
able knapsacks: the best of both worlds. In Proceedings of the 12th International Conference on
Learning Representations, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, and
Ariel Herbert-Voss et al. Language models are few-shot learners. In Advances in Neural Infor-
mation Processing Systems 33, 2020.

Nicolò Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. In Proceedings of the 22nd Con-
ference on Learning Theory, 2009.

Lingjiao Chen, Matei Zaharia, and James Zou. Frugalgpt: How to use large language models while
reducing cost and improving performance. arXiv preprint arXiv:2305.05176, 2023.

Lixing Chen, Jie Xu, and Zhuo Lu. Contextual combinatorial multi-armed bandits with volatile
arms and submodular reward. In Advances in Neural Information Processing Systems 31, pp.
3251–3260, 2018.

Shuhao Chen, Weisen Jiang, Baijiong Lin, James T. Kwok, and Yu Zhang. Routerdc: Query-based
router by dual contrastive learning for assembling large language models. In Advances in Neural
Information Processing Systems 38, 2024.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In Proceedings of the 30th International Conference on Machine Learning,
volume 28, pp. 151–159, 2013.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Hao Zhang, Banghua Zhu, Michael Jordan, Joseph E. Gonzalez, and Ion Stoica.
Chatbot arena: An open platform for evaluating llms by human preference, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, and Sebastian Gehrmann et al. Palm:
Scaling language modeling with pathways. J. Mach. Learn. Res., 24:240:1–240:113, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Xiangxiang Dai, Jin Li, Xutong Liu, Anqi Yu, and John Lui. Cost-effective online multi-llm selec-
tion with versatile reward models. arXiv preprint arXiv:2405.16587, 2024.

Dujian Ding, Ankur Mallick, Chi Wang, Robert Sim, Subhabrata Mukherjee, Victor Rühle, Laks
V. S. Lakshmanan, and Ahmed Hassan Awadallah. Hybrid LLM: cost-efficient and quality-aware
query routing. In Proceedings of the 12th International Conference on Learning Representations,
2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen, and
Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Proceedings
of the 39th International Conference on Machine Learning, pp. 5547–5569, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022.

Tao Feng, Yanzhen Shen, and Jiaxuan You. Graphrouter: A graph-based router for LLM selections.
In Proceedings of the 13th International Conference on Learning Representations, 2025.

Hengquan Guo and Xin Liu. On stochastic contextual bandits with knapsacks in small budget
regime. In Proceedings of the 13th International Conference on Learning Representations, 2025.

Neha Gupta, Harikrishna Narasimhan, Wittawat Jitkrittum, Ankit Singh Rawat, Aditya Krishna
Menon, and Sanjiv Kumar. Language model cascades: Token-level uncertainty and beyond. In
Proceedings of the 12th International Conference on Learning Representations, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In Proceedings of the 9th
International Conference on Learning Representations, 2021.

Qitian Jason Hu, Jacob Bieker, Xiuyu Li, Nan Jiang, Benjamin Keigwin, Gaurav Ranganath, Kurt
Keutzer, and Shriyash Kaustubh Upadhyay. Routerbench: A benchmark for multi-LLM routing
system. In Agentic Markets Workshop at ICML 2024, 2024.

Nicole Immorlica, Karthik Abinav Sankararaman, Robert Schapire, and Aleksandrs Slivkins. Ad-
versarial bandits with knapsacks. In Proceedings of the 51st Symposium on Theory of Computing,
pp. 202–219. IEEE, 2019.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 14165–14178, 2023.

Tianyuan Jin, Keke Huang, Jing Tang, and Xiaokui Xiao. Optimal streaming algorithms for multi-
armed bandits. In Proceedings of the 38th International Conference on Machine Learning, pp.
5045–5054, 2021.

Wittawat Jitkrittum, Harikrishna Narasimhan, Ankit Singh Rawat, Jeevesh Juneja, Zifeng Wang,
Chen-Yu Lee, Pradeep Shenoy, Rina Panigrahy, Aditya Krishna Menon, and Sanjiv Kumar. Uni-
versal model routing for efficient LLM inference. CoRR, abs/2502.08773, 2025.

Thomas Kesselheim and Sahil Singla. Online learning with vector costs and bandits with knapsacks.
In Proceedings of the 32rd Conference on Learning Theory, pp. 2286–2305, 2020.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In
Cynthia Dwork (ed.), Proceedings of the 40th Symposium on Theory of Computing, pp. 681–690.
ACM, 2008.

Shaoang Li, Lan Zhang, Junhao Wang, and Xiang-Yang Li. Tight memory-regret lower bounds for
streaming bandits. arXiv preprint arXiv:2306.07903, 2023.

Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
bandits. In Proceedings of the 33rd International Conference on Machine Learning, volume 48,
pp. 1245–1253, 2016.

Yang Li. LLM bandit: Cost-efficient LLM generation via preference-conditioned dynamic routing.
CoRR, abs/2502.02743, 2025.

Xutong Liu, Siwei Wang, Jinhang Zuo, Han Zhong, Xuchuang Wang, Zhiyong Wang, Shuai Li,
Mohammad Hajiesmaili, John C. S. Lui, and Wei Chen. Combinatorial multivariant multi-armed
bandits with applications to episodic reinforcement learning and beyond. In Proceedings of the
41st International Conference on Machine Learning, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Xutong Liu, Xiangxiang Dai, Jinhang Zuo, Siwei Wang, Carlee Joe-Wong, John C. S. Lui, and
Wei Chen. Offline learning for combinatorial multi-armed bandits. In Proceedings of the 42nd
International Conference on Machine Learning, 2025.

Keming Lu, Hongyi Yuan, Runji Lin, Junyang Lin, Zheng Yuan, Chang Zhou, and Jingren Zhou.
Routing to the expert: Efficient reward-guided ensemble of large language models. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 1964–1974, 2024.

Microsoft Azure. Azure openai service quotas and limits, 2025. URL https://learn.
microsoft.com/en-us/azure/ai-services/openai/quotas-limits?tabs=
REST. Accessed: 2025-05-12.

Quang H Nguyen, Duy C Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V Chawla, and
Khoa D Doan. Metallm: A high-performant and cost-efficient dynamic framework for wrapping
llms. arXiv preprint arXiv:2407.10834, 2024.

Isaac Ong, Amjad Almahairi, Vincent Wu, Wei-Lin Chiang, Tianhao Wu, Joseph E. Gonzalez,
M Waleed Kadous, and Ion Stoica. RouteLLM: Learning to route LLMs from preference data. In
TProceedings of the 13th International Conference on Learning Representations, 2025.

Manhin Poon, Xiangxiang Dai, Xutong Liu, Fang Kong, John C. S. Lui, and Jinhang Zuo. On-
line multi-llm selection via contextual bandits under unstructured context evolution. CoRR,
abs/2506.17670, 2025.

Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application
on diversified online recommendation. In Proceedings of the 2014 SIAM International Conference
on Data Mining, pp. 461–469, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In
Advances in Neural Information Processing Systems 34, pp. 8583–8595, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Yuming Shao and Zhixuan Fang. Linear streaming bandit: Regret minimization and fixed-budget
epsilon-best arm identification. In Proceedings of the 39th Conference on Artificial Intelligence,
pp. 20354–20361, 2025.

Reza Shirkavand, Shangqian Gao, Peiran Yu, and Heng Huang. Cost-aware contrastive routing for
llms. CoRR, abs/2508.12491, 2025.

Aleksandrs Slivkins. Introduction to multi-armed bandits. Foundations and Trends® in Machine
Learning, 12(1-2):1–286, 2019.

Dimitris Stripelis, Zhaozhuo Xu, Zijian Hu, Alay Dilipbhai Shah, Han Jin, Yuhang Yao, Jipeng
Zhang, Tong Zhang, Salman Avestimehr, and Chaoyang He. Tensoropera router: A multi-model
router for efficient LLM inference. In Proceedings of the 2024 Conference on Empirical Methods
in Natural Language Processing, pp. 452–462, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023.

Chen Wang. Tight regret bounds for single-pass streaming multi-armed bandits. In Proceedings of
the 40th International Conference on Machine Learning, pp. 35525–35547, 2023.

Hongyi Wang, Felipe Maia Polo, Yuekai Sun, Souvik Kundu, Eric Xing, and Mikhail Yurochkin.
Fusing models with complementary expertise. arXiv preprint arXiv:2310.01542, 2023a.

13

https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits?tabs=REST
https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits?tabs=REST
https://learn.microsoft.com/en-us/azure/ai-services/openai/quotas-limits?tabs=REST

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xinyuan Wang, Yanchi Liu, Wei Cheng, Xujiang Zhao, Zhengzhang Chen, Wenchao Yu, Yanjie Fu,
and Haifeng Chen. Mixllm: Dynamic routing in mixed large language models. arXiv preprint
arXiv:2502.18482, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in lan-
guage models. In Proceedings of the 11th International Conference on Learning Representations,
2023b.

Herbert Woisetschläger, Ryan Zhang, Shiqiang Wang, and Hans-Arno Jacobsen. Dynamically
learned test-time model routing in language model zoos with service level guarantees. CoRR,
abs/2505.19947, 2025.

Murong Yue, Jie Zhao, Min Zhang, Liang Du, and Ziyu Yao. Large language model cascades
with mixture of thought representations for cost-efficient reasoning. In Proceedings of the 12th
International Conference on Learning Representations, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019.

Yi-Kai Zhang, De-Chuan Zhan, and Han-Jia Ye. Capability instruction tuning: A new paradigm for
dynamic LLM routing. In Proceedings of the 39th Conference on Artificial Intelligence, 2025.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems 36, pp. 46595–46623, 2023.

Xiaoyi Zhu and Zengfeng Huang. Lipschitz bandits in optimal space. In Proceedings of the 13th
International Conference on Learning Representations, 2025.

Richard Zhuang, Tianhao Wu, Zhaojin Wen, Andrew Li, Jiantao Jiao, and Kannan Ramchandran.
EmbedLLM: Learning compact representations of large language models. In Proceedings of the
13th International Conference on Learning Representations, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A RELATED WORK

A.1 LLM ROUTING

The central aim of LLM routing is to strike the best balance between task performance (e.g., response
quality or accuracy) and operational metrics such as cost and latency (Ding et al., 2024; Aggarwal
et al., 2024). Existing work follows three main architectural patterns. Ensemble strategies query
multiple models in parallel to boost robustness, at the expense of higher cost and latency Wang et al.
(2023a); Jiang et al. (2023). Cascade strategies issue queries sequentially—typically starting with a
cheaper model and escalating only when necessary—thereby reducing cost but sometimes increasing
latency (Chen et al., 2023; Gupta et al., 2024; Yue et al., 2024; Aggarwal et al., 2024).Direct-routing
strategies train a policy or classifier that selects a single LLM per query (Ong et al., 2025; Feng
et al., 2025; Zhang et al., 2025; Zhuang et al., 2025). Benchmark suites such as RouterBench (Hu
et al., 2024) facilitate systematic comparison of these approaches. Related work on mixture-of-
experts (MoE) models explores routing within a single large model (Du et al., 2022; Fedus et al.,
2022; Riquelme et al., 2021). More recently, bandit formulations have been applied to static LLM
routing (Wang et al., 2025; Dai et al., 2024; Li, 2025; Nguyen et al., 2024; Poon et al., 2025).
Most prior studies, however, assume a fixed set of available models and focus solely on per-query
decisions. In contrast, our work model a dynamic model pool with streaming arrivals and introduce
staged deployment updates, where the active model set is subject to online selection under a strict
concurrency cap, cost budget, and throughput limits. To our knowledge, we are the first to formalize
and solve this more realistic and challenging problem.

A.2 MULTI-ARMED BANDITS

Our formulation builds on the multi-armed-bandit (MAB) paradigm, where an agent maximizes its
cumulative payoff through exploration and exploitation in online environment (Auer et al., 2002;
Slivkins, 2019). Three MAB extensions are especially pertinent: (i) Bandits with knapsacks (BwK).
Here each arm pull yields a reward and consumes limited resources from one or more budgets; the
objective is to maximize total reward without overspending (Badanidiyuru et al., 2013; Agrawal &
Devanur, 2014; Immorlica et al., 2019; Kesselheim & Singla, 2020; Bernasconi et al., 2024; Guo &
Liu, 2025). Our long-term cost constraint fits naturally into this framework. (2) Streaming bandits.
In this setting new arms arrive over time—often under memory or attention limits—so the agent
must adapt to a continually expanding action set (Assadi & Wang, 2020; Jin et al., 2021; Agarwal
et al., 2022; Wang, 2023; Li et al., 2023; Shao & Fang, 2025; Zhu & Huang, 2025). The steady
appearance of new LLMs places our problem squarely in this category. (3) Combinatorial Multi-
Armed Bandits (CMAB). The algorithm faces a fixed, known set of base arms from which superarms
(subsets) are chosen in each round (Cesa-Bianchi & Lugosi, 2009; Chen et al., 2013; Qin et al.,
2014; Li et al., 2016; Chen et al., 2018; Liu et al., 2024; 2025).

The core distinctions arise from the two-level structure and unique constraints inherent to the re-
alistic online LLM deployment and routing problem. Standard models like BwK and streaming
bandits lack the combinatorial selection. While CMAB addresses superarm selection, it is funda-
mentally misaligned with our problem’s dynamics: it assumes a static set of base arms and makes
per-round decisions, whereas our core challenges are a dynamic model pool and staged, irreversible
commitment, where a deployed set remains fixed for a long duration. The regret is thus a function
not only of the chosen set but also of the tactical routing policy executed over thousands of queries
within that stage. This stateful, hierarchical structure is beyond the scope of traditional bandit for-
mulations. Due to these fundamental differences, existing algorithms and regret analyses are not
applicable. Our work bridges this gap by developing a new framework and novel analytical tools
tailored to the unique challenges of online LLM deployment and routing problem.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B SUMMARY OF NOTATION

Table 2: Table of Notation Used in the System Model and Algorithms

Symbol Description

General Parameters & Indices
T ; t ∈ [T] Total queries (horizon T); t is query index in [T] = {1, . . . , T}.
K; k ∈ [K] Total deployment stages (K); k is stage index.
τk Start time step of stage k; k-th deployment update point, τk = (k − 1)T/K + 1.
τ0 Initial time for the algorithm, typically 0.
A The online deployment and routing algorithm.

LLMs: Availability & Deployment
m; tm An individual LLM m; and its availability time tm.
Mt,Mτk Set of LLMs available at time t, and specifically at start of stage k.
Mmax Maximum number of LLMs that can be simultaneously deployed.
d = (dm) Deployment decision variable vector in DeployOPT overMτk .
d∗ = (d∗m) Optimal deployment decision vector from DeployOPT (Eq. 3) at τk.
D0(A) Initial set of deployed LLMs by algorithm A (typically empty).
Dk(A) Set of LLMs deployed by A in stage k (derived from d∗m > 0).

LLM Performance & Operational Costs
νm(·), µm Performance distribution for LLM m (on [0, 1]) and its mean µm = Ex∼νm(·)[x].
rt Realized performance from model mt for query t, rt ∼ νmt(·).
µ̄m(τk), µ

U
m Empirical mean performance (from Nm(τk) obs. up to τk) and UCB for µm.

pin, pout Per-token prices for input and output.
c
(in)
mt , c

(out)
mt ; cmt

Input cost, output cost; and total cost cmt
= c

(in)
mt + c

(out)
mt for mt on query t.

ξm(·) True (unknown) distribution of output token length for LLM m.
E[cm] True expected operational cost of LLM m.
c̄m(τk) Empirical mean operational cost of LLM m based on Nm(τk) selections up to τk.
cLm Lower Confidence Bound (LCB) on the expected operational cost E[cm].
c1, c2 Fixed lower and upper bounds for any cmt

, 0 < c1 ≤ c2 <∞.

Routing & Constraints
mt LLM selected by the algorithm to handle query t.
pt(m) Probability assigned by a routing policy to LLM m ∈ Dk(A) for query t.
p∗t = (p∗t (m)) Optimal routing probabilities from RouteOPT (Eq. 7).
b Long-term average operational cost budget per query.
αm Throughput limit (maximum load share / selection probability constraint) for LLM m.
∆(S) Set of all probability distributions over a set of LLMs S.

Parameter Estimation & Confidence Bounds
Nm(τk) Number of times LLM m has been selected and observed up to τk.
frad(v, n), γ Confidence radius function frad(v, n) =

√
γv/n+ γ/n (with parameter γ > 0).

proj[a,b](x) Projection of value x onto the interval [a, b].

Offline Benchmark & Regret
V (b,S) Optimal Performance Rate Function: max expected performance from set S.
supp(p) Support of a probability distribution p.
OPT∗ Expected cumulative reward of the time-varying offline optimal policy.
Regret(A) Regret of online algorithm A.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C TECHNICAL ANALYSIS

In this section, we analyze the regret of StageRoute (Algorithm 1). Recall that in our setting,
let N = |MT | denote the total number of models that may arrive over the course of the time
horizon. We assume that N is significantly larger than Mmax, the maximum number of models that
can be deployed simultaneously. Moreover, the number of update points K is assumed to be much
smaller than the total number of queries T . These assumptions reflect practical constraints: it is
typically infeasible to deploy all available models—including those released in the future—due to
resource limitations, and continuously updating the deployed LLM pool in real time is operationally
impractical.

C.1 CONCENTRATION INEQUALITY

We employ the following standard concentration inequality and related supporting lemmas.
Lemma 1 (Kleinberg et al. (2008); Babaioff et al. (2015)). Consider a sequence of random variables
x1, x2, . . . , xn. Let x̄ = 1

n

∑n
i=1 xi be the empirical average and v = 1

n

∑n
i=1 E[xi|x1, . . . , xi−1]

(if i = 1, the expectation is unconditional). If the values xi are in [0, 1] (e.g., performance rt, or
cost ct under our assumption), then for each γ > 0,

P[|v − x̄| ≤ frad(x̄, n) and frad(x̄, n) ≤ 3frad(v, n)] ≥ 1− exp(−Ω(γ)), (8)
where frad(v, n) =

√
γv
n + γ

n . This result also holds if x1, . . . , xn are independent samples from a
distribution with mean v and values in [0, 1].

For clarity and to simplify the application of concentration inequalities, we assume throughout this
analysis that all operational costs cmt are bounded such that 0 < c1 ≤ cmt ≤ c2 ≤ 1. This ensures
that costs, like rewards (which are in [0, 1]), fall within a [0, 1] range (or a sub-interval thereof). This
assumption does not affect the order of the regret bounds, as any scaling factors related to a broader
cost range would typically be absorbed into the constants within the O(·) notation.
Lemma 2 (Babaioff et al. (2015), adapted). Let Dk(A) be the set of deployed models in stage k.
For any vectors a = (am)m∈Dk(A) and n = (nm)m∈Dk(A) where am, nm ≥ 0,

∑
m∈Dk(A)

frad(am, nm)nm ≤

√√√√√γMk

 ∑
m∈Dk(A)

amnm

+ γMk.

where Mk = |Dk(A)|.
Lemma 3 (Babaioff et al. (2015), adapted). Let µ̂m(t) = (

∑
s<t:ms=m rs)/(Nm(t)+1) be the em-

pirical average performance and ĉm(t) = (
∑

s<t:ms=m cs)/(Nm(t) + 1) be the empirical average
cost for model m ∈ Dk(A) based on Nm(t) plays before time t within the current stage k. Then,
for every m ∈ Dk(A) and time t ∈ [τk, τk+1), with probability 1− e−Ω(γ) (i.e., on the event E):

|µ̂m(t)− µm| ≤ 2frad(µ̂m(t), Nm(t) + 1) (9)
|ĉm(t)− E[cm]| ≤ 2frad(ĉm(t), Nm(t) + 1) (10)

Proof. Follows from applying Lemma 1 to the sequence of observed performances rs (for ms = m)
and observed costs cs (for ms = m). For a fixed model m, the rewards rs (when ms = m) are i.i.d.
samples from νm(·) with mean µm. Similarly, costs cs (when ms = m) are effectively i.i.d. samples
with mean E[cm]. Thus, the conditional expectation E[xi|x1, . . . , xi−1] in Lemma 1 becomes the
true mean µm (or E[cm]). The derivation is analogous to Lemma 4.3 of Babaioff et al. (2015). For
instance, for performance:

|µ̂m(t)− µm| =
∣∣∣∣
∑

s<t:ms=m rs

Nm(t) + 1
− (Nm(t) + 1)µm

Nm(t) + 1

∣∣∣∣
≤ Nm(t)

Nm(t) + 1
frad(µ̂m(t), Nm(t)) +

µm

Nm(t) + 1
(from Lemma 1 structure)

≤ frad(µ̂m(t), Nm(t) + 1) +
µm

Nm(t) + 1

≤ 2frad(µ̂m(t), Nm(t) + 1)

The argument for cost is similar due to the assumption cm ∈ [c1, c2] ⊆ [0, 1].

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.2 REGRET DECOMPOSITION WITH TIME-VARYING BENCHMARK

To analyze the regret of StageRoute (Algorithm 1) over the horizon T , we decompose the total
regret into components corresponding to the model deployment and request routing phases.

Definition 1 (Optimal Performance within Deployed Set). For a given stage k (time interval
[τk, τk+1) of length Tk = τk+1 − τk) where StageRoute (during its Model Deployment Phase)
deploys the set Dk = Dk(A) ⊆ Mτk , V (b,Dk) represents the optimal expected reward per query
achievable using only models from the deployed set Dk. The total optimal expected performance
within this stage using Dk is OPTk = Tk · V (b,Dk). Note that Dk is determined by StageRoute
based onMτk and estimates available at τk. Thus, Dk and consequently V (b,Dk) (and OPTk) are
random variables, dependent on the algorithm’s choices and observations up to time τk.

Definition 2 (Algorithm Performance). Let ALGO be the total expected reward accumulated by the
algorithm over the horizon T :

ALGO =

T∑
t=1

rt =

K∑
k=1

τk+1−1∑
t=τk

rt.

Let ALGOk =
∑τk+1−1

t=τk
rt be the reward accumulated by the algorithm during stage k.

Lemma 4 (Regret Decomposition with Time-Varying Benchmark). The total expected regret
R(T) = OPT∗ − E[ALGO] of StageRoute, compared against the optimal time-varying bench-
mark OPT∗ =

∑K
k=1

∑τk+1−1
t=τk

V (b,Mτk), can be decomposed as:

R(T) = E

[
K∑

k=1

τk+1−1∑
t=τk

(V (b,Dk)− rt)

]
︸ ︷︷ ︸

Rrouting(T)

+E

[
K∑

k=1

τk+1−1∑
t=τk

(V (b,Mτk)− V (b,Dk))

]
︸ ︷︷ ︸

Rdeploy(T)

where:

• Rrouting(T) is the total expected routing regret, accumulating the per-query difference be-
tween the optimal expected performance with the deployed set V (b,Dk) and the realized
reward rt, summed over all queries and stages.

• Rdeploy(T) is the total expected deployment regret, accumulating the per-query difference in
optimal expected performance achievable with the full set of available models V (b,Mτk)
versus the deployed set V (b,Dk), summed over all queries and stages.

Proof. We start with the definition of the total expected regret:

R(T) = OPT∗ − E[ALGO].

Using the definition OPT∗ =
∑K

k=1

∑τk+1−1
t=τk

V (b,Mτk) and ALGO =
∑K

k=1

∑τk+1−1
t=τk

rt:

R(T) =
K∑

k=1

τk+1−1∑
t=τk

V (b,Mτk)− E

[
K∑

k=1

τk+1−1∑
t=τk

rt

]
.

Note thatMτk (the set of models available at time τk) depends on the fixed model arrival times tm
and the stage start time τk. According to the system model (Section 2), τk = (k − 1)T/K + 1
and the stage length Tk = (τk+1 − τk) = T/K are deterministic. Consequently, the set Mτk
and the benchmark value V (b,Mτk) are deterministic for each stage k. The randomness in the
regret decomposition arises from the algorithm’s choices, specifically the selection of Dk (which
determines V (b,Dk)) and the subsequent routing decisions leading to the realized rewards rt.

Since V (b,Mτk) is deterministic for each k and constant for t ∈ [τk, τk+1 − 1),
the sum

∑K
k=1

∑τk+1−1
t=τk

V (b,Mτk) is also deterministic. Thus, it can be written as

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

E
[∑K

k=1

∑τk+1−1
t=τk

V (b,Mτk)
]
. We add and subtract the term E

[∑K
k=1

∑τk+1−1
t=τk

V (b,Dk)
]
:

R(T) = E

[
K∑

k=1

τk+1−1∑
t=τk

V (b,Mτk)

]
− E

[
K∑

k=1

τk+1−1∑
t=τk

rt

]

= E

[
K∑

k=1

τk+1−1∑
t=τk

V (b,Mτk)

]
− E

[
K∑

k=1

τk+1−1∑
t=τk

V (b,Dk)

]

+ E

[
K∑

k=1

τk+1−1∑
t=τk

V (b,Dk)

]
− E

[
K∑

k=1

τk+1−1∑
t=τk

rt

]
.

Now, we combine terms using the linearity of expectation:

R(T) = E

[
K∑

k=1

τk+1−1∑
t=τk

(V (b,Mτk)− V (b,Dk))

]

+ E

[
K∑

k=1

τk+1−1∑
t=τk

(V (b,Dk)− rt)

]
.

This expression matches the claimed decomposition, identifying the deployment regret Rdeploy(T)
and the routing regret Rrouting(T) as defined in the lemma statement. Alternatively, letting
OPTk = TkV (b,Dk) =

∑τk+1−1
t=τk

V (b,Dk) and ALGOk =
∑τk+1−1

t=τk
rt, the routing regret can

be written as E[
∑K

k=1(OPTk − ALGOk)]. Similarly, the deployment regret can be written as
E[
∑K

k=1 Tk(V (b,Mτk)− V (b,Dk))].

This decomposition provides an accurate picture of the algorithm’s performance. The deployment
regret Rdeploy(T) isolates the loss incurred specifically by StageRoute’s potentially suboptimal
selectionDk (during its Model Deployment Phase) from the available setMτk , measured against the
best possible rate V (b,Mτk) achievable with those available models. BoundingRdeploy(T) involves
analyzing how effectively the Model Deployment Phase of StageRoute identifies the optimal
subset of size at most Mmax fromMτk based on its estimates. The routing regretRrouting(T) remains
the sum of per-query differences between the optimal expected performance using the deployed
models Dk and the actual realized rewards rt. Lemma 11 (or subsequent analysis) addresses the
term E[

∑τk+1−1
t=τk

(V (b,Dk)− rt) | Dk] which contributes toRrouting(T).

C.3 ANALYSIS OF DEPLOYMENT REGRET

We now analyze the deployment regret componentRdeploy(T) as defined in Lemma 4:

Rdeploy(T) = E

[
K∑

k=1

Tk (V (b,Mτk)− V (b,Dk))

]
.

This quantity captures the cumulative expected performance loss across all stages, incurred when
the StageRoute algorithm selects a subset Dk at stage k based on estimated model statistics at
time τk, instead of deploying the optimal subset from the full set of available modelsMτk .

The deployment regret arises from two complementary sources:

1. Parameter Uncertainty: Inaccurate estimates of model performance (µm) and cost
(E[cm]) may result in suboptimal deployment decisions. This source corresponds to models
that have already been deployed in one or more of the previous k − 1 stages.

2. Model Discovery Bottleneck: The constraint that at most Mmax models can be deployed
concurrently may exclude promising but underexplored models—particularly newly ar-
rived ones—from being included in Dk. This prevents timely evaluation and utilization,
contributing to additional regret. This case pertains to models that have not been selected
in any of the preceding k − 1 stages.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

These two components are complementary in nature and together constitute the total deployment
regretRdeploy(T). In the following analysis, we will provide regret bounds for each source.

For the analysis, we recall that V (b,S) is the optimal performance rate for a model set S (defined
in Section 2). Let V ∗

k = V (b,Mτk) be the optimal rate achievable using all models available at
the start of stage k, and Vk = V (b,Dk) be the optimal rate achievable using the subset Dk ⊆ Mτk
selected by StageRoute. V ∗

k is deterministic given τk, while Vk (through Dk) is a random vari-
able. A key assumption for bounding the deployment regret due to parameter uncertainty involves
the Lagrange multipliers associated with the budget constraint in the definition of V ∗

k . Let λ∗
k ≥ 0

be this optimal Lagrange multiplier. We assume that λ∗
k is uniformly bounded by a constant Λ for

all k. This is a common assumption in the analysis of learning algorithms with budget constraints
and is often justified when standard regularity conditions (such as Slater’s condition, which we as-
sume in Assumption 1) hold for the underlying optimization problems, particularly given that our
problem parameters (rewards, costs, αm) are bounded and expected costs E[cm] are lower-bounded
by c1 > 0.

Confidence Bounds and Good Event. Let τk be the start of stage k. Nm(τk) is the play count for
model m before τk. Define confidence radii using Lemma 1 and 3 with γ = Θ(log(NT/δ)):

radµ(m, τk) = 2frad(µ̄m(τk), Nm(τk) + 1)

radc(m, τk) = 2frad(c̄m(τk), Nm(τk) + 1) (Since costs cm ∈ [c1, c2] ⊆ [0, 1])

Let Ek be the good event at time τk where, for all m ∈ Mτk , the confidence bounds based on γ
hold:

µm ≤ µU
m(τk) and µU

m(τk) ≤ µm + radµ(m, τk)

E[cm]− radc(m, τk) ≤ cLm(τk) and cLm(τk) ≤ E[cm]

Let E = ∩Kk=1Ek. By a union bound over all N models in the universeMT and K stages, P(E) ≥
1− δ. We condition the analysis on E . (Note: µU

m is µ̄m(τk) + 2frad(µ̄m(τk), Nm(τk) + 1) and cLm
is c̄m(τk)−2frad(c̄m(τk), Nm(τk)+1) as per Eq. (6,7) in the algorithm description, projected onto
[0, 1] and [c1, c2] respectively. The inequalities above capture the desired properties on the good
event Ek).

Bounding the Per-Stage Deployment Gap due to Estimation Uncertainty.
Lemma 5 (Per-Stage Deployment Gap Bound). Let V ∗

k = V (b,Mτk) be the optimal rate with
available models at stage k. LetDk = supp(d∗) be the set selected by the Model Deployment Phase
of StageRoute based on Mτk and estimates at τk, via solution d∗ (from Eq. equation 3). Let
Vk = V (b,Dk). On the good event Ek, the deployment gap for stage k is bounded as:

V ∗
k − Vk ≤

∑
m∈Mτk

(radµ(m, τk) + λ∗
kradc(m, τk)) d

∗
m

where λ∗
k is the optimal dual variable for the budget constraint in the problem defining V ∗

k , assumed
to be ≤ Λ.

Proof. Let dopt,k be an optimal solution achieving V ∗
k = V (b,Mτk). Let d∗ be the solution found

by StageRoute’s Model Deployment Phase (using Eq. equation 3) at τk when optimizing over
Mτk using µU

m(τk) and cLm(τk). Let Dk = supp(d∗). Let Vk = V (b,Dk).

On the event Ek, the confidence bounds hold for all m ∈ Mτk . Specifically, µm ≤ µU
m(τk) ≤

µm + radµ(m, τk) and E[cm] − radc(m, τk) ≤ cLm(τk) ≤ E[cm]. The true optimal solution dopt,k

for the setMτk satisfies
∑

m∈Mτk
E[cm]dopt,k

m ≤ b, uses ≤ Mmax models fromMτk , etc. Since

cLm(τk) ≤ E[cm] on Ek, we have
∑

m∈Mτk
cLm(τk)d

opt,k
m ≤

∑
m∈Mτk

E[cm]dopt,k
m ≤ b. Thus, dopt,k

is a feasible solution for the optimization problem solved by StageRoute (Eq. equation 3 applied
toMτk).

By the optimality of d∗ for StageRoute’s deployment objective overMτk :∑
m∈Mτk

µU
m(τk)d

∗
m ≥

∑
m∈Mτk

µU
m(τk)d

opt,k
m (11)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Using the confidence bounds on Ek for m ∈Mτk :∑
m∈Mτk

µU
m(τk)d

∗
m ≤

∑
m∈Mτk

(µm + radµ(m, τk))d
∗
m =

∑
m∈Mτk

µmd∗m +
∑

m∈Mτk

radµ(m, τk)d
∗
m∑

m∈Mτk

µU
m(τk)d

opt,k
m ≥

∑
m∈Mτk

µmdopt,k
m = V ∗

k

Substituting these into Eq. equation 11:∑
m∈Mτk

µmd∗m +
∑

m∈Mτk

radµ(m, τk)d
∗
m ≥ V ∗

k

Rearranging: ∑
m∈Mτk

µmd∗m ≥ V ∗
k −

∑
m∈Mτk

radµ(m, τk)d
∗
m (12)

This bounds the true performance of the distribution d∗ chosen by the algorithm. Now we relate
this to Vk = V (b,Dk), the optimal performance within the chosen set Dk = supp(d∗) ⊆ Mτk .
The distribution d∗ is supported on Dk and uses at most Mmax models (due to the constraint in
Eq. equation 3). We examine its feasibility w.r.t. the true budget constraint. On Ek:∑

m∈Dk

E[cm]d∗m ≤
∑

m∈Dk

(cLm(τk) + radc(m, τk))d
∗
m ≤ b+

∑
m∈Dk

radc(m, τk)d
∗
m

Let δc(d∗) =
∑

m∈Dk
radc(m, τk)d

∗
m. Using sensitivity analysis/duality, relating Vk = V (b,Dk) to

the performance of d∗ which is feasible for budget b+ δc(d
∗):

Vk = V (b,Dk) ≥ V (b+ δc(d
∗),Dk)− λ∗

kδc(d
∗)

where λ∗
k ≤ Λ. Since d∗ is feasible for V (b+ δc(d

∗),Dk):

V (b+ δc(d
∗),Dk) ≥

∑
m∈Dk

µmd∗m =
∑

m∈Mτk

µmd∗m

Combining these:

Vk ≥

 ∑
m∈Mτk

µmd∗m

− λ∗
kδc(d

∗)

≥

V ∗
k −

∑
m∈Mτk

radµ(m, τk)d
∗
m

− λ∗
k

∑
m∈Dk

radc(m, τk)d
∗
m (Using Eq. equation 12)

Rearranging gives the result (noting d∗m = 0 for m /∈ Dk):

V ∗
k − Vk ≤

∑
m∈Mτk

radµ(m, τk)d
∗
m + λ∗

k

∑
m∈Dk

radc(m, τk)d
∗
m

Since d∗m = 0 for m /∈ Dk, the second sum can also be written overMτk :

V ∗
k − Vk ≤

∑
m∈Mτk

(radµ(m, τk) + λ∗
kradc(m, τk)) d

∗
m

Cumulative Deployment Regret from Estimation Uncertainty. Summing the per-stage deploy-
ment gaps caused by estimation errors gives the learning component of the deployment regret.
Lemma 6 (Deployment Regret from Estimation Uncertainty). Assume the optimal dual variables
λ∗
k are uniformly bounded by Λ. Let K be the total number of stages. Set the confidence parameter

γ = Θ(log(NT/δ)), where N = |MT |. Then the component of total expected deployment regret
due to parameter uncertainty, denotedRdeploy,learn(T), is bounded by:

Rdeploy,learn(T) ≤ O
(√

T log(NT/δ) ·min(N,KMmax) +MmaxK log(NT/δ)
)
.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. The total expected deployment regret due to parameter uncertainty is given by

Rdeploy,learn(T) = E

[
K∑

k=1

Tk (V (b,Mτk)− V (b,Dk))

]
,

where V ∗
k = V (b,Mτk) and Vk = V (b,Dk). We condition on the good event E = ∩Kk=1Ek, which

holds with probability at least 1 − δ. On this event, the confidence bounds for µm and E[cm] hold
for all models m and stages k. From Lemma 5, on event Ek:

V ∗
k − Vk ≤

∑
m∈Mτk

(radµ(m, τk) + λ∗
kradc(m, τk)) d

∗
k,m.

Let Cm(τk) = radµ(m, τk) + Λradc(m, τk), using the uniform bound λ∗
k ≤ Λ. Since d∗k,m = 0 for

m /∈ Dk = supp(d∗k), we have:

Tk(V
∗
k − Vk) ≤ Tk

∑
m∈Dk

Cm(τk)d
∗
k,m.

The term d∗k,m represents the selection weight for model m in the deployment optimization at
stage k. Thus,

∑
m∈Dk

Cm(τk)d
∗
k,m is a weighted average of the combined confidence radii for

the deployed models. We are considering the case where the model has already been selected
in the previous k − 1 stages. Thus, we can bound the sum of Tk(V

∗
k − Vk) by terms related to∑K

k=1

∑
m∈Dk

nk,mCm(τk). Specifically,

K∑
k=1

Tk(V
∗
k − Vk) ≤ O(1)

K∑
k=1

∑
m∈Dk

nk,mCm(τk).

Let’s analyze the sum S =
∑K

k=1

∑
m∈Dk

nk,mCm(τk). Recall Cm(τk) =

2frad(µ̄m(τk), Nm(τk) + 1) + 2Λfrad(c̄m(τk), Nm(τk) + 1). Since rewards µ̄m(τk) ∈ [0, 1] and
costs c̄m(τk) ∈ [c1, c2] ⊆ [0, 1] (with c1 > 0), we have frad(v, n) =

√
γv
n + γ

n ≤
√

γ
n + γ

n for

v ∈ [0, 1]. So, Cm(τk) ≤ 2(1 + Λ)
(√

γ
Nm(τk)+1 + γ

Nm(τk)+1

)
. Let C ′ = 2(1 + Λ).

S ≤ C ′
K∑

k=1

∑
m∈Dk

nk,m

(√
γ

Nm(τk) + 1
+

γ

Nm(τk) + 1

)
.

We can rewrite the sum by first summing over all models m ∈ MT (the set of all N possible
models) and then over the stages k in which m was deployed and played:

S ≤ C ′
∑

m∈MT

∑
k:m∈Dk and nk,m>0

nk,m

(√
γ

Nm(τk) + 1
+

γ

Nm(τk) + 1

)
.

For a fixed model m, let Nm(T) be the total number of times it is played up to T . Let nm,sj be the
number of times m is played during the j-th stage (denoted sj) in which it is deployed. Let Nm(τsj)
be the total number of plays of m before stage sj . The sum for model m is:

Sm =

K′
m∑

j=1

nm,sj

(√
γ

Nm(τsj) + 1
+

γ

Nm(τsj) + 1

)
,

where K ′
m is the number of stages model m is played. We use the standard inequalities for such

sums:

•
∑K′

m
j=1 nm,sj

√
γ

Nm(τsj)+1 ≤ √
γ
∑Nm(T)

i=1
1√

(plays of m before current block)+1
≤ √

γ ·

2
√
Nm(T).

•
∑K′

m
j=1 nm,sj

γ
Nm(τsj)+1 ≤ γ

∑Nm(T)
i=1

1
(plays of m before current block)+1 ≤ γ · (1 + lnNm(T)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

So, Sm ≤ O(
√

γNm(T) + γ logNm(T)). (We absorb constants into O(·) for now, and will re-
introduce C ′ later). Thus, S ≤ C ′∑

m∈MT s.t. Nm(T)>0O(
√
γNm(T) + γ logNm(T)).

The sum is over models that were actually played. LetMP = {m ∈ MT | Nm(T) > 0}. The

number of models inDk is |Dk| ≤Mmax. So,
∑

m∈MP

√
Nm(T) ≤

√
|MP |

∑
m∈MP

Nm(T) =√
|MP |T by Cauchy-Schwarz. Since at most Mmax models are deployed in any stage, and there

are K stages, the number of distinct models ever deployed is |MP | ≤ min(N,KMmax).

The sum
∑

m∈MP
logNm(T). If Nm(T) ≥ 1, then logNm(T) ≥ 0. This sum is at most

Mmax log(T/Mmax) if Mmax models share T plays, or more generally bounded by MmaxK (if
each of Mmax models gets played at least once in each of K stages, its logNm(T) contributes, and
Nm(T) could be small). A more careful bound for the sum of log terms:

∑
m∈MP

logNm(T) ≤
MmaxK log T . So, S ≤ C ′

(
O(
√

γT ·min(N,KMmax)) +O(γMmaxK)
)

. The log terms are
typically absorbed into the γ term. The expectation E[S] includes the good event (probability 1− δ)
and the bad event (probability δ). On the bad event, the regret in one stage is at most Tk, so total T .
Rdeploy,learn(T) ≤ E[S] + δT . If δ = O(1/T), then δT = O(1). Substituting C ′ = 2(1 + Λ) and
γ = Θ(log(NT/δ)), then we complete the proof.

Deployment Regret from Model Discovery Bottleneck. The constraint of deploying at most
Mmax models simultaneously, |Dk(A)| ≤ Mmax, introduces a structural challenge, particularly
when new models frequently become available or the total pool of modelsMT is large. This chal-
lenge is the model discovery bottleneck: identifying truly superior models among many new, un-
evaluated candidates can be delayed.

The StageRoute algorithm employs UCBs for rewards (µU
m) and LCBs for costs (cLm) in its

DeployOPT phase (Eq. equation 3). For a model m that is newly available at stage k (i.e., tm ≤ τk
and its count of previous selections Nm(τk) = 0), its initial empirical averages µ̄m(τk) and c̄m(τk)

are set based on priors. The confidence radius frad(v,Nm(τk) + 1) =
√

γv
Nm(τk)+1 + γ

Nm(τk)+1

becomes large for Nm(τk) = 0. Specifically, with Nm(τk) + 1 = 1:

µU
m(τk) = proj[0,1]

(
µ̄m(τk) + 2

(√
γµ̄m(τk) + γ

))
,

cLm(τk) = proj[c1,c2]
(
c̄m(τk)− 2

(√
γc̄m(τk) + γ

))
.

Assuming priors are chosen such that new models are treated optimistically (or if γ is sufficiently
large), µU

m(τk) will be close to 1 (e.g., if µ̄m(τk) = 0, µU
m(τk) = proj[0,1](2γ) ≈ 1 for appropriate

γ) and cLm(τk) will be close to c1 (e.g., if c̄m(τk) = c1, cLm(τk) = proj[c1,c2](c1−2(
√
γc1+γ)) ≈ c1,

noting c1, c2 ∈ [0, 1]). Let these optimistic initial values be Uinit and Linit respectively.

Consider an update point τk. Let Nnew,k ⊆ Mτk be the set of models that are new at or before τk
and have not yet been deployed (Nm(τk) = 0). All models in Nnew,k will have nearly identical,
highly optimistic (µU

m, cLm) ≈ (Uinit, Linit) values. If the number of such equally optimistic new
models, |Nnew,k|, plus other potentially optimistic (but previously explored) models, exceeds Mmax,
the DeployOPT phase must select only Mmax models. If the new models in Nnew,k dominate the
selection pool due to their optimism, DeployOPTwill choose Mmax models fromNnew,k (possibly
along with some already explored models). Crucially, if there are more than Mmax models within
Nnew,k (or a larger pool of similarly optimistic candidates) that yield effectively the same objective
value for DeployOPT (because their µU

m, cLm, αm are similar), the selection among these specific
candidates becomes arbitrary (e.g., dependent on tie-breaking rules).

A truly superior new model m∗ ∈ Nnew,k might thus be part of a large batch of Nbatch > Mmax

new models that all appear equally promising to DeployOPT. In this scenario, m∗ might not be
selected for deployment in stage k, deferring its evaluation. This deferral means the system misses
the opportunity to benefit from m∗’s potentially high true performance µm∗ for the duration of stage
k, which is Tk = T/K rounds.

Lemma 7 (Model Discovery Bottleneck Regret). Let Mmax be the maximum number of concur-
rently deployed models, T be the total time horizon, and K be the number of stages, with each stage

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

having Tk = T/K rounds. The component of expected deployment regret due to the bottleneck in
discovering and evaluating all N models, denotedRdeploy,discovery(T), is bounded by:

Rdeploy,discovery(T) = O
(
N · (T/K)

Mmax

)
= O

(
NT

MmaxK

)
.

Proof. Each of the N models in the universeMT needs to be deployed at least once to gather initial
empirical data and move its UCB/LCB estimates away from their initial purely optimistic values.
We are interested in the total regret incurred until all N models have had at least one such initial
deployment opportunity.

Due to the constraint |Dk(A)| ≤ Mmax, at most Mmax distinct models can be deployed and evalu-
ated in any given stage k. If the system prioritizes exploring previously undeployed models (which is
encouraged by their optimistic UCB/LCB values), it will take a minimum of Kexplore = ⌈N/Mmax⌉
stages to ensure that every model in MT (assuming all become available early enough) has been
deployed at least once.

Consider a discovery period spanning these first Kexplore effective stages. During any given stage
j ∈ [1,Kexplore] within this period, if the set of Mmax models deployed, Dj(A), does not include
some model m∗ ∈ MT which is (a) available (m∗ ∈ Mτj), (b) truly superior to at least one
deployed model m′ ∈ Dj(A), and (c) m∗ has not been deployed yet because it is waiting its turn
due to the arbitrary selection among many new, equally optimistic models, then regret is incurred.
The per-query regret in such a case can be up to 1 (if µm∗ ≈ 1 and µm′ ≈ 0).

The total number of queries over these Kexplore stages is Kexplore · Tk = ⌈N/Mmax⌉ · (T/K).
During this cumulative period, the system is effectively cycling through the N models. If the se-
lection process within each stage means that, on average, the deployed set is suboptimal because
truly good models are among the (N − j ·Mmax) yet to be tried, the system incurs regret. The
term O(NT/(MmaxK)) represents the cumulative regret if, for a duration equivalent to N/Mmax

full stages (each of length T/K), the system operates with a deployed set that is, on average, O(1)
worse per query than if all models had already been evaluated. This occurs because the Mmax slots
are occupied by models chosen optimistically, and a superior model might be consistently deferred
if it’s part of a large pool of indistinguishably optimistic new models.

More formally, consider the N models. Each requires roughly one exploration slot of duration Tk.
These N slots are processed in parallel groups of Mmax. This implies approximately N/Mmax

stages are spent ensuring all models receive initial evaluation. If, during these N/Mmax stages, the
average deployed set yieldsO(1) less reward per query compared to an optimal deployment (had all
models been known), the total regret from this discovery phase is (N/Mmax) · (T/K) · O(1). The
expectation E[·] in Rdeploy,discovery(T) averages over the random tie-breaking in DeployOPT when
faced with multiple equally optimistic new models, and the stochastic arrival pattern of models. The
O(·) notation absorbs constants related to the maximum possible per-query regret (e.g., 1) and the
precise nature of average suboptimality during this discovery period.

This component accounts for the scenarios where truly good models might be systematically delayed
in their initial deployment if they frequently arrive alongside many other new models, leading to
arbitrary choices among a large pool of initially indistinguishable (optimistic) candidates, subject to
the Mmax deployment limit over K stages.

Total Deployment Regret. The total deployment regret Rdeploy(T) is the sum of the regret from
parameter uncertainty (Lemma 6) and the regret from the model discovery bottleneck (Lemma 7).

Lemma 8 (Total Deployment Regret Bound). Let N be the total number of models, Mmax the
maximum deployed models, T the horizon, and K the number of stages. Let γ = Θ(log(NT/δ)).
The total expected deployment regretRdeploy(T) is bounded by:

Rdeploy(T) ≤ O
(√

T log(NT/δ) ·min(N,KMmax) +MmaxK log(NT/δ) +
NT

MmaxK

)
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Proof. The total deployment regret is the sum of the bounds from Lemma 6 and Lemma 7:

Rdeploy(T) = Rdeploy,learn(T) +Rdeploy,discovery(T)

≤ O
(√

T log(NT/δ) ·min(N,KMmax) +MmaxK log(NT/δ)
)
+O

(
NT

MmaxK

)
= O

(√
T log(NT/δ) ·min(N,KMmax) +MmaxK log(NT/δ) +

NT

MmaxK

)
.

The total deployment regret bound in Lemma 8 highlights two distinct challenges in the deployment
phase. The terms O(

√
T log(NT/δ) ·min(N,KMmax)) and O(MmaxK log(NT/δ)) capture the

cost of learning the parameters of models that are considered for deployment. This cost depends
on the horizon T , the number of deployment slots Mmax, the number of stages K, and logarithmic
factors related to the total number of models N and confidence δ. The term O(NT/(MmaxK))
reflects the structural cost imposed by the discovery bottleneck: when the universe of models N is
large compared to Mmax and the number of adaptation opportunities K, there is an inherent regret
incurred in sequentially exploring models to identify the best ones. This term can dominate if N is
very large or K is small, underscoring the importance of the deployment frequency and capacity in
dynamic LLM environments.

C.4 BOUNDING THE TOTAL ROUTING REGRET

We now bound the total routing regret term Rrouting(T) identified in Lemma 4. This involves sum-
ming the per-stage regrets incurred by the Request Routing Phase of StageRoute due to using
estimated model parameters within the deployed sets Dk. This part of the proof follows a similar
structure to the analysis of UCB-style algorithms for the Bandits with Knapsacks problem Agrawal
& Devanur (2014).

Lemma 9 (Performance Bound). Let ALGOk =
∑τk+1−1

t=τk
rt be the total observed performance in

stage k. With probability at least 1− (MkTk) exp(−O(γ)),∣∣∣∣∣∣
τk+1−1∑
t=τk

rt −
∑

m∈Dk(A)

µU
m(t)p∗t (m)

∣∣∣∣∣∣ ≤ O
(√

γMkALGOk + γMk

)
.

Proof. The proof follows the structure of Lemma 4.4 in Babaioff et al. (2015), adapted to our nota-
tion for models m ∈ Dk(A) and performance µm, UCB µU

m(t), chosen model mt, routing distribu-
tion p∗t (from Eq. equation 7), and summing over t ∈ [τk, τk+1 − 1] (length Tk).

We use Lemma 1 and Lemma 3 (for performance). High probability bounds analogous to (5) and
(6) in the source proof hold for sums over t ∈ [τk, τk+1 − 1]:

∣∣∣∣∣∑
t

(rt − µmt
)

∣∣∣∣∣ ≤ O(Tk · frad(
1

Tk

∑
t

µmt
, Tk))∣∣∣∣∣∣

∑
t

 ∑
m∈Dk(A)

µU
m(t)p∗t (m)− µU

mt
(t)

∣∣∣∣∣∣ ≤ O(Tk · frad(
1

Tk

∑
t

µU
mt

(t), Tk))

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

And analogous to (7) in the source, using Lemma 3 and Lemma 2:∣∣∣∣∣
τk+1−1∑
t=τk

(µmt − µU
mt

(t))

∣∣∣∣∣ ≤
τk+1−1∑
t=τk

|µmt − µU
m(t)|

≤ O

(
τk+1−1∑
t=τk

frad(µ̂mt
(t), Nmt

(t) + 1)

)

≤ O

 ∑
m∈Dk(A)

∑
plays j of m in stage k

frad(µ̂m(at play j), Nm(at play j) + 1)


≤ O

 ∑
m∈Dk(A)

(√
γ(Nm(τk+1)−Nm(τk))µm + γ

)
≤ O


√√√√√γMk

 ∑
m∈Dk(A)

µm(Nm(τk+1)−Nm(τk))

+ γMk


≤ O


√√√√γMk

(
τk+1−1∑
t=τk

µmt

)
+ γMk


Let A =

∑τk+1−1
t=τk

∑
m∈Dk(A) µ

U
m(t)p∗t (m). Combining these bounds using the triangle inequality

on rt−
∑

m µU
m(t)p∗t (m) = (rt−µmt)+ (µmt −µU

mt
(t))+ (µU

mt
(t)−

∑
m µU

m(t)p∗t (m)), similar
to the source proof structure, leads to an inequality relating A and

∑
rt = ALGOk. If

∑
rt ≈∑

µmt and A ≈
∑

µU
mt

(t), then the difference |
∑

(µmt − µU
mt

(t))| dominates. This typically
leads to A − O(

√
γMkA + γMk) ≤ ALGOk (assuming µU are UCBs and A ≈

∑
µU
mt

(t)). This
implies

√
A ≤

√
ALGOk + O(

√
γMk). Substituting this back into the bounds for the difference

|ALGOk −A| yields the claimed result.∣∣∣∣∣∣
τk+1−1∑
t=τk

rt −
τk+1−1∑
t=τk

∑
m∈Dk(A)

µU
m(t)p∗t (m)

∣∣∣∣∣∣ ≤ O(√γMkALGOk + γMk).

Lemma 10 (Cost Bound). Let
∑τk+1−1

t=τk
ct be the total observed cost in stage k. Let Bk = b · Tk be

the effective expected cost budget for the stage. With probability at least 1 − (MkTk) exp(−O(γ))
(i.e., on event E),∣∣∣∣∣∣

τk+1−1∑
t=τk

ct −
∑

m∈Dk(A)

cLm(t)p∗t (m)

∣∣∣∣∣∣ ≤ O
(√

γMkBk + γMk

)
.

Proof. The proof mirrors that of Lemma 9 (and Lemma 4.5 in Babaioff et al. (2015)), replac-
ing performance with cost, µm with E[cm], µU

m(t) with cLm(t), and rt with ct. The probabil-
ity distribution p∗t is from Eq. equation 7. Key steps involve bounding |

∑
ct −

∑
E[cmt

]|,
|
∑

(
∑

m cLm(t)p∗t (m))−
∑

cLmt
(t)|, and |

∑
E[cmt

]−
∑

cLmt
(t)|. The last term is bounded similarly

using Lemma 3 and Lemma 2:∣∣∣∣∣
τk+1−1∑
t=τk

(E[cmt
]− cLmt

(t))

∣∣∣∣∣ ≤ O

√√√√γMk

(
τk+1−1∑
t=τk

E[cmt
]

)
+ γMk

 .

Let A′ =
∑τk+1−1

t=τk
E[cmt]. The algorithm ensures

∑
m∈Dk(A) c

L
m(t)p∗t (m) ≤ b at each step

t. Summing over the stage gives
∑τk+1−1

t=τk

∑
m∈Dk(A) c

L
m(t)p∗t (m) ≤ b · Tk = Bk. Let

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Xc =
∑τk+1−1

t=τk

∑
m∈Dk(A) c

L
m(t)p∗t (m). Then

∣∣∣∑τk+1−1
t=τk

ct −Xc

∣∣∣ ≤ O(√γMkA′ + γMk)

where A′ is the sum of true expected costs. On event E , cLm(t) ≤ E[cm], so Xc ≤ A′. Also,
A′ ≤ Xc+O(

√
γMkA′+γMk). Since Xc ≤ Bk, it follows that A′ ≤ Bk+O(

√
γMkA′+γMk).

This implies
√
A′ ≤

√
Bk + O(

√
γMk). Substituting this back into the concentration bounds for

|
∑

ct −Xc| (and noting A′ ≈ Bk in the error term’s leading order) yields the final result.

Lemma 11 (Per-Stage Routing Regret Bound). Let OPTval
k = maxp{

∑
m∈Dk(A) µmp(m) |∑

m∈Dk(A) E[cm]p(m) ≤ b,
∑

p(m) = 1, 0 ≤ p(m) ≤ αm} be the optimal expected reward
rate within stage k using Dk(A) and true parameters. Let OPTk = Tk ·OPTval

k be the total optimal
expected performance in stage k. Let ALGOk =

∑τk+1−1
t=τk

rt. Assume Mkγ ≤ O(Bk). Then, on
the event E (implying high probability for the bounds within the stage), the routing regret for stage
k, conditioned on Dk, is bounded by:

E[OPTk − ALGOk | Dk] ≤ O
(√

γMkOPTk + γMk

)
(The expectation is conditioned on the choice of Dk, which itself depends on information up to τk).

Proof. On event E , the following hold:

1. µU
m(t) ≥ µm and cLm(t) ≤ E[cm] for all relevant m, t.

2. Lemma 9: |
∑

t(rt −
∑

m µU
m(t)p∗t (m))| ≤ O(

√
γMkALGOk + γMk).

3. Lemma 10: |
∑

t(ct −
∑

m cLm(t)p∗t (m))| ≤ O(
√
γMkBk + γMk). Also,

∑
t ct ≤ Bk +

O(
√
γMkBk + γMk).

From the algorithm’s choice of p∗t (solving Eq. equation 7) and property (1):
τk+1−1∑
t=τk

∑
m∈Dk(A)

µU
m(t)p∗t (m) ≥ OPTk

Combining this with property (2):

ALGOk =
∑
t

rt ≥
∑
t

∑
m

µU
m(t)p∗t (m)−O(

√
γMkALGOk + γMk)

ALGOk ≥ OPTk −O(
√
γMkALGOk + γMk)

Rearranging and assuming ALGOk ≤ OPTk (regret is non-negative):

OPTk − ALGOk ≤ O(
√
γMkALGOk + γMk)

If ALGOk ≤ OPTk, then
√

ALGOk ≤
√

OPTk.

OPTk − ALGOk ≤ O(
√
γMkOPTk + γMk)

Taking expectation conditioned on Dk (and implicitly on E for the bounds to hold), the result fol-
lows. The assumption Mkγ ≤ O(Bk) is used in concentration bounds for costs. Moreover, since the
estimation errors for both performance and cost are governed by the same concentration inequalities,
the expected budget violation is on the same order as the regret.

Lemma 12 (Total Routing Regret Bound). Let K be the total number of stages. Let Mk = |Dk| ≤
Mmax. Let δ ∈ (0, 1) be the desired overall confidence. Set γ = Θ(log(NT/δ)). Then the total
expected routing regret is bounded by:

Rrouting(T) = E

[
K∑

k=1

(OPTk − ALGOk)

]
≤ O

(√
γMmaxKT +KγMmax

)
Substituting γ = Θ(log(NT/δ)), this becomes:

Rrouting(T) ≤ O
(√

MmaxKT log(NT/δ) +KMmax log(NT/δ)
)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Proof. From Lemma 4, Rrouting(T) =
∑K

k=1 E[OPTk − ALGOk]. Here OPTk = TkV (b,Dk)
and ALGOk is the algorithm’s reward in stage k. The outer expectation E[·] averages over all
randomness, including Dk and the failure of event E (which occurs with probability ≤ δ). Using
law of total expectation: E[OPTk − ALGOk] = E[E[OPTk − ALGOk | Dk]].

We apply Lemma 11. Choosing γ = Θ(log(NT/δ)) ensures that event E holds with probability at
least 1− δ. On E :

E[OPTk − ALGOk | Dk] ≤ O
(√

γMkOPTk + γMk

)
Taking expectation over Dk:

E[OPTk − ALGOk] ≤ O
(
E
[√

γMkOPTk

]
+ γE[Mk]

)
+ δ · Tk

Summing this bound over all K stages:

Rrouting(T) ≤
K∑

k=1

O
(
E
[√

γMkOPTk

]
+ γE[Mk]

)
+ δT

Using linearity of expectation, Mk ≤Mmax, Jensen’s inequality (E[
√
X] ≤

√
E[X]), and E[Mk] ≤

Mmax:

Rrouting(T) ≤ O

(
K∑

k=1

E
[√

γMmaxOPTk

]
+

K∑
k=1

γMmax

)
+ δT

≤ O

(√
γMmax

K∑
k=1

√
E[OPTk] +KγMmax

)
+ δT

Applying Cauchy-Schwarz: (
∑K

k=1

√
E[OPTk])

2 ≤ K
∑K

k=1 E[OPTk]. Thus,∑K
k=1

√
E[OPTk] ≤

√
K
∑K

k=1 E[OPTk]. Since rewards are in [0, 1], V (b,Dk) ≤ 1,

so OPTk = TkV (b,Dk) ≤ Tk. Summing over k:
∑K

k=1 OPTk ≤
∑K

k=1 Tk = T . So,∑K
k=1 E[OPTk] ≤ T . Substituting this upper bound:

Rrouting(T) ≤ O
(√

γMmaxKT +KγMmax

)
+ δT

If δ is chosen small enough, the δT term is absorbed. This establishes the first form of the bound.
Substituting γ = Θ(log(NT/δ)) yields the second form.

C.5 TOTAL REGRET BOUND

The overall regret of StageRoute accounts for several sources of suboptimality. The total ex-
pected regretR(T) can now be understood as the sum of two main components:

1. Rrouting(T): The routing regret within deployed sets (Lemma 12).
2. Rdeploy(T): The total deployment regret, encompassing both learning uncertainty and

model discovery bottleneck (Lemma 8).

Summing these bounds:

R(T) = Rrouting(T) +Rdeploy(T)

≤ O
(√

MmaxKT log(NT/δ) +KMmax log(NT/δ)
)

+O
(√

T log(NT/δ) ·min(N,KMmax) +MmaxK log(NT/δ) +
NT

MmaxK

)
Combining terms, and noting that for K ≥ 1,

√
MmaxKT log(NT/δ) dominates or is equivalent

to
√
T log(NT/δ) ·min(N,KMmax) and KMmax log(NT/δ):

R(T) ≤ O
(√

MmaxKT log(NT/δ) +
NT

MmaxK

)
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

D LOWER BOUND FOR ONLINE LLM ROUTING

We establish a lower bound on the regret for any online LLM routing policy. The construction
considers a scenario where the set of competitive models and their performances can evolve over
time, divided into batches. Within each batch, the algorithm faces a sequential decision problem of
selecting the best among M available models, where the identity of the best model is unknown and
can change from batch to batch. To isolate the learning challenge, we make several simplifications.
We assume each model invocation incurs a unit cost (cmt = 1), rendering the budget constraint
trivial if the per-query budget b ≥ 1. We also assume that the system can always deploy any of
the M models under consideration in a given batch (Mmax ≥ M) and that there are no per-model
capacity limits (αm = 1 for all m). The core difficulty then lies in continuously learning and
adapting to the best-performing model(s) in each batch.

The proof strategy is to construct a class of adversarial problem instances. We will demonstrate
that any online algorithm A must incur significant regret on at least one instance within this class.
This argument adapts a batch-based structure common in analyses of learning problems with non-
stationary environments.

Step 1: Construction of Hard Problem Instances. Let ϵ > 0 be a small parameter, which will
be determined later. The total time horizon of T queries is partitioned into NB contiguous batches,
denoted B1, . . . ,BNB

. Each batch j consists of ∆ = T/NB queries. For simplicity, we assume T is
an integer multiple of NB .

For each batch j ∈ {1, . . . , NB}, we consider a set of M models available to the algorithm A.
These models are indexed i ∈ {1, . . . ,M} specifically for the current batch j. The performance
characteristics of these M models are defined as follows: one model is designated as the “strong”
model, and the remaining M−1 models are “weak”. Let sj ∈ {1, . . . ,M} be the index of this strong
model in batch j, chosen uniformly at random by the adversary and unknown to the algorithm. The
reward rt obtained from selecting a model at query t ∈ Bj is drawn from a Bernoulli distribution:

• If model msj (the strong model for batch j, with index sj) is chosen, rt ∼ Bernoulli(µ(j)
H),

where the mean reward is µ(j)
H = 1

2 + jϵ.

• If any other model mi (where i ∈ {1, . . . ,M} and i ̸= sj) from the set of M models for
batch j is chosen, rt ∼ Bernoulli(µ(j)

L), where the mean reward is µ(j)
L = 1

2 + (j − 1)ϵ.

Rewards from different queries are assumed to be independent. The crucial gap in expected reward
between the strong model and any weak model in batch j is µ(j)

H −µ
(j)
L = ϵ. To ensure that all mean

rewards µ(j)
H and µ

(j)
L lie comfortably within the interval [0, 1], we impose the condition NBϵ ≤ 1

4 .
This ensures µ(NB)

H = 1
2 +NBϵ ≤ 1

2 +
1
4 = 3

4 < 1, and the smallest mean, µ(1)
L = 1

2 +(1−1)ϵ = 1
2 ,

is also valid.

A complete problem instance is characterized by a sequence of strong model indices
(s1, s2, . . . , sNB

). The actual underlying LLMs corresponding to these indices could differ from
batch to batch, but in each batch j, the algorithm A faces a choice among M options with the
specified reward structure, and sj is unknown.

Step 2: Per-Batch Regret from Identification Difficulty. Fix a batch j ∈ {1, . . . , NB}, and let
s∗j denote the true index of the strong model, unknown to algorithm A. To identify ms∗j

(mean

µ
(j)
H) from the M − 1 weak models (mean µ

(j)
L , gap ϵ) with a constant probability psucc < 1 (e.g.,

psucc = 3/4), any algorithm requires a query complexity of Ω(Mϵ−2) Agarwal et al. (2017); Li
et al. (2023). This implies there is a universal constant cS > 0 such that at least cSMϵ−2 queries
are necessary to achieve success probability psucc.

We set the batch length ∆ = (cS/2)Mϵ−2. Since cS/2 < cS , this choice of ∆ is insufficient
for reliable identification with probability psucc. Consequently, algorithm A fails to identify ms∗j

within ∆ queries with at least a constant probability pfail ≥ 1 − psucc (e.g., setting psucc = 3/4
gives pfail ≥ 1/4). Let Efail denote this event of identification failure.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Let Nj,weak be the number of queries to weak models in batch j. Conditional on Efail, the algorithm
lacks knowledge of s∗j . In such a state of confusion (especially when M ≥ 2), it is expected to select
weak models a significant fraction of the time. For instance, if choices upon failure are made nearly
uniformly among the M models, weak models are selected M−1

M ∆ times in expectation. Since
M ≥ 2, (M − 1)/M ≥ 1/2. Thus, we can state that E[Nj,weak|Efail] ≥ cF∆ for a chosen constant
cF ≥ 1/2. By the law of total expectation, and since E[Nj,weak|Ecfail] ≥ 0:

E[Nj,weak] = P(Efail)E[Nj,weak|Efail] + P(Ecfail)E[Nj,weak|Ecfail] ≥ pfail · cF∆.

Using pfail ≥ 1/4 and cF ≥ 1/2, this gives E[Nj,weak] ≥ 1
4 ·

1
2∆ = ∆

8 . The expected regret in
batch j (for a fixed s∗j , averaged over A’s randomness) is Rj(s

∗
j) = ϵE[Nj,weak] ≥ ϵ(∆/8). Since

this lower bound does not depend on the specific index s∗j , and the adversary chooses s∗j uniformly,
the expected regret in batch j (averaged over s∗j and A) is Es̃j [Rj] ≥ 1

8ϵ∆.

Step 3: Regret Along the Horizon and Parameter Choice. The expected regret in each batch
j is Es̃j [Rj] ≥ 1

8ϵ∆. The total expected regret over NB batches for algorithm A is RT (A) =∑NB

j=1 Es̃j [Rj] ≥ NB
1
8ϵ∆. Since NB = T/∆, we have RT (A) ≥ (T/∆) 18ϵ∆ = 1

8Tϵ.

We have set the batch length ∆ = (cS/2)Mϵ−2 in Step 2. The other primary constraint, from
Step 1, is NBϵ ≤ 1/4, which implies (T/∆)ϵ ≤ 1/4. Substituting ∆ = (cS/2)Mϵ−2 into this
constraint:

T

(cS/2)Mϵ−2
ϵ ≤ 1

4
=⇒ 2Tϵ3

cSM
≤ 1

4
=⇒ ϵ3 ≤ cSM

8T
.

To maximize the lower bound on regret 1
8Tϵ, we choose ϵ to be as large as possible, subject to this

constraint. We set ϵ =
(
cSM
8T

)1/3
. This choice ensures ϵ3 = cSM

8T .

Substituting this ϵ into the total regret expression:

RT (A) ≥
1

8
T

(
cSM

8T

)1/3

=
1

8
T
c
1/3
S M1/3

81/3T 1/3
=

1

8

c
1/3
S

2
M1/3T 2/3 =

c
1/3
S

16
M1/3T 2/3.

Since cS > 0 is a universal constant from the identification complexity, let C = c
1/3
S /16. Then

C > 0. Thus, RT (A) ≥ CM1/3T 2/3.

Finally, we verify the conditions on our parameter choices:

1. Value of ∆: ϵ2 =
(
cSM
8T

)2/3
. ∆ = (cS/2)Mϵ−2 = (cS/2)M

(
cSM
8T

)−2/3
=

(cS/2)M
(8T)2/3

(cSM)2/3
= (cS/2)M

82/3T 2/3

c
2/3
S M2/3

= (cS/2)M
4T 2/3

c
2/3
S M2/3

= cS
2

4M1/3T 2/3

c
2/3
S

=

2c
1/3
S M1/3T 2/3. Let c∆ = 2c

1/3
S . So ∆ = c∆M

1/3T 2/3. We need 1 ≤ ∆ ≤ T for ∆ to
be a valid batch length. ∆ ≤ T =⇒ c∆M

1/3T 2/3 ≤ T =⇒ M1/3 ≤ T 1/3/c∆ =⇒
T ≥ (c∆M

1/3)3 = c3∆M . This implies T must be sufficiently large relative to M . ∆ ≥ 1
generally holds for large T if M ≥ 1.

2. Constraint NBϵ ≤ 1/4: This constraint was used to determine the choice of ϵ. With
ϵ3 = cSM

8T :
Tϵ3

(cS/2)M
=

T
(
cSM
8T

)
(cS/2)M

=
cSM/8

cSM/2
=

1/8

1/2
=

1

4
.

Thus, (T/∆)ϵ = NBϵ = 1/4 is satisfied by this construction.

All conditions are met for suitable choices of T relative to M , given the universal constant cS > 0
and our choices for pfail (e.g., 1/4) and cF (e.g., 1/2) which determine the factor 1/8 in the per-
batch regret. Thus, for any online routing algorithm A, there exists a problem instance in our
constructed class for which its expected regret is bounded below by RT (A) ≥ CM1/3T 2/3 for
some constant C > 0 (specifically C = c

1/3
S /16). For a fixed number of models M ≥ 2. In this

case, the lower bound becomes Ω(T 2/3), matching the statement in Theorem 2.

This completes the proof.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E EXPERIMENTAL DETAILS

This appendix provides additional details on the experimental setup, benchmarks, and results pre-
sented in Section 5.

E.1 REAL-WORLD BENCHMARK: ROUTERBENCH

Dataset Details. Our primary evaluation is based on the RouterBench dataset (Hu et al., 2024), a
comprehensive benchmark with 36,497 queries sampled from eight diverse NLP datasets. These
datasets cover both Chinese and English and span a broad spectrum of tasks: commonsense reason-
ing (HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), ARC Challenge (Clark
et al., 2018)), knowledge-based understanding (MMLU (Hendrycks et al., 2021)), open-domain di-
alogue (MT-Bench (Zheng et al., 2023)), mathematical reasoning (GSM8K (Cobbe et al., 2021)),
code generation (MBPP (Austin et al., 2021)), and retrieval-augmented generation (RAG).

Candidate LLMs and Metrics. For each query, RouterBench provides pre-computed responses
from the 11 LLMs listed in Table 3. The table shows the models ordered by their release date, along
with their average performance score and average cost per query across the entire dataset.

Table 3: List of LLMs sorted by release date, along with their per-query average performance score
and average cost.

Model Avg Performance Avg Cost
claude-instant-v1 0.5900 $0.001236

claude-v1 0.6480 $0.005870

claude-v2 0.5116 $0.006153

meta/llama-2-70b-chat 0.6059 $0.001337

WizardLM/WizardLM-13B-V1.2 0.5392 $0.000142

meta/code-llama-instruct-34b-chat 0.5040 $0.000550

mistralai/mistral-7b-chat 0.4999 $0.000139

gpt-3.5-turbo-1106 0.6867 $0.000709

gpt-4-1106-preview 0.8048 $0.007943

zero-one-ai/Yi-34B-Chat 0.7153 $0.000558

mistralai/mixtral-8x7b-chat 0.6504 $0.000414

E.2 ADDITIONAL SIMULATION RESULTS

To validate our framework’s applicability to the rapidly evolving frontier of SOTA models, we con-
structed a synthetic benchmark using 15 recent, high-performance LLMs.

Candidate LLMs and Metrics. We consider a set of 15 LLMs, summarized in Table 4, ordered by
their official release dates. For each model, we report both performance metrics Chiang et al. (2024)
and associated costs. No single metric can capture the full complexity of LLM performance. We
chose Elo / area scores as they are community standards (e.g., Chatbot Arena), ensuring transparency
and reproducibility. Importantly, our framework is metric-agnostic. The performance signal can
be replaced by any other quantifiable performance measure, such as task-specific accuracy, user
satisfaction scores, or a composite utility function combining multiple objectives.

Note that the naming of AI models can be highly nuanced, and multiple versions may exist
under a similar label. For example, for Gemini 2.5 Pro, we used data corresponding to the
Gemini-2.5-Pro-Preview-05-06 version. Additionally, performance scores may fluctuate
over time due to model updates, shifts in the user voting population, or changes in evaluation bench-
marks. Similarly, costs may vary across time or across versions. The data reported here corresponds
to the specific versions and conditions used in our experiments.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) Mmax = 3. (b) Mmax = 5. (c) Mmax = 10.

(d) Update interval = 250 rounds. (e) Update interval = 1000 rounds. (f) b = 5.

Figure 6: Regret with varying parameters.

Simulation Setup. These 15 models are introduced sequentially, with the first 5 available at time
t = 1 and one additional model becoming available every 1,000 rounds until all are accessible.
Each model’s performance is normalized to lie within the [0, 1] interval. For each model m, we
set its budget weight parameter αm = 0.4, except for Yi-Lightning, for which we set αm = 1.
This is because Yi-Lightning is the cheapest model initially available to the algorithm, ensuring the
feasibility of the mixed-integer optimization problem in every round. At each round, if the algorithm
selects a model, it receives a noisy performance and cost observation, where the noise is sampled
from a Gaussian distribution centered around the true value. In any real-world application, LLM
performance metrics are inherently bounded. Our simulation implicitly respects the [0, 1] range by
clipping noisy rewards to this interval, with the noise variance chosen such that the probability of
generating values outside the range is negligible.

Sensitivity Analysis. Figure 6 presents the sensitivity analysis for StageRoute on the synthetic
benchmark. The results are consistent with our findings on RouterBench, demonstrating the ro-
bustness of our algorithm across different model suites and settings. StageRoute consistently
achieves low regret, adapting effectively to the concurrency cap, update interval, and budget.

F THE USE OF LARGE LANGUAGE MODELS

During the preparation of this work, we used large language models solely to assist with polishing
the writing.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table 4: LLM comparison by release date: performance (Arena Score/Elo Chiang et al. (2024)) and
output cost (per 1M tokens).

Model Performance Cost
GPT-4o 1336 $10.00

Gemini-1.5-pro-002 1302 $5.00

Yi-Lightning 1287 $0.14

o1-mini 1304 $0.60

Llama 3.3 70B Instruct 1257 $0.40

DeepSeek-R1 1358 $0.55

Gemini 2.0 Flash 1380 $1.50

Claude 3.7 Sonnet 1300 $15.00

Hunyuan-turbos 1296 $0.28

Deepseek-v3 1373 $0.28

Llama-4-Maveric 1417 $0.82

GPT-4.1 1366 $8.00

Grok-3-preview 1403 $15.00

o3 by OpenAI 1413 $40.00

Gemini-2.5-Pro 1446 $10.00

33

	Introduction
	System Model
	StageRoute: Stage-Based LLM Deployment and Routing
	Theoretical Results
	Upper Bound
	Lower Bound

	Experiments
	Conclusion
	Related Work
	LLM Routing
	Multi-armed Bandits

	Summary of Notation
	Technical Analysis
	Concentration Inequality
	Regret Decomposition with Time-Varying Benchmark
	Analysis of Deployment Regret
	Bounding the Total Routing Regret
	Total Regret Bound

	Lower Bound for Online LLM Routing
	Experimental Details
	Real-World Benchmark: RouterBench
	Additional Simulation Results

	The Use of Large Language Models

