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ABSTRACT

Multi-agent systems are prevalent across various domains, characterized by mis-
aligned objectives and information asymmetry, which facilitate the study of in-
centive design and information design. Existing research often assumes known
models and static environments. Motivated by this, we propose a Dynamic Incen-
tive and Information Design (DIID) framework for finite-horizon Markov games,
involving a principal and multiple agents. Our focus is on how the principal learns
her optimal policy based on data generated through interactions with agents. The
main challenge lies in balancing the principal’s regret and violations of agents’ in-
centive compatibility constraints during interactions. We establish a lower bound
characterizing the trade-off between the two objectives and propose an algorithm
attaining the optimal trade-off, i.e. @(TQ/ 3) regret and constraint violation. Ad-
ditionally, with access to additional unilateral deviation information of the agents,
we propose an algorithm attaining improved guarantees that achieve (’~)(T1/ %) for
both regret and constraint violation simultaneously.

1 INTRODUCTION

Multi-agent systems, where multiple decision-makers or “agents” interact, have become ubiqui-
tous. These range from drivers selecting routes in traffic networks to financial entities reacting to
market signals. Misaligned objectives and information asymmetry in multi-agent systems facili-
tate characterizing rational behavior and designing incentives and information. These issues have
been extensively studied in economic literature. For instance, traffic congestion can be alleviated
by steering drivers’ route choices. Measures like congestion pricing impose higher fees during peak
hours (Barrera & Garcia, 2014), while real-time traffic updates empower drivers to make informed
route decisions (Arnott et al.l [1991). Similarly, in financial markets, regulators utilize incentives
like tax benefits and penalties to guide market behavior (Goodhart et al.,|2012), while transparency
mechanisms shape investor perceptions, fostering stability (Goldstein & Yang, 2017). Many studies
in economic literature have examined the existence and definition of equilibrium (Bergemann &
Morris, 2013 [2016) and the properties of the solution.

However, studies in the economic literature often assume that the model is known, with few focusing
on how to learn equilibrium notions from data, e.g. learn the model through multiple interactions.
Moreover, these studies mainly address static cases and do not account for dynamics in the system,
such as how decisions made now affect the evolution of the system’s state and future utility. Moti-
vated by this, we propose a general Dynamic Incentive and Information Design (DIID) framework
encompassing joint incentive and information design in a finite-horizon Markov game, involving
a single principal and multiple agents. The principal manipulates agents through (i) misaligned
objectives, by taking actions to directly influence agents’ rewards (i.e., incentive design), and (ii)
information asymmetry, by having access to a random variable that agents cannot see (an external
parameter) to send signals and change the agents’ beliefs about that variable, which indirectly influ-
ence the followers’ actions (i.e., information design). In other words, in our framework, the principal
can perform two moves simultaneously in each iteration. It can directly change the agents’ reward
functions by taking an action, and change the posterior by sending a signal.

Given principal’s actions and signaling schemes, in each step, the agents’ decision making problem
is reduced to a Bayesian game. In this case, the policies of rational agents converge to a Bayesian
Correlated Equilibrium (BCE) (Bergemann & Morris) |2013; |2016)). Thus, the principal’s problem
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is to design an incentive and information structure such that the resulting BCE maximizes the prin-
cipal’s cumulative reward, i.e., to find a Stackelberg equilibrium (von Stackelbergl [1952)) of the
leader-follower game. That is, the principal’s optimal policy characterizes the optimal way she
steers the agents in her favor, by changing their reward functions and beliefs.

Our focus is on how to learn the principal’s optimal policy in the online learning setting, through
the data generated by the interaction between the principal and agents. Unlike prior works on online
information design (Gan et al [2022c; Wu et al.| 2022} Bernasconi et al., [2022), we do not assume
that the principal has knowledge of the agents’ reward function. The principal’s optimal policy
is defined by constrained optimization, where the constraint ensures that the agents adopt a BCE
against the principal’s policy. As a result, to find the principal’s optimal policy efficiently from data,
we need to estimate the agents’ reward functions and predict how they respond to the principal.

To accurately estimate the reward functions, the principal needs to incentivize the agents to try all
actions, which might not be feasible in general. For example, if some actions are strictly dominated
and thus never be executed by the agents. In this case, it is impossible for the principal to estimate
the rewards on these actions. To bypass this challenge, we assume that the principal has the power
to take actions on behalf of the agents, and she additionally suffers from the violation of the BCE
constraint. Under this setting, our goal is to design efficient online learning with both sublinear
regret and constraint violation. To this end, we need to (a) explore efficiently so as to obtain an
accurate estimate of the BCE constraint, and (b) quantify how the estimation error of the BCE
constraint affects the regret. Additionally, our algorithm should be able to handle large state spaces
by incorporating function approximations.

Main results and contributions Our contributions are three-fold, detailed as follows.

* First, we prove a regret lower bound revealing an intrinsic tension between principal’s
regret and agents’ BCE constraint violation. Specifically, any algorithm can simultaneously
achieve an O(T*) regret and an O(T"~*/2) constraint violation, for any o € (1/2,1].
Here O(-) omits logarithmic factors. In particular, with & = 1/2, when the principal
attains an O(v/T) regret, she suffers from a Q(7'3/*) constraint violation. These two terms
at best are balanced by setting o = 2/3, which leads to a O(TQ/ 3) error in total.

» To demonstrate its tightness, we propose a provably efficient algorithm that attains @(T2/ 3)
regret and constraint violation simultaneously by exploiting the technique of reward-free
exploration (Jin et al.| 2020a; |Zhang et al.| 2021)).

* Additionally, we show that the intrinsic tension between regret and BCE constraint viola-
tion can be relieved only by granting the principal more observations. When the principal
additionally has access to the reward-maximizing actions and the optimal reward values,
we can design an optimistic algorithm that simultaneously attains a O(\/T ) regret and BCE
constraint violation. These two algorithms can readily incorporate linear function approxi-
mation.

2 RELATED WORKS

The principal-agent problems have been a persistent focus in economic research, which encompasses
problems such as incentive design (Sandholm| 2003)), information design (Kamenica & Gentzkow,
2011), as well as coordination mechanism design for the generalized principal-agent problems that
combine both [Myerson| (1982)); |Gan et al.| (2022a). These works focus on characterizing outcomes
in static environments and addressing computational aspects. In recent years, there has also been
growing interest in the computation and learning aspects of sequential principal-agent problems. For
example, |[Zhang & Conitzer| (2021)); (Cacciamanti et al.| (2023a)) studied sequential incentive design,
and |Cell1 et al.[ (2020); |Gan et al.| (2022b); Wu et al.| (2022); Bernasconi et al.| (2022); [Iyer et al.
(2023) studied sequential information design.

The closest works to ours are the line that studies Bayesian persuasion (Kamenica & Gentzkow)
2011)) under Markov games (Wu et al., 2022} |Gan et al.,|2022bj Iyer et al.,[2023), where the payoff-
relevant state evolves according to a Markov chain. Specifically, [Wu et al. (2022) considered a
finite-horizon Markov persuasion process, where a single principal seeks to persuade a stream of
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myopic agents to maximize his cumulative rewards. However, in the learning aspect, it assumes
the absence of knowledge about the transition kernel and presumes that the principal knows the
reward function. |Gan et al.| (2022b)); Bernasconi et al.| (2023) studied a similar setup with a far-
sighted receiver, but their focus is on the computational aspect. In contrast, our focus is on learning
the optimal persuasion policy from data. Even in the straightforward scenario where the receiver
is myopic, we emphasize that the lack of knowledge regarding the receiver’s reward presents a
significant challenge for learning. A recent work by [Iyer et al.| (2023) further considered the case
where the agent’s belief is endogenous, i.e., instead of assuming the agent knows the state, and
only needs to maintain an exogenous belief about the external parameter, they assumed the state is
unknown, in which case, agent’s belief now depends on the realized history of the Markov chain.
In summary, two key differences between our work and these aforementioned related works are that
(1) we do not make the assumption that the principal knows the agent’s reward function, and (ii) we
allow multiple agents that play a noncooperative game.

Notation Throughout this paper, we follow the following notation. For function f,g : X — R, we
use (f,g) := >, cx f(x)g(x) to denote the inner product of f and g. We denote A(X') as all the

distribution over the finite set X'. For a positive-semidefinite matrix A € R4*¢ and vector 2 € R?,

we use ||z]| 4 to denote VT Ax. We use [n] to denote {1,2,--- ,n}. Meanwhile, all norms || - || are
£5-norms unless otherwise specified.

3 PROBLEM SETUP

Markov Game We consider a Markov Game between a principal (system designer) and [ agents
(individuals in the system). In contrast to a typical MDP where only the agent takes action, in
this scenario, both the principal and the agents take actions. The principal can influence the agents
by directly taking actions and by influencing their beliefs about external parameters. Specifically,
we consider M = (H, S, Q, .A, B; {Ph}he[H]a {T;L}iXhG[I]X[H]7 {Rh}’he[H]7 {"/’h}hG[H]) , where H
is the number of steps, S is the space of states, {2 is the space of external parameters, A is the
space of the principal’s actions, and B := B; X --- By is the space of action profiles of I agents
(with B; being the action space for each agent ¢ € [I]). Here, rfl :SxOx Ax B — Rand
Ry : S x ) x A x B — R denote the reward functiorﬂ of agent ¢ and the principal, respectively,
and P, : S x Q x A x B — A(S) is the transition function at step h. At each step h € [H],
we let wy, € ) be an independent external parameter with wy, ~ 15, and we denote the principal’s
action as ap, € A, and I agents’ action profile as by, := (b,1L7 e ,bﬁ) € B. Then the next state is
sampled from sp1 ~ Pj,(sp,wp, an, by ). In addition, at each step, we assume state s, and the prior
distribution of external parameter 1)}, are public to both the principal and I agents, while the realized
external parameter wy, is private to the principal. In other words, the principal has an information
advantage over I agents.

Incentive and information design In the Markov game M defined above, the principal can influ-
ence agents’ actions {by, } () via both incentive and information design.

* Choosing action ay, to affect each agent ¢’s expected reward ri(sh,wh, ap,by). Specif-
ically, at the beginning of the game, the principal decides a policy {7 }xe[m], Where
7+ S — A(A) represents how the principal takes actions.

» Shaping the agents’ beliefs about wy, via signaling. Specifically, principal commits to a
signaling scheme {4, }1,c(r) and announces to all the agents, where v, : S x @ x A —
A(B). At each step, the principal samples by, ~ vy, (+|Sh,wh, ap), and recommends action

¢ privately to the corresponding agent i. Based on the recommended action b, and the
signaling scheme v, the i-th agent can infer their own distribution of the external parameter
using Bayes’ rule.

In this context, the signaling space (the space signaling scheme maps to) does not need to be limited
to the action space; it can encompass any signaling space. According to the revelation principle

At each step, the reward is stochastic, while the reward function represents the expectation of the re-
ward. As long as it does not cause confusion, we use 7, Ry, to denote the stochastic reward at each step, and
74 (ShyWh, Gh, br ), Ry (Sh, wh, an, by) to denote the reward function.
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(Kamenica & Gentzkowl, 2011]), this is equivalent to directly recommending actions. Notably, if we
only consider policy 7, it degenerates into a incentive design game, and when we only consider v, it
is an information design problem. Here the principal can influence the agents in both ways and thus
our setting is strictly more challenging.

State Sh — State Sh+1 [ Principal observe wj ~

Prmc1pa1 choose its action
~ 1t (- |sp) , sample
Nature bh ~ Vp (- [Sp, 0p, ay) and privately

Receive reward R Receive reward 77
" " recommend bh to each agent
3. Based on the prmc1pal s action a, and
Recommendatlon bh each agent choose
Take action tion b}, = argmax E[r |ay, bi]
action b, = X
= (}.B7, -+ BY) h= e nn O
Generate Wy, ~ Pp, 4. Principal receive a stochastic reward Rh
each agent receive a stochastic reward 17,

Take action @y ~ nh( |wp)
Multlple 5. Environment transit to next state
Pr1nc1pa1 tﬂ; 5h+1 ~ Pu(- IS, @n, an, bp)
Recommend Agents

~ V(" ISh, Gn, @n)

Figure 1: Interaction protocol of the Markov game between the principal and a set of I agents. In
each step, the principal first announces the signaling scheme before each episode starts. Then, in
each step of the episode, the principal takes an action that enters agents’ reward functions, and send
a signal in the form of recommended actions to the agents. The agents’ posterior belief is altered by
the recommended actions. The agents choose actions from the equilibrium by aggregating over the
posterior belief. Then both principal and agents receive rewards and transit to a new state.

Leader-follower structure Our game has a leader-follower structure — the principal first an-
nounces her policy 7 and signaling scheme v and commits to them, and the agents strategically
react the principal. Then, with such knowledge, the agents will strategically take their actions in re-
sponse to the leader. In particular, with multiple agents with diverse reward functions, in each step,
the agents essentially play a Bayesian game induced by the principal The goal of the principal is to
steer the agents such that the outcome of the game is in favor of the principal, i.e., the cumulative
rewards of the principal are maximized.

Bayesian game induced by principal In each step h, after principal take action a;, and recom-
mend action for agents, n agents play a Bayesian game with reward function {r}, (ss, an, @, b) }ic[n]-
Here we use letters with a superscript bar to represent unknown parameters for the agents. For the
t-th agent, given principal’s action ay, principal’s signaling scheme v, and pr1n01pal S private sig-
nal b}, i-th agent’s private posterior belief is P(b~%, @|sy,, ap, bh) oc p (@) (bi, b7 sp, @, ap). In
this case, each agent seeks to solve maxy: i E[r? (s, ay, @, b)] based on their own belief. By con-
vention of Bayesian persuasion (Kamenica & Gentzkow, 2011), if multiple equilibria exist, agents
may choose actions that favor the principal.

Interaction Protocol To summarize, before the game begins, the principal announces an action
policy {7} ne[m] and a signaling scheme {v, } [z and commits to them. At each step h € [H],
the game proceeds as follows

1. Principal first chooses its action ap, ~ 74 (+|sp);

2. Upon observing wy, ~ %y, the principal samples by, ~ vn(+|sh, wh, a), and recommends
action b}, privately to the corresponding agent i € [I];

3. Based on principal’s action aj, and the recommended action b¢, this situation reduce to a
Bayesian game and agents take actions by, from the equilibrium of this Bayesian game.

4. The principal receives a stochastic reward R;,, and each agent receives a stochastic reward
7} ; the environment transits to the next state sp11 ~ Py (-|sp,wn, an, br).
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This setting has significant real-world applications. For instance, consider a scenario where a gov-
ernment (principal) collaborates with electric car manufacturers (agents) to boost EV adoption. The
government can influence manufacturers by offering subsidies and tax rebates and by controlling
information about future environmental policies and infrastructure plans, such as charging stations.
This strategy helps align manufacturers’ actions with public health and environmental goals.

Value function and Bellman equation For each policy (m,v), we denote Q" (s,w,a,b) =
E”v”[z,jﬁ:h Ry (Shrywhry apry by )|Sh = $,wp, = w,ap, = a, by, = b] as the expected reward start-
ing from step h condition on state, external parameter, action, where the expectation is taken for the
randomness of the latent state, policy (7, ) and the transition kernel. We also define a state function
Vil (s) :=E™ [Zi{:h Ry (Shrywnry apsy b ) [sp = s] . in similar way. The Bellman equation as-
sociated with policy pair (7, ) is V;""(s) = (Q}", mh @¥p @up)axaxs(s) and Q1" (s,w, a, b) =
Ry (s,w,a,b) + PhV,;’_q(s,w, a,b), where Pth:’_li(s,w, a,b) = <Ph(~|5, w,a,b), Vhﬂ_i’_';(~)>s.

3.1 SOLUTION CONCEPT: PRINCIPAL’S OPTIMAL POLICY SUBJECT TO BCE CONSTRAINT

We aim to design a policy pair (7, ) that satisfy: (i) the principal’s expected total return is max-
imized; (ii) all agents do not have incentive to deviate from the recommended action by,. In the
remainder of this section, we will give the definition of BCE and a formal depiction of the problem.

Bayes Correlated Equilibrium BCE is the most widely adopted solution concept to describe the
stable outcome where no agent has the incentive to deviate, conditional on the knowledge of the
recommended action (Bergemann & Morris| 2013 2016). To formally define BCE, we first in-
troduce the concept of strategy modification: the i-th agent can adjust its strategy at each step h
through a function ¢} : & x A x B® — B'. The modification is solely based on current in-
formation about the underlying environment available to the agent. We define a modified policy
@i oy 1 S x QU x A= A(B) as @ o v (b, b7 s,w,a) = (& (b]s,a,-),vn(- b s, w,a))g:.
This represents the action distribution when all agents follow v}, except for the ¢-th agent, who
modifies their action. The BCE constraint is defined as follows.

Definition 3.1 (BCE Constraint) A policy pair (m,v) is a BCE if for any state sj, with positive
visitation measure (with respect to ,v), Vo3, € ®*,i x h € [I] x [H],

<7";:w Un ® (902 ovp — yh)>ng (sh,a) <0,Ya € ANn{a: mp(alsy) > 0}, (D
Note that the i-th agent’s posterior over the latent space and other agents’ actions can be expressed
as P(b™", wlsn, an, b},) o< n(w)vn(bj,, b~ |sn,w, an). Thus, the term: (r}, ¥n @ i), s (Sh,an)

is the i-th agent’s expected reward for following recommendation from their own perspective and
<r§l, Yp ® (gﬂh oy — I/h) >QxB (sh,an) denotes the benefit i-th agent can obtain from modification

¢t . Thus, Deﬁnitionimplies that any agent cannot gain advantage through modification.
Optimal policy — Stackelberg equilibrium From some initial state s; € S, the optimal policy
7%, v* = {7}, v} bhelm) is defined as the solution to the following bilevel optimization problem:

*,v* = argmax, , V""" (s1) @
s.t. w, v satisfies BCE Constraint in (1).

Here (7*,v*) is the principal’s policy that maximizes her cumulative rewards, assuming agents
always respond by playing a BCE against her. Therefore, 7*, v* characterize the optimal policy of
the principal. We have the claim that, as long as action space B is finite, Equation has feasible
solutions. The detailed description and proof of this proposition is in Appendix [B]

3.2 PERFORMANCE METRICS: SUBOPTIMALITY AND CONSTRAINT VIOLATION

Given the definition of the optimal policy, we can define the following two performance metrics.

Suboptimality To quantify the disparity between 7, v and the optimal policy 7*, v* in the objective
function, for some initial state s, we can express suboptimality as follows

SubOpt™ (s1) = ReLU (V" (s1) — Vi™"(s1)),
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where ReLU(z) = max{0,z}. Here, we use the ReLU function to ensure that suboptimality
is always positive, as in some cases, if the policy pair (7, ) does not satisfy the constraints, the
expected reward may exceed that of the optimal policy pair defined in Equation (2).

Constraint violation To quantify the extent to which the recommended policy vi-
olates the BCE constraint, we define Constraint Violation (CV) as CV;™"(sp) =
MaX,i ¢ <T§L7 Py @ T R ((p}l oy — uh) >Q><A><B (sn), which measures the maximum expected
reward an agent can obtain by deviating from the recommended policy at step h. Note that by
definition, CV;™"(sp,) > 0. Thus, the CV under policy pair (7, v) is

CV™(s1) = Ilrelé[%}]( CV"™"(s1) = max;e Zle (d3" (), CVy™" ()
where d; () = P(s), = -|s1 = s1) is the visitation measure with respect to the policy pair (7, v),
the realization of latent state w and the transition kernel P. In essence, the constraint violation of
the ¢-th agent can be understood as follows: when following policy 7 and v, there is a hypothetical
opportunity for the agent to diverge from the prescribed course of action at each step. The constraint
violation of i-th agent represents the maximum expected reward that the ¢-th agent could obtain by
taking such deviations from the recommended policy.

S’

To see the definition of suboptimality and constraint violation corresponds to the optimal policy
defined above, we have claim that SubOpt™"(s;) = CV™"(s1) = 0 if and only if 7, v is optimal
policy defined in Equation (2)). The detailed description and proof is in Appendix

3.3 ONLINE LEARNING UNDER DIID FRAMEWORK

In the following section, we aim to address this problem in an online setting. Specifically, the
principal initially does not know the model but interacts iteratively with agents in this Markov game,
updating their policy.

Data collection protocol In t-th episode, principal commits the policy 7! and v¢, then agents
take action recommended by policy v¥. We allow the principal to gain access to the trajectory
{8h,Wh, an, br}reim as well as the bandit feedbacks { Ry, 7 }ne[m], Where 7, is realized agents’
reward rather than reward function. Here, we assume that agents take the recommended actions
compulsorily. We do not know any prior information, including the agents’ reward functions. It
is impossible to induce agents to take every action, as some actions may strictly dominate, leading
agents to disregard other actions. Additionally, certain actions may be difficult to induce, making it
costly to explore the entire policy space. Consequently, there is a possibility that specific actions may
not be explored, making it impossible to estimate the reward function at this point. This situation
could lead to missing out on the best possible action for the principal. A similar assumption is made
in|Bernasconi et al.| (2022).

Learning performance metric We denote (7, %) as the policy generated by some online learn-

ing algorithm in episode ¢. The regret and the constraint violation of the learning process are defined
t t t ot

as Reg(T) = > ;¢ () SubOpt™ (st), CV(T) = Dt CVT (st). If both regret and con-

straint violation are o(7"), the average policy is approximately optimal for the principal.

4 INCENTIVE AND INFORMATION DESIGN WITH BANDIT FEEDBACK

Now, a natural research question arise:

Can we design an algorithm with @(ﬁ) regret and constraint violation simultaneously?

The challenge of this question is twofold. First, the impact of estimation errors in the BCE constraint
on regret remains unclear. As shown later in this bilevel optimization problem, even small errors in
the constraints can lead to significantly different in principal’s cumulative reward, making it neces-
sary to explicitly estimate the BCE constraint. Second, directly substituting estimated values into
the BCE constraint to compute the optimal policy may not adequately address potential constraint
violations or regret in a theoretical framework.
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4.1 TRADE-OFF BETWEEN REGRET AND CONSTRAINT VIOLATION

The answer of the question we proposed is negative, as there is a fundamental trade-off between
regret and constraint violation.

Theorem 4.1 (Trade-off between Regret and CV) For model M = (S,Q, A, B, P, R, {ri}ie[ 1)
and any online learning algorithm o7 : H; — 11 x N with bandit feedback, where H; represents
the set of all feedback before episode t, Il and N denote the spaces of policies w and v, respectively.
wt and vt are policies based on the algorithm and the model in episode t. We can establish the
following trade-off: For any a € [1/2,1], there exists 6 € (0,1) such that no algorithm of can
simultaneously achieve better than

Reg(T) = O(T®), CV(T) = O(T*~/?).

for any model M with probability at least 1 — §. Thus, for any algorithm in online learning with
bandit feedback, it is impossible to achieve O(\/T) regret and constraint violation simultaneously.

This outcome suggests a fundamental trade-off between regret and constraint violation. If we set
o = 1/2, the regret is O(v/T), but the constraint violation is ©(73/4). To attain a good balance
between regret and constrained violation, we can set & = 2/3, so that the regret and constraint
violation are both O(T%/3) according to Theorem 4.1} The detailed proof of Theorem 4.1]is shown
in Appendix [C| where we construct hard instances as follows.

A hard instance The regret lower bound above is established by constructing a hard instance with
H =1, and S being a singleton. The game consists of a principal and two agents, i.e., I = 2. Let
the two agents be denoted by Agent-a and Agent-b, and their actions are denoted with subscripts 1
and 2, respectively. That is, the agents play a matrix game induced by the principal. We can create
two game instances X and Y satisfying the following property:

The reward functions of the principal and agents in these two game instances are close,
but the corresponding equilibria are different.

With this property, finding the optimal policy is challenging, even when the reward functions are
estimated accurately. As a result, even a small estimation error in the reward functions can result in
a significant error in either regret or constraint violation.

Specifically, let A be a singleton, and assume the reward functions do not involve the external
parameter w;. Thus, the reward received by the principal is completely determined by the BCE of
the matrix game of the agents. We assume the rewards of the agents are Bernoulli random variables,
whose expectations are listed in Table|[T]

Table 1: Pair of hard instances X (left) and Y (right)

T1,T2, R by b2 r1,T2, R by b2
ai 17%71 07%70 a 17%71 05%70
as 13,1 0,4=,0 as 1,5,1 0,450

Specifically, in instances X and Y, under BCE, Agent-b always chooses action by and b; respec-
tively. As a result, the principal receives rewards zero and one respectively. In summary, in our
construction, whenever we fail to find the correct BCE, we incur a constant regret and ¢ constraint
violation. Finding the correct BCE is hard because the reward functions of X and Y are close. See
Appendix [C|for a detailed proof of the regret lower bound. Similar observations have been made in
related problems (Bernasconi et al., 2022 |Cacciamani et al.} 2023b).

4.2 ALGORITHM DESIGN AND THEORETICAL GUARANTEE

To illustrate the tightness of the lower bound result in Theorem with a = 2/3, wherein both
regret and constraint violation exhibit an optimal asymptotic growth of (’)(TQ/ 3), we propose an
explore-then-commit type algorithm.
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To resolve the challenge we mentioned in Section[d] exploration of the unknown reward functions of
the principal and agents is needed. The most ideal exploration method is an algorithm that achieves
O(\/T ) regret, such as the optimism principle (Auer et al., [2002). However, the absence of trajec-
tories or reward information under (7, ¢ o v/) poses a technical challenge for us. Specifically, We
are unable to handle the expected estimation error of r} under policy 7 and ¢’ o v in the constraint
violation analysis. Therefore, we take a step back and aim to uniformly explore the reward function
at all points. Consequently, we propose an explore-then-commit method, as illustrated in Algorithm
Initially, we conduct reward-free exploration (Wang et al., 2020; Jin et al., 2020a; [Kong et al.,
2023) to collect data D (line E]) Then we use data D to estimate the unknown parameters and solve
the bilevel optimization to compute the policy (line B{I0), which we commit to (line [TTHT3). We
refer to these three phases as the exploration, planning, and commitment phases.

Algorithm 1 Algorithm for bandit feedback
1: Input: Failure probability §
cfort=1,2,--- , K do
: Run reward-free exploration algorithm to collect data D

2
3:
4: end for _

5: Quy1(c,y )« 0and Vyi1(-) =0

6: forh=H,H—1,--- ,1do

7 Update principal’s Q—function @), and agents’ r—function{f};}ie[ 1

8: Solve optimization problem defined in Equation (@) to get policy 7, 7y,
9: Vu() =(Qn,Yn @ 7Tn @ Up)(+)

10: end for

11: fort=K+1,K+2,--- ,Tdo

12: Exploit policy {7p, Un }ne[m]

13: end for

Exploration phase As the external parameter wy, is independently sampled from the prior distribu-
tion 15, we can simply estimate it by empirical distribution:

wz(w) _ ﬁ Zi:i ]l{w;:w} k>1

Q! k=1

The core idea of the exploration phase using the reward-free exploration method is to use the uncer-

tainty function as the reward function. In a simple tabular setting, The uncertainty function at (s, a)

is inversely related to the square root of the number of times the state-action pair has been visited.

Thus, we collect data from underexplored state-action pairs. Consequently, after reward-free explo-

ration, we obtain an estimated agents’ reward 7 and the principal’s estimated Q-fucntion Qn. And

there exist two uncertainty function 75,, T, : S x @ x A x B — R, such that 0 < 7 —ri < 7

and 'y, < 6, = Ry, + PthJrl — Qh < 0 for any (s,w,a,b) € S x @ x A x B. This uncertainty
function depicts the estimation error for agents and principal.

3)

The difference from standard reward-free exploration is that we need to handle the external pa-
rameters by taking the expectation of the external parameter using empirical distribution during the
greedy step. The detailed reward-free algorithm is shown in Appendix [A.T]

Planning phase In the planning phase, we use the superscript tilde to denote estimated quantities.
We leverage optimism principal |Auer et al.| (2002)) in the estimation of principal’s (Q—function and
agents’ r—function, e.g. UCB-VI (Azar et al.| [2017) in the tabular case, LSVI (Jin et al.| |2020b)
in the linear case. To upper bound the term E™ *" [(Qp, ¢, ® 75 @ vf — 4y, @ 71 @ 7p) (s1,)] in
the principal’s regret, we need the optimal policy defined in Equation (Z) to satisfy the estimated
constraint set. Thus, we cannot directly plug in all the estimated quantities into the BCE constraint;
instead, we relax the constraint set by adding an error term. Specifically, at each step h, we solve:
max <Qhu'¢}h®7rh®Vh>(5)

(7h,vn)
st <f§u1/~)h ® Th X (‘P;L oVp — Vh)> (S) S <Th7¢~)h & Th @ 807}41 © Vh>(5) + 4CW|Q‘1/2/\/[?a

Vi € @' ic[I],s €S,
4
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where ¢, = /In(12H/J). We plug in the estimated terms (denoted by superscript tilde) into the
constraint and introduce an error term to relax the constraint set, then solve the optimization problem.
Here the term (7, vy, ® 7, @ ¢}, o vp,) arises from the statistical error of r}, and 4¢,19)2 VK
originates from the statistical error of the prior ;. Then we verify that the constraint set defined in
Equation (@) is a relaxation of the true BCE constraint set.

Lemma 4.2 With probability at least 1 — 6/3, all policies that satisfy BCE Constraint (| (I) also fulfill
the relaxed constraint specified in Equation (H).

Thus, the optimal policy {7rh, uh}he[ H] lies within the constraint in Equation , ), which enables us

to upper bound the term E™ [(Qh, Up @ T QUi — ¢h ® Ty, ® Up)(sp)] in the principal’s regret
by 0. Meanwhile, Proposition [B.T] states the non-emptiness of the true BCE constraint set, which
guarantees the optimization problem defined in Equation (@) is solvable. Finally, we can ensure that
the expectation of error term on the right-hand side can be controlled through the exploration phase.

Subsequently, we utilize the policy {7, 75, } he[#] determined in the planning stage for the remainder
of the online learning process, then we have the following guarantee.

Lemma 4.3 (Informal) With high probability, we have
SubOpt™” (3;) + CVA™7(3))

<= 3 TaGnGnodnbn) + D BT (7 tn @ on @ (5 + @ 0 ) (s0) | + O(HIQY2/VE),
he[H] he[H]

where {5p,, Op, ap, Eh}he[H] is the trajectory generated by policy (7, D).

This lemma informally demonstrates that the suboptimality and constraint violation of the policy
(7, ) are bounded above by the estimation errors of the principal under (7, 7) and the the estimation
error of agents under (7, 77) and (7, %' o ©/). For ease of presentation, we use the context of Markov
Games with linear function approximation, as introduced in the work of Jin et al.[(2020b). It is noted
that (i) the tabular case is a special case of Markov games with linear function approximation; (ii)
the framework does not depend on linear structure, it can go beyond the linear case, e.g., general
function approximation (Zhang et al., 2023) by replacing d to Eluder dimension(Jin et al., 2021).

Markov game with linear function approximation There exists a known mapping ¢ : S X
Q x A x B — R% so that principal’s reward R, = (¢(s,w, a,b), Oy), i-th agent’s reward r} =
(p(s,w, a,b),0?), transition kernel Py (+|s,w, a,b) = (¢(s, w,a,b),uh(~)>, where parameters O}, €
R9, 9! € R? are unknown , and pp,(-) = (,ugll), ,u(Q), , ,ul(ld)) are unknown measures over S.
Without loss of generality, we assume that ||¢(s,w, a,b)|| < 1,V(s,w,a,b) € S x Q x A x B, and
{1Oul 116211 lin ()]} < Vd, Vs € S. If we let d = |S||||.A||B], each coordinate can be indexed
by pair (s,w, a,b), and mapping ¢(s,w,a,b) = 1(5, q,p) be the canonical basis in R4, Markov
games with linear function approximation framework recovers tabular Markov games model. The
complete version of this algorithm is outlined in Appendix[A.2]

Regret and constraint violation upper bound Based on Lemma Lemma [D.2] and Lemma
we can establish the following result that upper bounds the regret and constraint violation.

Theorem 4.4 (Analysis of Algorithm([I) The explore-then-commit algorithm has the following
guarantee, with probability at least 1 — 0:

3 (SubOpt”t"’t (sh) + cv#tv“(sg)) - o( HOd|0) T) .

te(T)
Theorem indicates the tightness of the lower bound result with & = 2/3, where the growth of
@(TQ/ 3), as stated in Theorem is indeed attainable and optimal in 7. The terms d® and HS
within the square root are typically encountered in standard reward-free algorithms, which require
collecting O(H®d? /2) trajectories to achieve an e-optimal policy. The term |Q| arises from esti-
mating the prior v}, through empirical observation, reflecting the convergence rate of the empirical
distribution. Here we use linear function approximation to handle infinite state space. In the tabular
case, using the UCB-VTI algorithm (Azar et al.,2017), the other factors can also achieve optimality.
The proof of Theorem [4.4]is available in Appendix
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5 INCENTIVE AND INFORMATION DESIGN WITH ADDITIONAL FEEDBACK

When facing the inherent challenge of DIID as discussed in Section{.1] a natural question arises:

Can the principal do better than @(TQ/ 3) if given access to additional feedback from agents?

We answer this question affirmatively in this section, by proposing an algorithm that simultaneously
attains O(+/T') regret and constraint violation.

Data collection protocol We consider a special feedback structure where, at each step, ¢-th agent
reports not only the reward r} that it actually receives but also the action b! that optimizes its self-
interests after receiying bt . Additionally, agents report the reward 7 (sp,,wh, ap, b, b, "), where
agent ¢ alone takes b;, and others follow the recommended actions.

Gathering extra feedback from agents is a prevalent practice across diverse application settings.
Beyond assessing the actions we suggest, we also engage in user research and obtain feedback from
platform users. For example, an e-commerce platform (Li et al., 2023)) recommends sellers the type
of commodity based on various factors, such as market demand and trends. However, given that
sellers prioritize their income, the platform recommends commodity types and conducts surveys to
understand sellers’ preferences and expectations regarding rewards.

Algorithm design utilizing additional feedback We use the superscript ¢ to denote estimated quan-
tities. Note that additional feedback allows the use of the optimism principle (Auer et al., [2002)
for exploration, where we add a bonus term to encourage exploration while estimating the princi-
pal’s Q-function and agents’ rewards. Thanks to additional feedback, we are able to bound the term

ot ot H A, xt ot H 76t 11,

E™ [Zh:1<7—}tu¢h®7rfl®g0htolfﬁ>] by E™ ¥ [ 35—, o(sh, wh, ab, bht’ b, t)”(A;;;t)_l],where
{s},,w},, aj,, b}, b} }r.era denotes the trajectory generated by policy (", v*). Leveraging additional
feedback, we are able to bound it using the elliptical potential lemma (Abbasi- Yadkori et al.,[2012).

We maintain the update of the principal’s Q—function as in Algorithm [I] but leverage all the addi-
tional feedback for the estimation of the agent’s reward function. Thus, we obtain a better uncer-
tainty quantifier 7/, for each ¢ € [T'], which enables us to solve the optimization problem:

max <Q§1, VM ® Vh> (s)

(7hVh)
st (i vk @ @ (o) 0 v — ) ) (5) < (7, 0 @ @ i 0 1 )(s) + el V2V,

Vi, € @i [Il,seS

4)
to get policy pair (7}, v}). As in Equation @) the constraint set is relaxed using the confidence
bound of the unknown parameters, except that now we have a better uncertainty quantifier, thanks
to the additional feedback. Similarly, we can conclude that with high probability, the optimal pol-
icy (m*,v*) lies within the constraint in Equation , which enables us to upper bound the term
E™ V' [(Q4, 4 @ mf @ vf — ¢ @ wh @ 1) (sp,)] in the principal’s regret. Then we exploit policy
(wt, vt) to get new data. Remarkably, as we are solving linear programming to find the optimal
solution, it is straightforward to confirm that the algorithm is efficient. The formal depiction of the
algorithm is given in Algorithm[2](See Appendix [A.3] full version in Appendix [A.4).

Regret and constraint violation upper bound In summary, we have the following bound within
framework of Markov games with linear function approximation for additional feedback scenarios.

Theorem 5.1 (Analysis of Algorithm[2) The algorithm for additional feedback setting has the fol-
lowing guarantee, with probability at least 1 — §:

S~ (Sub0pt™ " (s1) + OV (1)) = O (VHIEIQ] - VT)

te[T
The inclusion of t[er]ms H* and d® within the square root is a standard feature in linear MDPs.
The term |Q)| arises from estimating the prior v, through empirical observation. Here, we address
this problem within the Markov game with linear function approximation framework. However,
extending the solution to the more general function approximation framework (Zhang et al., [2023)
is practical. The detailed proof can be found in Appendix[H

10
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A OMIITED DESCRIPTIONS AND ALGORITHMS

A.1 SUB-ALGORITHM FOR REWARD-FREE EXPLORATION

Sub-Algorithm A.1 Reward-Free Exploration

12 Q¥ ()« 0and U (1) =0
2: forh=H,H—1,---,1do
k—1 T T T KT T T T KT

3 Ap 3272 d(sh,wh, af, bR)d(sh. wi, af, 07) T + AL
4 ¥ is defined in Equation

50w« min{B-/¢T (A}) 16, H}

6: Define the exploration-driven reward function 2} + %u’,ﬁ

7 Fe (AP or - UL (57, 1), where 6, is abbreviation of ¢(s,w], af, bf)
8 Qi emin{[(Lﬁ)T¢+zl,j+uﬂ ,H}

9: Up(s) = max(qpeaxs(QF, ¥F)als, a,b), and (a,b) denotes the maximizers
10 mh(als) = Liazay, Vi (bls,a,w) = 1o _py
11: end for
12: Using policy 7%, v* to explore the environment and get a new trajectory

A.2 THE FULL VERSION OF ALGORITHM[I]

Algorithm A.2 Algorithm for Bandit Feedback (The Full version of Algorithm [T}

1: Input: Failure probability ¢ > 0, § = cgdH +/log(dK/d) and v = ¢,+/dlog(K/9)
2: fort=1,2,--- , K do

3: Run reward-free exploration algorithm (see Sub-Algorithm [A.T))
4: end for ~

5: Qu41(7,+-) <= 0and Vg (1) =0

6: forh=H,H—1,---,1do

7 An Zﬁ; ¢<5;,w;, a;, bF) (s, wi, a7, b7) T + A

8: up < 3 -

9: Up Y \/d)T Ah

10: d)h( ): K ZT 1 W) =w B

11: nh < (Ah) Zq— 1 ¢h (R;L(s;,wg,a;,b;) + Vh-i-l (8;+1))
12: Qh( 5T Ty ) <_Inln{[(nh) ¢)+uh] ('a'a'a')aH}

13: forz =1,2,---

14: ( h) ZT 1 (b rﬁ(sﬁ,w}{,a%bﬁ)

1s: rh(~, o) = mind [(G3) 76 + vn] (,-),1)

16: end for

17: For any s € S, solving the problem defined in Equation (4) to obtain 7y, Iy,
18: V() = (Qn, vn @ mp @ vp)(0)

19: end for

20: fort=K+1,K+2,---,Tdo

21: Exploit policy { (7, vn) }ne[a

22: end for
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A.3 ALGORITHM FOR ADDITIONAL FEEDBACK

Algorithm 2 Algorithm for additional feedback

1: Input: Failure probability §
2: fort=1,2,---T do

3 Qﬁ'{—i-l('a'a'a') <+ 0Oand VIS—H() =0
4: forh=H H-—1,---,1do
5: 1}, is defined in Equation
6: Update principal’s Q—function @}, and agents’ r—function{r;’t}ie[ 1]
7: Solve optimization problem defined in Equation (5)) to get policy 7}, v},
8: Vi () = (@ ¥, @, @ 1) ()
9: end for
10: Exploit policy {7}, v} }e[m) to get new data
11: end for

A.4 THE FULL VERSION OF ALGORITHM [2]

Algorithm A.4 Algorithm for Additional Feedback (The Full version of Algorithm

1: Input: Failure probability 6 > 0, 8 = cgdH +/log(dT'/d) and v = ¢,+/dlog(T'/d)
2: fort=1,2,---T do

3 I}-I—i-l('a'v'v') < Oand V;]-&-l() =0
4: forh=H H—-1,---,1do
-1 T T T T T T T T
5: A ST p(sh W af, b )@(sh,wh, af, b7) T 4 AT
6: uﬁl<—,8-\/¢>T(A§L)—1¢
7: 1} is defined in Equation
- -1 T T T T T T T T T
8: < (A~ th:1 o(sf,,wh,ap,0p) - (Ru(sh,wp, af, b)) + Vi 1 (s744))
9: Z('»'?'?') :mln{[(nZ)Td)—’_UZ] ('a'a'a')aH}
10: fori=1,2,---,1do ' 4 4 }
11: A= N+ S5 sy, wr, a, b, by Yo (sh, wi, ag, b7 by T T
12: U;’L’t —- \/(;ST(AZ—FAZ’t)—l(ﬁ
13: Ot = (AL + A1 ( T oy r}f)
14 T;:L,t(,, e ) — min{ [(G;Lf)de + Uﬂ (.7 - .)’ 1}
15: end for
16: For any s € S, solving the problem defined in Equation (5) to obtain 7}, v/},
17: Vi () =(Qy,, vy, @ m, @ v,) ()
18: end for
19: end for
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B OMITTED PROOFS FOR PROPOSITION

B.1 EXISTENCE OF BCE CONSTRAINT

Proposition B.1 [f the space B is (i) finite or (ii) infinite with B! is a compact Hausdorff space and
1}, is continuous for any ix h € [I|x[H], there exists a policy pair (m, v) that satisfies Constraint .

Proof According to (Hart & Schmeidler, |1989), for any s;, € S,a, € A,w, € Q,h € [H], and
i € [I] there exist a Correlated Equilibrium vy, (+|sp,, wp, ap) over B. Thus

(75, (81, Why ans ), 05 © Vh (|50, Why an) — vi(-[sn, wh, an))z < 0,V € ®°.
which indicate for any policy 7 and prior ,, we have:
<r};(sh, o)y Un () @ R sh) ® (apﬁl o VR (*|Shy s 1) — Vn(“|Sh, - -))>QXA><B < 0,V<p’ﬁ € ' ixh e [I]x[H].

So there exists policy pair 7, v that satisfies BCE constraint. |

B.2 CONSISTENCY OF PERFORMANCE METRIC

Proposition B.2 (Consistency of Performance Metric) SubOpt™"(s;) = CV™"(s1) = 0 if and
only if m, v is optimal policy defined in Equation (Z2).

Proof We can observe that CV™ = 0 implies that for any i € [I], we also have CV*™" = 0.
Therefore, for any state s, with a positive visitation measure with respect to 7 and v, we have

(rh(sn),vn @ @ (@}, 0 vp — Vh)>QxAxB (sn) < 0,Yy) € @

We can note that for any @}'L € &, and any a € A with 7 (a|sp) > 0 in the definition, we could let
ot = @t ifa = a,and ¢} = Iif a # a, where I o v = v (no deviation). Thus, we can see that
<r2, Yy ® ((,52 ovp — I/h) >QX5 (sn,a) < 0. We conclude the proof by the arbitrariness of cﬁﬁl and
a. When combined with SubOpt™" = 0, it implies that 7 and v constitute an optimal policy. The
reverse direction is straightforward. ]

C PROOF OF THEOREM 4.1 LOWER BOUND

Proof Our proof borrows some idea from |Cacciamani et al.| (2023b)). Consider the following in-
stances, denoted X and Y. Instances X and Y are nearly identical, differing only in the rewards
{r'}icir) and R. They share the following settings:

I=2,|8=1,9={w,w'},|A =1,B1 = {a1, a2}, By = {b1, b2}

where | - | denote the cardinality of a set. Since there are only two agents, we refer it to them as
Agent-a and Agent-b, with their actions denoted as subscripts 1 and 2, respectively. The external
parameter w; take two values w, and w’, with probabilities ¥ (w) = (1 +¢)/2,¢¥ (') = (1 —¢)/2.
The agents’ and principal’s reward function is identical in different external parameters. When the
action profile is (a;, b;), where ¢,j = 1,2, the reward is a random variable following a Bernoulli
distribution with an expectation in the following Table.

Table 2: Pair of hard instances X (left) and Y (right)

ri,re, R by be ri,re, R by be
a1 17171 07 1+E7O ai 17l71 Oa 17570

i 17 1 12
az 17571 07%70 a2 17571 0)%670
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E.g. in instance X (left), when the action profile is (a1, b2), no matter what external parameter is,
Agent-a and principal will get 0, Agent-b will get 7o ~ Ber (15£). It is noted that the optimal
actions in instance X are (a1, bz) and (ag, b2). In this case, agents do not have incentive to deviate
from the recommended action, and the optimal value that principal can get is 0. However, in instance
Y, the optimal actions are (a1, b1) or (a2, b1) and the principal’s optimal reward is 1.

We denote the ¢-th policy v*(a;, bj|wy) as ij’t, i, 7,k € {1,2}. In t-th episode, we have the subop-
timality in instance Y is:
1+¢ 1—¢
SubOpty =1 - (2(vif +ual) + (i + vif)) ,

where 1 is the principal’s optimal reward, and the the term in bracket is the expected reward of
following this policy. Meanwhile, the constraint violation in instance X for Agent-b (Agent-a’s
constraint violation is always 0) is:

1 1—
Cvt — (( +€)(V%it§+l/211t§)+< E)(Vfit'g'i_ygit'g))

2 2 2 2 2 2
Then, we consider the regret of principal in instance Y after 7" episodes:

1+¢ 1—=¢
S T 1, 1, 2, 2,
Ry = V@ =V =T — E [2 (1 + i) + 5 iy + V21t)]
te[T]

Lte qe, 14y, L—€, 904 oy
= Z { 9 (Vs +15) + B (s +va3)]
te(T]
For any algorithm <7, number K there exists § such that Py (RL < K) > 1 — § . Here, Py

denotes the probability measure over the Canonical Bandit Model (Lattimore & Szepesvari, [2020)
in instance Y, which is determined by algorithm and model. By Pinker’s inequality:

1
Px(Ry < K) > Py (Ry < K) -/ SKL(Py||Px)

> 15— | SKL(EY|[Ex).

By divergence decomposition (Lattimore & Szepesvari, 2020) we have:

KL(Py|[Px) = ) KL (Ber (1 erg> [ Ber (1;8»

te[T]

1—-¢ 1+e¢
Ey (3) + —— By (13) + —

1—¢
Ey () + ——Ey (133)

2 2

Note the definition of KL divergence:

1+¢ 1—¢ 1+¢ 14 1-—c¢ 1+¢
KL (Ber (—=<)||B - 1 - 1
<er( 2 )H er( 2 )> 2 1o T2 ®1—c

+e€

{1—1—5

< 4e2.

1
=el
elog 5

Then, by reverse Markov inequality, we have:

1 1-—
By | 2. (;%g +vgg) + 0 + v;?;))
te[T)
<(T-K)Py(Rf >K)+ K
<(T-K)5+K.

Combine the above two inequalities, we have:

14+ 1—
Px | (25(1/1? i)+ i+ 1/22ét)> >K|>1-6-e/2(T-K)s 1 2K.
te[T)

16



Under review as a conference paper at ICLR 2025

Thus, we consider the constraint violation of instance X:

OV = | 2 (A +awl +ui) + (1 - wh +13))
Lte(T]
== |or = 3 (O e)wls ) + (- 0 + )
L te(T)
1

with probability at least 1 — § — /2(T — K)§ + 2K.

Let K = O(T®) and ¢ = O(T—/?). For any algorithm <7, if Rl = O(T®) (otherwise the
theorem is proved), then CV;F( = QT 2) with high probability. Thus, we have proved that

for any algorithm, there exist ¢ such that with probability 1 — 4, either Reg(T) = Q(T%) or
CV(T) = Q(T'~*/?),1i.e., we completed the proof. [ |

D PROOF OF REWARD-FREE GUARANTEE

In this section, we provide some theoretical guarantees for the reward-free stage as preparation for
the proof of Theorem 4.4]in the next section.

Lemma D.1 (Convergence rate of prior estimator) With probability at least 1 — §/6, let ¢, =

\/m, we have:
TV (3, ¢n) < cw\/@, Vk € [K].

Proof For k = 1, it is trivial that:

D.1 PROOF oF LEMMA D11

TV(h ) = 0k — il < & 3 k) — vl < 1

weN

When &k > 1, according to (Qian et al., |2020), for any ¢ € [0, 1], we have:
2|Q|In(2/6
P (IW!?“ = 'k”)) <s.

We take union bound for h € [H], thus, with probability at least 1 — 4 /6, we have:

1 /2|Q|In(12H/S Q
TV(¢y, ¢n) < By % < cw\/?,Vh € [H]

where ¢, = \/In(12H/§), and for any k € [K] the above inequality holds. |

To show the guarantee in the reward-free exploration, we define the V-function associated with
the policy 7, v regarding the exploration-driven reward function z* in the k-th episode (line E] in
Appendix as U (s1; 2%). Moreover, let

U; (s1;2%) = max U (s1; 2%).
%

where the maximum is taken over all policies 7 and v without any constraint. We also denote the
maximizer as (7T, »T). With this notation, we have the following guarantee:

17
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Lemma D.2 (Exploration Phase Guarantee) With probability at least 1 — §/2, the exploration
phase in Algorithmsatisﬁes forany k € [K]

2H2c,, ||z
Ut (s1;2%) < Uk(sy) + 2 ClT2
T (s1;27) (s1) N
and
K
Z (s¥: 2F) < ey /HAB|Q|K log(dK /).
k=1

for some constant cy, c,,, where UF is defined in Appendix (line @)

D.2 PROOF OF LEMMA [D.2]

Proof In algorithm L if we denote (bTLh = PU ,’f 1 the error of ridge regression in each step is
given by:
’(bTLIfL - PhUi]erl‘

k—1

T ak\ L ~k

Ah) Z¢;¢;Lh_
=1

k—1
—1
<|o" (AR) Y 6k (Uky (shaa) — PuUfyy (sh.whah, b)) | +

=1
k—1

<l (Ak) Zd)h Uh+1 (3h+1) —PhU}]fH (8hsWh» }TL)) +/\||¢H(A§)*1||ZZ”(A§)’1
=1 (1)

and we note that:

[y = a8 2] < a2

&n +/SU,’§+1(-)duh(~)H < % - 2HVd.

Then we restate Lemma B.3 in (Jin et al.| [2020b):

Lemma D.3 Forany k € [K] and U} , A} defined in Sub—Algorithm we have:

k—1
< cdH+/log(dK/6)

> &5 (UF 1 (shy1) — PuUfk (s, wi, 0, 7))
(Af)—1

hold with probability at least 1 — 0 /6 for some constant ¢

Under the event in Lemma and recall the definition of 8 = cgdH /log(dK /d) for some cg, we
have:

072k = PaUE | < (2HVAD + cdH/1og (AK/0) ) 161l )+ < 8- 19l )
If we define 5,’3 = z,’f + P;LU}'fJr1 - Qﬁ, we can get:
Op = 2f + PuUF . — (o7 + 2f +uf)

=—uf + (PUF L — 0 f).

Recall that uf = 3 - ||| (AF) " then eventually we have:
—25- ||¢||(A;i)*1 <o <.

Followed by the decomposition in (Wu et al.,[2022), we have:
Ut (s1,2") = Uf(s1)
= Z g¥m {(Qh,¢h®ﬁh®vh YR @k @ vk (sh } Z EYm v 5h (Sh,wh, an, bn)]

he[H] he(H]
Tt
Z E¥:m" v |:<Qh7wh®7rh®yh Q/Jh ®7rh®uh Sh } Z E¢ﬂ (5h sh,wh,ah,bh)}
he[H] helH]
TFTAVT
+ > B LQh (n — vk @ @ vf) ().
helH]

18



Under review as a conference paper at ICLR 2025

Since the 77", v¥ is optimal policy with respect to Q¥, so the first term less than 0. Under the event
2H?c, Q|3

in Lemma we can upper bound the third term byT. And under the event in Lemma
we know that 6’,2 < 0. Combine the above three inequalities, we have:

. 2H2c, |02
Ut (s1,24) = U (on) < 25220
which completes the first part of the proof. For the second part, suppose we define:
glli = PhU}Ierl (SZ>WII370J27 bi) - Ui]:Jrl (SﬁJrl) )
where (sF,wk af bk) is the trajectory generated by exploration phase in Algorithm [1| in k-th
episode. Then we note that:

Ur (sf) =2 +uf + ¢ if

1 .
(2 ) 8- Wlagy - + PV (oo th)

IN

1
= Ul (Shyr) + &5+ (2 + ) ||¢5h||(Ak)

Recursively use this formula, we have:

H
Uf (1) = D [Uk (sh) = Uz (shs)]

h=1
H . H 1 i

= e+ 32 (24 ) 8- 1okl
=1 h=1

So the sum:
S0t ) <303 ek (245 433 Il

k=1h=1 k=1h=1

Define the ﬁltratlon ]-' ¥ as the o-algebra generated by data in the exploration phase in Algorithm E]

up to and including step & in the k-th episode. Then we note that E(£F|FF) = 0 and |€F| < 2H, by
Azuma-Hoeffding inequality, with probability atleast 1 — §/6 we have:

Z Z &F < /2K H?10g(6/9).

k=1h=1
Then by elliptical potential lemma in (Abbasi-Yadkori et al.,|2012), we have:

K _ det AKJrl
> (oh) " (AF) " ok <2108 lw

k=1

Moreover, note that ||[Af 1| = HZ;; ok (o8) " + )\IH < X + K, by the Cauchy-Schwartz
inequality, we have:

1/2
ZZ \/ (6h)" (A)" ok < Zf (Z (oh)" (A’Z)lsbi) < H\/2dKlog (AJ;K)

k=1h=1

Combine all the above mequahtles w1th probability at least 1 — §/2:

K
zyl s12%) < SO Uk z”f Cw'“'?
k=1

< c\/H4d3Klog(dK/6) + 4H2cw|m%\/ﬁ
< e1/HA*d3|Q|K log(dK /)

for some constant ¢;. Now we have completed the proof. |
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E PROOF FOR THE THEOREM [4.4: EXPLORE-THEN-COMMIT BOUND
In this section, we first present the proof of Lemma [4.2] Next, we prove the formal version of

Lemma [4.3] which provides the decomposition of suboptimality and constraint violation. Finally,
we present the proof of our main theorem.

E.1 PROOF OF LEMMA (1.2

Proof With a probability of at least 1 — ¢ /3 (given the event from Lemma , for any policy pair
(m,v) satisfying the BCE Constraint and for any s € S, we have:

(o n @m0 @ (8} 00— ) ) (5)
< <7“2 + Thy P @ Th ® @Y © Vh> (s) — <7“Z,1;h ® T ® Vh> (s)

< <Tha1[}h ® Th ® &}, 0Vh> (5) + (i, n @ Th @ (@) 0 v — 1)) (8) + ATV (¢, ¥n)

= (T, T ovp ) (s _—
hs Vh h & Pp O Vh Nice
In the first inequality, we use the fact that <T§L, Py R T R (@}L oy — z/h)> (s) =0foralls € S
according to the definition of the BCE constraint. |

E.2 FORMAL VERSION OF LEMMA [4.3]

Lemma E.1 With probability at least 1 — 6, we have

SubOpt“ V( )+ CV Z ReLU (]Eﬂ— v [5h(sh,wh,ah7bh)]> + ReLU | — Z 6h(§h;wh7&h7l~)h)
he[H] helH]
o - NP~ H2|Q|%
+ ZE7 Thawh®77h®l/h ZE Th7¢h®77h®80hth>( )]+O( \/R )7
he[H] he[H]

where {3y, O, an, Bh}he[H] is the trajectory generated by policy (7, D).
Proof We first note the constraint violation in each step:
(ri, ¥n @ 7n @ @), 0 ) (sn) — (Thy ¥n ® T @ T ) (sn)
< (Fhy Un © 0 ® 0 91 ) (51) = (Fh = 7,9 © i © Tn) (n) + 2TV (¥, o)
12¢,|Q| 2
VK

where ! is the maximum constraint violation with respect to (7, 7). Then by this result, it can be
derived that:

H
CVI™ (51) i= S EF [(rh o @ 7, ® (6 0 7 — 1)) (5)]
h=1

< {Th, U @ Tn @ @), 0 D) (s) + (Th, Yh @ T ® ) (sn) +

H

<SE |7 (o @ 7, @ ) (0)
h=1

Z(Th7¢h®ﬂh®sﬁh01/h> sh TR

. lH ] 12¢, H|Q|?
+E +
h=1
Next, we focus on regret decomposition. Following Lemma 6.1 in (Wu et al., [2022), we have:
H
VT (s) =V (s) = Y BT [ Qnyn @ Th Q@ v — hy @ T ® Dhﬁ +) (G + )

he[H] h=1

" H
+ > B [Gn(sh,wn, an, bp)] + D <Qh, Un — Pn) @ Fp, @ Vh> =D On(5ns@ns s bn),
h=1

he[H]
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where 0, = R, + th/hﬂ — @y, and we denote {8, @n, an, Bh}he[H] as a trajectory generated by
policy (7, 7) in Algorithm i}

G = (@h, Uy @ T, @ Up) — V;f’ﬁ) (3n) — (Qn — Q") (3n, @, an, by)
C}% = P}L(‘N/h - V}fJfl)(g}L7@/L7dh7 Bh) - (‘N/h-‘rl - V}?D)(gh-l-l)'

Similar to filtration defined in (Cai et al| 2020), we define F},; is the o-algebra generated
by {§i7@i,di75i}i€[h] and Fp o is the o-algebra generated by: {%@mflmgi}ie[h] U {8n+1}-
Thus: ¢{,¢2, -, L¢Py, Chy, €3 is martingale difference sequence with respect to filtration:
Fia, Fios- - s FnasFn2, -, Fr1, FH,2 since it is easy to verify that CZ € Fp,j, forj =1,2
and E [(}|Fn—1,2] = E [(}|Fn,1] = 0. Then by the Azuma-Hoeffding inequality:

H

S+ ¢ < V/8H310g(6/9)

h=1

hold with probability at least 1 — 6 /6. Note that, according to Lemma 4.2 and Lemma D. 1}

H
Z@m%@ﬁ@%—%@%h@m
h=1
H ) v
=3 Qn @ T @V~ @ T @ T) + D (Qny ($n — ) © 7], @ 1)
h=1 h=1
L2HCe, |0
=K
And by Lemma [D.T] we have:
H 1
wr 2H2c, |0
) - QTR Q) < —————.
;@h (Vn — Vi) @ T @ Up) Ni

Note that for any a,b € R, ReLU(a + b) < ReLU(a) + ReLU(b), we completed the proof. [ |

E.3 PROOF OF THEOREM 4.4

Proof Leveraging Lemmal[E.I] we need to provide a bound on dj, and show the specific form of 7.
Firstly, we show that 7, = 27 - ||¢]| At is an uncertainty function, i.e., it satisfies 0 < 7} — r! <

27y - |9 Azt We recall that we get 9~}L by ridge regression on dataset D, thus:

670, — 00,

k
=l A D oh -0 0
T=1

k k
<|6TAT S0 en (v = (00) 00 )|+ [oTAT D en (07T ) - 076
=1 =1
k
<ol [ [Son (=t 6) | +116ill,
T=1 A;l
Note that: ) ) )
16 11,-+ < |[An 203]| < |52 ]| - leal < 5V
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< 2, according to (Abbasi-Yadkori et al., 2012), with probability at least

36 det |Ah‘
< el el 1}
e 2\/ ox ()
Ah
36(\ + K)

| — )T
1—46/4:

S (7.~ ()" 6,)
T=1

Thus, with the probability at least 1 — §/6:

'O, — o0

< ¢yV/dlog(K/5) - ||¢HA;1
for some constant c.,. Recall the definition of v = ¢, /dlog(K/J), we have:
0< 7 —rh=0"0, — ¢ 0 +vn <2y ]l
Then following the proof in Lemma[D.2} we also have:
28 8]l < 8 < 0.

Now, let us tackle with the term in Lemma Itis easy to see AY < Ay, thus |- ||(A;§)_1 > || ||A;1.
Using this property, we have

M=

E™” <27' ||¢‘|Aglawh®7}h®ﬁh> (Sh)
h=1
1 & L [H
— 74 ZETF,V [Z <2’Y . ||¢HA;171/)IL ® Th & ﬁh> (sh)‘|
k=1 h=1
1 & L [&E
< K ZEW?V [Z <27 Nl ary-1, %0 ® Th @ ﬁh> (sh)l .
k=1 h=1

Given our consideration of %HqﬁH( Aky-1 as the reward function, along with Lemma with a
probability of at least 1 — 4/2, we have

1 &
x5

H
Zwammﬁuw®m®%y%ﬂ

k=1 h=1
K
1 2vH 7,0
=% 5 2 UT (suish)
k=1
K
2vH 1 .
~ T?ZUl (51,2’ )
k=1
< 25 PO Tog(K/) - ——.
T ¢ \/?
Then note that the visitation measure JZ Phov generated by policy (71, 71, , Th—1, Uh—1, Th, @Z o
Up,- - ,TH, Vg ) have the property that: JZ’ﬁ(sh) = dT;L’“‘S;L°5(s;L),V5h € 8, h € [H]. Thus for any
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h € [H], we have:
E™? [<27 NDlla-rs on @ 7n @ @h, 0 5h> (Sh)}

K

1 2vH 5|/ B R -
Sf 3 ;E [<H|¢”(Alﬁ)17¢h®77h®<,0h01/h>(5h)]
1 2vH K 5 3 o B )
X5 2| 2 ) <H|¢’|'<Af>1’¢h®ﬁh®%ovh> (sh)]
k=1 Ls, €S v
K
1 2vH = 5 o
< —=— U #m% (815 2%).
- K 8 kz::l 1 ( 1 )

In the last inequality, we magnify the expected error E™” [<2'y - | o] (AF)~ 1 v, @ T @ Ght o Dh> (sh)} ,
h

to the expectation U, ¥"*”(s1; 2¥), which is the summation of all H steps. Then, we have:

H
7,0 ~ A~ CyC1 1
E™ Lz::l <27 NSlla-r dn @ 7n @ @, © Vh> (Sh)] < gjﬁ\/HGdQ\QI log(K/4) - Nie
We note that according to Lemma with probability at least 1 — §/2:
H . H B
= Su(ns Dns iy b) <Y 28/H(5hs @ns s b1
h=1 h=1 '
K H
2H ﬂ - .3
<% Z > 77 16(5n, @n, an, o)l ag) -1
k=1h=1
K
2H
<% > Ut (51;2Y)
k=1
1
< 2¢1v/HSd3|Q|log(dK/0) - —.
= 1 \/ | | g( / ) \/}?
Thus, we have proved that with probability at least 1 — §, we have:
. Co 1
SubOpt™" cvemr < ch/HOd3|Q|log(dK/d) - ——=
ubOpt™ (s1) + max (51) < ¢/ HOd?|Q log(dk /5) TR
for some constant ¢4. Thus the regret and constraint violation in Algorithm is:
5 [sub0pi" () + V)
te[T]
T
Z [subopt st) +cvT } 3 [subOpt )+ OV (s )]
t=1 t=K+1
<K -4H + (T — K) - cy/HSd3|Q|log(dK /5
\F
Let K = T3. Then, with probability at least 1 — J, we have:
3 {SubOpt”t’”t(si) +CV““””(S§)} < co\/HSd3Q[log(dT/3) - T3
te[T]
for some constant co. Equivalently, we have proved:
3y [subopt”“”"(sg) n cw““t(si)} =0 (\/H6d3|Q\ .T%)
te[T]
with probability at least 1 — 4. |

23



Under review as a conference paper at ICLR 2025

F PROOF OF THEOREM[5.1l: ADDITIONAL FEEDBACK BOUND

Proof Firstly, we show that 7/ = 2v - ||| (At +Ai)—1 1S an uncertainty function. Similar to the
Y h h,
proof of Lemma [.4] we first tackle with the term in ridge regression. And we use the following

notation to describe the 7-th episode data in step h:
o, = O(sh,, wh, ap,, by)
T}LL)T =r} ((527 W G, b;))
O = d(swhoaf, b0,

AT T T T 16T p—%,T
TR =Th ((Shvwh’ahﬂbh by, ))

and the other variables are defined in Algorithm[2] Then we have:

(b—l—e;;l,t _ ¢T97},l
= ¢ (AL + AT (@ T T T — ¢ 6,
T=1
t—1 ) ] t—1 . N )
<|pT (A} + ALY ( ¢£~(r§f¢292)+Z¢2’“(f§f¢§;792)> +
T=1 T=1

Term i

o7 (AL + A" (qu; 7)

o <¢3§;T(¢32’T)T> i - o701,

Term ii

For the first term, we have:

o7 (AL + A" (Zabh
qu»;-
T=1

(ri7 = o705) + Z R G Qﬁl‘r@h)) |

§H¢||(A;L+A;jt)—1 7 — ¢h05) +Z¢’ (Ph" = 7 61)

£ ity —
(Af+ARH !

t—1
> o7

T=1

(T — on0h)

<lellag 4z

(AL +AL) 7!

t—1 » ) N ]
P ARG Y

=1

SH¢5||(Afh@.y_/x;;*)f1 G oh05)

(ARt

— o 0h)

(A +AL) 7!

(A1

where the first inequality is due to the Cauchy-Schwarz inequality and the second inequality arises
from the triangle inequality in the norm || - || 5+ | ysty—1. Then, the third inequality stems from
h h

AL <AL+ AZ’t and Afl’t <AL+ A%*, which implies:

||'H(A§L+AZ")*1 < ”'H(A;’L”’)*l andH'“(A%-{-A;’L"’)*l < ||‘H(A;;/)71

Then, through the self-normalization process in (Abbasi-Yadkori et al.| 2012) and the auxiliary

lemma in (Wu et al.| 2022), we obtain det(A}) < (X +

L) and det(AﬁL’t)
€ [I]. Thus, with probability at least 1 — §/6, we have:

< (A +

L4 for all

ThT - (b;; ;L) d);LT L)

()~ (A=

24

< 4\/dlog (T

+ Ad 6
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And for the second term:

¢T(Ah + A5 (Zm 1) +¢3§;T<a3§;T)T> 92¢Te;;|
< Nl g gy 27 163 g ey

< ||¢||(At AP~ 2)‘”92” (2AI)—

<||¢||(At A= 1V2Ad.

In conclusion, we have proved that:

T+ M\
< gy etog (55 10l engryr < M6l iy

for some constant ¢, and v = ¢, /dlog (T'/9), which also suggests that:
0<ry' —rh =0 6" + vl —&T0, <29 [1ll(ag aity-s

‘d)—l—e;‘t _ ¢T9;L

Then, applying Lemma [ET] we first show that the constraint violation in ¢-th episode, with proba-
bility at least 1 — §/3, we have:

H
B 1S (200l a0 00 @ 71 @ (vh + 95 0 vh) ) <sh)]
h=1
H H
t ot t ot pit g —it
= QW]E Z H(b Sl;uw;ua;mbi}i)||(1\§l+/\z’t)fl + 2’YE Z H(b(sl;ww;ma/;mbh abh )||(A§1+AZ”5)1‘|
h=1 h=1
H H
<S2HE Z 16 (shs why ag, 03| (AL)—? + 27E [Z [l Shvwmah’bzt,b lt)H(Alt ] ;
h=1 h=1

where {s}, w}, al, bZ}tx he[T]x[H] 18 the trajectory generated by Algorithm We have:

det(AT
273" S oot g 1<272f 2108 (i)

t=1 h=1
< 27H\/T\/2dlog (A‘”T).

Ad

Since Cauchy-Schwartz inequality and Elliptical potential in (Abbasi-Yadkori et al.,2012). Simi-
larly, we also have:

T H
St g —i Ad+T
2 D73 oo By Bl g1 < 27Hﬁ\/2dlog (*5):

t=1 h=1

where {s,,wh, ab, bl b, Yo he[T)x[H] is the trajectory generated by algorithmas well and b}*

is the additional feedback reported by 1-th agent in episode ¢. And for the last term, we have:

Z SHC“’M < 16Hc, VT,

Then the proof is identical to the proof in Lemma[D.2] we also have:
=28 - || ¢ll(at)-r <8, <0,Vt € [T).
And we note that:

T H T H
—2252(5%“27@2752) < ZZQBH(ZS Shvwhaahabt)” (A1

t=1 h=1 t=1 h=1

< QﬂH\/T\/2dlog(

A+ T
A )
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Thus, we have proved that with probability at least 1 — 26/3:

T
4H2¢, |0 T T
> AH el | 2BHVT [2dlog (ACH ) < 8H?c,|Q|Vt + 28HVT, | 2d1og <Ad+ >
—~ i V] V]
< Cylog(dK /6)\/H*d?|Q|T

for some constant C%. Thus, we have:

Z [SubOpt”t’”t (st) + v (s’i)} =0 (\/m \FT)

te[T]

with probability at least 1 — 0. n
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