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ABSTRACT

Bayesian optimization (BO) is a powerful framework to optimize black-box
expensive-to-evaluate functions via sequential interactions. In several important
problems (e.g. drug discovery, circuit design, neural architecture search, etc.),
though, such functions are defined over large combinatorial and unstructured
spaces. This makes existing BO algorithms not feasible due to the intractable
maximization of the acquisition function over these domains. To address this
issue, we propose GAMEOPT, a novel game-theoretical approach to combinatorial
BO. GAMEOPT establishes a cooperative game between the different optimization
variables, and selects points that are game equilibria of an upper confidence bound
acquisition function. These are stable configurations from which no variable has an
incentive to deviate – analog to local optima in continuous domains. Crucially, this
allows us to efficiently break down the complexity of the combinatorial domain
into individual decision sets, making GAMEOPT scalable to large combinatorial
spaces. We demonstrate the application of GAMEOPT to the challenging protein
design problem and validate its performance on four real-world protein datasets.
Each protein can take up to 20X possible configurations, where X is the length of a
protein, making standard BO methods infeasible. Instead, our approach iteratively
selects informative protein configurations and very quickly discovers highly active
protein variants compared to other baselines.

1 INTRODUCTION

Many scientific and engineering problems such as drug discovery (Negoescu et al., 2011), neural
architecture search (Kandasamy et al., 2018), or circuit design (Lyu et al., 2018) require optimization
of expensive-to-evaluate black-box functions over combinatorial unstructured spaces involving
binary, integer-valued, and categorical variables. As a concrete example, consider the protein
design problem, i.e., finding the optimal amino acid sequence to maximize the functional capacity
(fitness) of the protein. Such fitness functions are highly complex, one can, in most cases, only
be elucidated from real-world protein synthesis experiments. Moreover, exhaustive exploration is
infeasible for both traditional lab methods and computational techniques (Romero et al., 2013) due
to combinatorial explosion: a typical protein has 300 amino acid sites, each to be filled with one
of twenty natural amino acids, yielding 20300 candidate variants.

Bayesian optimization (BO) is an established framework for optimizing black-box functions with
the goal of minimizing the number of evaluations needed to certify optimality (Mockus, 1974). BO
constructs a probabilistic surrogate model as a representation of the underlying black-box function,
e.g., using Gaussian Processes (GPs) (Rasmussen et al., 2006). Then, it iteratively selects the next
evaluations typically by maximizing a designated acquisition function. The BO framework has
proven to be very powerful and successful in a variety of real-world problems including material
discovery (Frazier & Wang, 2015), adaptive experimental design (Greenhill et al., 2020), or drug
discovery (Korovina et al., 2020; Stanton et al., 2022). When considering combinatorial domains,
however, standard BO methods are intractable since maximizing the acquisition function requires an
exhaustive search over the whole combinatorial space (e.g. of size 20300 in the context of proteins)
without further assumptions.
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Figure 1: Illustration of GAMEOPT. GAMEOPT defines a game among the decision variables, where
game rewards are represented by the upper confidence bound (UCB) function. This decouples the
combinatorial decision space into individual decision sets and allows GAMEOPT to tractably compute
game equilibria. These can be thought of as local optima of the AF in unstructured domains.

To address this challenge, we propose GAMEOPT, a novel game-theoretical framework for combina-
torial BO. To circumvent the intractable maximization of an acquisition function, GAMEOPT defines
a cooperative game between the discrete domain variables and, at each interaction round, selects
informative points to be game equilibria of the acquisition function. These are stable configurations
from which no player (variable) has the incentive to deviate. They can be thought of as a formalization
of a notion of local optima of the acquisition function in unstructured domains (i.e., domains lacking
a lattice structure). Crucially, these can be computed employing well-known equilibrium finding
subroutines, effectively simulating a repeated game among the players. In this work, we utilize the
Upper Confidence Bound (UCB) acquisition function, which represents an optimistic estimate of the
underlying objective and was shown to efficiently balance exploration with exploitation (Srinivas
et al., 2009). For an overview of the method, see Figure 1.

Contributions We make the following main contributions:

• We propose GAMEOPT, a novel game-theoretical BO framework for large combinatorial and
unstructured search spaces. GAMEOPT computes informative evaluation points as the equilibria
(i.e., local optima) of a cooperative game between the discrete variables. This overcomes the
scalability issues of maximizing acquisition functions over combinatorial domains and provides a
tractable optimization. GAMEOPT is a flexible procedure where the resulting per-iteration game
can be solved by any readily available game strategy or solver.

• Under common kernel regularity assumptions, we bound the sample complexity of GAMEOPT,
quantifying the gap between the computed equilibria (of the surrogate UCB function) and those of
the underlying unknown objective. Given target accuracy level ϵ, GAMEOPT returns ϵ-approximate
equilibria after T = Ω(γT ϵ

−2) iterations, where γT is the kernel-dependent maximum information
gain (Srinivas et al., 2009).

• We apply GAMEOPT to the challenging protein design problem, involving search spaces of
categorical inputs. There, GAMEOPT advances the protein design process by mimicking natural
evolution via a game between protein sites. We experimentally validate its performance on
several real-world protein design problems based on human binding protein GB1 (Wu et al., 2016;
Olson et al., 2014), iron-dependent halogenase (Büchler et al., 2022) and green-fluorescent protein
(Prasher et al., 1992; Biswas et al., 2021). GAMEOPT converges consistently faster, i.e., it requires
fewer BO iterations to identify highly binding protein variants compared to baseline methods such
as classical directed evolution.

2 PROBLEM STATEMENT AND BACKGROUND

Problem statement We consider the problem of optimizing a costly-to-evaluate, black-box function
f : X → R over a combinatorial unstructured space X without a lattice form. Suppose each element
x ∈ X can be represented by n discrete variables (x1, x2, . . . , xn) (n-dimensional), where each
xi takes values from a set X (i), this makes the domain of n ≥ 1 variables X = X (1) × . . .X (n).
Assuming |X (i)| = d, ∀i, the size of the combinatorial space X is dn. However, the proposed
GAMEOPT framework can also operate under varying |X (i)| sizes, as we detail in Appendix E.12.

As a concrete motivating example, consider the protein design problem (Section 5). There, f(x)
represents the fitness value of the designed protein sequence x. The search space size is |X | = 20n,
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with n protein sites and |X (i)| = 20 amino acid choices per site. Moreover, a (noisy) evaluation
f(x) is a labor-intensive process, requiring extensive efforts and specialized laboratory equipment.

Gaussian Processes (GPs) Bayesian Optimization (Mockus, 1974) is a versatile framework for
optimizing complex, noisy, and expensive-to-evaluate functions. BO leverages Bayesian inference to
model the underlying function with a surrogate, e.g., a Gaussian Process (GP) and iteratively selects
evaluation points that are the most informative in terms of reducing uncertainty or enhancing model
performance.

Formally, a Gaussian Process GP(µ(·), k(·, ·)) over domain X is specified by a prior mean
function µ(x) : X → R and a covariance function k(x, x′) : X × X → R, denoted by
f(x) ∼ GP(µ(x), k(x, x′)), where f(x) represents the function value at input x.

Given a set of observed data points Xt up to iteration t and their corresponding vector of noisy
observations Yt = f(Xt) + ϵt with Gaussian noise ϵt ∼ N (0, σ2

t ), and a GP prior defined by
GP(µt(x), kt(x, x

′)), the posterior distribution of the GP at iteration t + 1 given new observa-
tions X† is again Gaussian p(ft+1 | Xt, X†, Yt) = N (µt+1, σ

2
t+1) with posterior mean and

variance (Rasmussen et al., 2006).

Bayesian Optimization (BO) To maximize f , BO algorithms iteratively select evaluation points
so as to balance exploration and exploitation. At each iteration the method selects the maximizer of
an acquisition function, for example, the widely-adopted Upper-Confidence Bound (UCB) (Srinivas
et al., 2009) function. Given a GP model at iteration t, the UCB function is defined as

UCBt(GP, x) = µt(x) + βtσt(x), (1)

where µ(x) and σ(x) are the posterior mean and standard deviation at point x according to GP , and
βt ∈ R is a confidence parameter influencing the width of the set that can be selected to ensure the
validity of the confidence set. The UCB function defines an optimistic estimate of the underlying
objective f , and can effectively balance exploration (i.e., favoring points with large uncertainty
σt(x)) with exploitation (i.e., selecting points with large posterior mean µt(x)).

While standard BO methods can efficiently optimize UCB(GP, ·) in efficiently enumerable or
continuous domains, they become very soon intractable in the case of combinatorial unstructured
domains, such as the space of possible amino acid sequences. In the next section, we propose
GAMEOPT, a novel BO approach that circumvents such prohibitive difficulty.

Algorithm 1 GAMEOPT

1: Input: GP prior GP0(µ0, k(·, ·)), initial data D0 = {(xi, yi = f(xi) + ϵ)}, batch size B ∈ N,
M ∈ N > B, parameter β.

2: for iteration t = 1, 2, . . . , T do
3: Construct game with reward function UCB(GPt−1, β, ·) :

∏n
i=1 X (i) → R

4: Compute M equilibria {xt,i}Mi=1 of the above. */ Equilibrium-finding subroutine
5: Select batch of top B equilibria {xt,i}Bi=1 according to UCB(GPt−1, β, ·). */ Filtering
6: Obtain evaluations yt,i = f(xt,i) + ϵt,i, ∀i = 1, . . . , B
7: Update Dt ← Dt−1 ∪ {(xt,i, yt,i)}Bi=1

8: Posterior update of model GPt with Dt.
9: end for

3 GAMEOPT ALGORITHM

In a nutshell, the proposed GAMEOPT (Optimistic Games) approach circumvents the combinatorial
optimization of the UCB function by defining a cooperative game among the n input variables
and computes the associated equilibria as candidate evaluation points. Formally, at each iteration
t, GAMEOPT defines a cooperative game (Fudenberg & Tirole, 1991) involving N = {1, . . . , n}
players, each player i taking actions in the discrete set X (i). In such a game, the players’ interests
are aligned towards the goal of maximizing the function UCB(GPt, ·) :

∏n
i=1 X (i) → R, where

GPt is the current GP estimate at iteration t. Thus, it can be interpreted as an optimistic game with
respect to the true unknown f . In such a game, the goal of the players is to compute game (Nash)
equilibria, defined as follows.
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Definition 3.1 (Nash equilibrium (Nash, 1951)). Let ri : X → R be the reward function of
each player i, defined over joint configuration x. A joint strategy profile xeq = (x1

eq, . . . , x
n
eq) is

a Nash equilibrium if, for every player i ∈ N , ri(xi
eq, x

−i
eq ) ≥ ri(xi, x−i

eq ),∀xi ∈ X (i), where
xeq = (xi

eq, x
−i
eq ), and x−i

eq is the joint equilibrium strategy of all players except i.

The existence of such equilibrium point(s) is guaranteed since players and actions are finite (Fu-
denberg & Tirole, 1991). Moreover, because players’ reward functions are aligned and coincide
with UCB(GPt, ·), efficient polynomial-time equilibrium-finding methods can be employed, such
as Iterative Best-Response (IBR), where players update their actions sequentially, or simultaneous
multiplicative weights updates such as the HEDGE (Freund & Schapire, 1997) algorithm. We report
these two possible strategies in Algorithms 2 and 3 in Section 3.1. Intuitively, equilibria are computed
by breaking down the complex decision space into individual decision sets, as illustrated in Figure 1.
Mathematically, we refer to this operation as arg eq, returns the joint configuration(s) which form
equilibria according to UCB,

xeq = arg eqxi∈X (i);i∈N UCB(GPt, (x1, . . . , xn)). (2)

Our overall approach is summarized in Algorithm 1. In practice, we compute M > 1 equilibria and
subselect a batch of top B < M equilibria according to the UCB(GPt, ·) criterion. Subsequently,
such a batch is evaluated by f , the GP model is updated accordingly, and a new game with an
updated reward function is defined at the next iteration based on the updated posterior.

A form of local optimality Within GAMEOPT, each player strategically selects actions to
maximize their collective payoff, much like seeking local optima in a continuous multi-dimensional
function (see Figure 1). In continuous optimization, a local optimum is a point, where there is no
direction that leads to an improvement, similarly, as in our framework there is not a player that can
unilaterally improve the value of the collective pay-off. In essence, seeking equilibria is analogous
to seeking local optima of a continuous acquisition function, and our game-based approach allows us
to effectively pinpoint them within an unstructured combinatorial space. We remark that GAMEOPT
computes equilibria of the current UCB(GPt, ·) function which, as we show in Section 5, are better
and better approximations of equilibria of the unknown objective f .

Price of Anarchy But how good are equilibria compared to the global optimum? The quality of
equilibria (also known as the efficiency of the game) can be quantified via the game-theoretic notion of
Price of Anarchy (PoA) (Christodoulou & Koutsoupias, 2005), defined as the ratio between the worst
equilibrium and the global optimum, i.e., PoA := minx∈E f(x)/maxx f(x) where E is the set of all
equilibria of f . PoA has been extensively studied for various classes of games and can sometimes be
upper-bounded given further assumptions on f . As an example, in case f is a submodular function
(over binary, integer, or continuous domains), PoA is guaranteed to be at least 0.5 (Vetta, 2002; Sessa
et al., 2019b). Although such a PoA guarantee does not readily apply to our setting, we believe
similar ones could be proved for the case of unstructured domains — though this is beyond the scope
of our work. In practice, given an unknown function f (such as the protein’s fitness function in our
experiments of Section 5), not all equilibria may achieve high function values (i.e. PoA can be very
low). Nevertheless, GAMEOPT computes multiple equilibria (M > 1) at each iteration and selects
only the top B according to their UCB value. We believe this is a key form of robustness that can
effectively filter out suboptimal equilibria and empower GAMEOPT’s experimental performance.

3.1 EQUILIBRIUM FINDING SUBROUTINES

We present a set of established algorithms for finding an equilibrium of the game introduced in Eq. (2).

Iterative best responses One possible subroutine for Algorithm 1 is Iterative Best Response (IBR)
procedure as provided in Algorithm 2. Concretely, under the cooperative game setting outlined in
Section 3 and given GP-predicted UCB function, each player iteratively selects the response that
maximizes the value of the game given that the other players play the joint strategy from the previous
round. Each player is sequentially selected to play their best response in a round-robin fashion.
Because action space is finite, this procedure is guaranteed to converge to a local maximum of the
UCB function i.e., an equilibrium of the underlying game (Fudenberg & Tirole, 1991).

Multiplicative weights updates Alternatively, we can compute game equilibria letting players
simultaneously act according to a multiplicative weights update algorithm such as HEDGE (Freund &
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Algorithm 2 Iterative Best Response (IBR)

1: Input: Domain X , payoff (reward)
r : X → R, players N .

2: xbr
0 ← random joint strategy, xbr

0 ∈ X .
3: for round k = 1, . . . ,K do */ BR game
4: X br

k ←
{
(xi,br, x−i,br

k−1 ), such that

xi,br = arg max
x∈X (i)

r(x, x−i,br
k−1 )

}n

i=1

5: Play xbr
k ← argmaxxk∈X br

k
[r(xk)]

6: end for
7: return xbr

K */ Equilibrium

Algorithm 3 Simultaneous HEDGE

1: Input: Domain X =
∏n

i=1 X (i) with | X (i) |=
W , payoff r : X → R, players N , parameter η.

2: Initialize weights w1 ← 1
W [1, . . . , 1] ∈ R|N |×W

3: for round k = 1, . . .K do */ Compute CCE
4: Sample xi

k ∼ wi
1,∀i ∈ N

5: Set joint strategy xk ← {xi
k}i∈N

6: for player i ∈ N do */ Players’ payoff
7: ℓx−i

k
← [r(xj,−i

k )]∀j∈X (i) , where

xj,−i
k = j ∪ {xi′

k }i′∈N\{i},∀j ∈ X (i)

8: Set wi
k+1 ∝ wi

k exp(ηℓx−i
k
)

9: end for
10: end for
11: return Uniform{x1, . . . ,xK} */ Equilibrium

Schapire, 1997), see Algorithm 3. We can cast equilibrium computation as an instance of adversarial
online learning among multiple learners (Cesa-Bianchi & Lugosi, 2006). Here, each player selects
a strategy based on their available options and, after observing the joint payoff, players’ strategies
are re-weighted based on past performance. Through repeated rounds of play and re-weighting, the
empirical frequency of play forms a coarse correlated equilibrium (CCE) (a weaker notion of Nash
equilibrium), see e.g. (Cesa-Bianchi & Lugosi, 2006), while convergence to pure Nash equilibria
is also guaranteed in some cases (Kleinberg et al., 2009; Palaiopanos et al., 2017).

3.2 RELATED WORK

While there exist rather few works in the area (Papenmeier et al., 2023), existing combinatorial BO
methods either target surrogate modeling with discrete variables (Baptista & Poloczek, 2018; Oh
et al., 2019; Garrido-Merchán & Hernández-Lobato, 2020; Kim et al., 2021; Deshwal et al., 2023)
or optimizing acquisition function within discrete spaces (Baptista & Poloczek, 2018; Deshwal et al.,
2020; 2021a;b; Khan et al., 2023). However, they often require a parametric surrogate model with
higher-order interaction specifications for combinatorial structures (Baptista & Poloczek, 2018) or
domain-specific knowledge (Deshwal et al., 2020). In contrast, GAMEOPT relies on a non-parametric
surrogate model, without the need for domain-specific knowledge.

Closest to ours is (Daulton et al., 2022), which also targets optimizing the acquisition function
in high-cardinality discrete/mixed search spaces via a probabilistic reparameterization (PR) that
maximizes the expectation of the acquisition function. However, PR fails at being tractable since
it requires evaluating the expectation over the joint distribution of all decision variables, requiring
combinatorially many elements to be summed. An accurate estimate would require extensive sampling
without special structural assumptions. In contrast, GAMEOPT treats each variable independently
(potentially in parallel) within the game, keeping the values of the remaining variables fixed during
each strategy update. We use PR as a baseline to evaluate our approach in Section 5, and demonstrate
improved performance of our method on protein design problems.

Further, a body of research has focused on BO over continuous (latent) spaces (Gómez-Bombarelli
et al., 2018; Eriksson et al., 2019; Tripp et al., 2020; Deshwal & Doppa, 2021; Maus et al., 2022;
Stanton et al., 2022). These methods learn continuous sequence embeddings and optimize with
gradient-based techniques by utilizing deep generative models. However, the primary problem we
address in our study is the intractable acquisition function optimization over large combinatorial
search spaces, specifically tackling the challenge of exhaustive exploration. In line with this, we
select our baselines accordingly and include a comparison with some latent space optimizers only
as additional experimental evaluation for insight.

Recently, the interplay between BO and game theory has been explored by the line of works (Sessa
et al., 2019a; 2022; Dadkhahi et al., 2020; Han et al., 2024), but its connection with combinatorial
BO is novel.
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4 SAMPLE-COMPLEXITY GUARANTEES

In this section, we derive sample-complexity guarantees for GAMEOPT. Namely, we characterize
the number of interaction rounds T required to reach approximate equilibria (i.e., local optima) of
the true function f . For simplicity, we assume GAMEOPT is run with batch size B = 1, though our
results can be generalized to larger B.

The obtained guarantees are based on standard regret bounds of Bayesian optimization adapted to
our equilibrium finding goal. These are characterized by the widely utilized notion of maximum
information gain (Srinivas et al., 2009):

γt =
1

2
log

∣∣It + σ−1Kt

∣∣ . (3)

This is a kernel-dependent (Kt) quantity that quantifies the maximal uncertainty reduction about
f after t observations. Further, to characterize our sample complexity, we define the notion of
ϵ-approximate Nash equilibrium.

Definition 4.1 (ϵ-approximate Nash equilibrium). A strategy profile x̃eq is a ϵ-approximate (Nash)
equilibrium of f if, for each i ∈ N , f(x̃eq) ≥ f(xi, x̃−i

eq )− ϵ, ∀xi ∈ X (i).

In the next main theorem, we provide a lower bound on the number of iterations T to reach approxi-
mate equilibria. After T rounds, we assume GAMEOPT returns xT⋆ with:

T ⋆ := arg min
t∈[T ]

max
i,xi

[
UCB(GPt, xi, x−i

t )− LCB(GPt, xt)
]
,

where LCB is the lower confidence bound function LCB(GPt, x) = µt(x)−βtσt(x). That is, among
the selected points x1, . . . , xT , xT⋆ is the one that guarantees the minimum worst-case single-player
deviation. The deviation above is computed according to the UCB and with respect to the LCB, thus
representing an upper bound on the actual deviation in terms of f . We can affirm the following.

Theorem 4.2 (Sample complexity of GAMEOPT). Assume f satisfies the regularity assumptions of
Section 2, and GAMEOPT is run with confidence width βt = 2n log

(
supi∈N |Xi| t

2π2

6δ

)
. Then, with

probability at least 1− δ and for a given accuracy ϵ ≥ 0, the strategy xT⋆ returned by GAMEOPT is
a ϵ-approximate Nash equilibrium when

T ≥ Ω

(
βT γT
ϵ2

)
. (4)

An equivalent interpretation of the above result is as follows: After T iterations, GAMEOPT returns
an ϵT -approximate Nash equilibrium of f , with approximation factor ϵT ≤ O(T− 1

2

√
βT γT ). Note

that the latter bound is the typical rate of convergence of BO algorithms (Srinivas et al., 2009) to the
global maximizer. Instead, in our combinatorial BO setup –where global optimization is intractable–
it corresponds to the rate of convergence to equilibria. A more explicit convergence guarantee can be
obtained by employing existing bounds for γT which are known for commonly used kernels (Srinivas
et al., 2009). E.g., for squared exponential kernels γT = O(log(T )nd) where d is the dimension of
each input space X (i) for each player i ∈ N , with |N | = n.

5 APPLICATION TO PROTEIN DESIGN

In this section, we specialize the GAMEOPT framework to protein design, a problem defined over the
space of possible amino acid sequences. Note that such domains are highly combinatorial (their size
grows exponentially with the sequence length) and unstructured (i.e. they lack a lattice structure). In
this context, computing game equilibria follows the natural principle of promoting beneficial mutants
and mirrors the proteins’ mutation and selection process. In Algorithms 4 and 5 (Appendix B), we
provide a detailed elaboration of GAMEOPT for protein design using equilibrium-finding methods.
We showcase its performance in four real-world protein datasets.

In the protein design context, GAMEOPT establishes a cooperative game among the different protein
sites i ∈ {1, . . . , n}, where n is the length of the protein sequence. Each site i chooses an amino
acid from the set X (i) = {A,C,D,E, F,G,H, I,K,L,M,N, P,Q,R, S, T, V,W, Y }, where the switching
can be thought of as biological mutation. The joint objective of the players is to converge to a highly
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rewarding protein sequence, as measured by the GP-predicted optimistic score for the fitness function.
This mirrors the selection phase in evolutionary search, providing a directed approach to protein
optimization. Below, we discuss related work in the area.

Related work on evolutionary search. A considerable line of works (Arnold, 1998; Hansen,
2006; Romero & Arnold, 2009; Yang et al., 2019; Deshwal et al., 2020; Cheng et al., 2022; Low
et al., 2023) centers around evolutionary search algorithms for optimizing black-box functions.
Within combinatorial amino-acid sequence spaces, the highly regarded technique, directed evolution
(Arnold, 1998; Romero & Arnold, 2009), draws inspiration from natural evolution and identifies
local optima through a series of repeated random searches, characterized by controlled iterative
cycles of mutation and selection. Expanding upon this, machine learning-guided variants (Yang
et al., 2019; Wittmann et al., 2021; Romero et al., 2013; Angermueller et al., 2020) mitigate the
sample-inefficiency and intractability concerns associated with directed evolution. In general, these
methods are not data-driven in the sense they do not use the whole extent of the past data and focus
on the best variant found so far or a selection of thereof and propose a random search from thereon.
Alternatively, even if allowed to adapt to the past outcomes, they tend to restrict themselves to very
small search spaces (Büchler et al., 2022). Instead, our approach uses all past data to create a UCB
estimate of the fitness landscape and utilize it to simulate a cooperative evolution in problems where
even the whole sequence of the protein can be optimized. Moreover, compared to such methods,
GAMEOPT mimics evolution within each interaction using the surrogate UCB function.

5.1 DATASETS

We empirically evaluate GAMEOPT on real-world protein design problems, specifically focusing
on the following instances: protein G domain B1, GB1, binding affinity to an antibody IgG-FC
(KA), examined on two distinct datasets, GB1(4) (Wu et al., 2016) and GB1(55) (Olson et al., 2014),
characterized by sequence lengths of 4 and 55, respectively; three critical amino acid positions in
an iron/α-ketoglutarate-dependent halogenase with sequence length 3 (Büchler et al., 2022); and
Aequorea victoria green-fluorescent protein (GFP) of length 238 (Prasher et al., 1992; Biswas et al.,
2021). The former GB1 dataset is fully combinatorial, i.e., covering fitness measurements of 204
variants. Here, each protein site is treated as a player in the GAMEOPT. The latter is non-exhaustive,
including only 2-point mutations of GB1. Thus, an MLP having R2 = 0.93 on a test set is trained
and treated as the ground truth fitness for the fully combinatorial dataset. For GB1(55), we also
consider a modified setup where “only” 10 sites can be mutated. Similarly, Halogenase and GFP are
also non-exhaustive involving fitness measurements for 605 and 35, 584 unique variants, respectively.
To obtain the complete protein fitness landscape, we once again construct oracles for these datasets,
utilizing MLPs achieving R2 = 0.96 and R2 = 0.90 on their respective test sets. In the case of the
Halogenase dataset, each protein site is treated as a player, while for the GFP dataset, 6 and 8 sites
are designated as players. Further experimental details are in Appendix D.

5.2 EXPERIMENTAL SETUP

In all experiments, we use a GP surrogate with an RBF kernel for GP-based methods. The RBF
specifies lengthscales for each input variable separately – sometimes known as ARD kernels
(Rasmussen et al., 2006). To handle categorical inputs to the GP surrogate, we employ feature
embeddings as representations for these inputs using the ESM-1v transformer protein language
model by (Meier et al., 2021). The prior mean for the GP is pre-defined as the average log fitness
value over the whole dataset. Kernel hyperparameters are optimized prior to the start of optimization
and remain fixed throughout the BO iterations; specifically, lengthscales are optimized over the
training set at the start of each replication using Bayesian evidence, and the outputscale is fixed to
the difference between the maximum fitness value observed in the dataset & mean. In other words,
we also fit a prior mean. A consistent observation noise of 0.0004 is maintained for each training
example. Moreover, we use batch size B = 5. In Appendix D, we provide the (hyper)parameter
settings (see Table 1) and the detailed setup for the experiments.

5.3 BASELINES

We benchmark GAMEOPT against the following baselines:

1. GP-UCB (Srinivas et al., 2009) selecting –at each iteration– the best B points in terms of UCB
value. Note that this is feasible (though computationally expensive) only for the GB1(4) and
Halogenase datasets, while it is prohibitive for GB(55) and GFP
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Figure 2: Convergence speed of methods in terms of log fitness value of the best-so-far protein across
BO iterations, under batch size B = 5. Results are averaged over replications initiated with different
training sets: 100 protein variants for Halogenase and GB1(4), and 1000 protein variants for other
domains. Error bars are interquartile ranges averaged over replications. In all experiments GAMEOPT
with IBR and HEDGE subroutines discover better protein sequences at a much faster rate.

2. IBR-FITNESS, which mimics directed evolution (Arnold, 1998) through a series of local searches
on the fitness landscape, iteratively selecting the B best-responses based on log fitness criterion

3. PR (Daulton et al., 2022), a state-of-the-art discrete/mixed BO approach picking B points using
the expected UCB criterion

4. RANDOM baseline randomly sampling B random sequences at each iteration.

Further details and pseudo codes of such baselines are in Appendix C.

We assess our method using two key metrics: convergence speed and sampled batch diversity w.r.t.
past, (i.e., the degree of distinctiveness among newly acquired samples in comparison to the original
data point particularly in the context of the input space) for BO evaluation. The latter can also be
regarded as the measure of exploration. Convergence speed is tracked by the log fitness value of the
best-so-far discovered protein variant across BO iterations. We monitor the diversity of the sampled
batch concerning the past across BO iterations through (1) the average Hamming distance between
the executed variant and the proposed variant from the previous iteration (pairwise distance) and (2)
the average Hamming distance of the executed variant from the nearest initial training point.

In Appendix E, we provide additional performance metrics such as the fraction of global optima
discovered, the fraction of discovered solutions above a fitness threshold, cumulative maximum, and
mean pairwise Hamming distances. Moreover, we compare with discrete local search methods (Ba-
landat et al., 2020) in Appendix E.3 and report their respective runtimes in Appendix E.4.

5.4 RESULTS

GAMEOPT, with IBR and HEDGE equilibrium computation subroutines, consistently outperform
baselines across all experiments, discovering higher fitness protein sequences faster (see Figure 2).

Results for Halogenase. While initially surpassed by IBR-FITNESS, PR, and GP-UCB, GAMEOPT
variants converge faster to higher log fitness proteins than baselines. Notably, IBR-FITNESS performs
best-responses on the true log fitness function, whereas GAMEOPT-IBR simulates best-response
dynamics directly on the UCB model, allowing to compute equilibria at each iteration. Additionally,
although GP-UCB performs comparably, it incurs higher computational demands. Furthermore,
PR and RANDOM perform poorly in the Halogenase setting.
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Figure 3: Sampled batch diversity relative to past, measured via mean Hamming distance between
executed and proposed variants from the previous iteration (pairwise distance), under batch size
B = 5. Results are averaged over replications, and error bars show interquartile ranges. In all
experiments GAMEOPT consistently samples a rather diverse batch of evaluation points w.r.t.
past proposed variants. This enhanced exploration of the search space contributes to its strong
performance compared to the baseline methods.

Results for GB1(4). Similarly, GAMEOPT approaches steadily surpass PR and GP-UCB while
exploring superior protein sequences efficiently. Initially trailing IBR-FITNESS, GAMEOPT
approaches prove more adept at exploring and sampling diverse points (see Figure 4 in Appendix E).

The baseline PR is not very competitive and also comes with higher computational demands. As
highlighted in Section 3.2, PR relies on the expected UCB as the acquisition function, requiring
expectation computation across players set and amino acid choices. This makes its performance
contingent on accurately estimating expected UCB through combinatorially many sequence samples.
In contrast, GAMEOPT efficiently finds stable outcomes by breaking down the combinatorial search
space into individual decision sets, resulting in a more manageable process.

Finally, of particular observation is the subpar performance of GP-UCB and RANDOM. A detailed
analysis of GP-UCB’s performance is presented in Appendix E.2, where it is observed that the
efficacy of GP-UCB heavily relies on the quality of the initial GP surrogate. In contrast, GAMEOPT
demonstrates robustness in overcoming the limitations of a model initialized with a limited amount
of data, thereby enhancing its sample efficiency. Further discussion on the performance of methods
can be found in Appendix E.

Results for GFP. The complexity of the problem positively correlates with the performance gap
between GAMEOPT and baselines. In the protein search space with 6 and 8 amino acid decisions,
GAMEOPT with either subroutine excels in identifying high-log fitness protein sequences even from
the start. Figure 3 further demonstrates GAMEOPT’s consistent exploration of diverse batches and
Figure 4 in Appendix E.1 shows its high rate of exploration.

Results for GB1(55). In both versions of the most complex problem domain, GAMEOPT
demonstrates superior performance. As the decision flexibility (i.e., the number of players) increases
from 10 to 55, the performance gap against baselines widens. Furthermore, GAMEOPT achieves
incomparable batch diversity concerning past, both with respect to the initial training and previously
executed protein sequences, as shown in Figures 3 and 4 in Appendix E.1.

5.5 FURTHER DISCUSSION AND LIMITATIONS

In our experiments, we compare to IBR-FITNESS, which simulates currently employed strategies
in the iterative protein optimization literature. This is by no means the only methodology applied
in this field, and a comprehensive comparison is beyond the scope of this work.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Batch size. Similar to the previous point, in our experiments presented in Section 5.4, we use a
batch size of B = 5. While we acknowledge this is a restrictive setup given the technological needs of
common screenings, nevertheless, our results should be transferable and applicable irrespective of the
batch size which differs to each laboratory setting. To support this, we include batch size ablations,
B = {1, 3, 5, 10, 50}, in Appendix E.7 (Figure 11), demonstrating that GAMEOPT variations consis-
tently outperform baseline methods in discovering better protein sequences across various batch sizes.

Learning rate. In Appendix E.8, we detail learning rate ablations for GAMEOPT-HEDGE.

Efficient vs better optimization of the acquisition function. The primary benefit of GAMEOPT is
its ability to efficiently optimize the acquisition function by adopting a game-theoretical perspective.
Unlike GP-UCB, our focus is on tractable optimization in large combinatorial spaces rather than
improving optimization. This efficiency is vital for navigating such spaces, where GAMEOPT exploits
game equilibria to enhance exploration. Appendix E.9 (see Figure 14) provides an analysis of UCB
values over BO iterations. While GAMEOPT is initially outperformed by GP-UCB in collecting
higher UCB-valued batches, its exploration strategy ultimately leads to more efficient optimization.

Different acquisition functions. We design the GAMEOPT framework using UCB as the
acquisition function (also the game reward function), with its sample complexity derived accordingly.
To assess broader applicability, we also evaluate GAMEOPT with alternative acquisition functions,
such as expected improvement (Jones et al., 1998). As shown in Appendix E.10, Figure 15, our
empirical comparison with GP-based methods reveals that GAMEOPT consistently outperforms these
baselines across all performance metrics.

Comparison with latent space optimizers. In line with the primary focus of this study, we
compare GAMEOPT to baselines that employ acquisition function optimizers operating directly on
large combinatorial search spaces (Dreczkowski et al., 2024), addressing the challenge of exhaustive
exploration. As discussed in Section 3.2, another line of work follows BO over continuous spaces
by learning a latent representation via deep generative models. While a comprehensive comparison
with these methods is beyond our scope, we provide additional insights in Appendix E.11, where we
empirically compare GAMEOPT against Naïve LSBO-(L-BFGS-B) (Gómez-Bombarelli et al., 2018),
using a second-order gradient-based optimizer, and LADDER (Deshwal & Doppa, 2021). The results
highlight GAMEOPT’s effectiveness— not only in finding higher-fitness sequences tractably but also
in bypassing the limitations of latent space optimizers, particularly their dependency on a decoder.

Sequence-based kernels. To show the applicability of GAMEOPT under various kernel choices, we
provide additional analysis using string kernels (Moss et al., 2020) in Appendix E.11. Specifically, we
consider a structure-coupled kernel designed by combining an RBF kernel with a sub-sequence string
kernel (Moss et al., 2020). In this setting, GAMEOPT demonstrates faster convergence to higher log
fitness protein sequences, further emphasizing its adaptability across different kernel configurations.

6 CONCLUSIONS

We introduced GAMEOPT, a novel tractable game-theoretical approach to combinatorial BO that
leverages game equilibria of a cooperative game between discrete inputs of a costly-to-evaluate
black-box function to tractably optimize the acquisition function over combinatorial and unstructured
spaces, and select informative points. Empirical analysis on challenging protein design problems
showed that GAMEOPT surpassed baselines in terms of convergence speed, consistently identifying
better protein variants more quickly, thereby being more resource-efficient. GAMEOPT is a versatile
framework, allowing for exploration with different acquisition functions or mixed equilibrium
concepts. As for future work, an adaptive grouping of players and employing joint strategies should
be further investigated.

SOCIETAL IMPACT STATEMENT

Protein engineering presents vast opportunities, including advancements in healthcare, biotechnology,
and environmental sustainability. However, it also entails inherent risks, such as the inadvertent
creation of pathogens or other unintended consequences. While our focus in this paper is primarily
on the technical aspects of our work, we remain cognizant of the ethical, safety, and regulatory
considerations that accompany protein design research.
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We gather here the technical proofs, the details on GAMEOPT’s application to protein design, and
additional experiment results complementing the main paper.

A PROOF OF THEOREM 4.2

The proof relies on the main confidence lemma (Srinivas et al., 2009, Lemma 5.1) which states
that, when the confidence width is set as βt = 2n log

(
supi∈[n] |Xi| t

2π2

6δ

)
≥ 2 log

(
|
∏n

i=1 Xi| t
2π2

6δ

)
,

then with probability at least (1− δ),

µt(x)− βtσt(x) ≤ f(x) ≤ µt(x) + βtσt(x), ∀x ∈ X , ∀t ≥ 1. (5)

In other words, UCB(GPt, ·) and LCB(GPt, ·) are upper and lower bound functions with high
probability. For simplicity, we will use the notation UCBt(·) and LCBt(·) for UCB(GPt, ·) and
LCB(GPt, ·), respectively.

Next, we show that after T iterations the strategy reported by GAMEOPT: xT⋆ , with T ⋆ =
argmint∈[T ] maxi,xi UCBt(x

i, x−i
t )− LCBt(xt), is a ϵT -approximate Nash equilibrium of f with

ϵT ≤ O(T−0.5√γT ). The theorem statement then follows by a simple inversion of the aforemen-
tioned bound.

By definition, xT⋆ is a ϵT -approximate Nash equilibrium of f when ϵT = maxi,xi f(xi, x−i
T⋆) −

f(xT⋆), i.e. ϵT upper bounds all possible single-player deviations. We can bound the worst-case
single-player deviation with probability (1− δ) by the following chain of inequalities:

ϵT = max
i,xi

f(xi, x−i
T⋆)− f(xT⋆) ≤ max

i,xi
UCBT⋆(xi, x−i

T⋆)− LCBT⋆(xT⋆) (6)

≤ 1

T

T∑
t=1

max
i,xi

UCBt(x
i, x−i

t )− LCBt(xt) (7)

=
1

T

T∑
t=1

max
i,xi

UCBt(x
i, x−i

t )− UCBt(xt) +
2

T

T∑
t=1

βtσt(xt)

(8)

≤ 2

T

T∑
t=1

βtσt(xt) ≤ O(T−0.5
√
βT γT ). (9)

The first inequality follows from the confidence lemma (5). The second one, by the fact that
maxi,xi UCBT⋆(xi, x−i

T⋆)− LCBT⋆(xT⋆) ≤ maxi,xi UCBt(x
i, x−i

t )− LCBt(xt),∀t, by definition
of T ⋆. The last inequality holds because, at each iteration t, xt is an equilibrium of the UCBt function.
Finally, the last inequality is from (Srinivas et al., 2009, Lemma 5.4).

B GAMEOPT FOR PROTEIN DESIGN

The core concept of the GAMEOPT framework is inspired by the principles of natural evolution. In
protein design, achieving equilibrium of a cooperative game over protein sites mirrors the iterative
mutation and selection process in evolution. Where it converges to beneficial mutant sequences, can
be thought of as equilibrium of the game. Given that protein search spaces align well with the domain
GAMEOPT works on, we introduce a specialized version of GAMEOPT, tailored for protein design
applications.

C BASELINES

In Section 5, we empirically evaluate GAMEOPT against existing baselines which we detail next.
These include IBR-FITNESS, inspired by directed evolution (Algorithm 6), RANDOM (Algorithm 7),
which samples evaluation points randomly, and PR, an optimizer of expected UCB (Daulton et al.,
2022). We further compared GAMEOPT with discrete local search methods in Appendix E.3.
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Algorithm 4 GAMEOPT-IBR for Protein Design

1: Input: GP prior GP0(µ0, k(·, ·)), initial data D0 = {(xi, yi = f(xi) + ϵ)}, protein sites N ,
batch size B ∈ N, M ∈ N > B, parameter β.

2: for iteration t = 1, 2, . . . , T do
3: Construct game with reward function UCB(GPt−1, β, ·) :

∏n
i=1 X (i) → R

4: for m = 1, 2, . . . ,M do
5: xbr

0 ← random starting protein sequence, xbr
0 ∈ X

6: for round k = 1, 2, . . . ,K do */ BR game

7: X br
k ←

{
(xi,br, x−i,br

k−1 ), such that xi,br = argmaxx∈X (i) UCB(x, x−i,br
k−1 )

}n

i=1

8: Play xbr
k ← argmaxxk∈X br

k
[UCB(xk)]

9: end for
10: Collect equilibrium protein sequence xt,m ← xbr

K
11: end for
12: Select batch of top B equilibrium protein sequences {xt,i}Bi=1 according to UCB(GPt−1, β, ·).

*/ Filtering
13: Obtain fitness evaluations yt,i = f(xt,i) + ϵt,i, ∀i = 1, . . . , B
14: Update Dt ← Dt−1 ∪ {(xt,i, yt,i)}Bi=1

15: Posterior update of model GPt with Dt

16: end for

Algorithm 5 GAMEOPT-HEDGE for Protein Design

1: Input: GP prior GP0(µ0, k(·, ·)), initial data D0 = {(xi, yi = f(xi) + ϵ)}, protein sites N ,
batch size B ∈ N, M ∈ N > B, parameters β, η.

2: for iteration t = 1, 2, . . . , T do
3: Construct game with reward function UCB(GPt−1, β, ·) :

∏n
i=1 X (i) → R

4: for m = 1, 2, . . . ,M do
5: Initialize weights w1 ← 1

W [1, . . . , 1] ∈ R|N |×W

6: for round k = 1, 2, . . . ,K do */ Simultaneous Hedge
7: Sample xi

k ∼ wi
1,∀i ∈ N

8: Set joint strategy xk ← {xi
k}i∈N

9: for player i ∈ N do */ Players’ payoff
10: ℓx−i

k
← [v(xj,−i

k )]∀j∈X (i) , where

xj,−i
k = j ∪ {xi′

k }i′∈N\{i},∀j ∈ X (i)

11: Set wi
k+1 ∝ wi

k exp(ηℓx−i
k
)

12: end for
13: end for
14: Collect equilibrium protein sequence xt,m ← xK

15: end for
16: Select batch of top B equilibrium protein sequences {xt,i}Bi=1 according to UCB(GPt−1, β, ·).

*/ Filtering
17: Obtain fitness evaluations yt,i = f(xt,i) + ϵt,i, ∀i = 1, . . . , B
18: Update Dt ← Dt−1 ∪ {(xt,i, yt,i)}Bi=1

19: Posterior update of model GPt with Dt

20: end for

D EXPERIMENT DETAILS

We set the (hyper)parameters for the experiments as in Table 1.

GB1(4) The dataset (Wu et al., 2016) is fully combinatorial, i.e., encompassing fitness measurements
of 204 variants with 4 sites. In this context, each protein site is treated as a player in the cooperative
game of GAMEOPT, with N = {1, . . . , 4}. Additionally, we also analyzed the effect of player
grouping inspired by epistasis phenomenon in protein design and provided the analysis in Appendix E.
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Algorithm 6 ITERATIVE BEST RESPONSE-FITNESS (IBR-FITNESS)

1: Input: Domain X , fitness function f : X → R, players N , initial data D0 = {(xi, yi =
f(xi) + ϵ)}, batch size B ∈ N.

2: xbr
0 ← random joint strategy, xbr

0 ∈ X
3: for iteration t = 1, 2, . . . , T do
4: Randomly selected B players ∈ N generates BRs {xt,i}Bi=1 w.r.t. xbr

t−1 based on f(·)
5: Obtain evaluations yt,i = f(xt,i) + ϵt,i, ∀i = 1, . . . , B
6: Update Dt ← Dt−1 ∪ {(xt,i, yt,i)}Bi=1

7: Play xbr
t ← argmaxxt,i∈{xt,i}B

i=1
yt,i

8: end for
9: return x⋆

T ← argmax(x,y)∈DT
y */ Best-so-far

Algorithm 7 RANDOM

1: Input: Domain X , f : X → R, initial data D0 = {(xi, yi = f(xi) + ϵ)}, batch size B ∈ N.
2: for iteration t = 1, 2, . . . , T do
3: Randomly generate batch of B points {xt,i}Bi=1,∀xt,i ∈ X
4: Obtain evaluations yt,i = f(xt,i) + ϵt,i, ∀i = 1, . . . , B
5: Update Dt ← Dt−1 ∪ {(xt,i, yt,i)}Bi=1
6: end for
7: return x⋆

T ← argmax(x,y)∈DT
y */ Best-so-far

We train the GP surrogate by utilizing a small portion of the dataset, specifically 0.0625%, consisting
of 100 protein variants. Since existing literature does not provide common ground feature embeddings
as representations for the GB1(4) variants, we use chemical descriptors (Wu et al., 2019) to extract
60 feature embeddings using a training set of size 1000 protein variants with LASSO method. We
apply k-fold cross-validation with k = 18 different train/test dataset partitions. Following this, we
evaluate the performance of our approach over 18 replications. In each replication, we initialize the
GP surrogate-based baseline methods with the same initial GP model as our approach. We also use
the same initial protein sequence for comparison within that replicate but employ different initial
points across replications. We set the starting joint strategy as the protein sequence having the highest
log fitness value in the training set. The prior mean of the GP is fixed at 1.0162. For the kernel
hyperparameters, 60 lengthscales are defined for each feature dimension and optimized offline at the
beginning of a replication; outputscale is set to 0.02169.

GB1(55) We experiment on the non-exhaustive dataset GB1(55) that only includes 2-point mutations
throughout the entire 55 residues of the GB1 protein resulting in 535, 917 variants (Olson et al., 2014)
and consider two settings: 55 and 10 number of players.

GB1(55) with 55 Players In this context, we treat each protein site as a player in the GAMEOPT,
thus, N = {1, . . . , 55}.
As the dataset is not completely combinatorial, we do not have access to measured fitness values
for all 2055 variants. To overcome this, we employ a Deep Neural Network-based (DNN) oracle to
predict fitness scores using feature embeddings associated with the protein sequences. We again opt
to feature embeddings as the representation for categorical input of GP surrogate. Unlike GB1(4), we
utilize the ESM-1v protein language model from esm introduced by Meier et al. (2021), specifically
designed for predicting protein variant effects and can be used to extract embeddings. With ESM-1v,
we represent a sequence through a 1280 dimensional feature embedding vector. We train the oracle
with supervised learning, using the training set having (477 854×1280, 477 854) feature & label pairs.
Obtaining the exhaustive version of the GB1(55) dataset, we train the GP surrogate using ESM-1v
feature embeddings of 1000 randomly generated protein variants and corresponding oracle-predicted
fitness scores for 10 replications.
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Table 1: (Hyper) parameter values.

(Hyper) parameter Explanation Value

T The number of active learning (BO) iterations 50
K The number of game rounds 40 for GFP, 200 for Halogenase and GB1(55), and 400 for GB1(4);

50 for GAMEOPT-IBR in GB1(55) & n = 10 domain
100 for GAMEOPT-IBR in GB1(55) & n = 55 domain

n =| N | The number of players 3 for Halogenase, 4 for GB1(4), 6 and 8 for GFP, 10 and 55 for GB1(55)
| D0 | The number of samples in training set 100 for Halogenase and GB1(4), and 1000 for GFP and GB1(55)
η Learning rate 0.5 under Halogenase and 2.0 for the rest of the problem settings
ϵ Observation noise for each training example 0.0004
l RBF kernel lengthscale optimized offline
β The UCB tuning parameter 2
B Batch size per BO iteration 5

GB1(55) with 10 players To further analyze the performance of GAMEOPT compared to the other
baselines, we consider the setting where among the 55 sites, only 10 most significant protein sites
can be mutated.

We employ the same protein language model for embeddings and oracle to predict fitness scores.
However, the choice of 10 players among

(
55
10

)
possibilities is a strategic decision that affects

the design performance. For this, we define the significance of a protein site considering the
average variation in the fitness scores in the dataset. Concretely, we use Algorithm 8 and select
N = {21, 24, 35, 39, 41, 45, 46, 47, 48, 50} sites as the players. We treat the rest of the protein
sequence, i.e., sites that do not correspond to players as fixed.

Algorithm 8 COMPUTEMOSTSIGNIFICANTSITES

1: Input: Dataset D = (xi, yi)
N
i=1, players K, protein sequence length L, amino acids set A.

2: Initialize players← ∅, site_scoreka ← ∅ and site_vark ← 0,∀k ∈ {1, . . . , L}, a ∈ A
3: for each pair (xi, yi) ∈ D do
4: for each site k ∈ {1, . . . , L} do
5: Set amino acid in site k as a← xk

i

6: Append site_scoreka ← site_scoreka ∪ {yi}
7: end for
8: end for
9: site_scorek ← {site_scoreka}a∈A,∀k ∈ {1, . . . , L}

10: site_vark ← stdev(site_scorek),∀k ∈ {1, . . . , L}
11: return K sites having highest site_score as players

Halogenase Halogenase is a non-exhaustive dataset involving fitness measurements for 605 unique
variants. To obtain the complete protein fitness landscape, we again construct an oracle, i.e., an MLP
having R2 = 0.96 on a test set and experiment on a setting where each protein site is a player.

GFP with 6 players The Aequorea victoria green-fluorescent protein dataset only includes fitness
measurements of 35, 584 variants corresponding to mixed mutations of some positions on a 238
length sequence. For the fully combinatorial protein fitness landscape, we construct an oracle, i.e., an
MLP with test R2 = 0.90 and choose 6 positions: N = {10, 18, 22, 37, 67, 78} that have the largest
number of mutations in the original dataset as the players of the GAMEOPT.

GFP with 8 players To set the players in this setting, we identified 8 positions that have the largest
number of mutations in the original dataset: N = {10, 18, 22, 37, 67, 78, 196, 112}.
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E ADDITIONAL EXPERIMENTAL RESULTS

E.1 SAMPLE BATCH DIVERSITY

We also evaluate our method against baselines in terms of performance metric: sampled batch
diversity concerning the past. It is measured via the mean Hamming distance of executed points at
each BO iteration to the (1) closest initial training point and (2) the proposed point at the previous
iteration (pairwise distance).

The results depicted in Figure 4 underscore that GAMEOPT explores at a faster rate compared to
baselines except for RANDOM. Notably, even in the initial iterations, GAMEOPT demonstrates the
capability to discover points beyond the trust region of its GP prior. Furthermore, it consistently
upholds the sampled batch diversity compared to previously executed strategies. As also illustrated
in Figure 3, GAMEOPT explores effectively at the beginning and gradually converges to a region
conducive to exploitation. This enhanced exploration across the search space contributes to its
outperforming performance in identifying high fitness-valued protein sequences.

On the other hand, the exploration strategy employed by RANDOM relies on the generation of
B best responses through random selection, a method that does not consistently ensure a diverse
sampled batch in the input space. Furthermore, IBR-FITNESS shows a moderate sampled batch
diversity concerning the past, attributed to its more exploitative nature—specifically, the sampling of
B best responses based on true log fitness values in comparison to other baseline methods. While
PR manages to maintain a diverse sampled batch concerning the past in the context of GB1(4),
its performance falters when applied to other settings. Additionally, the sampling process of PR
involves computing the expected UCB across all potential strategy combinations of players, making
its performance, and consequently its sampled batch diversity, highly reliant on an accurate estimate
of this expectation.
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(a) Halogenase, n = 3, 18 reps.
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(b) GB1(4), n = 4, 18 reps.
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(c) GFP, n = 6, 10 reps.
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(d) GFP, n = 8, 10 reps.
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(e) GB1(55), n = 10, 10 reps.

0 5 10 15 20 25 30 35 40 45 50
Iterations

0

10

20

30

40

50

Avg. Hamming Distance w.r.t Initial Point

(f) GB1(55), n = 55, 10 reps.

GameOpt-IBR GameOpt-Hedge IBR-Fitness PR GP-UCB Random Best strategy

Figure 4: Performance results for the sampled batch diversity w.r.t past measured via mean Hamming
distance between the executed variant and the closest initial point from the training set, under batch
size B = 5. Each point on each line is the average of multiple replications initiated with different
training sets having 100 variants for GB1(4) & Halogenase and 1000 for GB1(55) & GFP. Similarly,
error bars are interquartile ranges averaged over replications. In all experiments, GAMEOPT explores
significantly faster than the baseline methods.
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E.2 COMPARISON WITH GP-UCB

We further analyzed the saturating behavior exhibited by GP-UCB in the GB1(4) setting. As depicted
in Figure 5, our investigation focused on the influence of the initial GP surrogate model, considering
different training set sizes, specifically with 100 and 500 training points.

Our findings underscore that the efficacy of GP-UCB heavily relies on the quality of the initial GP
surrogate model. Particularly, an initial GP surrogate trained with only 100 data points proves insuffi-
cient for GP-UCB to effectively identify high-log fitness protein sequences. Given that GP-UCB
optimizes the UCB globally and selects the B best points in each iteration, the limited informativeness
of sampled batch points under this GP surrogate constrains the algorithm. Therefore, GP-UCB ends
up converging to a point where further improvement is impeded. In contrast, employing a potentially
more informative GP model with 500 training points enables GP-UCB to perform comparably to
GAMEOPT. Our proposed approach, however, exhibits robustness by overcoming the constraints
associated with a model initialized with limited data. Through computing evaluation points as the
equilibria of cooperative game-playing, it consistently gathers diverse and informative batches to
guide the GP, thereby enhancing sample efficiency.
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(a) 100 training points.
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(b) 500 training points.

GameOpt-IBR GameOpt-Hedge IBR-Fitness PR GP-UCB Random Best strategy

Figure 5: The effect of training set size on the performance under setting GB1(4), n = 4, 18 reps.
GP-UCB mitigates saturating behavior when leveraging a more informative initial GP surrogate
model. In contrast, GAMEOPT showcases resilience in overcoming the limitations associated with a
GP model trained with a limited amount of data.

E.3 COMPARISON WITH DISCRETE LOCAL SEARCH METHODS

We further compared GAMEOPT against Discrete Local Search baselines DLS and DLS_BEST
(Balandat et al., 2020) that perform a discrete local search by exploring k-Hamming distance neigh-
borhood. While DLS employs random initialization, DLS_BEST starts the local search from the
best-discovered sequence. In our experiments, we set their neighborhood size as 2-Hamming distance
and let the baselines greedily select B sequences at each iteration. For a fair comparison against
DLS_BEST, we also run the best-discovered sequence initialization version of our approach, called
GAMEOPT-IBR_BEST.

We remark that DLS and DLS_BEST can be seen as constrained versions of GAMEOPT that
require a prior definition of the neighborhood (thus, unlike our approach, they require a notion of
distance too). Moreover, being centralized, they are subject to a higher computational complexity
which grows exponentially with the neighborhood size. For a sequence of length n (players) with
| X (i) |= d many amino acid choices, GAMEOPT reduces the intractable optimization of acquisition
function (i.e., O(dn)) to O(nd) complexity. Instead, DLS & DLS_BEST search over k-distance
neighborhoods yielding O(C(n, k)dk) complexity, where C denotes the combination operation and
k is the Hamming distance. We observe GAMEOPT performs comparably to DLS baselines (see
Figures 6, 7, 8, and additional analyses below), but requiring a significantly lower compute cost, as
shown in Appendix E.4.
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E.4 COMPUTATIONAL COSTS

We report the total compute amount (measured in hours) for the experiments with T = 50 BO
iterations in Table 2. We conduct the experiments on an internal compute cluster equipped with
NVIDIA A100 80 GB tensor-core GPUs. For smaller domains (with short protein sequences), we
were able to execute replications concurrently without encountering memory errors. However, in
configurations necessitating the generation of embeddings for numerous evaluation points with
longer protein sequences in each iteration, parallel execution was not feasible, thus necessitating
a per-replication computation time report. Specifically, we present the total compute amount for
all replications across domains Halogenase, GB1(4), and GFP; whereas we report per replication
compute amount accompanied by its standard deviation for the two largest GB1(55) domains.

Referring to Table 2, GAMEOPT variations provide tractable acquisition function optimization. Their
computational demand predominantly hinges on the number of sequences they evaluate per BO
iteration. This is also influenced by the number of game rounds–which we intentionally set to a higher
value to guarantee convergence to game equilibrium (see Table 1 for the exact values). Nevertheless,
our observations reveal that game equilibrium is often reached well before the rounds are completed.
Consequently, the computational times reported for GAMEOPT can be considered to be within the
worst-case scenario.

Table 2: Total compute amount (in hours) required for experiments with T = 50 BO iterations. Each
entry with ± represents the average per-replication computation time, accompanied by their standard
deviation, whereas the others show the total compute time for all replications. We run 18 replications
for Halogenase, GB1(4), and 10 replications for the other domains. In all domains, particularly for
the larger search spaces, GAMEOPT provides tractable acquisition function optimization.

Method Domain
Halogenase GB1(4) GFP, n = 6 GFP, n = 8 GB1(55), n = 10 GB1(55), n = 55

GAMEOPT-IBR 0.19 0.30 1.02 2.74 1.61± 0.46 11.25± 3.19
GAMEOPT-HEDGE 2.44 1.95 2.05 ±0.02 2.60 ±0.09 3.85 ±0.39 20.13 ±1.04
GP-UCB 0.63 29.56 - - - -
DLS 0.29 1.10 2.90 ±0.33 4.94 ±0.24 4.10 ±2.36 102.86 ±27.42

E.5 ADDITIONAL ANALYSES

We performed further analyses to assess the effectiveness of our GAMEOPT framework against
baselines in terms of: (1) fraction of global optima discovered, (2) fraction of solutions found above a
fitness threshold, (3) cumulative maximum for sequences proposed and (4) mean pairwise Hamming
distance between proposed sequences.

We evaluated the fraction of global optima discovered under the GB1(4) setting, as depicted in Table 3.
For this fully combinatorial dataset, we identify the global optimizer sequence by exhaustive search.
Our findings revealed that GAMEOPT-IBR successfully identified the global optimum sequence in
33.33% of cases out of 18 replications, highlighting its superior convergence against baselines.

Additionally, given the difficulty of identifying global optima in non-fully combinatorial datasets,
we examined the fraction of optima found above a fitness threshold, fτ = 0.8. Table 4 demonstrates
that across all problem domains (excluding best cumbersome initialization versions), the GAMEOPT
framework consistently samples batches containing a higher number of optimal sequences compared
to baseline methods. Its effectiveness is highlighted more as the search space size gets higher. In the
most complex domain, GB1(55) with 55 players, its best cumbersome initialization version performs
comparably to DLS_BEST. However, it is essential to also acknowledge the comparison w.r.t the
computational complexity associated with that configuration as discussed in Appendix E.4.

Regarding the cumulative maximum for proposed sequences (see Table 5), our framework demon-
strates notable performance by consistently proposing protein variants with higher fitness values.
Moreover, its superior convergence speed, illustrated in Figure 6, underscores its effectiveness against
baselines including DLS. The discrete local search with best initialization, DLS_BEST, converges
relatively slower, particularly in small domains, yet performs comparably against GAMEOPT_BEST
in finding high log fitness valued variants. However, it does not provide tractable optimization as
detailed in Appendix E.4.
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Furthermore, we analyzed the performance of methods considering the mean pairwise Hamming
distance between the sequences proposed at each BO iteration (see Table 6 and Figure 7) which is
an indicator for sampled batch diversity. The results indicate that GAMEOPT explores moderately,
however, it balances exploration and exploitation to prevent over-exploring seen in RANDOM and
DLS, as well as over-exploiting observed in GAMEOPT_BEST, DLS_BEST and PR.

Lastly, the mean Hamming distance between the proposed variant and the closest initial point from
the training set (see Figure 8) showcases that GAMEOPT explores the solution space faster than the
baseline methods, except for RANDOM and DLS.

Table 3: Fraction of global optima found for the GB1(4) dataset. Each entry is the average of 18
replications. GAMEOPT variations are able to sample global optimum sequence (AHCA) more
frequently compared to other baselines. Entries of the outperforming methods are denoted in bold.
The results show that GAMEOPT-IBR converges to the best strategy more frequently compared to
the baselines.

Method % best strategy (AHCA) found
GAMEOPT-IBR 33.33
GAMEOPT-HEDGE 16.67
IBR-FITNESS 16.67
PR 0.00
GP-UCB 0.00
RANDOM 0.00
DLS 0.00
DLS_BEST 11.11
GAMEOPT-IBR_BEST 11.11

Table 4: Percentage of computed candidates that are above a threshold of fτ = 0.8∗(maximum fitness
value). Each entry is the average of 18 replications for Halogenase and GB1(4) settings, and 10
replications for the others. Entries of the outperforming methods are denoted in bold. Results indicate
the effectiveness of GAMEOPT variations on sampling more optima than the baseline methods.

Method Domain
Halogenase GB1(4) GFP, n = 6 GFP, n = 8 GB1(55), n = 10 GB1(55), n = 55

GAMEOPT-IBR 100.00 21.20 28.52 50.96 11.60 1.96
GAMEOPT-HEDGE 94.44 14.62 26.68 61.72 9.48 2.12
IBR-FITNESS 72.22 7.46 18.96 35.32 0.36 0.00
PR 38.89 2.05 15.96 15.32 0.00 0.04
GP-UCB 72.22 4.82 - - - -
RANDOM 0.00 0.29 0.76 1.60 0.00 0.00
DLS 94.44 7.46 22.60 36.48 0.16 0.00
DLS_BEST 88.89 19.88 16.80 45.92 2.64 52.24
GAMEOPT-IBR_BEST 44.44 17.40 12.32 42.64 1.68 48.64

Table 5: Cumulative maximum for sequences proposed at the end of the BO iterations. Each entry is
the average of 18 replications for Halogenase and GB1(4) settings, and 10 replications for the others.
Entries of the outperforming methods are denoted in bold. GAMEOPT variations show superior
performance in proposing higher fitness-valued protein variants.

Method Domain
Halogenase GB1(4) GFP, n = 6 GFP, n = 8 GB1(55), n = 10 GB1(55), n = 55

GAMEOPT-IBR 3.51 0.93 6.17 6.37 1.94 4.72
GAMEOPT-HEDGE 3.45 0.94 6.15 6.34 1.69 4.66
IBR-FITNESS 3.10 0.86 6.08 6.21 0.97 2.99
PR 2.08 0.81 6.06 6.07 0.90 1.18
GP-UCB 2.98 0.82 - - - -
RANDOM 1.15 0.68 5.92 5.97 -0.08 -0.66
DLS 3.51 0.89 6.09 6.14 1.70 1.35
DLS_BEST 3.40 0.93 6.15 6.33 2.11 7.87
GAMEOPT-IBR_BEST 2.28 0.93 6.14 6.33 1.91 7.25
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Table 6: Mean pairwise Hamming distance between the sequences proposed at each iteration. Each
entry is the average of 18 replications for Halogenase and GB1(4) settings, and 10 replications for
the others. In all problem domains, RANDOM baseline consistently samples a rather diverse batch
of evaluation points w.r.t. past proposed variants. Although this shows enhanced exploration, one
drawback is the lack of exploitation. Hence, as illustrated in Figure 3, GAMEOPT balances these two
successfully and shows a moderate sampled batch diversity.

Method Domain
Halogenase GB1(4) GFP, n = 6 GFP, n = 8 GB1(55), n = 10 GB1(55), n = 55

GAMEOPT-IBR 1.40 2.94 3.08 4.11 7.32 50.93
GAMEOPT-HEDGE 2.13 2.91 2.93 4.23 3.98 45.89
IBR-FITNESS 0.86 0.88 0.85 0.89 0.86 0.89
PR 1.61 1.57 1.61 1.67 1.69 1.60
GP-UCB 0.77 2.41 - - - -
RANDOM 2.85 3.8 5.69 7.64 9.51 52.34
DLS 1.13 3.36 5.13 7.13 9.38 52.19
DLS_BEST 0.68 2.56 1.18 2.36 1.55 3.57
GAMEOPT-IBR_BEST 0.33 2.64 1.48 2.78 0.57 3.12
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Figure 6: Convergence speed of methods in terms of log fitness value of the best-so-far protein
throughout BO iterations, under batch size B = 5. Each point is the average of multiple replications
initiated with different training sets having 100 protein variants for Halogenase and GB1(4), and 1000
protein variants for the rest of the problem domains. Similarly, error bars are interquartile ranges
averaged over replications.
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(b) GB1(4), n = 4, 18 reps.
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(c) GFP, n = 6, 10 reps.
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(d) GFP, n = 8, 10 reps.
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(e) GB1(55), n = 10, 10 reps.
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Figure 7: Sampled batch diversity w.r.t past measured via mean Hamming distance between the
executed variant and the proposed variant from the previous iteration (pairwise distance), under
batch size B = 5. Each point on each line is the average of multiple replications initiated with
different training sets having 100 variants for GB1(4) & Halogenase and 1000 for GB1(55) & GFP.
Similarly, error bars are interquartile ranges averaged over replications. In all experiments GAMEOPT
consistently samples a rather diverse batch of evaluation points w.r.t. past proposed variants. This
enhanced exploration of the search space contributes to its strong performance compared to the
baseline methods.
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Figure 8: Performance results for the sampled batch diversity w.r.t past measured via mean Hamming
distance between the executed variant and the closest initial point from the training set, under batch
size B = 5. Each point on each line is the average of multiple replications initiated with different
training sets having 100 variants for GB1(4) & Halogenase and 1000 for GB1(55) & GFP. Similarly,
error bars are interquartile ranges averaged over replications. In all experiments, GAMEOPT explores
faster than the baseline methods, except for RANDOM and DLS.
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E.6 EXPLORING PLAYERS’ GROUPING

Until this juncture, we have exclusively examined scenarios where a GAMEOPT player is responsible
for only a single site within the protein sequence. In light of the epistasis (Phillips, 2008) phenomenon
in protein design, which underscores how the effect of a mutation on fitness can be influenced by the
presence of other mutations within the same protein, we now explore the concept of grouping protein
sites together, i.e., having players being responsible for more than one site. This is because modeling
protein sites independently may yield different fitness outcomes than finding equilibria among groups
of several sites. To this end, we conduct a preliminary investigation into whether this phenomenon
alters GAMEOPT’s performance.

We experiment on GB1(4) with {0, 1, 2, 3} protein sites and N = {1, 2} players, considering 3
possible player & site groupings: {(01, 23), (02, 13), (03, 12)}. For instance, setting (01, 23) means
that the first player is responsible for sites {0, 1} and the other one for {2, 3}.
Our evaluations with GAMEOPT-IBR and GAMEOPT-HEDGE using the same performance measures
(Figures 9 and 10) showed that there is no significant performance difference between individual
players and grouping settings as they all discover the high log fitness valued protein variants at
a similar rate while collecting batches of diverse evaluation points. Nevertheless, an in-depth
examination of this phenomenon on larger datasets remains a subject for future investigation.
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Figure 9: GAMEOPT-IBR performance for player grouping, under GB1(4) setting, 18 reps. There is
no significant performance difference between individual players and player grouping settings under
this domain.
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Figure 10: GAMEOPT-HEDGE performance for player grouping, under GB1(4) setting, 18 reps. No
significant performance difference exists between individual players and player grouping settings
under this domain.

E.7 BATCH SIZE ABLATIONS

We present additional results on the GB1(4) dataset using higher batch sizes, B = 10 and B = 50.
The results in Figure 11 show that GAMEOPT variations still outperform baselines by discovering
higher log fitness-valued protein sequences at a faster rate due to sampling diverse sets of batches.
When batch size increases, GAMEOPT-HEDGE becomes dominant in discovering the best protein
sequence. This shows that irrespective of the batch size, GAMEOPT is effective in large combinatorial
BO settings.
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Figure 11: Performance comparison on the GB1(4) dataset using batch sizes B = 10 and B = 50.

We further present additional analysis using more restrictive batch sizes, B = 1 and B = 3 on
the GB1(4) and Halogenase datasets. The results in Figure 12 demonstrate that even under a more
restricted setting on both problem domains, GAMEOPT variations achieve superior performance
compared to the baselines. Although initially surpassed by GP-UCB under batch size B = 1,
GAMEOPT’s better exploration compared to the GP-UCB’s exploitative behavior avoids ending up at
points with lower fitness values. As the batch size increases, GAMEOPT’s optimistic game approach
benefits from parallelism and collects diverse local optima, hence, GAMEOPT performs significantly
better against baselines.
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Figure 12: Performance comparison on the Halogenase and GB1(4) datasets using batch sizes
B = {1, 3, 5}. The results show that GAMEOPT outperforms baselines even under more restrictive
batch size settings. Although initially surpassed by GP-UCB under batch size B = 1, GAMEOPT’s
better exploration compared to the GP-UCB’s exploitative behavior avoids ending up at points with
lower fitness values.

E.8 LEARNING RATE (η) ABLATIONS FOR GAMEOPT-HEDGE

To select the learning rate (η) hyperparameter for the GAMEOPT-HEDGE algorithm, we performed
a hyperparameter sweep and tuned it accordingly. Figure 13 illustrates this process, showcasing
the impact of different η values on the game convergence. Based on this, we selected the optimal
performing value. In particular, Figure 13b shows how varying η influences the convergence
to different equilibria at a BO iteration t. The results demonstrate that the chosen η facilitates
equilibrium convergence within a finite number of rounds, ensuring practical game convergence.
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Figure 13: Performance of GAMEOPT-HEDGE under different learning rate (η) values. The final
value is set to ensure equilibrium convergence within a given number of rounds. As an example, we
show in (13b) the convergence of different games to equilibria when η = 2.0.

E.9 UCB VALUES OF THE SAMPLED BATCHES

As discussed in Sections 1 and 5.5, the novel insight and the main cause of benefit of the GAMEOPT
framework lies in its ability to provide efficient (tractable) acquisition function optimization by
adopting a game-theoretical perspective.

When comparing the methods based on the UCB values over BO iterations in the GB1(4) domain, as
demonstrated in Figure 14, we observe that GAMEOPT initially selects points with lower UCB values
compared to GP-UCB. However, in later iterations, GAMEOPT identifies points with higher UCB
values. This improvement is driven by the framework’s leverage of equilibrium points, leading to
superior exploration of the search space and ultimately more efficient optimization.
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Figure 14: UCB value of the (a): executed point (max UCB), and (b): best-so-far (BSF) logfitness
valued point over iterations under GB1(4) domain. Although initially GAMEOPT variations executed
points with smaller UCB values compared to GP-UCB, its better exploration helps to identify higher
UCB valued points quickly.

E.10 EXPECTED IMPROVEMENT ACQUISITION FUNCTION

Although GAMEOPT is designed using the UCB acquisition function with a sample complexity
guarantee, we provide a further empirical analysis across GP-based methods using a different
acquisition function: expected improvement (EI) (Jones et al., 1998). As demonstrated by the results
on the GB1(4) dataset in Figure 15, GAMEOPT variations show superior performance compared to
other GP-based baselines. They sample more diverse batches, as given in plots for (15c) sample batch
diversity with respect to past and (15d) previously executed points.

E.11 COMPARISON WITH LATENT SPACE OPTIMIZERS

Our baselines involve acquisition function optimizers which directly operate on large combinatorial
search spaces. While there is a body of work employing latent space optimizers (Gómez-Bombarelli
et al., 2018; Tripp et al., 2020; Deshwal & Doppa, 2021; Maus et al., 2022; Stanton et al., 2022), our
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Figure 15: Performance comparison of GP-based methods on the GB1(4) dataset using expected
improvement (EI) acquisition function and batch size B = 5. In all experiments GAMEOPT with IBR
and HEDGE subroutines discover better and more diverse protein sequences at a much faster rate.

primary focus in this study is to tractably optimize the acquisition function directly on combinatorial
search spaces, addressing the challenge of exhaustive exploration.

However, to provide insight, we compare GAMEOPT against Naïve LSBO-(L-BFGS-B) with second-
order gradient-based optimizer (Gómez-Bombarelli et al., 2018) and LADDER (Deshwal & Doppa,
2021) methods. The comparison, presented in Figure 16, is performed using the (16a,16c) RBF kernel
and (16b,16d) a structure-coupled kernel. The structure-coupled kernel is designed using an RBF
kernel and a sub-sequence string kernel (Moss et al., 2020). Results indicate that GAMEOPT variations
perform significantly better than the considered latent space optimizers. A notable limitation of latent
space optimizers is their dependence on a decoder. In our experiments, we trained a transformer-based
decoder using ESM-1v feature embeddings (Meier et al., 2021), employing beam search for sequence
generation. In contrast, our GAMEOPT approach does not require such an additional decoder and
directly optimizes over the sequence space efficiently.
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Figure 16: Performance comparison of GAMEOPT against latent space optimizers: Naïve LSBO-
(L-BFGS-B) (Gómez-Bombarelli et al., 2018) and LADDER (Deshwal & Doppa, 2021) methods
under GB1(4) domain with batch size B = 5, using kernels: RBF and structure-coupled kernel (Moss
et al., 2020). Latent space optimizers perform poorly mainly because they rely on a decoder, which
GAMEOPT variations eliminate and directly (tractably) optimize over combinatorial space.
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E.12 EXPLORING PLAYERS’ WITH DIFFERENT ACTION SET SIZES (DIMENSIONS)

In our main experiments presented in Section 5.4, as well as the grouping of players explored in
Appendix E.6, we exclusively examined scenarios where GAMEOPT players have an equal number of
actions, i.e. | X (i) | are same for all i. In the context of protein design, this corresponds to the setting
where players are responsible for an equal number of sites. However, GAMEOPT can also be applied
to the setting where players have different numbers of actions, i.e. | X (i) | differ among players.

To demonstrate the generalizability of GAMEOPT to such settings, we further experiment on
settings with player groupings, where each group is responsible for a different number of protein
sites. Particularly, we consider site groupings: {(0, 12), (1, 02), (2, 01)} for the Halogenase problem
domain. Whereas we consider groupings: {(0, 123), (1, 023), (2, 013), (3, 012)} for the GB1(4)
domain. For instance, the setting (0, 12) means that the first player is responsible for site {0} and the
other one for {1, 2}, which makes their action size as X (i=1) = 20,X (i=2) = 202.

The experiment results presented in Figure 17 show that there is no significant performance difference
between individual players and player grouping settings with varying action set sizes, however, in
most of the settings GAMEOPT groupings outperform GP-UCB baseline. This clearly demonstrates
the applicability of GAMEOPT framework under problem domains with unequal action set sizes.
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(a) GAMEOPT-HEDGE on GB1(4).
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(c) GAMEOPT-HEDGE on Halogenase.
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(d) GAMEOPT-IBR on Halogenase.
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Figure 17: GAMEOPT-HEDGE and GAMEOPT-IBR performance under player groupings with differ-
ent action sizes, on GB1(4) and Halogenase domains, 18 reps. There is no significant performance
difference between individual players and player grouping settings, however, in most of the settings
GAMEOPT groupings outperform the GP-UCB baseline. The results support that GAMEOPT is also
effective under problem settings with varying action (dimension) sizes.
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E.13 COMPARISON WITH HIGH-DIMENSIONAL BO METHODS ON 25D-PESTCONTROL

As discussed in Section 3.2, the combinatorial BO methods can be categorized into two: (1) the
methods directly focus on surrogate modeling with categorical variables, and (2) the methods
addressing acquisition function optimization within discrete search spaces. Since our proposed
approach GAMEOPT falls into the second category, we identified our baselines from methods that
directly target acquisition function optimization over large combinatorial search spaces.

However, only to provide an intuition against the category of methods that target surrogate modeling
with discrete variables, we compare GAMEOPT against Bounce (Papenmeier et al., 2023) and BODi
(Deshwal et al., 2023) on a synthetic benchmark problem: 25D-PestControl (Oh et al., 2019). The
25D categorical pest control problem has 25 categorical variables (called stations) with each variable
having 5 possible actions {1, 2, . . . , 5}. The goal is to find the optimal configuration for each of the
25 stations that minimizes the combination of total cost and spread of the pest.

Note that Bounce and BODi methods use local search from randomly generated initial conditions to
maximize the acquisition function. Whereas, in our study, we target tractable acquisition function
optimization with optimistic games. Hence, we integrate GAMEOPT-IBR and GAMEOPT-HEDGE
into Bounce’s acquisition function optimization subroutine. We followed the similar setup used in
(Papenmeier et al., 2023; Deshwal et al., 2023), considered 5 training points to initialize GP surrogate,
and performed 200 BO iterations.

The experiment results summarized in Figure 18 show that GAMEOPT integration outperforms the
baselines by achieving faster convergence to solutions (station configurations) with lower objective
values. This additional analysis highlights that (1) GAMEOPT is generalizable to other problem
domains, although protein design is an intriguing use case, (2) GAMEOPT can be integrated with
other combinatorial BO methods and improve their performance.

0 50 100 150 200
Iterations

12

13

14

15

16

17

Objective Value

GameOpt-IBR GameOpt-Hedge Bounce BODi

Figure 18: GAMEOPT performance against Bounce (Papenmeier et al., 2023) and BODi methods
(Deshwal et al., 2023) on the 25D-PestControl problem. The results show that both GAMEOPT-
HEDGE and GAMEOPT-IBR integration outperforms these methods, by achieving faster convergence
to the solution with minimum objective value (under minimization objective).
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