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Abstract
The ability of zero-shot translation emerges when
we train a multilingual model with certain transla-
tion directions; the model can then directly trans-
late in unseen directions. Alternatively, zero-
shot translation can be accomplished by pivot-
ing through a third language (e.g., English). In
our work, we observe that both direct and pivot
translations are noisy and achieve less satisfactory
performance. We propose EBBS, an ensemble
method with a novel bi-level beam search algo-
rithm, where each ensemble component explores
its own prediction step by step at the lower level
but all components are synchronized by a “soft
voting” mechanism at the upper level. Results
on two popular multilingual translation datasets
show that EBBS consistently outperforms direct
and pivot translations, as well as existing ensem-
ble techniques. Further, we can distill the ensem-
ble’s knowledge back to the multilingual model
to improve inference efficiency; profoundly, our
EBBS-distilled model can even outperform EBBS
as it learns from the ensemble knowledge.

1. Introduction
Machine translation is a widely applicable NLP task that
aims to translate a text from a source language to a target
language (Brown et al., 1990; Bahdanau et al., 2015). The
Transformer architecture (Vaswani et al., 2017) and pre-
trained large language models (Radford et al., 2019; Lewis
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et al., 2020) have largely improved translation performance,
especially in the supervised setting (Raffel et al., 2020),
where a model can learn from large volumes of parallel cor-
pora. However, machine translation remains challenging for
low-resource languages, because there are not enough data
for large neural networks to learn these languages (Radford
et al., 2019; Muennighoff et al., 2023).

We specifically focus on multilingual translation in the zero-
shot setting, where the system is required to translate be-
tween unseen language pairs. Since collecting parallel data
and training individual models for every translation pair
are prohibitively expensive, it is common to build a sin-
gle multilingual system (Johnson et al., 2017; Fan et al.,
2021) that can perform translation for all language pairs,
most of which are zero-shot translation directions that do
not involve a high-resource language (e.g., English). These
models work by prepending a language-indicator token; the
zero-shot translation ability emerges as the model gener-
alizes from trained language pairs and is able to perform
direct translation for unseen ones (Liu et al., 2021; Wicks
& Duh, 2022). The main drawback of such multilingual
models is that they are noisy in the zero-shot setting due to
the lack of supervision, and as a result, they tend to gener-
ate low-quality translations (Zhang et al., 2020; Liu et al.,
2021).

Alternatively, zero-shot translation can be performed by
pivoting (Wu & Wang, 2007; 2009), where the model first
translates the input into a high-resource language such as
English, which is then translated to the target language.
However, pivoting requires two translation steps, often lead-
ing to an accumulation of errors (Babych et al., 2007; Gu
et al., 2019).

In this paper, we propose an ensemble approach that aggre-
gates direct and pivot translations in order to build a stronger
multilingual translation model from weak ones. Building
an ensemble for text generation is nuanced as it involves a
sequence of word predictions. Word-level ensembles aggre-
gate predictions at each generation step, which is usually
achieved by averaging the predicted probabilities (Sennrich
et al., 2016a; Freitag et al., 2017; Shanbhogue et al., 2023).
This may not be ideal for zero-shot translation as the predic-
tions are too noisy, making the averaged probabilities overly
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smooth. On the other hand, minimum Bayes risk decod-
ing (MBR, Bickel & Doksum, 2015) can be considered a
sequence-level voting ensemble, but existing MBR methods
are only able to select from weak and noisy candidates given
by the direct and pivot translations.

To this end, we propose an ensemble decoding algorithm
with bi-level beam search (EBBS). Our EBBS performs two
levels of beam search at each generation step: at the lower
level, beam search is applied individually to each ensemble
component; at the upper level, the ensemble maintains a
shared beam by voting and synchronizing the candidates
(sub-sequences) in lower-level beams. Unlike word-level
ensembles (Freitag et al., 2017; Shanbhogue et al., 2023),
EBBS does not average the predicted distributions, encour-
aging individual predictors to explore their own preferences;
unlike sequence-level MBR ensembles (Kobayashi, 2018;
Eikema & Aziz, 2020), EBBS does not select from a can-
didate set, and thus is more flexible since votings are per-
formed throughout the generation process.

We conducted experiments on IWSLT (Cettolo et al., 2017)
and Europarl (Koehn, 2005), two popular multilingual
datasets for zero-shot machine translation. Results show that
EBBS can generate high-quality translations and outperform
existing ensemble techniques. In addition, we used EBBS-
generated data for distillation to further improve the multi-
lingual model. The experiment shows that such a distilling
process encourages the model to learn from high-quality
translations produced by EBBS, allowing it to outperform
EBBS with no inference overhead compared with direct
translation.

2. Related Work
Machine translation. In NLP, machine translation is a long-
standing task that aims to rewrite text from one language
to another without changing the meaning. Traditional re-
search in translation has been mainly centered on the super-
vised setting, utilizing manually crafted rules (Forcada et al.,
2011; Dugast et al., 2007) and statistical methods (Brown
et al., 1990; Koehn, 2009); more recently, neural machine
translation systems have considerably improved the perfor-
mance (Vaswani et al., 2017; Raffel et al., 2020). However,
translation remains challenging for low-resource languages,
where neural models do not have enough parallel data to
train on.

Translation for low-resource languages largely relies on
zero-shot techniques, where no parallel text is available for
a particular translation direction. In general, zero-shot trans-
lation can be accomplished in a monolingual or multilingual
setting. With monolingual data, the most common approach
is to build language-specific autoencoders that share the
same latent space of semantics; translation is then achieved

by plugging in the decoder of the desired language (Lample
et al., 2018a;b; Mohiuddin & Joty, 2020).

In this paper, we focus on the multilingual setting, where
one model can translate between multiple languages (Dabre
et al., 2020). Usually, parallel texts only exist for a high-
resource language such as English, leaving translations be-
tween low-resource languages zero-shot (e.g., Italian to
Dutch) (Johnson et al., 2017; Fan et al., 2021). In this set-
ting, the most common approach is to train the multilingual
model on English-centric data, and the zero-shot translation
ability naturally emerges during the training process (John-
son et al., 2017; Scao et al., 2022).

A key challenge for multilingual models is task interfer-
ence, where too many languages tend to degrade model
performance (Zaremoodi et al., 2018; Wang et al., 2020).
As a result, research in this direction has been alleviat-
ing such interference by developing various parameter-
separation schemes (Baziotis et al., 2022; Chronopoulou
et al., 2023) and using gradient-based methods to update
language-specific parameters (Wang & Zhang, 2022; He
et al., 2023). In our work, we use a standard Transformer
model following (Johnson et al., 2017) and (Liu et al., 2021).
Our proposed ensemble algorithm EBBS is compatible with
the above approaches, as it is agnostic to model architec-
tures.

Ensemble methods. In a model ensemble, multiple ma-
chine learning systems are integrated so as to form a stronger
one (Dong et al., 2020; Yang et al., 2023). Bagging, a classic
ensemble technique, works by training multiple models with
different portions of data and combining their predictions
through averaging or voting (Breiman, 1996; Bühlmann &
Yu, 2002). Another popular ensemble approach is boost-
ing, where different models are trained sequentially, with
each subsequent model addressing the mistakes of the pre-
vious ones (Schapire, 2003; Hastie et al., 2009; Natekin &
Knoll, 2013). Unfortunately, bagging and boosting are not
compatible with our setting, because we build an ensemble
with a single model. Alternatively, stacking combines the
outputs by training a meta-model (Wolpert, 1992; Ganaie
et al., 2022), but this does not apply to our zero-shot setting
either because we do not have groundtruth signals to train
the meta-model. Even though these ensemble techniques
may be applied to supervised text generation (Freitag et al.,
2017; Kobayashi, 2018; Hendy et al., 2021), they are still
not ideal as they do not take advantage of the sequential
nature of sentences.

Unlike previous work, our EBBS performs bi-level beam
search, exploring different components’ own predictions and
synchronizing them by a “soft voting” mechanism at every
step. Our approach is specifically suited to the sequence
generation process.
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3. Approach
In this section, we first explain our ensemble components
in §3.1. In §3.2, we propose EBBS, a novel ensemble de-
coding algorithm. Finally, we describe in §3.3 knowledge
distillation with EBBS-decoded outputs for efficiency con-
siderations.

3.1. Ensemble Components

In this work, we focus on zero-shot multilingual machine
translation, which requires a system to perform translations
for multiple languages, where some translation directions
are unseen.

Specifically, our multilingual model is an encoder–decoder
Transformer with a byte pair encoding tokenizer (Sennrich
et al., 2016b) shared among all languages. The encoder
can capture the semantics of tokens in different languages,
whereas the decoder translates the encoded text into the
desired language based on a target-language indicator to-
ken (Johnson et al., 2017; Fan et al., 2021).

We follow the standard English-centric training (Johnson
et al., 2017; Liu et al., 2021), where the multilingual model
is trained using parallel data with English on one side (e.g.,
German-to-English and English-to-Romanian). As men-
tioned in §1, the zero-shot ability emerges during such
training, and the model is able to perform direct trans-
lation between unseen language pairs (e.g., German-to-
Romanian) (Dabre et al., 2020; Ranathunga et al., 2023). An
alternative approach is pivot translation, where the multilin-
gual model performs two translations using a high-resource
language as a pivot (e.g., first translating German to English,
and then English to Romanian).

However, both direct and pivot translations have major weak-
nesses: the quality of direct translation tends to be low due
to the lack of parallel data, whereas pivot translation suf-
fers from error accumulation as it requires two translation
steps (Babych et al., 2007; Gu et al., 2019).

In this paper, we would like to build an ensemble of direct
and pivot translations to boost translation quality, where
each translation path results in an ensemble component.
Commonly used ensemble methods such as averaging and
voting may not work well for text generation. Voting, for
example, chooses the most voted prediction, but in text gen-
eration, the components’ votes often do not share anything
in common, because there could be tens of thousands of to-
kens in the vocabulary. An averaging ensemble, on the other
hand, averages the predicted distributions of all components,
potentially leading to an overly smooth distribution. As
reported in a pilot study in the appendix of (Fan et al., 2021),
a multilingual averaging ensemble only achieves a small
improvement of 0.2 BLEU points over direct translation.
Overall, ensemble methods have not been widely explored
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Figure 1. Illustration of our EBBS algorithm.

for zero-shot multilingual translation in previous literature.

3.2. Our Proposed EBBS Algorithm

We propose an ensemble with bi-level beam search (EBBS),
a novel decoding algorithm that enables different ensemble
components to collaborate and vote on each other’s partial
generations with two levels of beam search.

At the lower level, each ensemble component performs
beam search individually, exploring its own preferred re-
gions of the sentence space. At the upper level, EBBS
synchronizes the lower-level beam candidates through a vot-
ing mechanism, only keeping the most promising partial
generations in a shared, upper-level beam. This allows the
ensemble components to vote out spurious partial candidates
and improve zero-shot translation performance.

Concretely, we assume there are K ensemble components
p1, · · · , pK , each predicting the probability of the next word
given some prefix.

For the 0th decoding step, EBBS initializes the upper-level
beam by B0 = ⟨BOS, 1⟩, suggesting that a sequence is
forced to start with a special beginning-of-sequence token
BOS with probability 1.

For step t, each ensemble component performs lower-level
beam search individually, based on the prefixes in the last
step’s shared beam Bt−1:

Bt,k = top-Z{ ⟨y1:t−1 ⊕ y, p · pk(y|y1:t−1,x)⟩ :
⟨y1:t−1, p⟩ ∈ Bt−1, y ∈ V } (1)

for k = 1, · · · ,K. Here, top-Z selects Z-many sequences
with the highest probabilities, ⊕ represents string concate-
nation, V is the vocabulary, and pk(y|y1:t−1,x) is the kth
ensemble component’s predicted probability at step t given
the prefix y1:t−1 and input x.

At the upper level, EBBS synchronizes the lower-level indi-

3



Submission and Formatting Instructions for ICML 2024

vidual beams Bt,k, for k = 1, · · · ,K, into a shared, upper-
level beam through a soft-voting mechanism, where the
candidate set Ct is the union of the sequences in lower-level
beams:

Ct =
⋃

k
{y : ⟨y, p⟩ ∈ Bt,k} (2)

We evaluate each candidate in Ct and compute its overall
vote as the sum of the probabilities.

Bt = top-Z

{〈
y,

∑
k: k=1,··· ,K

⟨y′,p⟩∈Bt,k: y′=y

p

〉
: y ∈ Ct

}
(3)

In this way, the upper level synchronizes all ensemble com-
ponents with the shared beam Bt for the next step of gener-
ation.

Intuitively, our voting scheme gives an ensemble component
Z-many votes, each weighted by the predicted probability.
The votes (probabilities) are then tallied (summed) for each
candidate to form the upper-level beam. Our bi-level beam
search terminates when we have Z-many terminated se-
quences in the shared beam, and returns the sequence with
the highest score1 as the ensemble output. We provide the
detailed pseudocode for EBBS in Algorithm 1 and an illus-
tration in Figure 1.

Discussion. As shown in Algorithm 2 (Appendix B),
traditional beam search keeps a fixed-size beam of high-
likelihood partial sequences. To build an ensemble with mul-
tiple predictors, it is tempting to directly average their prob-
abilities p(y|x) = 1

K

∑K
k=1 pk(y|x) as the score for beam

search (Line 8, Algorithm 2), which has been experimented
in previous work (Sennrich et al., 2016a; Shanbhogue et al.,
2023).

However, our intuition suggests that such an approach may
suffer from the over-smoothing problem (Wei et al., 2019;
Wen et al., 2023b): when multiple translations (known as
modes) are plausible given an input, the ensemble process
will overly smooth out the modes by probability averaging.

By contrast, EBBS allows each ensemble component to ex-
plore its own mode (Lines 4–11, Algorithm 1). In Figure 1,
for example, the top sequence yields two plausible next to-
kens, suggested by each component in the lower level; their
probabilities are not smoothed out in our approach, unlike
averaging ensembles. The upper level performs soft vot-
ing (Lines 12–19, Algorithm 1) so as to maintain tractable
inference.

1For selecting the final output, we follow standard implementa-
tions and normalize the joint probability by length, i.e., taking the
geometric mean of step-wise probabilities (Wolf et al., 2019; Ott
et al., 2019). Otherwise, beam search algorithms are often biased
towards short sequences (Meister et al., 2020).

3.3. EBBS-Based Distillation

Algorithm 1 Our EBBS Algorithm
Input: x: input sentence; Z: beam size
K: number of scorers; p1, · · · , pK : scorers

1 H ← ∅ ▷ candidate outputs
B0 ← {⟨BOS, 1⟩} ▷ upper-level beam
for t = 1, 2, · · · do

2 ▷ lower: individual beam search
for ⟨y1:t−1, p⟩ ∈ Bt−1 do

3 for k = 1, · · · ,K do
4 Bt,k ← ∅ ▷ lower-level beam

for y ∈ V do
5 p′ ← pk(y|y1:t−1,x)

Bt,k. add(⟨y1:t−1 ⊕ y, p · p′⟩)
6 Bt,k ← Bt,k. top(Z)

7 ▷ upper: beam synchronization
D ← empty dictionary
for k = 1, · · · ,K do

8 for ⟨y, p⟩ ∈ Bt,k do
9 if y ∈ D then

10 D[y]← p+D[y]
11 else
12 D[y]← p

13 Bt ← D. top(Z)
▷ check for termination
for ⟨y, p⟩ ∈ Bt do

14 if yt = EOS then
15 H. add(⟨y, p⟩)

if |H| = Z then
16 return H. top(1)

To improve inference efficiency, we perform knowledge
distillation based on the outputs of our EBBS algorithm.
In particular, we follow (Kim & Rush, 2016) and apply a
sequence-level knowledge distillation loss, treating the out-
put ŷ of our ensemble (serving as a teacher) as the pseudo-
groundtruth for finetuning the multilingual translation model
(serving as a student):

LKD = −
|ŷ|∑
t=1

log p(ŷt|ŷ1:t−1,x) (4)

Our distilling method is an ensemble-then-distill process.
This differs from a straightforward practice of multi-teacher
distillation, where the student learns from the union of teach-
ers’ outputs (Wu et al., 2021). The commonly applied
cross-entropy loss is known to yield overly smooth dis-
tributions (Wen et al., 2023a;b), and the problem becomes
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more severe with multiple teachers, leading to less satisfac-
tory performance of union distillation (Shayegh et al., 2024).
On the contrary, our approach provides the student with a
consolidated pseudo-groundtruth translation, causing less
confusion during the distillation process especially when
teachers disagree.

4. Experiments
4.1. Settings

We evaluated EBBS on two popular benchmark datasets for
zero-shot machine translation: IWSLT (Cettolo et al., 2017),
which contains 4 languages (with English) and 6 zero-shot
directions; and Europarl v7 (Koehn, 2005), which contains
9 languages and 56 zero-shot directions.

We used BLEU scores (Papineni et al., 2002) (in par-
ticular, SacreBLEU (Post, 2018)) as our main evalua-
tion metric,2 which is one of the most widely used met-
rics for translation (Fan et al., 2021; Scao et al., 2022).
For in-depth analyses, we further adopted other popular
translation metrics, including the character-level n-gram
F score (chrF2++) (Popović, 2017), the translation edit
rate (TER) (Snover et al., 2006), and a more recent, neural
network-based metric called COMET (Rei et al., 2020).

We replicated (Liu et al., 2021) and trained a multilingual
translation system as our base model. Specifically, the neu-
ral architecture in (Liu et al., 2021) is a 5-layer encoder–
decoder Transformer for IWSLT, but has 8 layers for Eu-
roparl to accommodate more training data and languages.
Appendix C provides additional experimental details.

For EBBS, we used a beam size of five for both upper- and
lower-level beams. In our experiment, we implemented
standard beam search for comparison, where we also used a
beam size of five, following the common practice (Meister
et al., 2020). A comprehensive beam analysis can be found
in Appendix D.

4.2. Competing Methods

We comprehensively compare our EBBS with direct/pivot
translation and other ensemble methods.

Direct/pivot translation. For direct translation, we applied
beam search on the multilingual model to translate in unseen
directions. For pivot translation (Wu & Wang, 2007; 2009;
Vamvas & Sennrich, 2022), we used English as the pivot
because we have parallel data for translations both from and
to English.

2We use BLEUn to denote the n-gram overlap and BLEU
to denote the brevity-penalized geometric mean of BLEUn for
n = 1, · · · , 4. The exact evaluation scripts are available in our
codebase (Footnote 1).

Word-level averaging ensemble. Averaging is one of
the most widely used ensemble techniques in text genera-
tion (Sennrich et al., 2016a; Freitag et al., 2017; Shanbhogue
et al., 2023). Essentially, the ensemble components’ prob-
abilities are first averaged before being fed to the standard
beam search (Algorithm 2).

Word-level voting ensemble. The voting ensemble, com-
mon in classification tasks, picks the output class based
on the number of votes from ensemble components (given
by argmax). However, voting is not common in text gen-
eration, because argmax may select completely different
words by the ensemble components due to the large vocabu-
lary size, making voting ineffective. As a remedy, we pick
the word by the highest probability when there is a tie for
votes.

Sequence-level voting ensemble. Minimum Bayes risk
(MBR) decoding is originally designed as a single-model
decoding algorithm, where it selects a sequence from a
set of beam search results based on similarity (Eikema &
Aziz, 2020; Müller & Sennrich, 2021). Here, we use it as a
sequence-level ensemble technique, where the candidates
are the output sequences from different ensemble compo-
nents. Let C = {y1, · · · ,yK} be the set of candidate
outputs given by K ensemble components. The best output
is selected as

y∗ = argmax
y∈C

∑
y′∈C\{y}

BLEU(y,y′) (5)

where BLEU(h, r) computes the BLEU score between a
hypothesis h and a reference r. In essence, MBR selects
an output that resembles others most, using BLEU as the
similarity metric.

4.3. Results and Analysis

Main results. Our experiment starts by a replication of
the base multilingual model (Liu et al., 2021). As shown in
Rows 1–2, Table 1, the results are generally close, indicating
that our replication is successful and ready for ensemble
research. Further, we tried English pivoting (Row 3), a
common zero-shot translation method. In our experiments,
we find that it does not outperform direct translation, as
pivoting methods may suffer from the error accumulation
problem due to two-step translation.

We then compare different ensemble techniques, including
our proposed EBBS. We notice that IWSLT contains four
languages (with English); thus we have two available pivot-
ing directions (excluding source and target), which, along
with direct translation, are our three ensemble components.
For Europarl, it contains nine languages; for performance
and efficiency concerns (to be shown in Figure 2), we also
consider three translation paths as our ensemble compo-
nents: direction translation, English pivoting, and a second
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IWSLT

# Method Average it-nl it-ro nl-it nl-ro ro-it ro-nl
1 Direct translation (Liu et al., 2021)† 17.7 18.5 17.8 17.9 15.5 19.6 16.8
2 Direct translation (our replication) 17.29 17.46 17.48 18.23 14.63 19.65 16.26
3 Pivoting (en) 16.19 17.49 15.09 16.79 13.05 18.34 16.37
4 Word-level averaging ensemble 16.52 16.48 16.49 17.53 13.80 19.07 15.77
5 Word-level voting ensemble 16.99 17.58 16.38 17.78 14.13 19.21 16.84
6 Sequence-level voting ensemble (MBR) 16.66 16.54 16.51 17.72 13.64 19.58 15.98
7 EBBS (ours) 18.24 19.52 17.09 19.06 14.58 20.75 18.45
8 Direct w/ EBBS distillation (ours) 18.92 19.86 18.80 19.73 15.39 21.23 18.48

Europarl

# Method Average da-de da-es da-fi da-fr da-it da-nl da-pt
1 Direct translation (Liu et al., 2021)† 26.9 24.2 33.1 18.1 30.6 26.1 26.3 29.9
2 Direct translation (our replication) 27.74 26.24 33.64 18.95 31.01 26.58 27.36 30.38
3 Pivoting (en) 27.67 25.15 33.79 18.63 31.45 27.12 26.71 30.82
4 Word-level averaging ensemble 27.76 26.21 33.64 18.88 31.09 26.71 27.40 30.37
5 Word-level voting ensemble 27.75 25.93 33.90 18.47 31.29 27.08 26.74 30.84
6 Sequence-level voting ensemble (MBR) 27.85 25.88 33.93 19.10 31.47 27.12 26.98 30.49
7 EBBS (ours) 28.36 26.32 34.28 19.43 31.97 27.67 27.78 31.08
8 Direct w/ EBBS distillation (ours) 28.54 26.75 34.68 19.89 32.00 27.69 27.61 31.19

Table 1. Main results of BLEU scores on IWSLT and Europarl. The best results are in bold; the second best results are underlined. †

indicates cited results; others were obtained by our experimentation.

pivot.3

We study the common ensemble technique of word-level
averaging (Row 4), which has been used in previous trans-
lation research (Freitag et al., 2017). As we can see, the
averaging ensemble performs worse than direct translation
on IWSLT, but is slightly better on Europarl. Our zero-shot
results are different from (Freitag et al., 2017), which shows
a word-level averaging ensemble of random seeds can im-
prove performance in the supervised setting. This is because
models trained with different random seeds exhibit similar
behavior, and averaging their probabilities achieves a de-
noising effect. However, our ensemble components differ
drastically in terms of their strengths and expertise due to
the different translation paths (direct and pivot translations).
Thus, word averaging fails to improve translation quality in
our setting.

Alternatively, voting ensembles can also be applied, at either
the word level or the sequence level. As seen, word-level
voting is not effective, as it does not achieve significant
improvements (Row 5). This is expected because the voted
words (top predictions) by the ensemble components may
not overlap due to the large vocabulary size. In such cases,
the algorithm defaults to choosing the word with the highest
probability, causing the ensemble to follow the most peaked
distributions.

Sequence-level voting should also be done in a soft manner,
and minimum Bayes risk (MBR) decoding can be thought
of as using a Bayes risk to softly “vote” the candidate out-
puts. As seen from Row 6, such a method works relatively
well on Europarl, achieving the second-highest performance

3We use the first available language in the order of Spanish,
German, and French. For example, Spanish-to-German translation
will have to use French as the pivot. These languages are chosen
because they have the most content on the Internet according
to the Web Technology Surveys (https://w3techs.com/
technologies/overview/content_language).

Dataset Method Avg. BLEU Wins Losses

IWSLT Direct 17.29 2 4
Ensemble 18.24 4 2

Europarl Direct 27.85 4 52
Ensemble 28.44 52 4

Overall Direct 26.83 6 56
Ensemble 27.45 56 6

p-value 3e-11

Table 2. Pairwise comparison on all 66 zero-shot directions in both
datasets. The p-value is given by a two-sided binomial test.

across all ensemble methods; however, it works poorly on
the IWSLT dataset. The main drawback of sequence-level
voting is that it can only select one of the ensemble compo-
nents’ output. This may not work well when the individual
ensemble components are weak, especially with the small
IWSLT dataset. Such a selective sequence-level ensemble
cannot integrate different expertise of its components during
generation.

Unlike existing ensemble methods, our EBBS algorithm
achieves higher performance in most directions on both
datasets. Noticing that Europarl contains 56 zero-shot di-
rections, we could only present in Table 1 the first seven
directions based on the order provided by the dataset, due
to the space limit. Table 2 further shows a pairwise com-
parison against direct translation (a strong baseline in our
experiment) in all zero-shot directions. As seen, EBBS
achieves higher performance in 56 out of 62 cases across
two datasets, showing strong statistical evidence for its ef-
fectiveness, with a p-value of 3e-11 in a two-sided binomial
test.

We also evaluate EBBS-based distillation (Row 8, Table 1).
Again, since Europarl has 56 zero-shot directions, we fol-
low the standard practice (Fan et al., 2021) and select a
subset of directions, namely, Danish to other languages, to
save computational cost. As seen in Row 8, EBBS-based
distillation consistently achieves the highest performance
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Dataset Method BLEU↑ BLEU1↑ BLEU2↑ BLEU3↑ BLEU4↑ chrF2++↑ TER↓ COMET↑

IWSLT

EBBS 19.52 51.87 25.12 13.88 8.02 45.63 71.36 0.7341

Direct
Translation

No distillation 17.46 50.49 23.01 12.01 6.66 43.73 72.02 0.7088
Direct distillation 18.10 50.37 23.53 12.63 7.17 44.48 72.86 0.7144
Union distillation 17.80 49.21 23.01 12.51 7.10 44.93 75.92 0.7221
EBBS distillation 20.13 53.20 26.06 14.33 8.26 46.46 69.28 0.7428

Europarl

EBBS 26.10 57.07 31.00 19.76 13.28 52.75 65.63 0.8340

Direct
Translation

No distillation 25.33 56.32 30.08 19.01 12.78 52.32 66.56 0.8276
Direct distillation 25.44 56.54 30.28 19.13 12.79 52.61 66.34 0.8286
Union distillation 25.53 56.58 30.34 19.18 12.91 52.63 66.27 0.8282
EBBS distillation 25.92 56.76 30.68 19.57 13.24 52.73 66.04 0.8307

Table 3. Comparison of various distilling methods for Italian-to-Dutch translation. ↑/↓The higher/lower, the better.

in all directions (except for Danish-to-Dutch translation).
This shows that an EBBS-distilled model can outperform
EBBS, which is not surprising because learning can smooth
out the noise of various heuristics (Deshmukh et al., 2021;
Jolly et al., 2022), such as the ensemble algorithm in our
scenario. Importantly, EBBS-based distillation achieves
significantly higher translation quality with no inference
overhead compared with direct translation.

Distillation analysis. We compare EBBS-based distillation
with other distilling methods. Here, we only focus on Italian-
to-Dutch4 translation to save computational cost.

In particular, we consider two alternative distilling methods:
direct and union distillation. Direct distillation finetunes the
multilingual model with its own predictions based on direct
translation. Union distillation, on the other hand, takes the
union of the teachers’ outputs (direct and pivot translations)
for training, which is under a controlled experimental setup,
because it uses exactly the same translation paths as our
EBBS-based distillation.

As seen in Table 3, both direct and union distillation
marginally improve the performance compared with no dis-
tillation. Intriguingly, learning from the union of multiple
teachers is not necessarily better than learning from the best
teacher (namely, direct translation). This is because mul-
tiple teachers may provide conflicting training signals and
confuse the student model.

On the contrary, our EBBS-based distillation consistently
outperforms direct and union distillation on both datasets.
This shows that our ensemble-then-distill approach is able
to consolidate the knowledge of multiple teachers to better
train the student model.

Analysis of voting methods in EBBS. In our EBBS algo-
rithm, the lower-level beams are synchronized into a shared
upper-level beam by voting. Specifically, EBBS uses a

4We could only afford one translation direction for this analy-
sis, because we need to train different models for all competing
distilling methods. This differs from Table 1, where we follow
previous work and perform EBBS-based distillation for Danish
to other languages. We chose Italian-to-Dutch translation here,
because it is the first one in IWSLT, conveniently also available in
Europarl.

mechanism of top-Z sum voting, where we add the en-
semble components’ probabilities for each appearance of a
candidate in the lower-level beam, shown in Eqn. (3). Here,
we analyze a few alternative voting methods for EBBS.

If EBBS adopts total-sum voting, it still uses lower-level
beams to find candidates, but adds all components’ proba-
bilities together. This is equivalent to applying the common
averaging ensemble to the top-Z candidates. However, it
differs from our approach, because in total-sum voting, a
component will vote even if the candidate does not appear
in its own lower-level beam; the probability after voting in
Eqn. (3) is substituted with 1

K

∑
k pk(y|x). As shown in

Table 4, EBBS with total-sum voting performs worse than
direct translation, suggesting the importance of ignoring the
components whose lower-level beam does not contain the
candidate. This is analogous to nucleus sampling (Holtzman
et al., 2019), where the long tail of a distribution is mainly
noise and should be ignored.

Other voting schemes that EBBS may use include 0/1 vot-
ing and max voting. The former selects the candidates that
appear most in the lower-level beams, disregarding the prob-
ability values (unless for ties); the latter chooses the maxi-
mum probability across the lower-level beams, which gives
preference to sequences through a maximization bias (Has-
selt, 2010; van Hasselt et al., 2016). As seen, EBBS per-
forms relatively well with both of these voting schemes,
achieving a decent improvement over the baseline approach;
however, their performance is worse than our top-Z sum
voting.

Overall, the proposed bi-level beam search ensemble is
effective with different voting schemes (except for the total-
sum voting), and our top-Z sum voting works the best
among these variants.

Analysis of ensemble components. In Table 5, we analyze
the ensemble components to better understand our ensemble
technique for zero-shot machine translation. As seen, di-
rect translation is an effective approach, which is consistent
with previous literature (Fan et al., 2021; Liu et al., 2021).
English pivoting achieves higher performance for some met-
rics but lower for others; it is not conclusively better than
direct translation, probably because of the error accumu-

7



Submission and Formatting Instructions for ICML 2024

Voting scheme BLEU↑ BLEU1↑ BLEU2↑ BLEU3↑ BLEU4↑ chrF2++↑ TER↓ COMET↑

None (beam search) 25.33 56.32 30.08 19.01 12.78 52.32 66.56 0.8276
Total-sum 25.27 56.67 30.27 19.07 12.65 52.19 66.12 0.8311
Max 25.81 56.89 30.76 19.51 13.09 52.46 65.92 0.8300
0/1 25.84 56.99 30.78 19.49 13.05 52.61 65.80 0.8322
Top-Z sum (ours) 26.10 57.07 31.00 19.76 13.28 52.75 65.63 0.8340

Table 4. Comparison of different ensemble variants, using Italian-to-Dutch translation in the Europarl dataset as the testbed.

Method BLEU↑ BLEU1↑ BLEU2↑ BLEU3↑ BLEU4↑ chrF2++↑ TER↓ COMET↑

Direct translation 25.33 56.32 30.08 19.01 12.78 52.32 66.56 0.8276
Pivoting (en) 25.08 56.76 30.29 19.06 12.66 51.92 66.24 0.8322
Pivoting (es) 24.40 55.38 29.08 18.22 12.09 51.71 67.91 0.8192
Pivoting (pt) 24.34 55.46 29.02 18.13 12.02 51.61 67.68 0.8191
Pivoting (fr) 24.20 55.41 29.02 18.00 11.84 51.61 67.84 0.8208
Pivoting (de) 23.65 55.33 28.69 17.67 11.54 50.70 67.89 0.8157
Pivoting (da) 23.12 54.81 27.96 17.12 11.12 50.36 69.00 0.8156
Pivoting (fi) 20.74 53.54 26.10 15.43 9.79 48.11 70.59 0.8051
Our EBBS 26.10 57.07 31.00 19.76 13.28 52.75 65.63 0.8340

Table 5. The performance of direct/pivot translation and our EBBS for Italian-to-Dutch translation on Europarl.

Figure 2. Analysis of the number of ensemble components for
Italian-to-Dutch translation on Europarl.

lation problem. Pivoting through non-English languages
degrades the performance to a large extent because lacking
supervision along the pivoting path leads to two steps of
zero-shot translation. EBBS, on the other hand, combines
the strengths of individual components and consistently out-
performs them in all metrics.

We further study how EBBS performs with different num-
bers of ensemble components. Specifically, we analyze two
incremental ensemble settings: best-to-worst and worst-to-
best. In both cases, we start with direct translation; then we
incrementally add the next “best” or “worst” pivot transla-
tion according to Table 5.

Figure 2 shows the trends of incremental ensembles. If
we add the best pivot directions, the performance peaks at
three ensemble components; interestingly, the inclusion of
weaker components does not affect EBBS much. On the
other hand, adding the worst pivot translation at the begin-
ning leads to an immediate drop of 1.6 BLEU points, which
then largely recovers with the second pivot. This is reason-
able because the worst pivot (Finnish) is 4.6 BLEU points
lower than direct translation, and EBBS cannot decide on
which of the two ensemble components to trust; despite
this, the performance of EBBS is still much better than the
average performance of the components. With a second

pivot, there is a third “opinion” when the first two compo-
nents “disagree.” The performance continues to rise if more
and stronger components are added. In fact, our ensemble
even surpasses the baseline with 4 weakest pivot transla-
tions, each of which is at least 1 BLEU point lower than the
baseline. This demonstrates that EBBS is flexible and works
well with both strong and weak ensemble components.

Additional results. We show additional results in the appen-
dices. D: Analysis of beam size, E: Analysis of inference
efficiency, F: Entropy of distilled models, and G: Case study.

5. Conclusion and Future Work
In this work, we address ensemble-based zero-shot machine
translation by directly translating and pivoting through dif-
ferent languages. We further design a novel bi-level beam
search algorithm (called EBBS) for decoding. We evaluated
EBBS on two popular zero-shot translation datasets, IWSLT
and Europarl. Results show that EBBS outperforms existing
ensemble techniques, and that the high-quality translations
produced by EBBS can be used for distillation to improve
translation efficiency (and sometimes also output quality).

Our EBBS is a general ensemble algorithm that can be
potentially applied to various sequence generation tasks;
however, we limited our scope to zero-shot machine trans-
lation in this paper due to the background of the project.
In the future, we plan to explore EBBS for large language
models (LLMs). Building an ensemble of LLMs encoun-
ters additional challenges because different LLMs tend to
use different tokenizers. We may get inspirations from
semi-CRF (Sarawagi & Cohen, 2004), where different tok-
enizations may be marginalized out during the generation
process.

Limitations. See Appendix A.
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Algorithm 2 Beam Search
Input: x: input sentence

Z: beam size
p: scorer

1 H ← ∅ ▷ candidate outputs
B0 ← {⟨BOS, 1⟩} ▷ beam candidates
for t = 1, 2, · · · do

2 ▷ core of beam search
B ← ∅
for ⟨y1:t−1, p

′⟩ ∈ Bt−1 do
3 for y ∈ V do
4 p′ ← p′ · p(y|y1:t−1,x)

B. add(⟨y1:t−1 ⊕ y, p′⟩)

5 Bt ← B. top(Z)
▷ check for termination
for ⟨y1:t, p

′⟩ ∈ Bt do
6 if yt = EOS then
7 H. add(⟨y, p′⟩)

if |H| = Z then
8 return H. top(1)

A. Limitations
Our work features both algorithmic design and empirical effectiveness, but may also have limitations. A potential threat to
validity is that we mainly used automatic metrics, including BLEU scores (in particular, SacreBLEU), chrF2++, TER, and
COMET. We have not performed human evaluation, due to both practical and ethical concerns. Practically, it is difficult to
find qualified annotators because our multilingual setting requires an annotator to know a large number of languages in
addition to English. Ethically, it is inappropriate to ask annotators to study these languages before or during annotation,
which is exhausting and may last for extended periods of time. That being said, our work uses the most standard metrics,
including both overlapping-based and neural network-based ones. Results are generally consistent in all metrics on both
datasets, with a strong statistical confidence level based on 62 translation directions. Moreover, we have provided detailed
analyses and case studies to further illustrate how our EBBS works. Therefore, we deem our evaluation ethical, appropriate,
and adequate.

B. Beam Search
We show the standard beam search in Algorithm 2 for a comparison with our proposed EBBS. In general, beam search
takes a scorer p as the input and approximately finds the highest-scored sequence, by expanding its search tree with all the
vocabulary (Lines 6–9) but only keeping the top-Z partial candidates (Line 10) at each generation step. Unlike EBBS, beam
search is not specifically designed to work with multiple scorers, and we show in our main analysis that applying beam
search with averaged probabilities of the ensemble components is not an ideal approach for ensemble decoding.

C. Details of Our Experiments
Dataset details. We evaluated our methods using IWSLT 2017 (Cettolo et al., 2017) and Europarl v7 (Koehn, 2005). Table 6
provides a summary of the languages.

The IWSLT 2017 translation dataset features multilingual data derived from TED talks. We followed previous work and
used a standard split for zero-shot evaluation (Dabre & Kurohashi, 2017; Liu et al., 2021). In particular, IWSLT contains
English-centric training data for Italian, Dutch, and Romanian, while evaluation is performed in six zero-shot directions.
IWSLT is a relatively small dataset, which tests our method’s ability to generalize from few languages.
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Lower Upper BLEU↑ BLEU1↑ BLEU2↑ BLEU3↑ BLEU4↑ chrF2++↑ TER↓ COMET↑

1 1 24.98 56.75 30.08 18.84 12.46 51.97 66.13 0.8255
3 3 25.99 57.04 30.92 19.65 13.17 52.65 65.60 0.8326
5 5 26.10 57.07 31.00 19.76 13.28 52.75 65.63 0.8340
7 7 26.10 57.06 30.98 19.74 13.30 52.75 65.69 0.8346
9 9 26.12 57.02 30.99 19.78 13.31 52.79 65.76 0.8352
5 1 25.06 56.70 30.10 18.88 12.49 52.07 66.20 0.8264
5 2 25.63 56.90 30.56 19.29 12.87 52.48 65.92 0.8311
5 3 25.94 56.93 30.87 19.61 13.14 52.69 65.79 0.8330
5 4 26.03 57.02 30.95 19.69 13.21 52.74 65.75 0.8332
5 5 26.10 57.07 31.00 19.76 13.28 52.75 65.63 0.8340

Table 7. Beam size analysis for Italian-to-Dutch translation on the Europarl dataset.

Code Language IWSLT Europarl
da Danish ✓
de German ✓
en English ✓ ✓
es Spanish ✓
fi Finnish ✓
fr French ✓
it Italian ✓ ✓
nl Dutch ✓ ✓
pt Portugese ✓
ro Romanian ✓

Table 6. The languages in the IWSLT and
Europarl datasets.

Europarl is a multilingual dataset crawled from the proceedings of the European
Parliament. We again followed previous work (Liu et al., 2021) and evaluated our
methods with a standard split for the zero-shot setting, containing English-centric
data for eight languages with a total of 56 zero-shot evaluation directions. We
adopted their non-overlapping setting: in the original corpus, a sentence may be
translated into multiple languages, and the non-overlapping setup chooses only
one target translation for each input. This prevents potential data-leaking problems.
Europarl contains more data and languages than IWSLT, which further tests our
method’s ability to generalize across multiple languages.

Implementation details. We directly adopted the neural architecture and hyperpa-
rameters in (Liu et al., 2021). In particular, we used 5- and 8-layer encoder–decoder
models for IWSLT and Europarl, respectively. For both datasets, we had 512 hid-
den units and 8 attention heads. Our BLEU scores are based on SacreBLEU (Post,
2018) with the following specifications: BLEU+case.mixed+numrefs.1+s
mooth.exp+tok.13a+version.1.5.1.

In our presentation of beam search and the proposed EBBS, we describe the scorer as the multiplication of step-wise
probabilities. In implementation, we used the sum of log-probabilities for numerical stability. Moreover, our EBBS is
built on top of the popular fairseq framework (Ott et al., 2019), using their beam search implementation as the backbone.
Consequently, we inherit standard beam search implementation techniques such as length normalization and max length
constraints, which are not detailed in our pseudocode.

D. Analysis of Beam Size
We analyze the effect of different beam sizes on our EBBS algorithm. First, we study the setting where the lower- and
upper-level beam sizes are matched. As seen in the top half of Table 7, the performance tends to increase with a larger beam
size and eventually plateaus at around five, which is consistent with the practice of standard beam search (Meister et al.,
2020).

Further, we analyze the setting where the upper- and lower-level beam sizes are not matched. Generally, the upper-level
beam size should not exceed the lower-level beam size, because otherwise the upper-level beam may not be fully filled by
the ensemble components. As shown in the bottom half of Table 7, EBBS performs better with larger upper-level beam
sizes. This is understandable because a larger upper-level beam allows EBBS to explore more candidates in general.

Overall, our analysis shows that EBBS is robust and works well with a variety of beam sizes. Based on this experiment and
efficiency considerations, we used a beam size of five for both upper- and lower-level beams in our main experiments.

E. Analysis of Inference Efficiency
We analyze the efficiency of our ensemble approach. As seen in Figure 3, the inference scales almost linearly, which is
reasonable as we need to perform inference for all the components. The trend shows that it is computationally feasible to
build an ensemble of even more components.
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Figure 3. Inference time analysis on the test set of Italian-to-Dutch translation from the Europarl dataset. Experiments were conducted on
an AMD EPYC 7313 CPU and an NVIDIA RTX A6000 GPU, with an inference batch size of 300 samples.

Dataset Method BLEU Entropy

IWSLT

EBBS 19.52 -

Direct
translation

No distillation 17.46 2.46
Direct distillation 18.10 1.62
Union distillation 17.80 1.80
EBBS distillation 20.13 1.70

Europarl

EBBS 26.10 -

Direct
translation

No distillation 25.33 2.06
Direct distillation 25.44 1.44
Union distillation 25.53 1.59
EBBS distillation 25.92 1.51

Table 8. Entropy of various distillation techniques on Italian-to-Dutch translation.

Further, the analysis suggests that our EBBS-distilled model achieves a speedup of multiple times compared with EBBS,
because after distillation the model is used by direct translation. This is a significant result, because our EBBS-based
distillation not only speeds up the EBBS ensemble approach, but also retains (if not improving) the translation quality of
EBBS (§4.3).

F. Entropy of Distilled Models
We would like to understand why EBBS-based distillation largely outperforms other methods, such as union distillation
(§4.3). Our hypothesis is that cross-entropy distillation loss with diverse samples may lead to an overly smooth distribution,
which in turn would affect the model performance (Wen et al., 2023b; Shayegh et al., 2024).

We show the average prediction entropy of our distilled models in Table 8. For some input x and generation step t, the
prediction entropy is

H = −
∑
y∈V

p(y|ŷ1:t−1,x) log p(y|ŷ1:t−1,x)

A large entropy generally indicates that the model is less certain, producing a more uniform prediction, whereas a low
entropy indicates that the model is confident, producing a more peaked distribution.

As seen in Table 8, the model without distillation yields the highest entropy, suggesting that it is uncertain about zero-shot
translation probably due to a lack of training signals.

Union distillation trains the model from the union of ensemble components’ outputs. It reduces prediction entropy compared
with no distillation, but due to the nature of cross-entropy loss, it remains the highest among all distillation variants. Direct
distillation is based on direct translation only, reinforcing the model’s current belief and thus producing the lowest entropy.
On the contrary, our EBBS-based distillation achieves a moderate entropy on both datasets.

It should be emphasized that the entropy analysis merely shed light on how different distillation methods behave, but the
entropy itself does not indicate the quality of a model. We quote BLEU scores from Table 3, which has suggested that our
EBBS-based distillation achieves similar or higher performance compared with EBBS, consistently outperforming other
distillation methods.
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G. Case Study
Table 9 shows examples of direct, pivot, and EBBS translations. As seen, pivot and direction translations are prone to
low-quality output, but EBBS enables them to correct each other’s mistakes. In the first example, say, our EBBS generally
follows the sentence structure of direct translation, where the Italian word “divertimento” (fun) is mistranslated to the Dutch
word “ontspanning” (relaxation), but our EBBS corrects it to “plezier” (pleasure), advocated by English pivoting and voted
by all ensemble components.

IWSLT

Input
ho sempre creduto che trasformare la paura in divertimento sia il dono della creatività.
(I have always believed that turning fear into fun is the gift of creativity.)

Reference
Ik heb altijd geloofd dat het omzetten van angst in plezier de gift is van creativiteit.
(I have always believed that turning fear into joy is the gift of creativity.)

Direct translation
Ik geloofde altijd dat het transformeren van angst in ontspanning de gift van creativiteit is
(I always believed that transforming anxiety into relaxation is the gift of creativity.)

English-pivoting
Omdat ik altijd geloofde om angst in plezier te transformeren, is het geschenk van creativiteit.
(Because I always believed to transform fear into pleasure is the gift of creativity.)

Romanian-pivoting
In feite hebben we altijd gedacht dat het transformeren van angst in divergentie de gift van creativiteit is.
(In fact, we have always thought that transforming fear into divergence is the gift of creativity)

EBBS
Ik geloofde altijd dat het transformeren van angst in plezier de gift van creativiteit is.
(I always believed that transforming fear into pleasure is the gift of creativity.)

Europarl

Input
si poteva avvertire una forte tensione.
(a strong tension could be felt.)

Reference
Er was veel spanning zichtbaar.
(There was a lot of tension visible.)

Direct translation
Er was grote spanning te ontgaan.
(There was great tension to be escaped.)

English-pivoting
Er zou veel spanningen kunnen zijn ontstaan.
(A lot of tensions could have arisen.)

Spanish-pivoting
Mocht een sterke spanning kunnen worden aangekondigd.
(Should a strong tension can be announced.)

EBBS
Er was veel spanning geweest.
(There had been a lot of tension.)

Table 9. Case studies, where the source language is Italian and the target is Dutch. We provide English interpretations in (italic) for
non-English text using Google Translate.
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