Under review as a conference paper at ICLR 2026

THINKING WITH TIME SERIES: INTERLEAVED DEEP
THINKING FOR ENHANCED TIME SERIES REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding and reasoning with time series is an important yet unsolved chal-
lenge for multimodal large language models (MLLMs). Current time series
MLLM:s (TS-MLLMs) often struggle with complex tasks due to their overly sim-
plified reasoning process. In this work, we argue that deep thinking is essen-
tial for comprehensively understanding and effectively reasoning over time series.
We present ThinkTime, the first TS-MLLM that supports Interleaved Time series
Chain-of-Thought (iTCoT) with integrated tool calls. In iTCoT, the reasoning
process is interleaved with tool calls, allowing the model to dynamically incor-
porate information from time series slices into its thought process. To enable
comprehensive analysis, the model introduces two fundamental operations, slice
and compare, which are designed to observe detailed and correlation features. To
achieve this, we design a two-stage training process and propose a task-specific
training data construction method based on synthetic data. In the supervised fine-
tuning stage, we use an iTCoT dataset to teach the model how to integrate tool
responses with reasoning processes. Then, in the reinforcement learning stage,
we implement an RL training framework for TS-MLLMSs that supports iTCoT,
improving the model’s reasoning and tool-use abilities. Experiments conducted
on a wide range of real-world time series demonstrate that ThinkTime achieves
substantial improvements in reasoning tasks while maintaining high alignment
between time series and text descriptions.

1 INTRODUCTION

With the demonstrated capabilities of Multimodal LLMs (MLLMSs) in the time series domain, an
increasing number of studies (Jin et al.,|2023; |Wang et al.| 2025a; |Gruver et al., [2024) have adopted
these models for time series analysis. Among various tasks, time series understanding and reasoning
have received significant attention (Xie et al.,|2025;|Wang et al.| 2025¢} Liu et al.,|2025a; |[Kong et al.,
2025a). They take text and time series data as input, and answer user questions in text form through
multimodal understanding and reasoning. However, Time Series MLLMs (TS-MLLMs) are still
in the early stage of exploration, especially those involving complex reasoning tasks (Kong et al.,
2025b;Jin et al.L[2024)). To address this gap, several recent works have introduced deep thinking (i.e.,
long-CoT) into TS-MLLM for other applications such as forecasting (Luo et al.,|2025)). While these
approaches explore the advantages of deep thinking for time series, deep thinking for time series
understanding and reasoning has not been studied. Furthermore, existing studies that combine deep
thinking with TS-MLLMSs are limited to text-only chain-of-thought (CoT) approaches, restricting
their ability to perform detailed reasoning about time series.

To enable multimodal deep thinking, OpenAl introduced “Thinking with Image” in 03 (OpenAl,
c). In deep thinking, the text content is inferleaved with multiple cropped parts of the image to
reason details in different regions of the image through several tool calls. This mimics how humans
reason over images by focusing on different elements and their relationships, and recent studies
have shown its effectiveness in complex reasoning tasks (Zheng et al.l 2025} [Singh et al.| [2025).
Similarly, understanding and reasoning over time series data also relies heavily on observing and
analyzing different details, indicating that this approach is applicable to time series. However, sev-
eral challenges must be addressed to realize this. First, unlike images, time series lack standardized
reasoning tasks to set model optimization objectives (Chow et al.l 2024; Merrill et al., 2024} [Sen
et al.l 2025), which are essential for leveraging reinforcement learning (RL) to realize enhanced

Under review as a conference paper at ICLR 2026

Request Count Q: Are there any
spikes in the first half

of the Request Count?

0 255

<think> There is a large spike near point 208. But the question asked
about the spikes in the first half, so | will check the first half:
Slice: {“name™: “Request Count”, “start”: 0, “end”: 127}

(Tool Response:
iq Time Series Slice)

Yes! There is a significant spike near point 34. But | should still check other
periods to ensure that there are no other spikes. Let me do that:

CPU Usage .
Q: List all the
Request Count correlated fluctuations

in the time series.
0 255

<thInk> Let me check the CPU Usage first. There is a clear spike near
point 45 and some consecutive spikes starting from point 229. Let me
check all the correlated fluctuations in Request Count:
Compare: {“namel”: “CPU Usage”, “start1”: 200, “end1”: 255,
“name2”: “Request Count”, “start2”: 200, “end2”: 255}
______ » (Tool Response:

/\/\“/ H J/ 2 Time Series Slices)
5:

They both have 2 consecutive spikes. t me check the first spike:
Compare: {“namel”: “CPU Usage”, “start1”: 20, “end1”: 52,
“name2”: “Request Count”, “start2”: 20, “end2”: 52}

Slice: {“name”: “Request Count”, “start”: 35, “end™: 127}

(Tool Response:

g
2 Time Series Slices) Do i /\/—\JJ/

(Tool Respo ies Slice)
No other spikes are found. The only spike in the first half occurs near point
34. | can give the final answer now. </think>

Yes. There is a spike with an amplitude of 1.75
near point 34.

It is clear that no spikes in Request Count. | can answer now. </think>
There are consecutive spikes near point 230 in
both time series.

Figure 1: Example of the iTCoT paradigm to realize “Thinking with Time Series”. Slice and Com-
pare are interleaved with text output in the thinking process. LLMs conduct detailed reasoning by
analyzing diverse segments from different series within MTS.

deep thinking. Furthermore, there are almost no training data for time series reasoning to support
both supervised fine-tuning (SFT) and RL (Luo et al., 2025; |Xie et al., [2025). In addition, the ab-
sence of open-source RL frameworks for TS-MLLMSs makes it highly challenging to implement
interleaved deep thinking for time series.

In this paper, we propose ThinkTime, the first approach that explores interleaved Time series Chain-
of-Thought (iTCoT) to tackle complex understanding and reasoning tasks on time series. Building
on existing work and inspired by the way humans analyze time series, we define two fundamental
operations essential for iTCoT: slice and compare (see Figure [T). The slice operation extracts a
specific segment from one of the time series, enabling detailed analysis of features within a particular
region. The compare operation extracts two different segments from either the same or different
time series, allowing the MLLM to analyze autocorrelation or cross-correlation features. These
operations allow the MLLM to adapt to multi-scale time series and focus on critical regions during
deep thinking, thereby improving its ability for complex time series understanding and reasoning.

In terms of training, we observe that existing TS-MLLMs (e.g., ChatTS(Xie et al., [2025))) do not
natively support deep thinking or tool calling in iTCoT. To address this limitation, we design a com-
prehensive data pipeline, from a warmup SFT stage to an RL stage, which enables TS-MLLMs to
perform multimodal deep thinking. When using existing LLMs to generate iTCoT for warmup SFT,
their inability to produce accurate deep thinking with tool calls motivates us to design a task-specific
generation method that enables TS-MLLMs to quickly adapt to time series reasoning. For RL, we
construct a multi-task RLVR (Guo et al., [2025) dataset based on synthetic data. We further imple-
ment the first framework for TS-MLLMs that supports iTCoT for RL training with DAPO (Yu et al.,
2025) based on the TRL framework (von Werra et al.| [2020). Moreover, to ensure comprehensive
evaluation, we curate a collection of datasets comprising various reasoning and alignment tasks,
primarily consisting of real-world time series. Our contributions are summarized as follows:

* We propose the paradigm of “Thinking with Time Series”, which introduces interleaved
Time Series Chain-of-Thought (iTCoT) for complex time series understanding and rea-
soning. We define two fundamental operations: slice and compare that enable models to
analyze local features and cross-series relationships more effectively.

* We propose a comprehensive data pipeline to support iTCoT, including task-specific SFT
dataset generation and multi-task RLVR dataset construction for RL. We also implement
the first training framework for TS-MLLMs with iTCoT to realize DAPO training.

* Based on the proposed data pipeline and training framework, we train ThinkTime, the first
TS-MLLM supporting iTCoT for enhanced time series reasoning.

Under review as a conference paper at ICLR 2026

* We curate evaluation datasets covering 11 categories of real-world time series tasks, includ-
ing both alignment and reasoning. ThinkTime achieves superior performance over existing
text/vision/agent/TS methods based on SOTA LLMs.

2 RELATED WORK

Time Series Multimodal LLMs. The rapid progress of multimodal large language models
(MLLMs) has shown the effectiveness of aligning language models with diverse modalities (Bai
et al., [2023; Maaz et al.l 2023). Motivated by these advances, researchers have begun to explore
the integration of LLMs with time series data. Several studies adapt pretrained LLMs for down-
stream tasks, including forecasting and anomaly detection (Chang et al., 2023} |Liu et al., |2024c; Jin
et al., 2023), while others leverage VLM architectures to treat time series as images (Chen et al.
2024; Zhuang et al.,|2024; |[Liu et al.| 2024b). Although recent attempts have combined LLMs with
time series, most methods rely on task-specific adaptations or heuristic pipelines, often restricted
to retrieval-augmented generation (RAG) (Lewis et al., [2020) or agent-based reasoning (Yao et al.,
2022; |Zhou et al., 2023). These approaches lack systematic language—time series alignment and
struggle to capture the deeper reasoning capabilities required for general-purpose time series under-
standing and reasoning (Kong et al., 2025aib; Jin et al.l 2024). To address this gap, recent work
based on TS-MLLMs (Xie et al., 2025; Wang et al., |2025alic}; |(Quinlan et al., [2025)) introduces syn-
thetic datasets or LLM-generated datasets, providing a solution for aligning LLMs with time series
modalities. Some recent work (Liu et al., [2025b) also employs deep thinking based on a text-
only manner for forecasting. However, current models focusing on reasoning tasks of Time Series
MLLMs are still in the early exploratory stage (Merrill et al., 2024} |Sen et al.,|2025)), without enough
capabilities of multimodal deep thinking.

Multimodal Deep Thinking. Since OpenAl’s 0/ model introduced deep thinking for text reason-
ing (OpenAlL). RL has been widely used to enhance reasoning in LLMs (Gao et al.| 2024} Team
et al.} 2025; |OpenAll |b). Methods such as GRPO (Guo et al., [2025) and DAPO (Yu et al., [2025)
improve training stability and efficiency by refining their training rewards. 03 extended this to inter-
leaved multimodal thinking (OpenAl, [c). Recent work (Zheng et al.l 2025} |Chen et al., [2025; Wang
et al., |2025b) reproduced this idea and trained VLMs with agentic RL (Singh et al., [2025). How-
ever, these advances remain focused on text or vision, and there is still no framework that supports
multimodal deep thinking with time series.

3 METHOD

In this section, we first introduce the idea of “Thinking with Time Series” in Section @ Then, we
introduce the model design and implementation in Section[3.2]and its training process in Section[3.4]
Finally, we introduce the data generation process in Section [3.3]

3.1 THINKTIME

ThinkTime is a Time Series MLLM (TS-MLLM) that takes the native multivariate time series (MTS)
array with a text question as input and text as output for reasoning and understanding tasks. There-
fore, it is structurally different from existing VLMs (Liu et al., 2024a). Similar to multimodal deep
thinking models such as 03 (OpenAll [c), the proposed ThinkTime introduces interleaved multi-
modal deep thinking into time series MLLMs for the first time. To achieve this, we need to equip
TS-MLLM with: (1) Deep Thinking Capability: the model can perform deep thinking based on time
series and questions before generating answers to solve complex reasoning problems; (2) Tool Call
Capability: during the deep thinking process, the model actively invokes predefined tools to explore
details or verify results, ensuring accuracy of analysis with interleaved time series chain-of-thought
(iTCoT). To realize these two capabilities, we applied: (1) Warm-Up SFT, which gives the model an
initial ability of “Thinking with Time Series”; (2) RL, which further enables the model to integrate
tool calls into deep thinking, significantly improving reasoning ability.

Specifically, during the deep thinking process, we invoke the two types of tools mentioned earlier,
slice and compare, in the form of tool calls. For an input MTS: X € RV*T | slice and compare
perform the following operations:

Under review as a conference paper at ICLR 2026

<tool_response> The slice is: </tool_response>
Tool Parse
5 el - : N\ & Execution
'CCS Response TS] M “metric_name”:
23 o 200, “end”: 255}
: Input Question TS é 2] a "
N —
@1 181 g = . =
= = g || - o Ends with </tool_call>
_ | Input Question Text | —> E — e
5 | There is a time series TS1: <ts> TS E . — .g Ends with </answer>
-g How many spikes are there? S Embedding — c
= Position Encoding; — -
- || <answer>
o . || Fina[In the given time series, |
2 > Text Embedding] | have found 2 consecutive
Output + Tool Response L] —/ Result | spikes. \answer{2}
</answer>

Figure 2: Model structure of ThinkTime. It takes both time series and text as input, with time series
patches encoded and concatenated with text embeddings before being fed into the LLM. During
iTCoT, the model generates tool calls, which are parsed and executed in a multi-turn process. The
resulting tool responses are integrated with the text output until the final answer is produced.

* Slice. Slice selects a time series segment an:tz]’ where i € {1,--- , N}. Similar to the
“image cropping” operation, the LLM invokes this operation when it needs to conduct a
detailed analysis on a specific segment of a designated time series, or when it needs to

verify a certain part of the segment.

e Compare. Compare is essentially similar to performing two slice operations. Similar to
deep thinking with images, time series analysis relies heavily on comparative analysis to
extract autocorrelation and cross-correlation features. It can be achieved by comparing two

segments by invoking the slice tool twice: Xfﬂ: 2] and Xft& e For convenience, we merge
them into a single compare operation. For autocorrelation analysis (such as periodicity
analysis and local fluctuation analysis), the LLM compares different time slices within the
same time series (i.e., ¢ = j). For cross-correlation analysis, the LLM compares the same

slices across different time series (i.e., t1 = t3,t2 = t4).

3.2 MODEL DESIGN

The overall structure of the proposed ThinkTime is shown in Figure 2] To achieve iTCoT, following
common practice in VLMs (Zheng et al., [2025), the deep thinking—tool calling process adopts a
multi-turn dialogue style. After the model generates a piece of content, its output is examined to
decide whether to call the tool (ending with </tool_call>) or whether it has already completed
the full response (ending with </answer>). The specific format of tool calls is JSON, which
includes the tool name, the target time series, and the start and end time points. The returned result
of the tool call is appended to the previous round of input for the next round of generation, and this
continues until no further tool calls are made. More examples of iTCoT are demonstrated in FigureT]
and Appendix [A]

To enable multimodal input of MTS and text, ThinkTime adopts a native multimodal in-
put method. First, to preserve the original information as much as possible, follow-
ing ChatTS (Xie et al) [2025), we apply 0-1 normalization to the time series while
also generating a text brief that retains its original values and statistical information (e.g.,
[offset=-12.92|scaling=19.11|length=50|max=12.23|min=12.33]). Each
time series is divided into fixed-size patches, which are combined with learnable position embed-
dings and encoded by MLP layers to obtain 7S Patch Encodings. These encodings are concatenated
with text embeddings according to their original positions and fed into the LLM backbone. To
achieve iTCoT with detailed slice features, for each time series slice from a tool response, we per-
form per-slice normalization to fully preserve the details of each slice.

Under review as a conference paper at ICLR 2026

3.3 TRAINING DATA

Existing TS-MLLMs cannot perform deep thinking or tool calling. We therefore use WarmUp-SFT
data to provide initial iTCoT capabilities and further strengthen them through RLVR (Reinforcement
Learning with Verifiable Rewards) (Guo et al.,[2025). However, existing time series + text data are
scarce, and open-source data are insufficient to support the construction of datasets required for these
two stages. Inspired by ChatTS, we propose to construct Warm-Up SFT and RLVR datasets based
on synthetic time series generator to get diverse and accurate time series + text pairs for training.

Warm-Up SFT Data. The WarmUp-SFT data is used to guide LLMs to acquire initial deep thinking
and tool call capabilities. Therefore, we need to construct iTCoT samples within Deep Thinking
for model training. We use the synthetic time series generator proposed in ChatTS to generate
time series and the corresponding attributes. Based on this, we constructed a dataset with various
alignment tasks using templates. Specifically, given a time series, LLMs are required to output
basic information such as trend, seasonality, and correlation, without the need to construct complex
reasoning tasks. The detailed data construction process is provided in Appendix [D.2]

To obtain CoT with tool calls, directly prompting an LLM to generate iTCoT often leads to poor
dataset quality, with duplicate or meaningless tool calls. A key reason is that existing LLMs lack
the ability to select appropriate time series tools for different tasks or to coordinate them with deep
reasoning. This limitation causes overthinking and excessive tool calls, rendering the generated
datasets unusable. To address this, we design a rask-specific process for iTCoT generation. During
generation, we provide the LLM with different CoT process prompts according to the type of the
pre-defined task. In this way, we concatenate the interleaved CoT by LLMs with the tool responses
and format them into a multi-turn dialogue dataset. Detailed prompts are given in the Appendix[D.2]

RLVR Data. The RLVR data consists of two categories: alignment tasks and reasoning tasks. The
data format for alignment tasks is the same as in Warm-Up SFT, except that iTCoT is no longer
required. For reasoning tasks, task-specific generation processes are not required, which allows us
to use LLMs to generate a wide variety of QA pairs. During generation, we apply prompts to guide
the LLM in producing different types of reasoning questions based on synthetic time series and their
text descriptions. To make the rewards verifiable, the answers were restricted to multiple-choice,
true/false, and numerical questions. Finally, another LLM is used to check whether each QA pair
was accurate and whether the answer was non-trivial with respect to the time series description.
More details of data generation are provided in Appendix

3.4 MODEL TRAINING

To achieve iTCoT, we perform WarmUp SFT and RL based on ChatTS-14B (Xie et al.,[2025). We
first apply WarmUp SFT to provide the model with initial iTCoT capability based on the alignment
dataset with iTCoT. We further applied RLVR to strengthen the model in complex reasoning.

Warm-Up SFT. In the warm-up stage, we train the model with SFT using a multi-turn dialogue
format to achieve the interleaved CoT. Each training sample is organized as a dialogue between the
model and the tool’s responses. The dialogue alternates between model outputs and tool responses
until the final answer is generated. This design helps the model to gradually learn how to interleave
reasoning with slice and compare operations. The use of synthetic time series and alignment tasks
gives the model basic capability of iTCoT. The warm-up SFT stage provides the model with initial
skills in deep thinking with time series, but without reinforcement on reasoning quality.

Reinforcement Learning. Following warm-up SFT, we employ reinforcement learning to further
improve reasoning ability, using DAPO (Yu et al.| 2025)) as the optimization algorithm. To support
this setting, the TRL framework (von Werra et al.| [2020) is modified and adapted to enable iTCoT
under DAPO. Following agentic RL (Singh et al.| 2025} |Zheng et al., |2025)), we extend the rollout
formulation to time series by treating tool responses as external observation tokens that are inter-
leaved with text tokens and fed back into the model during iTCoT. Each rollout involves multi-turn
generation, where tool calls and their responses are repeatedly incorporated until the final answer is
produced. The reward function is carefully designed to balance correctness, formatting, and reason-
ing length. Specifically, the total reward is defined as:

R(T) = Wacc * Racc(T) + Wformat * Rformut(T) + Wien * Rien (T)7 ()

Under review as a conference paper at ICLR 2026

Reasoning Tasks Alignment Tasks

Local Fluctuations

Server Origin /\/UW
Memory
Usage

on What is the Are there any local Is there any seasonality?
the server? Choose from: A) between the Origin and fluctuations? Give their Give the period and
Program Termination. B) GC. ... Modified time series? positions and amplitudes. amplitude.

Figure 3: Examples of reasoning and alignment tasks. Reasoning tasks require combining time
series features with the question text for reasoning. It requires both multimodal recognition and
reasoning capabilities. Alignment tasks focus more on the accuracy of multimodal recognition.

where R,.(7) is the accuracy reward that measures whether the final answer is correct, R format(T)
is the formatting reward that penalizes unstructured outputs, R, (7) is the thinking length reward,
and w... are the weights of each reward. More details can be found in Appendix By combining
these three components, the total reward encourages the model to generate correct, well-structured,
and sufficiently detailed reasoning trajectories. With this reward design, reinforcement learning
improves the model’s capability of deep reasoning and tool using with time series.

4 EVALUATION

4.1 TASKS AND DATASETS

To comprehensively evaluate the performance of ThinkTime on complex time series problems, we
collected and annotated a large number of datasets from different domains (see Figure [3). Most of
the evaluation questions use real-world time series.

Reasoning Tasks. Following existing research (Xie et al.l 2025} [Wang et al.| 2025c}, |Sen et al.,
2025)), we use five reasoning tasks for comprehensive evaluation: pattern recognition, numerical
judgment, calculation, causal, and comparison. These tasks require the model to accurately iden-
tify both categorical and numerical features of time series (e.g., trend, seasonality, fluctuation) and
perform reasoning based on the given conditions in the questions to produce answers. The detailed
task definitions and data collection methods for each category are provided in Appendix For
the first four categories, we manually collected and constructed a set of questions from real-world
time series. For the comparison task, following Xie et al.| (2025), we used MCQ2 (Merrill et al.,
2024]), a third-party dataset that contains synthetic time series and LLM-generated questions. Refer
to Appendix for details of dataset construction.

Alignment Tasks. To more comprehensively evaluate the capabilities of ThinkTime, we further
used alignment tasks to ensure that the model maintains good alignment between time series and text
while gaining stronger reasoning ability. For fairness, we used a dataset from Xie et al.| (2025) that
contains only real-world time series with human annotations for evaluation. This dataset includes
six subtasks, including trend, season, noise, local, correlation, and cluster, covering the evaluation
of both UTS and MTS. Details are provided in Appendix [B.T]

4.2 SETUPS

Baselines. Following existing related studies (Xie et al., 2025} |Sen et al.,|2025)), our baselines cover
four categories of models: Text, Vision, Agent-Based, and TS-MLLM-Based. For the first three
categories, we selected GPT-5 series (OpenAll [a), Claude-Sonnet-4 (Anthropic), and Doubao-1.6-
Thinking (Seed) with text-only deep thinking capabilities. We also evaluate 03 (OpenAl, |c) for the
vision-based method to compare its multimodal deep thinking with the proposed iTCoT with native
time series input. Refer to Appendix [B.4]for details of baselines.

Implementation Details. ThinkTime is trained based on ChatTS-14B (Xie et al., [2025) model
(which is fine-tuned based on Qwen2.5-14B-Instruct (qwe, 2024)). For the evaluation of text-,

Under review as a conference paper at ICLR 2026

Table 1: Comparison of different models in reasoning tasks. All metrics are the higher, the better.
Best results are represented in red and second-best results are represented in blue.

Type Model | Pattern Numerical Calculation Causal Comparison | Average
Task | UTS MTS UTS MTS UTS MTS UTsS MTS MTS | UTs MTS
GPT-40 0369 0556 0.660 0.595 0480 0434 0510 0536 0.470 0.505 0518
GPT-5-mini 0476 0.667 0755 0.676 0.532 0.581 0.612 0.821 0.580 0.594 0.665
Text GPT-5 0.631 0.630 0.868 0595 0582 0.623 0.633 0.786 0.590 0.679 0.645
Claude-Sonnet-4 0.553 0556 0.849 0.676 0.579 0.660 0.796 0.821 0.630 0.694 0.669
Doubao-1.6 0369 0.185 0472 0432 0417 0351 0429 0429 0.470 0422 0373
QWen2.5-14B 0340 0259 039 0568 0326 0477 0408 0.536 0.320 0.368 0.432
GPT-40 0.670 0482 0.642 0622 0515 0566 0.837 0.857 0.490 0.666 0.603
GPT-5-mini 0.670 0556 0736 0.649 0.580 0.779 0.796 0.929 0.490 0.696 0.681
Vision OPTS 0.767 0.630 0.755 0.811 0.661 0.760 0.776 0.963 0.610 0.740 0.755
; Claude-Sonnet-4 0495 0556 0736 0.676 0532 0.750 0.796 0.750 0.590 0.640 0.664
Doubao-1.6 0495 0482 0679 0568 0.606 0.826 0.633 0.714 0.610 0.603 0.640
03 0.757 0.630 0.830 0.595 0.566 0.756 0.796 0.821 0.450 0.737 0.650
GPT-40 0495 0519 0.623 0487 0.181 0.188 0.245 0.571 0.470 0.386 0.447
GPT-5-mini 0379 0482 0.698 0.649 0.169 0275 0408 0.714 0.420 0414 0.508
Agent GPT-5 0485 0.667 0566 0595 0227 0315 0347 0.607 0.540 0406 0.545
Claude-Sonnet-4 0320 0482 0547 0595 0293 0213 0429 0464 0.570 0.397 0.465
Doubao-1.6 0359 0593 0.604 0405 0.170 0.184 0286 0.464 0.540 0.355 0.437
TS ChatTS-14B 0369 0519 0.604 0405 0507 0397 0755 0.857 0.600 0.559 0.556
ThinkTime-14B | 0.903 0.815 0.887 0.875 0.794 0.850 0.918 0.892 0.680 0.876 0.822

Table 2: Comparison of different models in alignment tasks. “Cate.” and “Num.” denotes categor-
ical and numerical tasks respectively.

Type Model ‘ Trend Season Noise Local Corr. Clus. ‘ Overall
Task | Cate. Num. Cate. Num. Cate. Num. Cate. Num. | Cate. Cate. | Cate. Num.
GPT-40 0.585 0.882 0.811 0.768 0.905 0.153 0.379 0.256 0.476 0.333 0.542 0.371
GPT-5-mini 0.585 0.739 0.378 0.205 0.929 0.096 0.513 0.427 0.643 0.262 0.579 0.452
Text GPT-5 0.561 0.773 0.703 0.828 0.952 0.252 0.514 0.454 0.690 0.337 0.636 0.498
Claude-Sonnet-4 0.610 0.790 0.865 0.791 0.881 0.283 0.655 0.622 0.762 0.533 0.737 0.621
Doubao-1.6 0.659 0.786 0.676 0.000 0.929 0.208 0.434 0.420 0.548 0.412 0.606 0.467
QWen2.5-14B 0.707 0.709 0.622 0.205 0.833 0.231 0.137 0.099 0.571 0.349 0.464 0.241
GPT-40 0.659 0.613 0.811 0.559 0.810 0.248 0.537 0.414 0.476 0.480 0.609 0.436
GPT-5-mini 0.732 0.678 0.784 0.000 0.952 0.188 0.853 0.706 0.893 0.706 0.820 0.642
Vision GPT-5 0.732 0.669 0.973 0.000 0.643 0.496 0.916 0.754 0.825 0.702 0.809 0.706
Claude-Sonnet-4 0.683 0.615 0.946 0.000 0.714 0.189 0.688 0.638 0.786 0.571 0.739 0.583
Doubao-1.6 0.854 0.616 0.784 0.000 0.833 0.360 0.702 0.572 0.857 0.648 0.773 0.555
o3 0.732 0.613 0.946 0.000 0.833 0.350 0.832 0.744 0.857 0.654 0.834 0.673
GPT-40 0.610 0.501 0.432 0.205 0.667 0.201 0.242 0.184 0.357 0.330 0.404 0.248
GPT-5-mini 0.195 0.185 0.081 0.205 0.738 0.397 0.299 0.213 0.095 0.274 0.336 0.226
Agent GPT-5 0.195 0.152 0.054 0.193 0.786 0.346 0.398 0.238 0.476 0.283 0.411 0.232
Claude-Sonnet-4 0.390 0.155 0.162 0.220 0.762 0.160 0.397 0.205 0.357 0.421 0.454 0.191
Doubao-1.6 0.561 0.196 0.027 0.205 0.667 0.374 0.108 0.057 0.262 0.447 0.307 0.117
TS ChatTS-14B 0.927 0.874 0.973 0.849 0.857 0.511 0.895 0.805 0905 0.782 0.889 0.788

ThinkTime-14B 0.854 0.926 1.000 0.700 0.952 0.636 0.937 0.846 0.912 0.790 0.901 0.838

vision-, and agent-based models, we referred to the code implementation in ChatTS and further
adapted it to the reasoning benchmark. Refer to Appendix [C|for more training details.

4.3 MAIN RESULTS

Table[T]shows that ThinkTime achieves clear improvements in reasoning tasks across both UTS and
MTS problems. Compared with strong text baselines such as GPT-5, and the TS baseline ChatTS-
14B, our model obtains much higher overall accuracy. The improvements are consistent across
almost all reasoning categories, with 13.6% overall improvements compared with all the SOTA
models on reasoning tasks. This demonstrates that multimodal deep thinking with slice and compare
operations allows the model to capture detailed time series dependencies and conduct more accu-
rate logical reasoning for details. ThinkTime shows significant improvement over its base model
(ChatTS-14B), which confirms that reasoning is a key strength of it.

Table [2] further evaluates the performance in alignment tasks. It can be found that the proposed
ThinkTime maintains strong performance on almost all the alignment tasks, outperforming strong
baselines including GPT-5 and ChatTS. This improvement is exciting since iTCoT is mainly de-

Under review as a conference paper at ICLR 2026

Table 3: Ablation studies on reasoning tasks.

Model \ Pattern Numerical Calculation Causal Comparison \ Average

Task | UTs MTS UTS MTS UTS MTS UTS MTS MTS | UTS MTS
ChatTS-14B | 0369 0519 0604 0405 0507 0397 0755 0.857 0.600 | 0559 0.556
w/o Tool Use 0.825 0.704 0.830 0.784 0.731 0.850 0.878 0.892 0.620 0.816 0.769
w/o RL 0.845 0.815 0774 0.622 0.777 0.842 0.898 0.892 0.630 0.824 0.760
w/ Workflow (GPT-5) | 0.333 0.296 0.514 0514 0.123 0.166 0250 0.679 0.590 0.305 0.449
ThinkTime-14B \ 0903 0.815 0.887 0.875 0.794 0.850 0.918 0.892 0.680 \ 0.876 0.822

Table 4: Ablation studies on alignment tasks.

Model Trend Season Noise Local Corr. Clus. | Overall

Task | Cate. Num. Cate. Num. Cate. Num. Cate. Num. | Cate. Cate. | Cate. Num.
ChatTS-14B | 0.927 0.874 0.973 0.849 0.857 0.511 0.895 0.805 | 0.905 0.782 | 0.889 0.788
w/o Tool Use 0.756 0.968 0.973 0.635 0.929 0.461 0.821 0.740 0.860 0.704 0.826 0.755
w/o RL 0.902 0.882 0.973 0.512 0.929 0.496 0.863 0.787 0.863 0.730 0.872 0.777
w/ Workflow (GPT-5) | 0.683 0960 0.703 0.000 0.833 0.431 0.458 0408 | 0.619 0435 | 0.610 0.515
ThinkTime-14B | 0.854 0.926 1.000 0.700 0.952 0.636 0.937 0.846 | 0.912 0.790 | 0.901 0.838

signed for reasoning. This suggests that the introduction of iTCoT can bring better alignment per-
formance for TS-MLLMs because of the capabilities of detailed feature exploration with the tools.

Another interesting finding is that although o3 achieved good results in some of the evaluation tasks
(due to its interleaved CoT with images), its performance is still worse than ThinkTime. The evalua-
tion on alignment tasks shows that 03 performs well in categorical tasks, but lags behind in numerical
tasks (for example, identifying the length of a period, the position of spikes, and their amplitudes).
This is because converting time series into images is a feasible approach for time series reason-
ing tasks, but it causes a significant loss of details. Furthermore, 03’s interleaved reasoning ability
can only process images, and such simple image cropping operations are insufficient for analyzing
numerical features that rely on relative positions in the coordinates. In contrast, the proposed Think-
Time adopts native time series input and per-slice normalization, which enables effective analysis
of detailed information at different scales of the time series, leading to substantial improvements in
both reasoning and alignment tasks.

4.4 STUDY OF “THINKING WITH TIME SERIES”

SFT on only alignment tasks can also improve reasoning through iTCoT. Although the warm-up
stage contains no reasoning datasets, it equips the model with iTCoT (via slice and compare), which
naturally improves reasoning and leads to substantial gains over ChatTS-14B, which is not capable
of deep thinking (see the “w/o RL” model in Table [3). This confirms that thinking with time series
is an effective and transferable capability rather than a task-specific trick.

iTCoT improves both the reasoning and alignment capabilities. To show the capability of iTCoT,
we removed the tool calls from the Warm-Up SFT dataset and trained a text-only CoT version of
ThinkTime (w/o Tool Use) using the same questions and answers. We found that its evaluation
results on reasoning and alignment tasks dropped significantly compared to the model equipped
with iTCoT. This further demonstrates the important role of iTCoT in different tasks. To further
illustrate the performance of iTCoT, we show a case study in Appendix

iTCoT outperforms workflow-style tool calls. We built a workflow based on GPT-5 that guides
the LLM to call the slice and compare tools through prompts. The workflow baseline significantly
underperforms both SFT-only and the full model on the reasoning benchmark (Table [3|and Table[d),
especially when tasks require multi-step reasoning. Therefore, we believe that embedding iTCoT
into the model provides a fundamental improvement compared to the external workflow approach.

Model with iTCoT is more robust to longer and numerous time series input. In Figure {a
we observe clear differences in the number of tool calls across task types and varying numbers of
time series. The number of calls also changes during training, which suggests that ThinkTime is

Under review as a conference paper at ICLR 2026

By Task Type By Num. of TS By Training Step —e— ThinkTime -e- wj/o Tool Call
Alignment Reasoning

2, 35 0.50
3 4 2 0.45 1
3 3.0 £ 0.40
£, 3
2 37 2.54 — Raw < 0357
< T -- MaGo) 0.30 1

ol L RRnnn . . .) , " — ; : : :

Dp PGS DS 0 20 0 100 200 300 2561024 4096 5 10 20
& FE RS Q'Deo © (};)(P& Num. of TS (Binned by 5) Training Step TS Length Num. of TS
(a) Study of the Number of Tool Calls (b) Ablation Studies of Tool Call

Figure 4: Study of tool call. ThinkTime calls different numbers of tools depending on the task type,
and the number of calls increases with the number of time series. This makes the performance more
stable when dealing with a large number of time series and long time series.

able to adaptively adjust its tool use to meet the requirements of different tasks. To further examine
this behavior, we compare ThinkTime with its variant without tool calls on MTS alignment tasks
in Figure When either the length or the number of time series increases, ThinkTime maintains
significantly stronger performance. These results provide strong evidence that iTCoT plays a key
role in improving the robustness of the model.

To conclude, iTCoT is the key to enhancing reasoning in time series. Removing the tool calls results
in clear accuracy drops across reasoning categories. These tools provide precise inspection of details
and correlations, which bring significantly better reasoning and alignment capabilities to ThinkTime.

4.5 STUDY OF REINFORCEMENT LEARNING

To further explore the importance of RL for ThinkTime, we also compare ThinkTime with a variant
trained only through SFT (w/o RL). As shown in Table [3] accuracy increases across all categories
when RL is applied after WarmUp SFT. This demonstrates that the proposed rewards and DAPO
process are effective for correct tool calls and deep thinking. Compared with the SFT-only variant,
RLVR reduces errors in complex tasks such as calculation and causal inference, and brings overall
performance close to that of the full model. These findings indicate that reinforcement learning
plays an essential role in consolidating deep thinking for reasoning tasks.

Reinforcement learning also enhances alignment between time series and text. Table] shows small
but consistent gains across trend, seasonality, noise, and local subtasks, with particularly strong
improvements on numerical tasks where RL helps the model preserve precise values in the output.
Although the improvements are less than those in reasoning, the results confirm that RL not only
avoids harming alignment but also contributes to stable and balanced performance in analyzing both
overall and detailed features of time series. Together, these results demonstrate that the RL training
also brings better performance for ThinkTime in both reasoning and alignment tasks.

5 CONCLUSION

Understanding and reasoning with time series is challenging for multimodal LLMs due to the
scarcity of open-sourced reasoning datasets and training frameworks. In this work, we introduce
ThinkTime, the first TS-MLLM that supports iTCoT, which features interleaved time series deep
thinking with tool use. Inspired by human strategies for time series analysis, we introduce the slice
and compare operations to support detailed examination and correlation analysis in time series rea-
soning. We introduce a two-stage pipeline with Warm-Up SFT and RL to train the ThinkTime model
through synthetic training datasets. In the Warm-Up SFT stage, we employ a task-specific paradigm
for generating multimodal datasets containing iTCoT. In the RL stage, we propose a set of verifiable
tasks to construct both reasoning and alignment RLVR datasets. Based on TRL, we built the first
DAPO training framework that supports TS-MLLM and added iTCoT support to it. Extensive ex-
periments on real-world time series demonstrate that ThinkTime achieves substantial improvements
in reasoning and alignment tasks. Further experiments show that while iTCoT greatly enhances
the reasoning and alignment capabilities, it also provides stronger robustness. We believe that the
proposed ThinkTime provides a new perspective for improving TS-MLLMs for reasoning.

Under review as a conference paper at ICLR 2026

6 ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or practices that would raise
ethical concerns. We confirm compliance with the ICLR Code of Ethics.

7 REPRODUCIBILITY STATEMENT

All the source code (including data generation, warm-up SFT, RL, and evaluation) and datasets
are provided in the supplementary material for reproduction. They will also be open-sourced after
acceptance of this paper. Please refer to README . md in the supplementary material for detailed
reproduction steps.

REFERENCES

Qwen2.5-14b-instruct model.,, 2024. URL https://huggingface.co/Qwen/Qwen2.
5—14B-Instruct.

Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262:134-147, 2017.

Anthropic. Claude sonnet 4. URL https://openai.com/gpt—-5/.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities.
arXiv preprint arXiv:2308.12966, 2023.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-series
forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

Mouxiang Chen, Lefei Shen, Zhuo Li, Xiaoyun Joy Wang, Jianling Sun, and Chenghao Liu.
Visionts: Visual masked autoencoders are free-lunch zero-shot time series forecasters. arXiv
preprint arXiv:2408.17253, 2024.

Yang Chen, Yufan Shen, Wenxuan Huang, Sheng Zhou, Qunshu Lin, Xinyu Cai, Zhi Yu, Jiajun
Bu, Botian Shi, and Yu Qiao. Learning only with images: Visual reinforcement learning with
reasoning, rendering, and visual feedback. arXiv preprint arXiv:2507.20766, 2025.

Winnie Chow, Lauren Gardiner, Haraldur T Hallgrimsson, Maxwell A Xu, and Shirley You Ren.
Towards time series reasoning with llms. arXiv preprint arXiv:2409.11376, 2024.

Jiaxuan Gao, Shusheng Xu, Wenjie Ye, Weilin Liu, Chuyi He, Wei Fu, Zhiyu Mei, Guangju Wang,
and Yi Wu. On designing effective rl reward at training time for 1lm reasoning. arXiv preprint
arXiv:2410.15115, 2024.

Nate Gruver, Marc Finzi, Shikai Qiu, and Andrew G Wilson. Large language models are zero-shot
time series forecasters. Advances in Neural Information Processing Systems, 36, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu Chen, Yux-
van Liang, Yuan-Fang Li, Shirui Pan, et al. Time-1lm: Time series forecasting by reprogramming
large language models. arXiv preprint arXiv:2310.01728, 2023.

Ming Jin, Yifan Zhang, Wei Chen, Kexin Zhang, Yuxuan Liang, Bin Yang, Jindong Wang, Shirui
Pan, and Qingsong Wen. Position: What can large language models tell us about time series
analysis. In 41st International Conference on Machine Learning. MLResearchPress, 2024.

Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang, Ming
Jin, and Qingsong Wen. Time-mqga: Time series multi-task question answering with context
enhancement. arXiv preprint arXiv:2503.01875, 2025a.

10

https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://openai.com/gpt-5/

Under review as a conference paper at ICLR 2026

Yaxuan Kong, Yiyuan Yang, Shiyu Wang, Chenghao Liu, Yuxuan Liang, Ming Jin, Stefan Zohren,
Dan Pei, Yan Liu, and Qingsong Wen. Position: Empowering time series reasoning with multi-
modal llms. arXiv preprint arXiv:2502.01477, 2025b.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktischel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459-9474, 2020.

Zeyan Li, Nengwen Zhao, Shenglin Zhang, Yongqian Sun, Pengfei Chen, Xidao Wen, Minghua Ma,
and Dan Pei. Constructing large-scale real-world benchmark datasets for aiops. arXiv preprint
arXiv:2208.03938, 2022.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Haoxin Liu, Chenghao Liu, and B Aditya Prakash. A picture is worth a thousand numbers: Enabling
1Ims reason about time series via visualization. arXiv preprint arXiv:2411.06018, 2024b.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B Sasa-
nur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, et al. Time-mmd: A new multi-
domain multimodal dataset for time series analysis. arXiv preprint arXiv:2406.08627, 2024c.

Haoxin Liu, Harshavardhan Kamarthi, Zhiyuan Zhao, Shangqing Xu, Shiyu Wang, Qingsong Wen,
Tom Hartvigsen, Fei Wang, and B Aditya Prakash. How can time series analysis benefit from
multiple modalities? a survey and outlook. arXiv preprint arXiv:2503.11835, 2025a.

Zijia Liu, Peixuan Han, Haofei Yu, Haoru Li, and Jiaxuan You. Time-rl: Towards comprehensive
temporal reasoning in llms. arXiv preprint arXiv:2505.13508, 2025b.

Yucong Luo, Yitong Zhou, Mingyue Cheng, Jiahao Wang, Daoyu Wang, Tingyue Pan, and Jintao
Zhang. Time series forecasting as reasoning: A slow-thinking approach with reinforced llms.
arXiv preprint arXiv:2506.10630, 2025.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. arXiv preprint
arXiv:2306.05424, 2023.

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff. Language models
still struggle to zero-shot reason about time series. arXiv preprint arXiv:2404.11757, 2024.

OpenAl. Gpt-5is here, a. URL |https://openai.com/gpt-5/.

OpenAlL Learning to reason with Ilms, b. URL |https://openai.com/index/
learning-to-reason-with—-11lms/\

OpenAl. Thinking with images, c. URL https://openai.com/zh-Hans—-CN/index/
thinking-with—-images/.

Paul Quinlan, Qingguo Li, and Xiaodan Zhu. Chat-ts: Enhancing multi-modal reasoning over time-
series and natural language data. arXiv preprint arXiv:2503.10883, 2025.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: a
comprehensive evaluation. Proceedings of the VLDB Endowment, 15(9):1779-1797, 2022.

ByteDance Seed. Seed1.6. URL |https://seed.bytedance.com/en/seedl_b6.

Medhasweta Sen, Zachary Gottesman, Jiaxing Qiu, C Bayan Bruss, Nam Nguyen, and Tom
Hartvigsen. Bedtime: A unified benchmark for automatically describing time series. arXiv
preprint arXiv:2509.05215, 2025.

Joykirat Singh, Raghav Magazine, Yash Pandya, and Akshay Nambi. Agentic reasoning and tool
integration for llms via reinforcement learning. arXiv preprint arXiv:2505.01441, 2025.

11

https://openai.com/gpt-5/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/zh-Hans-CN/index/thinking-with-images/
https://openai.com/zh-Hans-CN/index/thinking-with-images/
https://seed.bytedance.com/en/seed1_6

Under review as a conference paper at ICLR 2026

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl} 2020.

Chengsen Wang, Qi Qi, Jingyu Wang, Haifeng Sun, Zirui Zhuang, Jinming Wu, Lei Zhang, and
Jianxin Liao. Chattime: A unified multimodal time series foundation model bridging numerical
and textual data. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 39,
pp. 12694-12702, 2025a.

Ye Wang, Qianglong Chen, Zejun Li, Siyuan Wang, Shijie Guo, Zhirui Zhang, and Zhongyu Wei.
Simple 03: Towards interleaved vision-language reasoning. arXiv preprint arXiv:2508.12109,
2025b.

Yilin Wang, Peixuan Lei, Jie Song, Yuzhe Hao, Tao Chen, Yuxuan Zhang, Lei Jia, Yuanxiang Li,
and Zhongyu Wei. Itformer: Bridging time series and natural language for multi-modal ga with
large-scale multitask dataset. arXiv preprint arXiv:2506.20093, 2025c.

Zhe Xie, Zeyan Li, Xiao He, Longlong Xu, Xidao Wen, Tieying Zhang, Jianjun Chen, Rui Shi, and
Dan Pei. Chatts: Aligning time series with llms via synthetic data for enhanced understanding
and reasoning. In Proceedings of the VLDB Endowment, 2025, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqgiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024. Association for Computational Linguis-
tics. URL|http://arxiv.org/abs/2403.13372.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing” thinking with images” via reinforcement learning. arXiv
preprint arXiv:2505.14362, 2025.

Xuanhe Zhou, Guoliang Li, Zhaoyan Sun, Zhiyuan Liu, Weize Chen, Jianming Wu, Jiesi Liu, Ruo-
hang Feng, and Guoyang Zeng. D-bot: Database diagnosis system using large language models.
arXiv preprint arXiv:2312.01454, 2023.

Jiaxin Zhuang, Leon Yan, Zhenwei Zhang, Ruiqi Wang, Jiawei Zhang, and Yuantao Gu. See it, think
it, sorted: Large multimodal models are few-shot time series anomaly analyzers. arXiv preprint
arXiv:2411.02465, 2024.

12

https://github.com/huggingface/trl
http://arxiv.org/abs/2403.13372

Under review as a conference paper at ICLR 2026

A CASE STUDIES

In this section, we use a series of case studies and comparisons to illustrate how iTCoT works in
ThinkTime and its advantages across multiple tasks.

A.1 COMPARISON BETWEEN THINKTIME AND MODEL WITH TEXT-ONLY COT

Comparison (Seasonality) Q: In a coastal city, the sale of umbrellas is tracked daily for two years (730

Original Timeseries

300
200
100

Updated Timeseries

o
0 200 400 600

ThinkTime (w/ iTCoT)

<thInk> | need to analyze how the seasonal peak in
umbrella sales compares between the original and updated
time series. Let me start by examining the seasonal patterns
in the original data to understand the baseline behavior.

It shows a clear seasonal pattern with consistent amplitude
throughout the original series. Now | should compare this
with the updated time series to see how the seasonal peak
has changed. The amplitude of the seasonal peak seems to
have increased significantly in the updated series. Let me
verify this by examining a specific segment where the
seasonal peak typically occurs.

Compare: {"metric_name_1": "Original Timeseries",
"start_1": 150, "end_1": 200, "metric_name_2": "Updated
Timeseries", "start_2": 150, "end_2": 200}

This focused comparison confirms that the seasonal peak in
the updated series is approximately double the amplitude of
the original series during the same period. I'm not entirely
sure if this pattern holds consistently throughout the entire
series, so let me check one more segment to confirm.

Compare: {"metric_name_1": "Original Timeseries",
"start_1": 300, "end_1": 350, "metric_name_2": "Updated
Timeseries", "start_2": 300, "end_2": 350}

The results from this second segment show the same
pattern of increased amplitude in the updated series.

After examining both the full series and specific
segments, | can confidently conclude that the seasonal

peak has doubled in the updated time series.</think>

observations). The onset of the rainy season, typically occurring in June each year,
causes a significant increase in umbrella sales. The data is recorded every day at the
end of business hours. How does the seasonal peak in umbrella sales compare between
the original and updated time series? Please choose from: The seasonal peak is less
variable in the updated time series; The seasonal peak is doubled in the updated time
series; The seasonal peak remains the same in both time series; The seasonal peak is
halved in the updated time series.

<think> Let me first analyze the provided context about the original and updated
time series. The original series has a length of 730, with a trend that increases from
101.85 to 192.49, and a sinusoidal periodic fluctuation with an amplitude of 108.1
and a period of approximately 59.7 points.

The updated series also has a length of 730, but it includes a new linear trend with an
amplitude of 114.68, and the overall amplitude of the series is now 114.96. The
seasonal fluctuation amplitude remains around 108.1, but the overall amplitude is
larger due to the new trend.

Wait, | need to verify the seasonal peak in both series. The original series has a
sinusoidal fluctuation with an amplitude of 108.1, and [{a=h el =N AE R)
eIzl elifeSbut with an added linear trend.

But | still need to check the impact of the linear trend on the seasonal peak. The linear
trend adds a consistent increase to the overall series, but it does not change the
periodic nature of the seasonal fluctuations.

Let me reconsider the overall amplitude of the series. The original series has an overall
amplitude of 90.64, while the updated series has an overall amplitude of 114.96. This
suggests that the linear trend has significantly increased the overall amplitude.

Let me cross-reference the provided context with the overall trend. The original series
has an increasing trend, and the updated series has a more pronounced increasing
trend due to the added linear trend.

| need to verify the impact of the linear trend on the seasonal peak. The linear trend
adds a consistent increase to the overall series, but it does not change the periodic

nature of the seasonal fluctuations. Therefore, the seasonal peak should remain the
same in terms of its periodic nature.

Let me reconsider the overall amplitude of the series.
lamplitude of 90.64, while the updated series has an overall amplitude of 114.96IIS
suggests that the linear trend has significantly increased the overall amplitude, but the
seasonal peak remains the same in terms of its periodic nature.

The overall trend in the updated series is more pronounced due to the added linear
trend, but the seasonal peak remains the same in terms of its periodic nature.

</think>

The seasonal peak remains the same in both time series.
The original series has a sinusoidal fluctuation with an amplitude of 108.1,
and the updated series maintains this periodicity despite the added linear
trend. The linear trend increases the overall amplitude of the series but
does not affect the periodic nature of the seasonal fluctuations. Therefore,
the seasonal peak remains the same in both series.

answer{The seasonal peak remains the same in both time series.)(

Figure 5: Comparison between ThinkTime and model with text-only CoT in a seasonality case of
comparative reasoning.

In Figure 5] ThinkTime accurately analyzed the amplitude changes of each cycle by comparing
slices at different positions, and thus obtained the correct result. In contrast, the model with/ text-
only CoT incorrectly compared the overall amplitudes of two time series and failed to correct its

13

Under review as a conference paper at ICLR 2026

initial misanalysis through detailed reasoning in the subsequent steps, which led to an incorrect
result.

A.2 REASONING TASK: NUMERICAL JUDGMENT

UTS Numerical JUdgement Q: You are a time series analysis expert. This time series is TS1 of

length 256. The store’s management defines a 'significant local
drop' as a revenue decrease of more than 100 within a 3-day
window. Is there evidence of such a significant local drop in the
sales data?

<think> I need to analyze whether there's a significant local drop in the sales data as defined by the store's
management. Let me start by examining the middle section of the time series where such events might occur,
using a moderate window size to capture potential patterns.

Wait, | need to verify if these are truly the same events. Let me compare the two segments directly to confirm the
timing and duration.
Slice: {"metric_name": "TS1", "start": 160, "end": 200}

The results show a dramatic downward spike between points 192-194. The value drops from approximately
141.08 to 0.04, which is a decrease of 141.04 over just two data points. That's well within the 3-day window
specified (which would correspond to 3 data points in this 256-length series).

Wait, | need to verify if this is truly isolated or part of a broader trend. Let me check the period immediately
following this spike to see if the recovery is complete or if there's further decline.

i 190 210 : 0 255

The data confirms the rapid recovery to around 140.70 by point 194, but then there's a continued decline
between points 194-200 to approximately 115.44. This forms a "decrease after downward spike" pattern. The
total amplitude from the peak before the spike to the trough after the recovery is about 25.26, which is
significant but smaller than the initial spike.

Is this the only significant local drop? Let me check an earlier segment to be thorough, using a slightly larger
window to capture any other potential events.
Slice: {"metric_name": "TS1", "start": O, "end": 128}

i 0 128 § 0 255

This initial segment shows relatively stable values with no comparable downward spikes. The only significant
local event is the one | identified in the middle section.

Actually, let me confirm the exact amplitude calculation to ensure | didn't misinterpret the data. The value drops
from ~141.08 to 0.04, which is a decrease of 141.04. That's clearly over 100, meeting the store's definition of
a significant local drop. The timing (occurring between points 192-194) fits within a 3-day window, so this event

meets both criteria. </think>

Yes. The time series analysis reveals a significant local drop between points 192-194 with an
amplitude of 141.04, which exceeds the 100 threshold defined by the store's management. This dramatic
downward spike occurs within a 3-day window (corresponding to 3 data points in the 256-length series) and
represents a clear and distinct local event in the sales data.

\answer{Yes}

Figure 6: Case study of a numerical judgment reasoning task.

In Figure[6] we present an example of solving a numerical judgement task with iTCoT. In the ques-
tion, the requirements for numerical judgement are highly detailed, as it requires confirming both the
decreased amplitude and the interval. For long sequence inputs, it is very difficult to solve this pre-
cisely in one step. ThinkTime used the slicing tool to repeatedly verify the amplitude and position of

14

Under review as a conference paper at ICLR 2026

the decreasing interval, and ultimately answered the question accurately. This clearly demonstrates
the important role of iTCoT in detailed reasoning tasks.

A.3 REASONING TASK: CALCULATION

MTS Calculation Q: In a financial portfolio, two assets (represented by TS1 and

0 TS2) exhibit local price fluctuations. The total impact of these
T8t . fluctuations is calculated by summing their local fluctuation

amplitudes. What is this total impact?

g The answer should be only a number.
TS2 | Now, based on the question, please strictly follow the output

format requirements and provide the answers.

<think> | need to analyze the local price fluctuations in both time series to calculate their total impact. Let me
start by examining the first time series (TS1) to identify any significant local patterns. I'll begin with a medium-
sized window to capture potential fluctuations.

Slice: {"metric_name": "TS1", "start": 20, "end": 50}

i 20 50 ! 0 255

The results show a distinct upward convex pattern between points 23-40 with an amplitude of approximately
5.63. That's a substantial local fluctuation. Now | should check the second time series (TS2) to see if there are
comparable local events. Let me examine a later segment since financial time series often have events
concentrated in specific periods.

Slice: {"metric_name": "TS2", "start": 220, "end": 240}

This reveals a dramatic upward spike between points 223-230 with an amplitude of 4.14. To ensure | haven't
missed any other significant fluctuations, | should check an earlier segment of TS2 to confirm there are no other
major local events.

Slice: {"metric_name": "TS2", "start": 0, "end": 128}

io 128 0 255

This initial segment of TS2 shows relatively stable values without any comparable spikes or convex patterns. Now
| need to calculate the total impact by summing the amplitudes of these identified local fluctuations. TS1's
fluctuation has an amplitude of 5.63, and TS2's has an amplitude of 4.14.

Wait, | should verify that these are the only significant local events in both time series. Let me check one more
segment of TS1 to be thorough.
Slice: {"metric_name": "TS1", "start": 128, "end": 255}

i128 255 0 255

This middle segment of TS1 also shows no other major local fluctuations beyond the one | already identified.
Similarly, checking the final segment of TS2 would likely confirm no additional events.

Now | can confidently calculate the total impact by summing the amplitudes: 5.63 (from TS1) + 4.14 (from TS2)

=9.77. This represents the combined magnitude of the two most significant local price fluctuations in the
financial portfolio. </think>

\answer{9.77}

Figure 7: Case study of a calculation reasoning task.

In Figure[7] we present an example of calculation reasoning. The task requires the model to identify
all local fluctuations (e.g., spike, convex) in the given MTS and carefully verify their amplitudes.
This also requires the model to examine all details to ensure that no possible local fluctuation is
missed. As shown, ThinkTime carefully inspected all local fluctuations in the two time series. In

15

Under review as a conference paper at ICLR 2026

addition, ThinkTime repeatedly invoked extra tools to check other intervals to ensure that nothing
was overlooked.

A.4 REASONING TASK: COMPARISON

Comparison Reasoning Q: This time series represents the number of emails received by a

. . . company's customer service department on an hourly basis over
Original Timeseries

a month. An external event, such as a product launch, could
50 4 significantly increase the volume of emails. The sample rate is 1
hour, and the duration is 30 days. 1. What is the duration of the
® i i surge due to the product launch in the updated time series
Updated Timeseries compared to the original? Please choose from: The surge lasts
;g 'HM‘I“ for 30 days in the updated time series; The updated time series
254 has no surge due to the product launch; The surge duration is the
T . - - - r r r same in both time series; The surge lasts for 7 days in the
O WY AW S 4D S Y WY updated time series, while it lasts 3 days in the original.

<think> | need to analyze the duration of the surge due to the product launch in both the original and updated
time series. First, | should examine the original time series to identify when the surge occurs.

There is a significant upward convex pattern starting around point 144, reaching approximately 60.55, then
falling back to around 14.00. This forms a distinct surge. To confirm the duration, I'll check the exact start and
end points. The surge begins at point 144 and ends around point 175, which is a total of 31 points
(approximately 31 hours). In the updated series, | observe a similar upward convex pattern, but with a different
amplitude. The surge starts at point 101 and ends around point 105, which is only 4 points (approximately 4
hours).

Wait, | need to verify if these are truly the same events. Let me compare the two segments directly to confirm the
timing and duration.

Compare: {"metric_name_1": "Original Timeseries", "start_1": 140, "end_1": 180, "metric_name_2": "Updated
Timeseries", "start_2": 95, "end_2" 115}

The comparison confirms that while both series exhibit a surge pattern, the duration is significantly shorter in the
updated series. The original surge lasts approximately 31 hours, while the updated surge lasts only 4 hours. Is
there any possibility | misidentified the start and end points? Let me check a slightly wider window to ensure |
didn't miss any part of the surge.

Compare: {"metric_name_1": "Original Timeseries", "start_1": 130, "end_1": 190, "metric_name_2": "Updated
Timeseries", "start_2": 90, "end_2" 120}

The comparison confirms that while both series exhibit a surge pattern, the duration is significantly shorter in the
updated series. The original surge lasts approximately 31 hours, while the updated surge lasts only 4 hours. Is
there any possibility | misidentified the start and end points? Let me check a slightly wider window to ensure |
didn't miss any part of the surge.

This broader comparison reinforces my initial findings. The surge in the original series is clearly longer in
duration than in the updated series.

The results show that the only significant surge in the updated series is the one | identified earlier, with no other
comparable events. This confirms that the surge duration is indeed shorter in the updated series. </think>

\answer{The surge lasts for 7 days in the updated time series while it lasts 3 days in the original.}

Figure 8: Case study of a comparison reasoning case.

In Figure [8] the model is required to carefully analyze the surges in the MTS and compare the
differences in their lengths. It can be seen that ThinkTime automatically invoked the compare tool

16

Under review as a conference paper at ICLR 2026

to identify the starting points of the surges and finally analyzed the length difference between the two
surges. This shows that ThinkTime can selectively invoke appropriate tools during iTCoT according
to the context to obtain precise, detailed information.

B EVALUATION DETAILS

B.1 EVALUATION TASKS

In this section, we provide a detailed introduction to each type of evaluation task. Specific cases
can be found in the evaluation datasets provided in the supplementary material. Types of evaluation
tasks are listed in Table[3

Table 5: Details of different tasks in evaluation datasets

Task \ Task Type Answer Type # Questions Data Source Types of TS
Pattern Recognition Reasoning T/F 130 AIOPS, NAB, UCR UTS, MTS
Numerical Judgment | Reasoning T/F 90 AIOPS, NAB, UCR UTS, MTS

Calculation Reasoning Num. 85 AIOPS, NAB UTS, MTS

Causal Reasoning MC 77 AIOPS, NAB UTS, MTS
Comparison Reasoning MC 100 MCQ2 MTS
Trend Alignment Cate. & Num. 41 AIOPS, NAB, Oracle UTS
Season Alignment Cate. & Num. 37 AIOPS, NAB, Oracle UTS
Noise Alignment Cate. & Num. 42 AIOPS, NAB, Oracle UTS
Local Fluctuation Alignment Cate. & Num. 72 AIOPS, NAB, Oracle UTS
Correlation Alignment Cate. 42 Weather, Oracle MTS
Cluster Alignment Cate. 42 Weather, Oracle MTS

B.1.1 REASONING TASKS

Time series reasoning tasks require the LLMs to accurately identify features within the time series
and perform reasoning by combining these features with textual descriptions. This places high
demands on both the LLMs’ multimodal recognition ability and their reasoning ability.

Pattern Recognition. Given a combination of attributes of a time series, the LLM determines
whether the time series matches the description and provides a yes/no answer. For example, it may
determine whether a time series satisfies the description “first rises, then falls, with no obvious
noise”.

Numerical Judgment. Given a combination of attributes of a time series with numerical require-
ments, the LLM determines whether the time series matches the description and provides a yes/no
answer. For example, it may determine whether a time series satisfies the description “has an upward
spike with amplitude larger than 5, with no downward convex with amplitude larger than 10”.

Calculation. Reasoning tasks that require numerical answers can be counting tasks or calculation
tasks. For example: “output the sum of the amplitudes of all upward spikes”; or “output the number
of sudden increases with an amplitude greater than 5”.

Causal. Based on time series features, choose the most likely event from multiple options. For
example, given a time series representing memory usage, determine whether the program crashed
or triggered GC.

B.1.2 ALIGNMENT TASKS

Alignment tasks require the model to precisely output the category and numerical information of a
feature (such as position or amplitude). They do not rely on reasoning ability and are only used to
evaluate the multimodal alignment ability of the LLM.

Trend. Output the trend category (for example, increasing or decreasing) and the amplitude of
change.

Season. Output whether periodicity exists, as well as the length and amplitude of each period.

17

Under review as a conference paper at ICLR 2026

Noise. Output whether large noise exists, as well as the standard deviation of the noise.

Local Fluctuation. Output the positions and amplitudes of all the local fluctuations, along with
their types (choose from a given list).

Correlation. Determine whether the two time series have correlations in overall shape or local
fluctuations. Output yes/no.

Cluster. Identify all time series that have correlations in overall shape or local fluctuations with a
specified time series.

B.2 EVALUATION METRICS

For reasoning tasks, we adopted different evaluation metrics according to their output formats. For
T/F (True / False) and MC (Multiple Choice) type questions, we directly used string matching to
evaluate accuracy. For numerical type questions, following Xie et al.|(2025])), we used relative accu-
racy R,.m as the evaluation metric:

2

Ry = max (1.0 — [numans — numg| , 0.0>

[numg,|

For alignment tasks, we used exactly the same evaluation method and code as in Xie et al.| (2025).
All evaluation metrics take values in the range of O to 1, with higher values indicating better perfor-
mance.

B.3 EVALUATION DATASETS
For reasoning tasks, we collected and annotated data from the following sources:

» AIOPS (Liet al.;,[2022). It contains multiple monitoring metric data collected from servers,
along with anomaly annotations at failure times.

* NAB (Ahmad et al.,[2017). It contains real-world timeseries collected from many scenar-
ios, including social network, traffic, server, etc.

e UCR (Schmidl et al., [2022)). It contains multiple time series collected from different sce-
narios, along with anomaly annotations.

For each of the datasets above, we randomly sampled time windows. With the assistance of an LLM,
we generated captions for each time series, including a complete description of its trends, local
fluctuations, periodicity, and other features. Based on this, we used the LLM to construct a series of
reasoning questions and answers. We manually verified the correctness of each question to ensure
the quality of the evaluation data. For the comparison reasoning task, we used the MCQ2 (Merrill
et al.,|2024) dataset, which contains time series and their corresponding questions and answers. Due
to cost considerations, we randomly sampled 100 questions from it for evaluation.

B.4 IMPLEMENTATION OF BASELINES

We implement 4 types of models in our evaluation: text-based, vision-based, agent-based, and TS-
based. The implementation details are as follows:

» Text-Based Methods. The text-based baselines are implemented by converting time series
into sequences of floating-point numbers, which are then represented in plain text. Outputs
for OpenAl models, such as the GPT series, are obtained through the official API, while
open-source models, such as the Qwen series, are deployed locally with vLLM to generate
results.

* Vision-Based Methods. The vision-based baselines are implemented by transforming time
series into line chart images using matplotlib. For multivariate time series, multiple sub-
plots are created with aligned axes, and each curve is annotated with its corresponding
metric name to preserve clarity.

18

Under review as a conference paper at ICLR 2026

» Agent-Based Methods and Workflow-Based Methods. The agent-based baselines are
implemented with the ReAct framework, where a set of predefined tools can be invoked to
support time series reasoning tasks. These tools cover operations including retrieving dat-
apoint values, detecting anomalies, performing classification, and computing correlations
across trends or fluctuations. We implement the agent-based methods following the same
settings in ChatTS.

* TS-Based Methods. The TS-Based (Time Series MLLM) baseline is implemented with the
official code and checkpoint released by the original authors. There is no need to convert
the time series into other modalities, as it already supports native time series input.

For all implementation details about the baseline methods, please refer to the source code.

C TRAINING DETAILS

C.1 RL REWARDS
The following rewards are used during the DAPO training of ThinkTime:

* Accuracy Reward (R,..). The accuracy reward evaluates the correctness of the LLM
output. For different categories of verifiable questions, distinct calculation methods are
applied. The detailed definitions of these methods are provided in Section [B.2]

* Format Reward (R f,,mq:). Following the original settings in/Guo et al.|(2025]), the format
reward is applied to ensure that the reasoning process is enclosed within the think tags (i.e.,
<think> and </think>) and the final answer is enclosed within the answer tags (i.e.,
<answer> and </answer>).

* Thinking Length Reward (R;.,). The thinking length reward is defined as:

Rien = Hlen(thinking,process)>me 3)

where I denotes the binary function and L,,;,, is the minimum thinking length threshold.
The thinking length reward is used to prevent the thinking process from collapsing. We set
a minimum value of 1500 characters (in fact, almost all normal thinking processes exceed
this threshold) to ensure the stability of the training process.

We set Waee = 5.0, Wrormat = 1.0, wier, = 1.0 as the weights for these rewards. We do not set a
reward for the number of tool calls (as DeepEyes (Zheng et al., 2025) does), because we found that
this leads to instability in the training process. In fact, for some simple tasks, such as determining
the overall trend of a stable time series, the LLM can complete them without calling any tools.

C.2 IMPLEMENTATION OF DAPO FOR ITCOT

Rollout Formulation for iTCoT. Inspired by the design of iMCoT in DeepEyes|Zheng et al.|(2025),
the time series chain-of-thought is also modeled as a Markov Decision Process (MDP). In this set-
ting, the state at each step consists of the generated text together with the time series observations
obtained from tool interactions. These observations may include results from operations such as
slicing or comparing subsequences. The state is updated step by step as new tokens and observa-
tions are added. The rollout continues until either a final answer is produced or the maximum step
limit is reached. Only the text outputs are used for computing the optimization objective, while the
observation tokens serve as auxiliary context.

Formally, the state at step ¢ can be expressed as
St = {XStv Ogt}v

where X<, denotes the accumulated text tokens and O<; denotes the collected observation tokens
from time series tools. Based on the current state s;, the model produces the next output token or
triggers a tool call. The new text or observation is appended to the sequence, updating the state for
the following step. This rollout proceeds until an answer is produced or the predefined step limit
is reached. For optimization, only the text outputs are included in the loss computation, while the
observation tokens act as auxiliary context.

19

Under review as a conference paper at ICLR 2026

Implementation To implement the DAPO of iTCoT, we made extensive modifications to the GR-
POTrainer in trl [von Werra et al.| (2020). First, we added multimodal support so that it can perform
the DAPO of TS-MLLM. Then, we aligned it with support for multi-turn rollout, which is required
by iTCoT. By invoking the generation process multiple times in each rollout and computing the loss
at the end, we finally achieved the DAPO of iTCoT. The corresponding code has been uploaded to
the supplementary material, and we plan to make it open source.

C.3 TRAINING SETTINGS

We use ChatTS—l4BE] as our base model, which was fine-tuned from Qwen2.5—14B—Instrucﬂ We
conduct Warm-Up SFT training with LLaMA-Factory [Zheng et al.| (2024), using a learning rate
of le-5, a batch size of 256, and 200 training steps. In the RL stage, we train with the modified
TRL [von Werra et al.| (2020), setting the learning rate to 2e-6, the batch size to 32, and rollout_n to
8, for a total of 300 steps. We use the same model structure and settings as in ChatTS-14B. These
step numbers were determined based on our experience. For detailed training procedures, please
refer to the training code in the supplementary material.

D TRAINING DATASETS

D.1 SYNTHETIC TIME SERIES GENERATOR

We use the synthetic time series generator from ChatTS (Xie et al.,[2025)) to generate all the time
series in the training datasets. In the generator, all the attributes in the time series (including the
trend, noise, seasonality, and the local fluctuations) are stored in a attribute pool. Captions of time
series are constructed using a series of templates according to the attribute pool.

The time series generator defines an All Attribute Set that covers a broad spectrum of time se-
ries properties. Seasonal attributes include no periodic fluctuation, sinusoidal periodic fluctuation,
square periodic fluctuation, and triangular periodic fluctuation. Trend attributes consist of decreas-
ing, increasing, and steady behaviors. Frequency attributes distinguish between high and low fre-
quency patterns, while noise attributes specify either noisy signals or signals with almost no noise.

In addition, the generator incorporates a diverse set of local fluctuation attributes: shake,
upward spike, downward spike, continuous upward spike, continuous
downward spike, upward convex, downward convex, sudden increase,
sudden decrease, rapid rise followed by slow decline, slow rise
followed by rapid decline, rapid decline followed by slow rise,
slow decline followed by rapid rise, decrease after upward spike,
increase after downward spike, increase after upward spike,
decrease after downward spike, wide upward spike, wide downward
spike. Multiple attributes can be combined within the same time series. Further details of the
implementation are provided in the source code.

D.2 WARM-UP SFT DATASETS

First, we generate a set of alignment datasets with the synthetic time series generator introduced
in Section The generated datasets contain only question and answer, without any CoT
part. Then, we use LLMs to generate the iTCoT parts (thinking text and tool call) based on the
given questions and answers with task-specific prompts. Finally, we parse all the tool calls in the
generated text and add the tool responses accordingly to get the final dataset for Warm-Up SFT. We
use 22,600 samples in our Warm-Up SFT stage.

"https://huggingface.co/bytedance-research/ChatTS-14B
Zhttps://huggingface.co/Qwen/Qwen2.5-14B-Instruct

20

Under review as a conference paper at ICLR 2026

D.2.1 PROMPTS FOR TooOL USE

Available Tools:

- get_timeseries_slice: Retrieves a slice of time series data for detailed analysis

- Parameters: metric_name (choose from {’, ’ join(metrics)}), start (integer, >= 0), end (integer, < {timeseries_length})

- Returns: Time series values, statistics, and visualization for the specified range

- **Flexible Slice Length**: Adapt window size to purpose - 8-16 for focused inspection, 16-64 for standard analysis, larger for
broad overview

- compare_timeseries_slice: Compares two time series slices for comparative analysis

- Parameters: metric_name-_1, start_1, end_1, metric_name_2, start_2, end-2 (all integers >= 0, ends < {timeseries_length})

- Returns: Values and comparative statistics for both slices

- **Flexible Slice Length**: Adapt window size to purpose - smaller windows for specific pattern comparison, larger for overall
trend comparison

Time series length: {timeseries_length}
*#*Strategic windowing**: Choose window sizes and positions based on your analytical goals - vary between focused inspection
and broad analysis

D.2.2 PROMPTS FOR LOCAL FLUCTUATION-RELATED ITCOT GENERATION

TASK-SPECIFIC GUIDANCE (Local Fluctuation Analysis):

- Focus on identifying and analyzing ALL local fluctuations (spikes, dips, convex/concave patterns)

- Use get_timeseries_slice to examine different segments for detailed local analysis

- **Flexible call count**: Use 2-4 tools, but adapt based on complexity - fewer for simple patterns, more for complex fluctuation
distributions

- **Adaptive windowing**: Start from different time points (beginning/middle/end), use varied window sizes (16-64 points),
sometimes target specific visible patterns

- Pay attention to amplitude, duration, and timing of fluctuations

- **Varied analytical approaches**: Sometimes scan systematically, other times target suspected fluctuation zones; occasionally
start with broad overview then zoom in

- Use phrases like “Let me examine this spike more closely” or "I should check other segments for similar patterns”

Requirements:

- **Flexible tool usage**: Use 2-4 get_timeseries_slice calls, varying window positions and sizes based on observed patterns

- *#*Adaptive slice strategy**: Choose window sizes (16-64 points) and positions strategically - sometimes systematic scanning,
other times targeted investigation

- Include self-reflection like noticing empty/flat slices and then correcting with a better slice

- **Varied reflection patterns**: Sometimes question window choice, other times doubt pattern interpretation, occasionally
reconsider analytical approach

- Focus analysis on local characteristics, not overall trends

- Examine multiple time segments to identify all fluctuations

- Do not mention “context” - act as if you only see the timeseries data

D.2.3 PROMPTS FOR TREND-RELATED ITCOT GENERATION

TASK-SPECIFIC GUIDANCE (Trend Analysis):

- Focus on overall increasing/decreasing/stable patterns across the entire timeseries

- NO TOOL CALLS needed - analyze the overall pattern without detailed segmentation
- Look at the general direction and long-term behavior

- Consider slope, monotonicity, and overall trajectory

Requirements:

- DO NOT use any tool calls for trend analysis

- Use self-reflection on ambiguous global patterns, then resolve it without tools

- Focus on overall direction and long-term patterns

- Use phrases like “Looking at the overall pattern...” or “The general trend shows...”
- Do not mention “context” - act as if you only see the timeseries data

D.2.4 PROMPTS FOR SEASON-RELATED ITCOT GENERATION

TASK-SPECIFIC GUIDANCE (Seasonal Pattern Analysis):

- Identify repeating patterns and periodic behaviors

- Use compare_timeseries_slice to compare different periods of the same timeseries

- Look for cyclical patterns, regular intervals, and repeated structures

- **Flexible approach**: Use 1-3 tool calls - sometimes start with suspected period, other times explore different interval
hypotheses

- **Varied windowing**: Experiment with different period lengths and alignment strategies based on visual observations

21

Under review as a conference paper at ICLR 2026

Requirements:

- *#*Adaptive tool usage™*: Use 1-3 compare_timeseries_slice calls, varying period selection strategy

- **Flexible alignment**: Sometimes align periods systematically, other times test hypotheses about cycle length

- Allow initial comparisons to be inconclusive and then correct with better-aligned periods or different intervals

- Look for repeating patterns and cyclical behaviors

- **Varied reflection**: Question period selection, doubt alignment accuracy, or reconsider cycle length hypotheses
- Include self-reflection like “Let me compare this period with an earlier one...”

- Focus on periodicity and seasonal characteristics

- Do not mention context”

D.2.5 PROMPTS FOR NOISE-RELATED ITCOT GENERATION

TASK-SPECIFIC GUIDANCE (Noise Analysis):

- Focus on random variations, minor fluctuations, and statistical properties

- Avoid analysis of periods with local fluctuations; correct if the chosen slice contains events

- Use get_timeseries_slice to examine different segments for noise characteristics

- **Adaptive windowing**: Use varied window sizes (16-64 points) and positions - sometimes multiple small windows for
comparison, other times fewer larger samples

- **Strategic selection**: Target visually calm regions, but occasionally check eventful areas for comparison before correcting

- Analyze variance, standard deviation, and random components

- **Flexible approach**: Use 1-4 tool calls depending on noise complexity and distribution across the series

Requirements:

- **Flexible tool usage**: Use 1-4 get_timeseries_slice calls, adapting to noise distribution pattern

- **Strategic window selection**: Vary sizes and positions, sometimes comparing calm vs eventful regions before focusing on
appropriate areas

- If a slice contains strong local events, acknowledge and switch to a calmer slice

- Focus on statistical properties and minor fluctuations

- **Varied reflection approaches**: Sometimes question window choice, other times doubt statistical interpretation

- Do not mention “context”

D.2.6 PROMPTS FOR LOCAL CORRELATION-RELATED ITCOT GENERATION

TASK-SPECIFIC GUIDANCE (Local Fluctuation Correlation):

- Analyze correlation of local fluctuations between two timeseries (position-based)

- **Flexible workflow**: Sometimes start with single-series analysis then compare, other times jump directly to comparison,
occasionally use multiple comparison windows

- **Adaptive windowing**: Use varied approaches - synchronized windows, offset windows for lag analysis, or different window
sizes for different aspects

- Allow initial misaligned windows and then correct to synchronized ones, or vice versa

- **Variable tool count**: Use 2-5 tool calls based on correlation complexity and temporal patterns

Requirements:

- **Flexible approach**: Use 2-5 tool calls with varied strategies - sometimes systematic single-then-compare, other times direct
multi-series comparison

- *#*Adaptive correction**: If initial comparisons show weak alignment, vary the correction approach - adjust timing, window size,
or analytical focus

- **Varied reflection**: Question synchronization assumptions, doubt window choices, or reconsider correlation methodology

- Focus on timing-based synchronization and positional correlation

- Do not mention “context”

D.2.7 PROMPTS FOR SHAPE CORRELATION-RELATED ITCOT GENERATION

TASK-SPECIFIC GUIDANCE (Shape/Trend Correlation):

- Analyze overall shape and trend correlation between two timeseries

- Use ONLY ONE compare_timeseries_slice call for the entire timeseries comparison

- Reflect on whether one full-series comparison could hide phase-specific differences, but keep only one call

Requirements:

- Use EXACTLY ONE compare_timeseries_slice call for the full timeseries comparison
- Include reflective doubt but resolve with a clear global conclusion

- Focus on overall shapes and trends

- Do not mention “context”

22

Under review as a conference paper at ICLR 2026

D.2.8 PROMPTS FOR SHAPE CLUSTER-RELATED ITCOT GENERATION

e D

TASK-SPECIFIC GUIDANCE (Shape-based Clustering):

- Cluster timeseries based on overall shape and trend similarities

- Use compare_timeseries_slice to compare overall shapes between different series
- At most one comparison can be admitted as inconclusive; then correct

- Call tools 2-3 times

Requirements:

- Use 2-3 compare_timeseries_slice calls

- Focus on global shape similarities for clustering

- Allow one inconclusive compare then a corrected one
- Do not mention context”

D.3 RL DATASETS

The RL datasets are divided into alignment-related and reasoning-related parts for RLVR with
DAPO. For the alignment-related dataset, we directly reorganized the questions and answers from
the WarmUp SFT dataset into a verifiable format (with a fixed answer format that can be parsed
and evaluated by rule-based methods to compute accuracy). For the reasoning-related dataset, we
used synthetic time series and their corresponding generated descriptions, and employed LLMs to
generate different categories of questions. We use 30,000 samples in our RL stage, including 20,000
reasoning samples and 10,000 alignment samples.

D.3.1 PROMPTS FOR PATTERN-RECOGNITION DATASET GENERATION

e)

You are asked to design reasoning-style pattern recognition questions for time series. Each question must be based only on the
provided attribute description and the corresponding time series.

Given Attributes (do not reveal them in the question):
{caption}

Requirements:

1. Use only the given attributes: *trend, local fluctuations (e.g., upward spike, convex, increase), seasonality, noise.*

2. The question must describe a **specific combination** of attributes and ask whether it exists in the given time series.

3. Do not reveal or hint at the ground-truth label in the question. The question must only describe the pattern conditions, not
whether they are satisfied.

4. The answer must be strictly ‘yes‘ or ‘no°.

5. Output format must be valid JSON list, with different questions and answers, each item with fields “’question”* and “’answer”".
6. Ensure the questions are diverse and challenging, which requires deep understanding of time series patterns. Avoid simple or
trivial questions.

@)

Example:

- #*Attributes:** trend = upward, local fluctuations = upward spike, seasonality = none, noise = low
- ¥ Qutput: **

1w

“question”: "Does the time series contain an upward spike followed by a continuous upward trend?”,

5. 9, 5

“answer”: “’yes

oo

D.3.2 PROMPTS FOR NUMERICAL-JUDGMENT DATASET GENERATION

e)

You are asked to design reasoning-style numerical judgment questions for time series in realistic business scenarios. Each question
must be based only on the provided attribute description and the corresponding time series.

#*Given Metric Name:** {metric_name}
Given Attributes (do not reveal them in the question):
{caption}

Requirements:

1. Consider only numerical attributes: *local fluctuation amplitude, seasonal amplitude, seasonal period, max and min values*.
Completely ignore noise-related attributes, trend amplitude.

2. Create scenario-based questions with business context related to the metric type:

- **Threshold-based judgment:** Use realistic business thresholds and SLA requirements. The threshold must **not** be too
close to the true value. For example, if local fluctuation amplitude = 31.01, set threshold = 20 (safe margin), not 30.

- **Comparison judgment:** Compare different attribute values in business contexts (e.g., performance vs capacity, peak vs
baseline). Avoid cases where the two values are nearly equal.

23

Under review as a conference paper at ICLR 2026

3. The question must not leak the ground-truth values. Only describe realistic business conditions and scenarios.

4. The answer must be strictly ‘yes‘ or ‘no‘. Questions should involve realistic monitoring scenarios, SLA compliance, alert
conditions, etc.

5. Output format must be a valid JSON list with exactly 5 items, each item having “’question”* and “’answer” ‘.

6. Ensure the 5 questions are diverse and challenging, covering different business scenarios like performance monitoring, capacity
planning, anomaly detection, SLA compliance, etc.

7. (VERY IMPORTANT) Make sure that the threshold is NOT close to the true value. There should be a clear gap between the
threshold and the actual value to avoid ambiguity.

Example:

- *#*Metric:** CPU Utilization, **Attributes:** local fluctuation amplitude = 31.01, seasonal amplitude = 8.0, seasonal period =
20, max value = 40, min value = -10

- #Qutput:**

w

”question”: ”In a production environment, CPU utilization spikes exceeding 20.0 above baseline are considered critical alerts that
require immediate attention. Based on the observed fluctuation patterns, would this system trigger any critical alerts?”,

“answer’: ’yes

.

D.3.3 PROMPTS FOR CALCULATION DATASET GENERATION

You are asked to design reasoning-style calculation questions for time series in realistic business and operational scenarios. Each
question must be based only on the provided attribute description and the corresponding time series.

Given Metric Name: {metric_name}
Given Attributes (do not reveal them in the question):

{caption}

Requirements:

1. Focus on numerical attributes such as *local fluctuation amplitude, local fluctuation positions, count of local fluctuations,
seasonal amplitude, seasonal period, max value, min value* and other meaningful values derived from them. Do not consider
noise, trend-related amplitude, start and end values.

2. Create business-scenario calculation questions requiring reasoning or counting, with the final answer being a **single number**.
Questions should be easy to understand and clear.

3. The question must not reveal the ground-truth numerical values. Only describe the business context and calculation methodology
clearly.

4. The answer must be a single number without units or extra text.

5. Clearly state if the answer should be the absolute value or the original value (which can be negative).

6. Output format must be a valid JSON list with exactly 5 items, each item having “’question”* and “’answer” ‘.

7. Ensure the 5 questions are diverse and cover different business scenarios: financial analysis, performance monitoring, capacity
planning, compliance checking, and operational analytics.

8. (VERY IMPORTANT) If the question is threshold-related, make sure that the threshold is **NOT** close to the true value.
There should be a clear gap between the threshold and the actual value to avoid ambiguity.

Example:

- **Metric:** Memory Usage (GB), **Attributes: ** trend amplitude = 12, spike 1 amplitude = 30 and pos = 123, spike 2 amplitude
=40 and pos = 54, spike 3 amplitude = 10 and pos = 201, seasonal amplitude = 8, seasonal period = 20 max value = 85, min value
=15

- ¥ Qutput:**

json

H

”question”: “In incident management, each memory spike above normal operations with an amplitude of more than 15 triggers an
alert. How many alert incidents would the monitoring system generate based on the observed spike patterns?”,
“answer’’: 2"

}

D.3.4 PROMPTS FOR CAUSAL DATASET GENERATION

You are asked to design reasoning-style causal multiple-choice questions for time series. Each question must be based on the
provided attribute description and the metric name.

Given Metric Name (use it in the question context):
{metric_name }

Given Attributes (do not reveal them in the question):
{caption}

Requirements:
1. Construct a realistic scenario where the given attributes could arise in the {metric_name} time series.
2. Each question must include exactly 4 options (A, B, C, D) embedded directly in the question text. Only one option must be

24

Under review as a conference paper at ICLR 2026

correct.

3. Wrong options must be plausible but not consistent with the given attributes.

4. The question must require reasoning based on the attributes and the metric’s real-world meaning, not just surface matching.

5. The difficulty should be non-trivial, requiring causal inference and detailed analysis of the timeseries themselves. The questions
should be misleading and hard to answer.

6. Output format must be a valid JSON list with exactly 5 items. Each item should have “’question”* and ‘"answer”*.

7. “’answer”* should be the correct option label (e.g., “”A”").

*#*Example:**

- *#*Attributes:** trend = upward, local fluctuation = upward spikes, seasonality = none, noise = low

- #*Metric Name:** CPU Utilization

- #*Qutput: **

json

{

”question”: "Which of the following events most likely caused the observed pattern in CPU Utilization, showing a general upward
trend with occasional sharp spikes? A) A gradual rollout of a new background data-processing job, with occasional batch tasks
triggering sharp increases. B) A temporary network outage that completely stops CPU usage. C) Stable user traffic with no
significant changes in workload. D) A constant low-level background process running without interruptions.”,

“answer”: "A”

o

E DiscussioN

Limitation. While ThinkTime demonstrates strong improvements in both reasoning and alignment,
several limitations remain. First, our training pipeline relies heavily on synthetic data for construct-
ing interleaved time series CoT and RLVR datasets. Although these datasets are carefully designed
and verified, they cannot fully capture the diversity and complexity of real-world time series, which
may limit the generalization of the model to unseen domains. Second, our evaluation benchmarks,
although broad, are still constrained by the availability of existing datasets. The absence of large-
scale standardized benchmarks for time series reasoning makes it difficult to measure progress in a
fully consistent way. Finally, the current model is based on a single base model, and the scalability
of our approach to larger or different base models has not been systematically examined.

Future Work. Future research can address these limitations in several directions. Expanding real-
world datasets for alignment and reasoning tasks is an important step toward improving the robust-
ness and generalization of time series multimodal LLMs. Another promising direction is to design
standardized reasoning benchmarks that cover a wide range of time series tasks, which would pro-
vide a more reliable basis for evaluation and comparison. In addition, exploring more advanced
reinforcement learning algorithms and richer reward functions may further enhance training stabil-
ity and reasoning capability. Extending the framework to other backbones and scaling it to larger
model sizes could also test the adaptability of our approach. Finally, integrating domain-specific
knowledge and applications, such as forecasting or anomaly diagnosis, may broaden the practical
impact of multimodal deep thinking with time series.

F USE OF LARGE LANGUAGE MODELS

In the writing of this paper, LLMs were used for translation and text polishing. LLMs were also
applied in the data generation process of this paper. The detailed generation process can be found in
the relevant sections above.

25

	Introduction
	Related Work
	Method
	ThinkTime
	Model Design
	Training Data
	Model Training

	Evaluation
	Tasks and Datasets
	Setups
	Main Results
	Study of ``Thinking with Time Series''
	Study of Reinforcement Learning

	Conclusion
	Ethics statement
	Reproducibility Statement
	Case Studies
	Comparison between ThinkTime and Model with Text-Only CoT
	Reasoning Task: Numerical Judgment
	Reasoning Task: Calculation
	Reasoning Task: Comparison

	Evaluation Details
	Evaluation Tasks
	Reasoning Tasks
	Alignment Tasks

	Evaluation Metrics
	Evaluation Datasets
	Implementation of Baselines

	Training Details
	RL Rewards
	Implementation of DAPO for iTCoT
	Training Settings

	Training Datasets
	Synthetic Time Series Generator
	Warm-Up SFT Datasets
	Prompts for Tool Use
	Prompts for Local Fluctuation-Related iTCoT Generation
	Prompts for Trend-Related iTCoT Generation
	Prompts for Season-Related iTCoT Generation
	Prompts for Noise-Related iTCoT Generation
	Prompts for Local Correlation-Related iTCoT Generation
	Prompts for Shape Correlation-Related iTCoT Generation
	Prompts for Shape Cluster-Related iTCoT Generation

	RL Datasets
	Prompts for Pattern-Recognition Dataset Generation
	Prompts for Numerical-Judgment Dataset Generation
	Prompts for Calculation Dataset Generation
	Prompts for Causal Dataset Generation

	Discussion
	Use of Large Language Models

