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ABSTRACT

Discrete variational auto-encoders (VAEs) are able to represent semantic latent
spaces in generative learning. In many real-life settings, the discrete latent space
consists of high-dimensional structures, and propagating gradients through the
relevant structures often requires enumerating over an exponentially large latent
space. Recently, various approaches were devised to propagate approximated gra-
dients without enumerating over the space of possible structures. In this work, we
use Natural Evolution Strategies (NES), a class of gradient-free black-box opti-
mization algorithms, to learn discrete structured VAEs. The NES algorithms are
computationally appealing as they estimate gradients with forward pass evalua-
tions only, thus they do not require to propagate gradients through their discrete
structures. We demonstrate empirically that optimizing discrete structured VAEs
using NES is as effective as gradient-based approximations. Lastly, we prove NES
converges for non-Lipschitz functions as appear in discrete structured VAEs.

1 INTRODUCTION

Discrete variational auto-encoders (VAEs) are able to represent structured latent spaces in generative
learning. Consequently VAEs drive extensive research in machine learning applications, including
language classification and generation [60, 17, 54, 9, 13], molecular synthesis [28, 15, 48], speech
and visual understanding [36, 55, 3]. Compared to their continuous counterparts, they can improve
interpretability by illustrating which terms contributed to the solution [48, 40], and they can facilitate
the encoding of inductive biases in the learning process, such as images consisting of a small number
of objects [12] or tasks requiring intermediate alignments [36, 42, 1, 2].

Learning VAEs with discrete n-dimensional latent variables is computationally challenging since
the size of the support of the posterior distribution may be exponential in n. This is particularly
common under the structured settings, when the latent variables represent complex structures such
as trees or graphs. The Gumbel-max reparametrization trick trades enumeration with optimization
using efficient dynamic programming algorithms and enables a computation of the model value.
Unfortunately, the resulting mapping remains non-differentiable due to the presence of argmax
operations. In order to propagate gradients efficiently, Jang et al. [19], Maddison et al. [34] proposed
the Gumbel-softmax reformulation that uses a smooth relaxation of the reparametrized objective,
replacing the argmax operation with a softmax operation. Following such an approach may bring
back the need for enumerating over a large search space. This is due to the partition function of
the softmax operator, which relies on a summation over all possible latent assignments, which may
be exponential in n. To better deal with the computational complexity in the structured setting,
sophisticated stochastic softmax tricks were devised to learn discrete structured VAEs [48] (e.g.,
perturb-and-parse for dependency parsing by [9], Gumbel-Sinkhorn for bi-partite matching [36]).
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In this work we propose to use the Natural Evolution Strategy (NES) [57, 58] algorithm for learning
discrete structured VAEs. The NES algorithm is a gradient-free black-box optimization method
that does not need to propagate gradients through discrete structures. Instead, the NES algorithm
estimates gradients by forward-pass evaluations only. We experimentally show that gradient-free
methods are as effective as sophisticated gradient based methods, such as perturb-and-parse. NES
is conceptually appealing when considering discrete structured VAEs since NES does not require
to construct complex solutions to propagate gradients through the argmax operation, as it only
requires to evaluate the model. Moreover, the proposed approach is highly parallelizable, hence
computationally appealing.

Our contributions: (1) We suggest using black-box, gradient-free based optimization methods,
specifically NES, to optimize discrete structured VAEs. (2) We experimentally demonstrate that
NES, which uses the models‘ output in a black-box manner, is as effective as gradient based approx-
imations although being more general and simpler to use. (3) We rigorously describe the connection
between NES and previous gradient based optimization methods (i.e, REINFORCE) as well as prove
that the NES algorithm converges for non-Lipschitz functions.

2 BACKGROUND

Discrete Structured Variational Auto-Encoders (VAEs) learn a generative model pθ(x) using a
training set S = {x1, . . . , xm}, derived from an unknown distribution p(x) by minimizing its nega-
tive log-likelihood. VAEs rely on latent variable models of the form pθ(x) =

∑
z∈Z pθ(z)pθ(x|z),

where z is a realization of the latent variable andZ is the discrete set of its possible assignments. We
focus on discrete structures such as spanning trees in a graph G = (V,E), i.e., z = (z1, ...., z|E|)
represents a spanning tree T for which ze = 1 if the edge e ∈ T belongs to the spanning tree T and
zero otherwise. In this case, Z is the spanning trees space which is typically exponential in the size
of the input, as there are |V ||V |−2 spanning trees for a complete graph with |V | vertices.

VAEs rely on an auxiliary distribution qφ(z|x) that is used to upper bound the negative log-
likelihood of the observed data points:

∑
x∈S − log pθ(x) ≤

∑
x∈S L(θ, φ, x), where: L(θ, φ, x) =

−Ez∼qφ(·|x)[log pθ(x|z)]+KL(qφ(·|x)||pθ(·)). This formulation is known as the negative Evidence
Lower Bound (ELBO) [20], where the KL-divergence measures the similarity of two distributions
qφ and pθ, and is defined as: KL(qφ(·|x)||pθ(·)) = Ez∼qφ(·|x)[log(qφ(z|x)/pθ(z))].

Parameter estimation is generally carried out by performing gradient descent on
∑
x∈S L(θ, φ, x).

In the discrete VAE setting, the first term admits an analytical closed form gradient:

∂Ez∼qφ(·|x)[log pθ(x|z)]
∂φ

= Ez∼qφ(·|x)
[
log pθ(x|z)

∂ log qφ(z|x)
∂φ

]
. (1)

An exact computation of the expectation requires enumeration over all possible latent assignments
since Ez∼qφ(·|x)[log pθ(x|z)] =

∑
z∈Z qφ(z|x) log pθ(x|z). Unfortunately, in the structured setting,

the number of possible latent assignments is exponential. Instead, one can rely on the score function
estimator (REINFORCE) to generate an unbiased estimate of the gradient by sampling from the
distribution over the latent space. In many cases of interest, such as sampling spanning trees, the
sampling algorithm is computationally unfavorable and suffers from high variance, leading to slow
training and poor performance [46].

The Gumbel-Max reparametrization trick can trade summation with optimization. This approach
is computationally appealing when considering spanning trees, since finding a maximal spanning
tree is more efficient than sampling a spanning tree. Consider i.i.d. zero-location Gumbel random
variables γ ∼ G(0), e.g., in the case of spanning trees γ = (γ1, ..., γ|E|) consists of an independent
random variable for each edge in the graph. Let qφ(z|x) = ez

>hφ(x) where hφ(x) is a parametric
encoder that learns edge scores and pθ(x|z) = efθ(x,z), where fθ(x, z) denotes the log-probability
learned by a parametric decoder. Then, the summation

∑
z∈Z −qφ(z|x) log pθ(x|z) can be approx-

imated by the expectation

Eγ∼G(hφ(x))
[
− fθ(x, argmax

z∈Z
{z>γ})

]
. (2)

We provide the derivation in Appendix C. This formulation is a key to our proposed approach, as in
some cases, estimating the above equation is easier. Computing the argmax can be accomplished
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efficiently even when the latent space is exponentially large. It is performed by utilizing sophisti-
cated MAP solvers. For instance, finding the maximum spanning tree can be achieved in polynomial
run time using Kruskal’s algorithm [27]. Sampling by perturbing the input and feeding it to a MAP
solver is called perturb-and-map [47]. The gradient of Eq. 2 can be estimated using REINFORCE
without needing to relax the argmax operator. By reparametrizing the Gumbel distribution, we get:

∂Eγ∼G(hφ(x))

[
fθ(x,argmaxz∈Z{z>γ})

]
∂φ = Eγ∼G(hφ(x))

[
fθ(x, argmaxz∈Z{z>γ})∂ log G(hφ(x))(γ)

∂φ

]
. (3)

Where G(hφ(x)) denotes the probability density function (PDF) of the Gumbel distribution with a
location parameter of hφ(x). The exponential summation in Eq. 1 is replaced with optimization, and
now samples can be derived efficiently by applying the perturb-and-map technique. On the other
hand, the disadvantages of REINFORCE remain as they were.

The Gumbel-Softmax trick is a popular approach to reparameterize and optimize Eq. 2. Since
Eγ∼G(hφ(x))

[
fθ(x, argmaxz∈Z{z>γ})

]
= Eγ∼G(0)

[
fθ(x, argmaxz∈Z{z>(hφ(x) + γ)})

]
, one

can apply the Softmax to replace the non-differential argmax function. Hence, the Gumbel-Softmax
trick replaces the function argmaxz∈Z{z>(hφ(x) + γ)}) with the differential softmax function

ez
>(hφ(x)+γ)∑

ẑ∈Z e
ẑ>(hφ(x)+γ)

, cf. Jang et al. [19], Maddison et al. [34]. Under the structured setting, sophis-

ticated extensions avoid the exponential summation in the partition function of the softmax opera-
tor [9, 36, 48]. For instance, in dependency parsing, Corro & Titov [9] construct the differentiable
perturb-and-parse (DPP) method that exploits a differentiable surrogate of the Eisner algorithm [11]
for finding the highest-scoring dependency parsing by replacing each local argmax operation with
a softmax operation. Alternatively, Paulus et al. [48] utilize the Matrix-Tree theorem [24] for prop-
agating approximated gradients through the space of undirected spanning trees.

Natural Evolution Strategies (NES) is a class of gradient-free optimization algorithms. NES op-
timizes its objective function, by evaluating it at certain points in the parameter space. Consider
a function k(µ), may it be non-differentiable nor continuous, instead of optimizing k(µ) using a
gradient method, NES optimizes a smooth version using the expected parameters of the function:

g(µ) = Ew∼N (µ,σ2I)[k(w)] =

∫
Rd

1

(2πσ2)
d
2

e−
‖w−µ‖2

2σ2 k(w)dw. (4)

Here N (µ, σ2I) is a Gaussian distribution with mean µ and covariance σ2I . The expectation with

respect to the Gaussian ensures the function g(µ) is differentiable, since e−
‖w−µ‖2

2σ2 is differentiable
of any order, although k(µ) may not be differentiable. Following the chain-rule, the score function
estimator for the Gaussian distribution determines the gradient:

∂g(µ)

∂µ
=

∫
Rd

1

(2πσ2)
d
2

e−
‖w−µ‖2

2σ2

(w − µ
σ2

)
k(w)dw. (5)

That is, NES is an instance of REINFORCE, which optimizes a smoothed version of k(µ) by sam-
pling from a distribution over parameter space rather than latent space. The reparameterization trick
allows to further simplify the gradient estimator, with respect to a standard normal distribution:

∂g(µ)

∂µ
=

∫
Rd

1

(2π)
d
2

e−
‖w‖2

2

(w
σ

)
k(µ+ σw)dw = Ew∼N (0,I)

[w
σ
k(µ+ σw)

]
. (6)

The gradient can be estimated by sampling w repeatedly from a standard Gaussian: ∂g(µ)
∂µ ≈

1
N

∑N
i=1

wi
σ k(µ + σwi). The obtained estimator is biased when σ > 0. However, the bias ap-

proaches 0 as σ → 0. In practice, σ is assigned a small value, treated as a hyper-parameter.

This algorithm is computationally appealing as it only uses the evaluations of k(·) to compute the
gradient of g(·). Moreover, NES is highly parallelizable, i.e., one can compute the gradient ∇g(µ)
at the time of evaluating a single k(µ + σwi), in parallel for all i = 1, ..., N , and then average
these parallel computations [52]. Figure 1 depicts the parallel forward passes and the update rule
according to NES.

Theoretical guarantees regarding the convergence of gradient-free methods such as NES, were es-
tablished for Lipschitz functions by Nesterov & Spokoiny [41]. In Section 3, we extend the current
zero-order optimization theory by presenting a convergence bound for NES over non-Lipschitz and
bounded functions.
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sample forward pass update

Figure 1: NES perturbs the parameters of a black-box model k(µ) forN times viaw, σ and performs
parallel forward passes. Then, the model parameters are updated given the gradient estimation.

3 STRUCTURED VAE OPTIMIZATION USING NES

In this work we suggest using gradient-free based method for learning discrete structured VAEs.
Specifically, we propose using NES to optimize discrete structured VAEs without the need to prop-
agate gradients through their latent discrete structures. For readability, we consider a concatenation
of both θ and φ as µ = [θ;φ] where ; is the concatenation operation. For notational convenience, we
refer θ as µ1 and φ as µ2.

Combining the discrete VAE objective function in Eq. 2, which is a non-continuous function due
to the argmax operation and hence, non-Lipschitz, together with the NES objective in Eq. 4 (i.e.,
setting k(µ) = L(µ, x)) we get the following smooth approximation by setting g(µ) to be:

Ew∼N (µ,σ2I)Eγ∼G(hw2 (x))

[
− fw1

(x, argmax
z∈Z
{z>γ})

]
, (7)

where w = [w1;w2] is the concatenation of vectors w1, w2 that denotes the decoder and encoder
parameters respectively. Our goal is to minimize Eq. 7. Following the NES setup, we use Eq. 6 with
a simplified notation to better emphasize the smoothing of µ. Overall its gradient takes the form of:

Ew∼N (0,I)Eγ∼G(hµ2+σw2
(x))

[
− w

σ
fµ1+σw1

(x, argmax
z∈Z
{z>γ})

]
. (8)

We provide the pseudo code for using the NES algorithm to optimize discrete VAEs, together with
their gradient update rule on Algorithm 1. We estimate the NES gradient in Eq. 8 by sampling
w ∼ N(0, I) and γ ∼ G(hµ2+σw2(x)), which in turn induces a sampling of discrete structures
argmaxz∈Z{z>γ}. This sampling procedure differs from that of the REINFORCE instances de-
scribed in Eq. 1 and Eq. 3, as the samples of NES are tied to the sensitivity of the scoring function
hµ2+σw2(x), i.e, to a random perturbation of its parameters µ2 by σw2. In contrast, the samples of
REINFORCE are proportional to the scoring function hµ2(x) itself. In our experimental validation,
we empirically demonstrate that NES has a lower variance.

Theoretical Guarantees. Next, we prove NES converges for a non-Lipschitz function k(·), which
appears in reparameterized discrete VAEs in Eq. 2. In particular, we show that the norm of the
parameters’ gradient can be arbitrarily small as training progresses. More formally, when the NES
algorithm performs T update rules to the parameters µ, it generates the sequence µ(1), µ(2), ..., µ(T ),
and for a sufficiently large T , there exists t ∈ {1, ..., T} for which ‖∇g(µ(t))‖ is arbitrarily small.

For mathematical simplicity, we prove our convergence theorem on the expected gradient, as de-
scribed in Eq. 8: µ(t+1) ← µ(t) − η∇g(µ(t)). To easily address ‖∇g(µ(t))‖ one usually consid-
ers the difference µ(t+1) − µ(t) using the remainder of the Taylor series: g(µ(t+1)) − g(µ(t)) =
∇g(µ(t))>(µ(t+1) − µ(t)) + 1

2 (µ
(t+1) − µ(t))>∇2g(µ̂)(µ(t+1) − µ(t)), where µ̂ ∈ [µ(t), µ(t+1)].

Here we denote by ∇2g(µ̂) the Hessian of g(µ̂). Applying the gradient update rule, we obtain the
following equation:

g(µ(t+1))− g(µ(t)) = −η‖∇g(µ(t))‖2 + η2

2
∇g(µ(t))>∇2g(µ̂)∇g(µ(t)). (9)

A bound for ∇g(µ(t))>∇2g(µ̂)∇g(µ(t)) is a key to our convergence theorem. Our bound relies on
the fact that the discrete VAE objective, which is given in Eq. 2, is a non-negative function that is
continuous almost everywhere.

4



Published as a conference paper at ICLR 2022

Algorithm 1 Natural Evolution Strategies for discrete VAEs
Input: Initial parameters µ.
repeat

for all i = 1 to N do
Sample w̃i ∼ N (0, I|µ|)

Evaluate ui = Eγ∼G(hµ2+σw̃2,i
(x))

[
− fµ1+σw̃1,i(x, argmaxz∈Z{z>γ})

]
end for
Update µ← µ− η · 1

N

∑N
i=1

w̃i
σ
ui

until a stopping condition is met

Lemma 1. Let k : Rd → [0,M ] be a non-negative function that is continuous almost everywhere
and let g(µ) = Ew∼N (µ,σ2I)[k(w)]. Then for any µ1, µ2 there holds:

∇g(µ1)
>
(
∇2g(µ2)

)
∇g(µ1) ≤

dM3

σ4
. (10)

Proof can be found in Appendix A.1. The above lemma together with Eq. 9 imply the following
bound: g(µ(t+1)) − g(µ(t)) ≤ −η‖∇g(µ(t))‖2 + η2 dM

3

2σ4 . By summing over all algorithm steps
t = 1, ..., T we show that the average norm of the gradient can be arbitrarily small for a sufficiently
large T .
Theorem 1. Under the conditions of Lemma 1 there holds:

1

T

T∑
t=1

‖∇g(µ(t))‖2 ≤ M

ηT
+
ηdM3

2σ4
. (11)

Moreover, when setting η =
√

2σ4

TdM2 then: 1
T

∑T
t=1 ‖∇g(µ(t))‖2 ≤

√
2dM4

Tσ4 .

Therefore, there exists t for which ‖∇g(µ(t))‖2 ≤
√

2dM4

Tσ4 .

Proof is given in Appendix A.2. Intuitively, the above theorem proves that the NES algorithm con-
verges on discrete VAE to a stationary point, even when the original function k(·) is non-continuous
and hence non-Lipschitz. This is in contrast to the contemporary trend that relies on Lipschitz func-
tions [41]. Instead, we rely on the non-negativity of the discrete VAE objective. We note that a
stationary point of g(µ) = Ew∼N (µ,σ2I)[k(w)] is not necessarily a stationary point of k(µ). Never-
theless, since limσ→0 g(µ) = k(µ) almost everywhere, except perhaps for non-continuous points, a
low value of g(µ) is correlated with a low value of k(µ).

4 EXPERIMENTS

We start by experimentally validating our approach by learning discrete structured VAEs for latent
structure recovery in Section 4.1 and dependency parsing in Section 4.2. Next, in Section 4.3 we
analyze how NES scales with the latent space dimension and neural network size. We additionally
provide an analysis for non-Lipschitz functions in Appendix B, together with analyzing the results
concerning the theoretical guarantees as presented in Section 3.

In our experiments, we use a variance reduction technique called mirrored sampling [14, 4]: that
is, on each NES iteration, we use a single Gaussian noise vector w to create two parameter sets,
one by adding and the other by subtracting the noise vector. Thus, on each iteration, we sample N

2
Gaussian noise vectors where N is the number of the VAE parameter sets utilized for estimating the
NES update direction. Additionally, to make NES more robust and scale-invariant, we transform the
outputs of the perturbed forward passes into standard scores by subtracting their mean and dividing
them by the standard deviation. All reported values are measured on a test set, and the models were
selected using early stopping on the validation set. All the following experiments were conducted
using an internal cluster with 4 Tesla-K80 NVIDIA GPUs.

4.1 LATENT STRUCTURE RECOVERY

We begin by demonstrating the capability of NES to learn the internal structure of an interacting
system based on graphs in an unsupervised fashion. The interplay of group components, e.g., bas-
ketball players on the court or a flock of birds during migration, can often be explained using a
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Table 1: The mean and standard deviation of the ELBO and structure recovery metrics. NES outperforms
the five different baselines in terms of structure recovery and presents a negligible standard deviation, which
reflects its robustness.

Spanning Tree n− 1 Individual Edges

Method ELBO ↑ Edge F1-Score ↑ ELBO ↑ Edge F1-Score ↑
REINFORCE (Batch) -2260 ± 0 41 ± 1 -2180 ± 0 39 ± 1
REINFORCE (EMA) -2250 ± 20 40 ± 7 -2170 ± 10 42 ± 1
REINFORCE (Multi-sample) -2230 ± 20 42 ± 1 -2150 ± 10 40 ± 0
NVIL -1570 ± 300 83 ± 20 -2110 ± 10 42 ± 2
SST -1080 ± 110 91 ± 3 -2100 ± 20 41 ± 1

NES (Ours) -1117 ± 45 92 ± 0.2 -2150 ± 10 44 ± 0.6

simple structure. However, frequently, we only have access to individual trajectories without knowl-
edge of the underlying interactions. The Neural Relational Inference (NRI) model [23], which we
base on, is designed to infer these interactions purely from observational data. NRI takes the form
of a VAE, where the encoder produces a distribution over the space of interaction structures given
the component trajectories, and the reconstruction is based on graph neural networks.

In our experiments, we utilize the dataset developed by Paulus et al. [48], where the target structure
is a spanning tree over 10 vertices (each vertex represents an individual component). The model
attempts to learn the true tree structure that defines the interplay among the group by only observing
the locations of the 10 components during several timesteps. We focus on two cases, as suggested
by Paulus et al. [48]. In the first case, we use our prior knowledge regarding the true structures
and define the latent space as the space of spanning trees over a 10-nodes undirected graph, which
consists of 108 possible spanning trees. In the second more challenging case, we remove the tree
constraint and consider all possible n − 1 unique edge combinations as the latent space, where n
denotes the number of vertices. The ability to recover the underlying structure is measured as the
edge F1-score against the target spanning tree.

In each of the two cases, we compare NES with the corresponding Stochastic Softmax Trick (SST)
[48]. SSTs are the generalization of the Gumbel-Softmax Trick (GSM) for combinatorial discrete
distributions. That is, in contrast to GSM, SSTs are designed to optimize over exponentially large
discrete spaces. We run our experiments with the same set of parameters as in Paulus et al. [48],
except that during decoding we use teacher-forcing every 3 steps instead of 9 steps. We fix NES
parameters to be σ = 0.01 and N = 600. We additionally compared our method against four in-
stances of REINFORCE. Each utilizes a different variance reduction technique. The first is NVIL
[39], which uses two control variates. The remaining three reduce variance by subtracting the fol-
lowing control variate from the learning signal: EMA uses the exponential moving average of the
ELBO, Batch uses the mean ELBO of the current mini-batch, and lastly, Multi-sample, which is es-
pecially well suited for structured prediction [25, 26], uses the mean ELBO over r multiple samples
per data point. Paulus et al. [48] tuned r on the set of {2, 4, 8}. Results are listed in Table 1.

In terms of structure recovery, the gradient-free NES outperforms all REINFORCE instances. More-
over, when considering SST, NES achieves superior edge F1-score with slightly worse ELBO values.
This is surprising since SST is a gradient-based method that generalizes the effective GSM estima-
tor to combinatorial spaces. Also, unlike SST, which requires a carefully tailored solution for each
structure, NES is simple and generic. For a fair comparison with NES, we also ran the Multi-sample
method with 400 Monte Carlo samples per data point and a mini-batch size of 4 (as using larger r or
larger mini-batch size has exceeded the GPU memory limit). However, the results were inferior to
those achieved by tuning r on {2, 4, 8}. This is in line with the results obtained by Kool et al. [25],
where larger values of r led to inferior results. Thus, it can be concluded that even with an equal
computational cost, the REINFORCE instances are inferior to NES.

4.2 DEPENDENCY PARSING

Next, we evaluate the capability of NES in learning latent projective and non-projective dependency
parse trees as part of an unsupervised domain adaptation task. Unlike Section 4.1, where we focused
on structures over undirected edges, here we focus on dependency trees which are rooted directed
spanning trees. Our model is based on a VAE architecture similar to that of differentiable perturb-
and-parse (DPP) [9]. The encoder is comprised of a graph-based parser [22] that decomposes the
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Table 2: Unlabeled attachment scores for unsupervised domain adaptation. The column name represents the
setup where the treebank is set to be the target domain. For each of the two tasks, NES achieves the best UAS
performance on 5 out of the 6 target domains.

Method GL CTG GL TREEGAL ID CSUI ID GSD RU GSD RU TAIGA Projective

DPP 68.72 71.39 68.23 71.71 71.46 69.94 3
NES (Ours) 68.92 71.64 68.28 71.41 71.82 70.52 3

SparseMAP 68.57 70.61 68.23 70.56 70.99 69.96 7
NES (Ours) 68.67 70.98 68.28 70.47 71.01 69.96 7

score of a tree to the sum of the scores of its arcs and produces a distribution over the space of depen-
dency trees. Sampling from the latent space is performed using the “perturb-and-map” technique,
where each arc score is perturbed independently with a noise derived from a Gumbel distribution.
Then, the perturbed arc scores are fed into a MAP solver, which outputs the highest-scoring tree
(the resulting sample). For projective dependency parsing, we utilize the Eisner algorithm [11] as
the MAP solver. Similarly, for non-projective dependency parsing, we use the Chu-Liu-Edmonds
(CLE) algorithm [6, 10]. The decoder is modeled as a language model, that given a latent depen-
dency tree, attempts to reconstruct the input sentence.

We compare NES with two strong baselines. For projective dependency parsing, we consider the
DPP model. DPP optimizes the VAE by utilizing a differentiable surrogate of the Eisner algorithm.
In that manner, it tackles both the differentiability and exponential enumeration issues. In fact,
DPP can be seen as a Stochastic Softmax Trick (SST). For non-projective dependency parsing, we
consider SparseMAP [43] as a baseline by replacing the CLE algorithm with a SparseMAP layer.
SparseMAP uses the active set method that performs sequential calls to a MAP solver and returns a
sparse linear combination of several high-scoring structures. This procedure is differentiable almost
everywhere but computationally inefficient due to its sequential nature. Unlike these methods, NES
does not require any modification to the architecture.

We perform extensive experiments on the task of unsupervised domain adaptation for dependency
parsing. We consider the Universal Dependencies (UD) dataset [35, 44, 45]. UD is a multilingual
corpus annotated with dependency trees in more than 180 treebanks of over 100 languages. We
follow the setup of Rotman & Reichart [50] and choose 3 distinct languages, considering 2 distinct
treebanks from different domains for each: Galician (GL CTG: science and legal, GL TREEGAL:
news), Indonesian (ID CSUI: news, ID GSD: general) and Russian (RU GSD: general, RU TAIGA:
social media, poetry, and fiction). We conduct 6 domain adaptation experiments, where we alternate
between the source and target domain in each language. We consider the training set of our source
domain as our labeled dataset and the training set of the target domain as the unlabeled dataset.

At first, we train the VAE components separately on the labeled set (source domain) for 30 epochs.
Then, we optimize the pretrained VAE on the unlabeled set (target domain) for 10 additional epochs
using the NES algorithm. For a fair comparison, we perform the same training procedure for the
above-mentioned baselines. We set the hyper-parameters to those of the original implementation of
Kiperwasser & Goldberg [22] and feed the models with the multilingual FastText word embeddings
[16]. We perform a grid-search for each of the methods separately over learning rates in [5 ·10−4, 1 ·
10−5] and set the mini-batch size to 128. We fix NES parameters to be σ = 0.1 andN = 400. Adam
optimizer [21] is used to optimize all methods. The models we selected were those who obtained
the best unlabeled attachment score (UAS) on the source domain validation set.

Table 2 summarizes the results on the UD treebanks in terms of unlabeled attachment score (UAS).
The scores under each treebank name reflect performances on the setup where the treebank is set
to be the target domain. Results suggest that NES reaches comparable performance (with a minor
improvement) to SparseMAP and DPP while being simpler and more flexible to use. Note that unlike
SparseMAP and DPP, which use sequentially complex methods to either infer the highest-scoring
tree structure or to propagate gradients through a bottleneck dynamic programming algorithm, NES
can optimize the model in parallel without the necessity of gradient computations.

4.3 SCALABILITY ANALYSIS

Latent space size. In the following set of experiments, we further investigate the properties of NES
and the several methods it was compared to in Section 4.1 and 4.2. Specifically, we examine how
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Figure 2: Wall-clock time as a function of model input size. Experiments are conducted on the NRI model
(Left), projective parsing model (Center), and non-projective parsing model (Right). We observe that NES
scales well with the latent space size in contrast to most of its competitors.

the latent space size affects the method’s run-time by measuring the methods wall-clock time of a
forward and backward pass as a function of the input dimension (denoted by n). Note that the latent
space size grows exponentially with the model input dimension, e.g., for a sentence of length n, the
latent space of the VAE architecture presented in Section 4.2 is the space of all possible dependency
trees over an n-nodes directed graph.

For each n ∈ {10, 20, . . . , 250} we create a random dataset. Specifically, for the NRI model (Sec-
tion 4.1), the input is n trajectories of 10 timesteps derived from a standard Gaussian distribution.
We compare the run-time of NES with that of SST and a REINFORCE instance that relies on Eq. 1,
where sampling is performed using a Markov chain Monte Carlo (MCMC) algorithm. For the pars-
ing model (Section 4.2), we derive 32 random sentences of length n by randomly sampling words
from a vocabulary of size 10000. As DPP utilizes a differentiable surrogate of the Eisner algorithm,
it is compared to NES with the Eisner algorithm as the MAP solver. Similarly, SparseMAP is com-
pared to NES with the CLE algorithm. Since our internal cluster consists of 4 GPUs, we utilize NES
with N = 4 for a fair comparison with the gradient-based methods. Finally, we run the experiments
over various random seeds and average the wall-clock time. Figure 2 depicts the results.

As can be seen, the run-times of DPP and SparseMAP heavily rely on the input dimension and grow
at a much higher rate than the run-time of NES. NES also scales better than SST and REINFORCE
on the NRI model. However, in this case, the gap is smaller as enlarging the input dimension of the
latent structure also enlarges the model size which NES updates depend on. Overall, it can be seen
that NES scales well with the latent space size in contrast to most of its competitors.

Neural network size. Next, we conduct a study that examines how the enlargement of a neural
network affects the number of NES samples needed to optimize it. We begin by optimizing a VAE
of 25K parameters, then we enlarge its parameter size by a factor of 2 and optimize the resulting
model. We repeat this process several times up to a model of 800K parameters. We utilize SST with
a fixed temperature of 1 as a baseline. For each model size, we examine how many NES samples
are needed to achieve test ELBO as lower as the one achieved by the SST. Results are depicted in
Table 3. A detailed description of the experimental setup can be found on Section B in the Appendix.

We observe that enlarging the neural network by a factor of 2 does not necessarily mean that we
should enlarge N in the same manner. To be precise, in all our experiments, we do not need to
enlarge N with more than 50% samples when optimizing the two times larger network. These
observations are positive and suggest that NES can scale well with the network size.

5 RELATED WORK

Jang et al. [19], Maddison et al. [34] proposed the GSM estimator that replaces the non-differentiable
argmax operation with a differentiable softmax operation. However, structured latent spaces can be
exponentially large and the softmax opertation becomes computationally intractable. Other works
proposed tailor-maid solutions for specific structures. For instance, Corro & Titov [9] focused on
latent projective dependency trees and propagated gradients through a differentiable surrogate of
Eisner algorithm [11]. Mena et al. [36] extended the Gumbel-Softmax estimator [19] and proposed
the Gumbel-Sinkhorn method for learning latent permutations. Paulus et al. [48] took these ideas one
step further and proposed a unified framework for designing structured relaxations of combinatorial
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Table 3: ELBO as a function of the neural network size and N . The values in the “Growth in N” column
express the percent of additional NES samples (with respect to the preceding step) needed to achieve the
baseline performance.

# Parameters SST NES N Growth in N

25K -240.48 -239.40 60 -
50K -239.49 -231.02 60 + 0.00%

100K -233.13 -232.40 90 + 50.00%
200K -233.92 -233.99 100 + 11.11%
400K -239.02 -234.29 100 + 0.00%
800K -241.03 -234.86 100 + 0.00%

distributions. Unlike these methods, our approach is generic and as such, it can be applied to general
structures with no additional effort, since it obviates the need for a differentiable surrogate of the
linear maximization oracle. Mensch & Blondel [37] proposed a framework for turning dynamic
programming algorithms differentiable.

Others have taken a more generic approach. For example, SparseMAP [43, 42, 8] is a framework
for training deep networks with sparse structured hidden layers, solved by sequential calls to a MAP
oracle. In a similar sense, Itkina et al. [18] suggest using evidential theory to perform post hoc latent
space sparsification and thus reducing the discrete latent sample space at test time. Chen et al. [5]
generalized this method to a sparse normalization function which can be applied during both training
and test time. Moreover, a recent line of works propagates gradients through the non-differentiable
argmax operation, Lorberbom et al. [33] use the difference of two maximization operations, and
the method of Berthet et al. [1] is based on integration by parts. Contrarily, our approach does
not require constructing sophisticated solutions to propagate gradients through discrete operations,
which makes it both simple and flexible.

The Vector Quantized Variational Auto-Encoder (VQ-VAE) [56, 49] introduces an alternative ap-
proach to learning discrete latent representation. However, VQ-VAE differs from our discrete struc-
tured VAEs in an important aspect. In our setting, we know the structure of the latent space, e.g., the
space of all possible spanning trees in a given graph. Hence we do not perform unsupervised vec-
tor quantization as in VQ-VAE but rather use a predetermined quantization over the set of possible
structures. In this work, we rather focus on an alternative optimization method for learning discrete
latent structures.

Recently, black-box optimization methods have been applied to neural networks [32, 52, 31, 61, 30,
53, 38]. Salimans et al. [52] showed that NES is a competitive alternative to popular RL techniques.
Moreover, they utilized the fact that NES is highly parallelizable and proposed a generic distributed
version of NES that scales well with the number of CPUs. Lenc et al. [31] proposed a hybrid
method that alternates between NES and SGD for training large sparse models. Finally, Zhang et al.
[61], Lehman et al. [30] compare the relation between the SGD gradients and NES updates. To our
knowledge, we are the first to apply NES to structured VAEs.

6 CONCLUSION

We suggested using NES, a class of gradient-free black-box algorithms, as an alternative for learn-
ing discrete structured VAEs. We have demonstrated empirically that NES performs substantially
better than various REINFORCE instances and even better than SST on the structure recovery task
while being simpler and more robust. Moreover, NES achieves better or comparable performance
to DPP and sparseMAP when considering dependency tree latent structure. However, as opposed
to the aforementioned methods, NES does not require complex solutions for propagating gradients
through the discrete structures, which makes it more generic, flexible, and simple to implement.
Additionally, we showed that NES scales well with the latent space dimension and neural network
size. To establish the theoretical soundness of our approach, we proved that NES converges for
non-Lipschitz functions such as the objective function of a discrete VAE.

In this study, we have limited the expressive power of the NES method by fixing the covariance
matrix of the Gaussian search distribution. For future work, we would like to explore the effect of
jointly optimizing the covariance and mean of the distribution of parameters.
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discrete and structured latent variables via sparsity. Advances in Neural Information Processing
Systems, 33, 2020.

[9] Caio Corro and Ivan Titov. Differentiable perturb-and-parse: Semi-supervised parsing with a
structured variational autoencoder. In International Conference on Learning Representations,
2018.

[10] Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of Stan-
dards, B, 71:233–240, 1967.

[11] Jason M Eisner. Three new probabilistic models for dependency parsing: an exploration.
In Proceedings of the 16th conference on Computational linguistics-Volume 1, pp. 340–345,
1996.

[12] SM Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, Geoffrey E
Hinton, et al. Attend, infer, repeat: Fast scene understanding with generative models. In
Advances in Neural Information Processing Systems, pp. 3225–3233, 2016.

[13] Xianghong Fang, Haoli Bai, Jian Li, Zenglin Xu, Michael Lyu, and Irwin King. Discrete
auto-regressive variational attention models for text modeling. In 2021 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. IEEE, 2021.

[14] John Geweke. Antithetic acceleration of monte carlo integration in bayesian inference. Journal
of Econometrics, 38(1-2):73–89, 1988.

[15] Alex Glushkovsky. Ai discovering a coordinate system of chemical elements: dual represen-
tation by variational autoencoders. arXiv preprint arXiv:2011.12090, 2020.
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[45] Joakim Nivre, Mitchell Abrams, Željko Agić, Lars Ahrenberg, Lene Antonsen, Maria Jesus
Aranzabe, Gashaw Arutie, Masayuki Asahara, Luma Ateyah, Mohammed Attia, et al. Univer-
sal dependencies 2.2. 2018.

[46] John Paisley, David Blei, and Michael Jordan. Variational bayesian inference with stochastic
search. Proceedings of the 29th International Conference on Machine Learning, 2012.

[47] George Papandreou and Alan L Yuille. Perturb-and-map random fields: Using discrete op-
timization to learn and sample from energy models. In 2011 International Conference on
Computer Vision, pp. 193–200. IEEE, 2011.

[48] Max B Paulus, Dami Choi, Daniel Tarlow, Andreas Krause, and Chris J Maddison. Gradient
estimation with stochastic softmax tricks. Advances in Neural Information Processing Systems,
2020.

[49] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2. In Advances in neural information processing systems, pp. 14866–14876, 2019.

[50] Guy Rotman and Roi Reichart. Deep contextualized self-training for low resource dependency
parsing. Transactions of the Association for Computational Linguistics, 7:695–713, 2019.

[51] Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks.
In Proceedings of the 25th international conference on Machine learning, pp. 872–879, 2008.

12



Published as a conference paper at ICLR 2022

[52] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies
as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.

[53] Elad Sarafian, Mor Sinay, Yoram Louzoun, Noa Agmon, and Sarit Kraus. Explicit gradient
learning for black-box optimization. In International Conference on Machine Learning, pp.
8480–8490. PMLR, 2020.

[54] Dinghan Shen, Qinliang Su, Paidamoyo Chapfuwa, Wenlin Wang, Guoyin Wang, Ricardo
Henao, and Lawrence Carin. Nash: Toward end-to-end neural architecture for generative se-
mantic hashing. In Proceedings of the 56th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 2041–2050, 2018.

[55] Arash Vahdat, William Macready, Zhengbing Bian, Amir Khoshaman, and Evgeny Andriyash.
Dvae++: Discrete variational autoencoders with overlapping transformations. In International
Conference on Machine Learning, pp. 5035–5044. PMLR, 2018.

[56] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning. In Proceedings of the 31st International Conference on Neural Information Process-
ing Systems, pp. 6309–6318, 2017.

[57] Daan Wierstra, Tom Schaul, Jan Peters, and Juergen Schmidhuber. Natural evolution strate-
gies. In 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Com-
putational Intelligence), pp. 3381–3387. IEEE, 2008.

[58] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhu-
ber. Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980,
2014.

[59] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for bench-
marking machine learning algorithms, 2017.

[60] Dani Yogatama, Phil Blunsom, Chris Dyer, Edward Grefenstette, and Wang Ling. Learning to
compose words into sentences with reinforcement learning. In 5th International Conference
on Learning Representations (ICLR 2017). International Conference on Learning Representa-
tions, 2017.

[61] Xingwen Zhang, Jeff Clune, and Kenneth O Stanley. On the relationship between the openai
evolution strategy and stochastic gradient descent. arXiv preprint arXiv:1712.06564, 2017.

A PROOFS OF NES CONVERGENCE FOR NON-LIPSCHITZ FUNCTIONS

A.1 PROOF OF LEMMA 1

Proof. The proof follows two main steps: (i) the spectral norm of ∇2g is at most M/σ2 and (ii)
‖∇g(µ1)‖2 ≤ dM2/σ2.

Since the Hessian matrix is symmetric, we can use Rayleigh quotient and obtain:

∇g(µ1)
>
(
∇2g(µ2)

)
∇g(µ1) ≤ |λmax| · ‖∇g(µ1)‖2, (12)

where λmax is the largest eigenvalue of∇2g(µ2). Since∇2g(µ2) is symmetric it can also be shown
that:

|λmax| = ‖∇2g(µ2)‖ = max
‖s‖=1

|s>∇2g(µ2)s|. (13)

Applying the log derivative trick on Eq. 6, we obtain

∇2g(µ2) =

∫
Rd

1

(2π)
d
2

e−
‖w‖2

2

( 1

σ2
ww>

)
k(µ2 + σw)dw. (14)
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Therefore:

max
‖s‖=1

|s>∇2g(µ2)s| = max
‖s‖=1

|
∫
Rd

1

(2π)
d
2

e−
‖w‖2

2

( 1

σ2
s>ww>s

)
k(µ2 + σw)dw|

≤ M

σ2
max
‖s‖=1

|
∫
Rd

1

(2π)
d
2

e−
‖w‖2

2 (s>w)2dw|

=
M

σ2
max
‖s‖=1

‖s‖2 =
M

σ2
.

(15)

Since k(·) is bounded by M and w are i.i.d. normal Gaussian random variables, therefore for any
s the random s>w is a Gaussian with zero mean and variance ‖s‖2. By combining Eq. 13 with
Ineq. 15 we get:

‖∇2g(µ2)‖ ≤
M

σ2
, (16)

which concludes step (i). Next, we bound the squared norm of the gradient:

‖∇g(µ1)‖2 = ‖
∫
Rd

1

(2π)
d
2

e−
‖w‖2

2

(w
σ

)
k(µ1 + σw)dw‖2

=
1

σ2
‖
∫
Rd

1

(2π)
d
2

e−
‖w‖2

2 wk(µ1 + σw)dw‖2

≤ 1

σ2

∫
Rd
‖ 1

(2π)
d
2

e−
‖w‖2

2 wk(µ1 + σw)‖2dw

≤ M2

σ2

∫
Rd

1

(2π)
d
2

e−
‖w‖2

2 ‖w‖2dw =
dM2

σ2
,

(17)

where the first inequality is obtained using the Cauchy-Schwarz inequality and the second inequality
by bounding k(·) with M . Thus, overall we have showed that:

∇g(µ1)
>∇2g(µ2)∇g(µ1) ≤

M

σ2
· ‖∇g(µ1)‖2

≤ dM3

σ4
.

(18)

A.2 PROOF OF THEOREM 1

Proof. Rearranging Eq. 9, we obtain:

η‖∇g(µt)‖2 ≤ g(µ(t))− g(µ(t+1)) + η2
dM3

2σ4
. (23)

Summing over all algorithm steps t = 1, . . . , T , we have:

η

T∑
t=1

‖∇g(µt)‖2 ≤
T∑
t=1

[g(µ(t))− g(µ(t+1))] + η2
dM3T

2σ4
. (24)

Opening the telescopic sum:

η

T∑
t=1

‖∇g(µt)‖2 ≤ g(µ(1))− g(µ(T+1)) + η2
dM3T

2σ4
. (25)

Since k(·) is non-negative and bounded, the difference between g(µ(1)) and g(µ(T+1)) is bounded
from above by M :
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η

T∑
t=1

‖∇g(µt)‖2 ≤M + η2
dM3T

2σ4
. (26)

We multiply both sides of the inequality by 1
ηT :

1

T

T∑
t=1

‖∇g(µt)‖2 ≤ 1

ηT

[
M + η2

dM3T

2σ4

]
≤ M

ηT
+ η

dM3

2σ4
. (27)

Next, we minimize the right-hand size of the inequality in η:

η∗ =

√
2σ4

TdM2
, (28)

and plug it back to Ineq. 27:

1

T

T∑
t=1

‖∇g(µt)‖2 ≤
√

2dM4

Tσ4
, (29)

Then, for arbitrarily small δ > 0 such that:

1

T

T∑
t=1

‖∇g(µt)‖2 ≤ δ ≤
√

2dM4

Tσ4
, (30)

there exists t for which:

‖∇g(µt)‖2 ≤ δ, (31)

after at most

T ≤ 2dM4

δ2σ4
, (32)

steps.

B ADDITIONAL RESULTS

In the following experiments, we define the encoder as input⇒MLP (α)⇒ ReLU ⇒MLP (10)
⇒ argmax, and the decoder as MLP (α)⇒ ReLU ⇒MLP (β)⇒ output, where β is the input
dimension. Unless otherwise stated, α = 300.

B.1 NEURAL NETWORK SIZE

The experiments were conducted on the FashionMNIST dataset [59] with fixed binarization [51].
We tune α for enlarging the VAE. Particularly, α is picked from the set [16, 32, 64, 128, 256, 512].
All models were trained using the ADAM optimizer [21] over 300 epochs with a constant learning
rate of 10−3 and a batch size of 128.

B.2 RELATION BETWEEN g(·) AND k(·)

In section 3, we prove that under the conditions of Lemma 1, NES converges to a stationary point
of g(µ) for non-Lipschitz functions. To empirically explore the relation between g(µ) and k(µ), we
conduct a set of experiments in which we demonstrate that a low value of g(µ) is correlated with a
low value of the objective function k(µ) by estimating the average absolute distance between them.
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Figure 3: Left: The average absolute distance between the negative ELBO k(µ) and its Gaussian
approximation g(µ) as a function of the training epoch. The smaller σ is, the further the proximity
between the two functions. Right: Negative ELBO as a function of the training epoch. Performance
improves as the ELBO upper boundM increases. Result suggests that bounding a discrete VAE loss
with a large enough M guarantees the convergence of NES within a finite number of iterations on
the one hand, and on the other hand, does not impair performance.

Figure 4: Negative ELBO as a function of the training epoch. Experiments are conducted on the
binarized FashionMNIST (Left), KMNIST (Center), and Omniglot (Right) datasets. NES does not
rely on computing gradients and yet achieves comparable performance with the unbiased and GSM
methods. On the KMNIST benchmark NES even performs substantially better than GSM.

First, we estimate the Gaussian approximation g(µ) for each sample in the test set by perturbing
the current model parameters 1000 times, computing the ELBO for each perturbed parameter vector
and average. Then, we calculate the absolute difference between the ELBO, serving as the objec-
tive function, and the estimated Gaussian approximation and average over the tested samples. We
experiment with three different NES configurations: N = 300 and σ ∈ {0.01, 0.5, 0.1} on the Fash-
ionMNIST dataset [59]. The results presented on the left image in Figure 3 indicate that the smaller
σ is, the further the proximity between k(µ) and g(µ). It can also be seen that the average distance
converges and stabilizes as the learning progresses towards saturation.

B.3 BOUNDNESS ASSUMPTION

In the general case, the objective function of discrete VAEs is not bounded from above in contrast
to Theorem 1 assumption. However, it can be upper bounded by bounding each log probability
component with a constant. For ease of explanation, we scale the ELBO by dividing it with the
VAE output dimension. Then, we upper bound it with M = {1, 3, 9} during training and compare
the test ELBO with that of a model trained with an unbounded ELBO, denoted by UNBOUNDED.
We train the three models with N = 300 and σ = 0.1 on the FashionMNIST dataset. Results are
depicted on the right image in Figure 3. It can be seen that bounding the loss has a minimal effect on
model performance when M is big enough. Increasing M improves the performance, while using
a relatively small M value may cause the model to diverge. Surprisingly, bounding the loss with
M = 9 leads to a slightly lower loss compared to the UNBOUNDED baseline. We hypothesize this
is due to a regularization effect.
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B.4 UNSTRUCTURED TASKS.

Unlike structured VAEs, where the latent spaces are often exponentially large, here we explore a
latent space that consists of only 10 different assignments. Therefore, an unbiased gradient of the
objective with respect to the VAE parameters can be analytically computed by enumerating over all
possible latent assignments (Eq. 1). We denote this method as UNBIASED and consider the loss of
a model trained with this method as a lower bound for the loss of the same model trained with NES.
Due to the relatively small latent space, we can also compare with a Gumbel-Softmax (GSM) biased
estimator. For NES, the VAE is trained with σ = 0.1 and N = 300. For GSM, we use the annealing
schedule of Jang et al. [19].

Experiments are conducted on the FashionMNIST [59], KMNIST [7], and Omniglot [29] datasets
with fixed binarization [51]. All models are trained using the ADAM optimizer [21] with a constant
learning rate of 10−3 and a mini-batch size of 128. Figure 4 depicts the negative ELBO of NES and
its competitors.

Surprisingly, NES achieves competitive results compared to the UNBIASED method on all of the
three benchmarks. On KMNIST, NES significantly outperforms GSM, and on the FashionMNIST
and Omniglot benchmarks, it achieves comparable results. This is despite the fact that NES opti-
mizes the VAE parameters by only evaluating the model at certain points in parameter space.

C DERIVING EQUATION 2

Let γ be a random function that associates an independent random variable γ(z) for each in-
put z ∈ Z . When the random variables follow the Gumbel distribution law with mean
hφ(x, z), which we denote by G(hφ(x, z)) and whose probability density function is gz(γ) =

e−(γ(z)+c−hφ(x,z)+e
−(γ(z)+c−hφ(x,z))) for the Euler constant c ≈ 0.57. Then for g(t) =

∏k
z=1 gz(t)

we obtain the following identity:

ehφ(x,z) = Pγ∼g[z∗ = z], where z∗ , argmax
ẑ∈Z
{γ(ẑ)}. (33)

Proof. Let Gz(t) = e−e
−(t+c−hφ(x,z))

be the Gumbel cumulative distribution function. Then

Pγ∼g[z∗ = z] = Pγ∼g[z = arg max
ẑ=1,...,k

{γ(ẑ)}]

=

∫
gz(t)

∏
ẑ 6=z

Gẑ(t))dt.
(34)

Since gz(t) = e−(t+c−hφ(x,z))Gz(t) it holds that

∫
gz(t)

∏
ẑ 6=z

Gẑ(t)dt =

∫
e−(t−hφ(x,z)+c)Gz(t)

∏
ẑ 6=z

Gẑ(t)dt

=
ehφ(x,z)

Z
,

(35)

where 1
Z =

∫
e−(t+c)

∏k
ẑ=1Gẑ(t)dt is independent of z. Since Pγ∼g[z = z∗] is a distribution then

Z must equal to
∑k
ẑ=1 e

hφ(x,ẑ).

Next, we use the Gumbel-Max trick to rewrite the expected log-likelihood in the ELBO in the
following form:

Ez∼qφ log pθ(x|z) =
∑
z∈Z

Pγ∼g[z∗ = z]fφ(x, z) = Eγ∼g[fθ(x, z∗)]. (36)
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The equality results from the identity Pγ∼g[z∗ = z] = Eγ∼g[1z∗=z], the linearity of expectation∑
z∈Z Eγ∼g[1z∗=z]fφ(x, z) = Eγ∼g[

∑
z∈Z 1z∗=zfφ(x, z

∗)] and the fact that
∑
z∈Z 1z∗=z = 1.

When z = (z1, ..., z|E|) is a spanning tree, or more generally, belongs to the a structured space,
one cannot assign an i.i.d. random variable to each z ∈ Z . Instead we relate a random variable
γ = (γ1, ..., γ|E|) and set γ(z) = z>γ.

D THE FULL OBJECTIVE FUNCTION

In Eq. 7 we didn’t include the KL-divergence term for the sake of simplicity. In practice, the NES
algorithm optimizes both terms. Thus, for completeness we provide the full NES objective. For the
avoidance of doubt, in our experiments, we optimized both terms.

Assuming that pθ(·) is the uniform distribution over the space of structures, the Gumbel-Max repa-
rameterization trick let us derive the following approximation:

KL(qφ(·|x)||pθ(·)) = Ez∼qφ(·|x)
[
log

qφ(z|x)
pθ(z)

]
≈ Eγ∼G(hφ(x))[z

∗>hφ(x)− log
1

|Z|
], (37)

where z∗ = argmaxz∈Z{z>γ}. The resulting NES objective is:

Ew∼N(µ,σ2I)Eγ∼G(hw2
(x))

[
− fw1

(x, z∗) + z∗>hw2
(x)− log

1

|Z|
]
. (38)

And its gradient takes the form of:

Ew∼N(0,I)Eγ∼G(hµ2+σw2
(x))

[w
σ

(
− fµ1+σw1

(x, z∗) + z∗>hµ2+σw2
(x)− log

1

|Z|
)]
, (39)

where w = [w1;w2] is the concatenation of the two vectors w1, w2.
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