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Abstract

We define the probability of benefit for a scenario
involving a binary exposure, a continuous outcome,
and a partition of the outcome support with K fixed
thresholds. As with other counterfactual queries,
this parameter is often not g-identifiable, and we
show that monotonicity assumption is not suffi-
cient when K > 1. We introduce a partial identifi-
cation strategy by adapting existing bounds. Con-
ducting asymptotic inference and uncertainty quan-
tification for estimates of these bounds is challeng-
ing due to potential nonregularity and the lack of
differentiability of the involved functionals. More-
over, results might be sensitive to model specifi-
cation. To address this, we reformulate the prob-
lem in terms of individualized rules, adapting the
available online one-step estimator with stabiliz-
ing weights. We show the connection with solu-
tions based on conservative optimal transport and
illustrate the advantages over surrogate bounds de-
rived from smooth approximations. We present an
application aimed at estimating the probability of
benefit from pharmacological treatment for ADHD
upon school performance using observational data.

1 INTRODUCTION

One important counterfactual parameter is the probability
of benefit, which gauges the extent to which an exposure
acts as a necessary and sufficient cause for a desired out-
come event [Pearl, 1999]. It quantifies the proportion of
responders in the population, referring to units who would
have benefited if and only if had they been treated. This
parameter is typically not g-identifiable, meaning it cannot
be determined from any combination of observational data
and experiments [Robins and Greenland, 1989, Pearl, 1999].
While g-identification may be attainable under a monotonic-

ity assumption [Balke and Pearl, 1997], such condition is
not always realistic, as it presupposes the absence of unin-
tended effects from the exposure. An alternative approach
is to pursue partial identification with bounds, which can be
computed from population-level observational and experi-
mental distributions, or solely from the former under the as-
sumption of conditional ignorability [Tian and Pearl, 2000].
However, conducting asymptotic inference and uncertainty
quantification for estimates of these bounds is challenging
due to the potential nonregularity and lack of smoothness of
the involved functionals. This difficulty stems from impossi-
bility results for targets that fail to be pathwise differentiable
at the true distribution [Hirano and Porter, 2012, Dümbgen,
1993, Fang and Santos, 2019, Kitagawa et al., 2020].

The studied scenario involves a categorical pre-exposure
covariate X ∈ X , a binary exposure A ∈ {0, 1}, and an
absolutely continuous outcome Y ∈ Y ⊆ R, with parti-
tioned support inf Y = c0 < c1 < · · · < cK < supY .
We define the x-specific probability of benefit PB(x) for
stratum X = x, with P(X = x) > 0, as the joint probabil-
ity of attaining an outcome value under placebo Y 0 within
any given c-interval and, counterfactually, an outcome value
under exposure Y 1 within any higher c-interval:

PB(x)=

K∑
k=1

P(Y 0∈(ck−1, ck], Y
1> ck |X = x) (1)
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Figure 1: K = 2, c1 = 0, c2 = 2: PB(x) is the volume under
the joint PDF of (Y 0, Y 1 | X = x) enclosed above the gray area.
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2 PARTIAL IDENTIFICATION

Monotonicity: A potential outcome Y A is said to be
monotonic in relation to the exposure, at stratum X = x, if
P(Y 0 ≤ Y 1 | X = x) ∈ {0, 1}.

If the exposure is known to be nondeleterious for the stratum,
then monotonicity implies P(Y 0 > ck, Y

1 ∈ Ik | X =
x) = 0 holds for all k ∈ [K] [Vlontzos et al., 2023]. When
K = 1, this condition is sufficient for g-identification of
PNS(x) with intervention nodes on E = {A}, yielding
PNS(x) = P(Y 1 > c1 | X = x) − P(Y 0 > c1 | X = x)
[Tian and Pearl, 2000, Mueller and Pearl, 2023].

Proposition 1 For K > 1, monotonicity is not sufficient for
g-identification of PB(x) with E = {A}.

Proposition 2 Let Z ∈ Z be a set of pre-exposure vari-
ables such that conditional ignorability holds with Z ∪X ,
i.e., Y a ⊥⊥ A | Z,X, ∀a ∈ {0, 1}. Then, bounds for PB(x),
Λ(x) ≤ PB(x) ≤ Υ(x), are given by:

Λ(x)=

K∑
k=1

EZ|X=x max {0;Rk(Z, x, 0)+Sk(Z, x, 1)−1}

Υ(x)=

K∑
k=1

EZ|X=x min {Rk(Z, x, 0); Sk(Z, x, 1)} , (2)

where Sk(z, x, a) and Rk(z, x, a) denote, respectively, the
probability of passing threshold ck and the probability of
staying at c-interval Ik under treatment A = a for stratum
(Z = z,X = x). This is:

Sk(z, x, a) = P(Y > ck | Z = z,X = x,A = a), (3)
Rk(z, x, a) = Sk−1(z, x, a)− Sk(z, x, a). (4)

These bounds are based on those derived by Li and Pearl
[2024], Mueller et al. [2022] for the general categorical case,
and are intimately related to the Fréchet-Hoeffding sharp
bounds for joint events [Hoeffding, 1940, Fréchet, 1951].

3 TARGET ESTIMAND, ESTIMATORS
AND STATISTICAL INFERENCE

Consider the following reformulation of the problem in
terms of individualized rules λk, υk : Z × X → {0, 1}:

λk(z, x) = I[Rk(z, x, 0) + Sk(z, x, 1)− 1 > 0], (5)
υk(z, x) = I[Rk(z, x, 0)− Sk(z, x, 1) > 0]. (6)

Intuitively, these rules pick the index of the solution terms in
the respective optimization problems at the individual level.
For instance, λk(z, x) = 1 indicates that the second term

in max {0; Rk(z, x, 0) + Sk(z, x, 1)− 1} is the maximum
of the two. These rules are well-defined and nonambiguous,
even when the two terms being compared equate. Their
values (negative in case of Υk) are given by:

Λk(z, x, λk) = λk(z, x) · [Rk(z, x, 0) + Sk(z, x, 1)− 1],

Υk(z, x, υk) = υk(z, x) · [Rk(z, x, 0)− Sk(z, x, 1)]

−Rk(z, x, 0). (7)

The target estimand comprises the bound functionals as joint
components, for x with P(X = x) > 0:

Ψ[P0](x) = (Λ(x, λ); Υ(x, υ))⊤ ∈ R2, (8)

Under some positivity and boundedness conditions,
Λ(x, λ∗) and Υ(x, υ∗) are pathwise differentiable at P0 for
fixed rules λ∗, υ∗. Yet, in the original problem, the rules
are not fixed but they are to be estimated. Exceptional laws,
might induce ambiguities that make the inference problem
nonregular [Robins, 2004]. If, for at least one k ∈ [K], ei-
ther the two arguments of max or of min in equation (2) are
equal, the problem becomes nonregular. Under an excep-
tional law, the limiting distribution is nonstandard, and no
locally unbiased estimator exists [Hirano and Porter, 2012].
Moreover, the naïve plug-in estimator of bound functionals
is known to be highly sensitive to model misspecification,
particularly when covariates are continuous or discrete with
high-dimensional support, unless parametric, smoothness,
or sparsity assumptions are imposed [Ji et al., 2023].

We adapted the methodology proposed by Luedtke and van
der Laan [2016, 2018], extending it to address multiple
sources of nonregularity, employing stabilizing matrices
instead of scalar weights for joint inference, and focusing
on stratum-specific queries. The proposed procedure miti-
gates plug-in bias by utilizing an AIPW-based estimator of
cumulative intervention distributions. Initial estimators are
developed for a semiparametric heteroskedastic regression
model. We demonstrate connections to and integrate ideas
from structural nested distribution models [Vansteelandt
and Joffe, 2014], as well as conservative solutions based on
optimal transport in both the primal [Balakrishnan et al.,
2023] and dual formulations [Ji et al., 2023].

4 APPLICATION AND DISCUSSION

In simulation studies, the OOSE with stabilizing matrices
achieved nominal coverage for the bounds individually. The
proposed method consistently outperformed the plug-in and
GELU-smoothed approaches in MSE.

We employ developed procedures to estimate the probability
of benefit from pharmacological treatment for ADHD, using
official thresholds between mastery levels 1, 2, and 3 in the
grade 8 national numeracy test. The upper bound results
indicates that ADHD stimulant medication may benefit a
minority of the population.

2



The estimator presented in this paper could be applied to
other bounds in causal inference, including assumption-free
bounds for causal effects [Pearl, 1999], instrumental vari-
ables [Balke and Pearl, 1997], sensitivity analysis [Diaz
et al., 2018], and latent confounding [Ding and Vander-
Weele, 2016, VanderWeele and Ding, 2017]. We intend to
explore scope of application and challenges in future work.
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