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ABSTRACT

The proposed method, post-hoc discriminator guidance (PDG) aims to take an
alternate route for Nash non-equilibrium issue in GANs’ training. This method
introduces an additional discriminator that gives explicit supervision with regard
to gradient of density ratio∇x log

pr(x)
pf (x)

between real and fake probability density
function, steering the sample path towards more realistic regions in a post-hoc
way. We train the discriminator after adversarial optimization, making post-hoc
discriminator training stable and fast to converge. In generation process, anneal-
ing Langevin dynamics sampling with density ratio score reduces the Kullback-
Leibler divergence between the true and generated samples. Given an optimal dis-
criminator, the method can improve the sampling quality of various off-the-shelf
models on the web without retraining required. Extensive experiments validate the
advancements and effectiveness of PDG on content-varying data-limited datasets.

1 INTRODUCTION

The building of GANs (Goodfellow et al. (2014); Karras et al. (2020b)) is mostly in place, but there
are still two dark clouds, one is Nash non-equilibrium, another is discrete data generation. Diffi-
culty in reaching Nash equilibrium during training is an inherent property of GANs for minimax
optimization, like the spin of a particle. Besides, the presence of zero real part and eigenvalues
with a large imageinary part in associated gradient vector field prevents GANs from convergence
(Mescheder et al. (2017)). Furthermore, the disadvantage of adversarial optimization is more obvi-
ous in the case of limited data (Karras et al. (2020a)), even causing mode collapse. Hence, many
works are proposed recently for this problem by adapting the network architecture (Radford (2015);
Liu et al. (2020); Wang et al. (2022)), redesigning objective function and regularization (Tseng et al.
(2021); Arjovsky et al. (2017); Gulrajani et al. (2017); Salimans et al. (2016)), and refining training
strategies (Jiang et al. (2021)).

In this paper, inspired by classifier guidance in diffusion models (Dhariwal & Nichol (2021)), we fo-
cus on a non-game sampling method specially designed for GANs, namely providing the correction
gradient information with regard to Cθ(x) = ∇x log

pr(x)
pf (x)

during generator sampling by a post-hoc
well-trained discriminator, while annealing Langevin dynamics ensures that the direction of travel
is in the direction of pr(x)

pf (x)
with high probability. This unilateral optimization is more stable than ad-

versarial optimization, our method just keeps the pre-trained model fixed and steers generation path
towards more realistic regions with post-hoc discriminator estimating whether the sample trajectory
is reliatic or not.

At the same time, our proposed method is convenient and simple and can be applied to various
off-the-shelf models publicly available on the web, after all, just training an additional discriminator
always costs less computational resources and costs than re-training the entire GAN network. In
this way, the proposed method assists practitioners and researchers who only have limited training
samples or computational resources, to access more high-fidelity samples only with a pre-trained
generator and a optimally-trained post-hoc discriminator. In experiments, the training of post-hoc
discriminator is a stable minimization problem and fast to converge, ablation experiments on various
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content-varying datasets verify the effectiveness and advantages of it. Our contributions can be
summarized as follows:

• A GAN-specialized post-hoc discriminator guidance method is proposed to add a correc-
tion score Cθ(xt) on generated images by a way of annealing Langevin dynamics, steering
sample trajectory to more realistic regions.

• We prove that the adjusted model score sθ(xt) + ωcCθ(xt) is equivalent to the gradient of
logarithm of the real data distribution, namely ∇ log pr(xt), when discriminator guidance
weight coefficient ωc = 1.

• Experiments and theoretical demonstration validate the effectiveness and advantages of
our proposed method, the discriminator-guided samples are indeed closer to real data than
non-guided samples.

2 PROBLEM FORMULATION

The mainstream GANs nowadays use stochastic gradient descent (SGD) to optimize the genera-
tor and discriminator, similar to the EM algorithm which firstly fixes p(z|x) and optimizes p(x|z).
However, the SGD does not find the Nash equilibrium point because the Jacobian matrix of its asso-
ciated gradient vector field has eigenvalues with zero real part and eigenvalues with large imaginary
part.

Proposition 1 When the Jacobian of the associated gradient vector field υ
′
(x) has only eigenvalues

of the negative real part, let h→ 0, SGD can receive local optimal solutions x.

In order to prove the above proposition, we start from classical theorem for convergence of fixed-
point iteration and throw a theorem.

Theorem 1 Assume F : Rn → Rn a continuously differentiable function on open subset Ω, x ∈ Ω,
let F (x) = x and

∥∥∥det(F ′
(x))

∥∥∥ < 1, exist an open neighborhood U of x, making ∀ x0 ∈ U ,

F (k)(x0)→ x at least with a linear convergence rate.

According to Lagrange’s mean value theorem, for ∀x1, x2 ∈ Ω, have

F (x1)− F (x2) = F
′
(x1 − x2) (1)

where F
′

denotes the Jacobian matrix of F . For the upper bound of norm ∥F (x1)− F (x2)∥ we
throw a lemma.

Lemma 1 (Bertsekas (1997)) For the induced norm ∥·∥ of any matrix A, have lims→∞ ∥As∥
1
s =

ρ(A) ≤ ∥a∥, so given ∀ ξ > 0, ∃ ∥A∥, making ∥A∥ = ρ(A) + ξ.

The above lemma tells us that there exists norm ∥·∥ and corresponding open sphere S centered at x,
making norm

∥∥∥F ′
∥∥∥ < 1− ξ within sphere S. So

∥F (x1)− F (x2)∥ ≤
∥∥∥F ′

∥∥∥ ∥x1 − x2∥ ≤ (1− ξ) ∥x1 − x2∥ (2)

obviously F is a contraction mapping on [x1, x2], contraction mapping principle tells us there exists
Banach’s fixed point, and the convergence rate of the iterative scheme is at least linear.

On the other hand, we need to construct the following function to reach det(F
′
), where det(·)

denotes eigenvalue.

F (x) = x+ hK(x) (3)

where h ∈ R, h > 0, besides, finding fixed point x is equivalent to solving non-linear equation
K(x) = 0, hence, the Jacobian matrix of F in Eq. 3 can be formulated as

2
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Figure 1: (a) An visualization example of discriminator guidance score Cθ(x), we plot the magni-
tude and direction of the gradient at each pixel location. This score offers enhanced mode conver-
gence, by providing distinctive gradient information on whather a sample path is realistic or not via
annealing Langevin dynamics, darker colors represent gradients closer to negative values. (b) Sam-
ples from ArtPainting (Liu et al. (2020)) and BrecaHAD (Aksac et al. (2019)) datasets, we improve
ProtoGAN (Yang et al. (2023)) on former by 2.45 FID value, MoCA (Li et al. (2022)) on latter
by 3.8 FID value, elaborating that our method promotes the quality of model sampling in a stable
min-min way instead of max-min adversarial way.

F
′
(x) = I + hK

′
(x) (4)

However, det(K
′
) is complicated, we throw a new lemma.

Lemma 2 Assume A ∈ Rn×n, only has eigenvalues of the negative real part. If h > 0, the eigen-
value of I+hA is within unit circle, the following holds if and only if any eigenvalue λ of the matrix
A.

h <
1

ℵ(λ)
2

1 + (℘(λ)ℵ(λ) )
2

(5)

where ℵ(λ) denotes the real part of λ, ℘(λ) imaginary part of λ.

let A’s eigenvalue λ = −a+ bi, where a > 0, so det(I + hA) = det(1 + hλ). We can deduce that
module |1 + hλ| < 1, namely

|1 + hλ|2 = (1− ha)2 + h2b2 = 1− 2ah+ h2a2 + h2bb < 1 (6)

reshuffle the above equation

h <
2a

a2 + b2
=

2a−1

1 + ( ba )
2

(7)

According to Eq. 6, it is obvious that the real part of eigenvalue of A is positive number when
−a > 0, eigenvalue of I + hA is out of unit circle. In this case, F does not satisfy contraction
mapping principle, so it doesn’t converge.

From Eq. 5, there are two factors impacting step size h, one is maximum of ℵ(λ), another is
maximum of r = ℘(λ)

ℵ(λ) . When r →∞, h→ 0 and det(F
′
)→ 1, making the convergence rate very

slow according to Theorem 1.
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3 METHODOLOGY

Except Nash non-equilibrium, GANs are also confronted by mode collapse and discriminator over-
fitting. In short, it is difficult for GANs to reach the Nash equilibrium point under the constraint of
adversarial loss. This raises a question: how can we close the Kullback-Leibler distance between the
true and generated distribution without adversarial loss? The solution is simply a post-hoc discrim-
inator guided approach, namely, a discriminator is trained with generated images and real images to
guide the gradient of logarithm of density ratio pr(x)

pf (x)
.

3.1 GENERAL FRAMEWORK

GANs try to train a generative model q(x|z) which maps q(z) ∼ N (z; 0, I) to real data distribution
pr(x), where

q(x|z) = δ(x− g(z)), q(x) =

∫
q(x|z)q(z)dz (8)

δ(·) and g(z) denote Dirac function and generator respectively. Because the trajectory from z to x
is deterministic, we ignore the posterior p(z|x). Let us introduce binary hidden variable y into q(x),
have

q(x, y) =

{
pr(x)p1, y = 1
q(x)p0, y = 0

(9)

here p1 + p0 = 1, define another joint distribution function p(x, y) = p(x, y)p̃(x), minimize
DKL(q(x, y)||p(x, y))

DKL(q(x, y)||p(x, y)) =
∫

pr(x)p1 log
pr(x)p1

p(1|x)pr(x)
+

∫
q(x)p0 log

q(x)p0
p(0|x)pr(x)

∼
∫

pr(x)p1 log
1

p(1|x)
+

∫
q(x) log

q(x)

p(0|x)pr(x)

(10)

when DKL(q(x, y)||p(x, y))→ 0, q(x, y)→ p(x, y) and

p1pr(x) + p0q(x) =
∑
y

q(x, y)→
∑
y

p(x, y) = pr(x) (11)

Define p(1|x) = d(x, θ), p(0|x) = 1 − d(x, θ) in Eq. 10, where d(·, θ) denotes discriminator
network. Similar to the EM algorithm, we firstly fix g(z), namely fixing q(x), then optimize p(y|x),
the two steps are alternated, simplify Eq. 10

D(x, θ) := argmin[−Ex∼pr(x)[log d(x, θ)]− Ex∼q(x)[log (1− d(x, θ))]] (12)

3.2 PREDICTION AND CORRECTION

Firstly we sample images from a trained generator, then train a discriminator with the generated
images and real images using binary cross entropy according to Eq. 12. The correction term gradient
on t can be formulated as

Cθ(xt) = ∇ log
d(xt, θ)

1− d(xt, θ)
(13)

Having acquired this density-ratio score, we can use Langevin-MCMC if ϵ→ 0, t→ +∞.

4
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xt ← xt−1 +
ϵ2

2
Cθ(xt−1) + ϵzt−1, t = 0, 1, · · · , t− 1 (14)

this SGD-like method makes sure q(g(z))→ pr(x) in a kind of Langevin annealing way.

3.3 GRADIENT PENALTY

For stable Langevin annealing, it is necessary to do Lipschitz regularization on the partial derivative
of d(x, θ), denoting ∂d(x,θ)

∂x . Given sample xt and x
′

t, the Euclidean distance between them is defined

as
∥∥∥xt − x

′

t

∥∥∥ which is proportional to

∥∥∥d(xt, θ)− d(x
′

t, θ)
∥∥∥ (15)

when x
′

t → xt,
∥∥∥d(xt, θ)− d(x

′

t, θ)
∥∥∥→ 0, namely satisfying the following equation

∥∥∥d(xt, θ)− d(x
′

t, θ)
∥∥∥ ≤ C

∥∥∥xt − x
′

t

∥∥∥α (16)

where α > 0, the simplest equation is when α = 1

∥∥∥d(xt, θ)− d(x
′

t, θ)
∥∥∥ ≤ C

∥∥∥xt − x
′

t

∥∥∥ (17)

only in this way can Euclidean distance between samples satisfy stability requirement. Meanwhile,
the sufficient condition that the d(xt, θ) follows Lipschitz regularization can be formulate as

∥∥∥∥∂d(x, θ)∂x

∥∥∥∥ ≤ C (18)

where C denotes constant and C > 0.

Algorithm 1 Training
Input: Υ = {x1, . . . , xN} from real world, ℘ = {x̂1, . . . , x̂M} from G(z), Total iteration.
Output: Dθ

1: while Current iteration < Total iteration do
2: Sample x1, . . . , xB/2 from the real dataset Υ
3: Sample xB/2+1, . . . , xB from the generated dataset ℘
4: Calculate L̂θ ← −

∑B/2
i=1 log d(x, θ)−

∑B
i=B/2+1 log (1− d(x, θ))

5: Update θ ← θ − ∂L̂θ

∂θ
6: end while

Algorithm 2 Sampling
Input: G, z ∼ N(0, 1), d(x, θ), Total steps.

1: xg = G(z)
2: for t = 1 to Total steps do do
3: clip d(xg, θ) to a certain range.
4: Cθ(xg)← −∇ log

d(xg,θ)
1−d(xg,θ)

5: xg ← xg + ωcCθ(xg) + ϵz
6: end for
7: return xg

5
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3.4 KULLBACK-LEIBLER DIVERGENCE ANALYSIS

In this section, we mainly discuss the question whether qθ∞ is closer to the data distribution p(r)
than qθ if we define generated data distribution pr and after-discriminator-guidance distribution q∞,
from the perspective of statistical divergence in the context of optimization.

Proposition 2 Suppose discriminator D(x, θ) is fully trained, then

DKL(pr||qθ∞) + Φθ∞ ≤ DKL(pr||qθ) (19)

where Φθ∞ = 1
2

∫
Epr

[
∥Cθ∞(x)− Cφ(x)∥2

]
dx, we estimate Cφ(x) with a neural discriminator

dφ. In terms of well-trained discriminator dφ , namely minimizing Eq. 12, get

Cφ(xt) ≈ Cθ(xt) = ∇ log
d(xt, θ)

1− d(xt, θ)
(20)

(a) FID (↓) comparison on
Grumpy Cat (Zhao et al. (2020)).

(b) FID (↓) comparison on Fau-
vism (Liu et al. (2020)).

(c) FID (↓) comparison on Shells
(Karras et al. (2020a)).

Figure 2: We carry out ablation experiments on generator models with different number of iterations,
the results prove that our method is able to improve the sampling quality at all time ends.

In a statistical sense, our model narrows the KL distance between generated and real data as is shown
in Fig. 2, verifying the correctness of Proposition 2 experimentally, although the Kullback-Leibler
divergence error contains an empirical risk term Φθ∞ in Eq. 19. On the other hand, the premise of
boosting is that the discriminator D(x, θ) should be trained adequately. When the discriminator is
completely blind, namely d(xt−1, θ) = 1/2 in Eq. 20, there is no gradient signals from Cθ(xt), this
is reflected in the fact that an undertrained discriminator does not change the distribution of images
and gets zero FID value gain.

3.5 OPTIMIZATION ANALYSIS

Assume that the generator input and output are of the same dimension, mapping q(z) ∼ N (0, 1)
to real data distribution pr, look at it another way, it essentially learns −(xt − x0) if we define
xt ∼ q(z) and x0 ∼ pr, then sampling from xt with −(xt − x0). Define

−(xt − x0) = x0 − xt = ft(xt)t (21)

here ft is fitted by generator, so

x0 − xt = ft(θ, xt)t (22)

If we interpolate between x0 and xt, making ∆t→ 0, have

xt+∆t − xt = ft(θ, xt)∆t+ gt
√
∆tz, z ∼ N (0, 1) (23)

6
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where gt is called diffusion term. Eq. 22 and 23 tells us that diffusion model just divides x0 − xt

into several parts to learn compared to GANs. We multiply the LHS of Eq. 22 by a factor 1
σ , here

we can define 1
σ = ∥xt − x0∥, making easy for generator to learn with this normalization factor

− (xt − x0)

σ
= ft(θ, xt)t (24)

the LHS of above equation is so-called score function according to VE-SED in Song et al. (2020),
namely

− (xt − x0)

σ
= sθ(xt) (25)

we add the correction score Cθ(xt) after post-hoc discriminator reaches its optimal point. The
adjusted model score can be formulated as

sθ(xt) + ωcCθ(xt) = ∇ log pf (xt) + ωc∇ log
pr(xt)

pf (xt)
= ∇ log

[
(pr(xt)

ωc)(pf (xt))
1−ωc

]
(26)

by setting ωc = 1, we can reach the gradient of logarithm of real data probability density function,
so we fix ωc = 1 if not stated otherwise.

4 MAIN EXPERIMENTS

In this section, we present the main experiments with regard to the combinations of proposed post-
hoc discriminator guidance (PDG) and various mainstream data-efficient GANs on content-varying
datasets ranging from 256 × 256 to 1024 × 1024 resolution. We choose FID (Heusel et al. (2017))
as our metric, for it is able to objectively measure the Kullback-Leibler divergence between real and
generated samples. Besides, a new metric FID Gain=FID(After PDG) − FID(Before PDG) is come
up with for better showing the performance of our method (negative values are normal in this case).
The details concerning descriptions of baseline methods and datasets can be found in appendix.

4.1 MAIN ABLATION EXPERIMENTS

According to statistic data from Table 1, 2 and 3 carried on fifteen datasets, it is concluded that
PDG is indeed able to close the KL distance between the true and generated distributions, simply
by training an additional discriminator post-hoc, sampling via annealing Langevin dynamics. In
fact, a post-hoc discriminator converges in less than 20 minutes on a Tesla V00 GPU, which is also
due to the fact that the training of the discriminator is a classification task, rather than a minimax
optimization. These findings highlight the potential of post-hoc discriminator as a supplementary
method to cope with poor optimization at large time in adversarial training.

4.2 ABLATION EXPERIMENTS ON PD NUMBER OF EPOCHS

Fig. 3 illustrates how the FID Gain of post-hoc discriminator (PD) on different methods varies with
the number of epochs for its discriminator training. We notice there are quite a few cases where
the post-hoc discriminator falls into overfitting as the number of iterations increases, and this is
independent of the choice of the baseline model. We suspect that this is caused by data quality
imbalance in the real data and the generated data under data-limited condition, after all, the quality
of the generated images also determines the speed of convergence.

4.3 ABLATION EXPERIMENTS ON PD TIMESTEP T

Here timestep T denotes the number of iterations an image goes through, just like the number
of samples T for a diffusion model. From Table 4, we can see that the timestep T is generally
proportional to the FID Gain, but some cases show that the long time step leads to the degradation

7
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Table 1: Ablation on various mainstream data-efficient GANs and FID (↓)(Heusel et al. (2017))
comparison on five datasets, bold font denotes the best result.

Method AF-Wild (146 imgs) AF-Cat (160 imgs) AF-Dog (389 imgs) Obama (100 imgs) Panda (100 imgs)
FastGAN

+Ours
16.5749
16.4632 (-0.1117)

34.3854
34.3784 (-0.007)

53.4005
53.2726 (-0.1279)

37.2040
37.2003 (-0.0036)

9.4016
9.3823 (-0.193)

FreGAN
+Ours

15.1452
15.1212 (-0.024)

34.0711
34.0673 (-0.0037)

55.6129
55.5569 (-0.0560)

36.9809
36.9777 (-0.0032)

9.2764
9.1512 (-0.1252)

Lecam
+Ours

21.5653
21.3657 (-0.1996)

36.6119
36.4129 (-0.1990)

56.8955
56.8852 (-0.0103)

40.5946
40.1138 (-0.1508)

9.8552
9.4270 (-0.4282)

MoCA
+Ours

17.5341
17.4588 (-0.0753)

38.9585
38.8919 (-0.0666)

57.4012
57.3802 (-0.021)

41.6329
41.2990 (-0.3339)

11.2332
11.1806 (-0.0526)

ProtoGAN
+Ours

17.8684
17.7305 (-0.1379)

35.8733
35.8570 (-0.0163)

54.4858
54.2876 (-0.1982)

38.3622
38.2027 (-0.1595)

9.8410
9.6732 (-0.1677)

Table 2: Ablation on various mainstream data-efficient GANs and FID (↓)(Heusel et al. (2017))
comparison on five datasets, bold font denotes the best result.

Method Grumpy-Cat (100 imgs) Fauvism (124 imgs) Moongate (135 imgs) Shells (64 imgs) Skulls (96 imgs)
FastGAN

+Ours
25.6070
25.2578 (-0.3492)

182.8983
182.3601 (-0.5382)

117.4819
117.4161 (-0.0658)

172.3005
162.1135 (-0.7187)

103.0316
100.7855 (-2.2461)

FreGAN
+Ours

25.9469
25.7263 (-0.2206)

175.8942
173.5741 (-2.3201)

117.6969
112.3349 (-5.3620)

133.4191
131.2199 (-2.1992)

97.0861
94.5485 (-2.5376)

Lecam
+Ours

25.7847
25.3522 (-0.4325)

66.7609
66.6165 (-0.1444)

133.8787
133.2262 (-0.6525)

178.0432
170.7767 (-7.2665)

114.6667
113.8363(-0.8304)

MoCA
+Ours

28.1053
27.3458 (-0.7595)

168.0824
167.9367 (-0.1457)

119.7157
119.5381 (-0.1776)

153.9461
145.9907 (-7.9554)

123.5183
122.5855 (-0.9328)

ProtoGAN
+Ours

25.7601
25.6173 (-0.1428)

172.9304
172.7905 (-0.1399)

121.9207
121.7978 (-0.1229)

135.1166
132.6274 (-2.4892)

97.5333
97.4565 (-0.0768)

Table 3: Ablation on various mainstream data-efficient GANs and FID (↓)(Heusel et al. (2017))
comparison on five datasets, bold font denotes the best result.

Method CUB (100 imgs) Flowers (100 imgs) Nature landscape (100 imgs) Place365-Standard (100 imgs) ImageNet (100 imgs)
FastGAN

+Ours
140.4356
139.1887 (-1.2469)

107.0951
102.8725 (-4.2226)

48.6951
48.6116 (-0.0835)

105.2352
105.1985 (-0.0367)

252.4403
252.4339 (-0.0064)

FreGAN
+Ours

135.6631
135.3548 (-0.3083)

67.6844
65.4276 (-2.2568)

49.2108
48.0652 (-1.1456)

87.1500
87.1277 (-0.0222)

236.2905
236.2134 (-0.0771)

Lecam
+Ours

142.4079
140.2693 (-2.1386)

124.4659
117.6672 (-6.7987)

63.9420
62.0156 (-1.9264)

107.9235
106.9829 (-0.9406)

275.6394
275.6143(-0.0251)

MoCA
+Ours

144.2144
143.2271 (-0.9873)

87.7164
86.0864 (-1.6300)

52.4950
48.7353 (-3.7597)

98.0106
96.3927 (-1.6179)

259.9405
259.0767 (-0.8638)

ProtoGAN
+Ours

143.8905
142.8810 (-1.0095)

81.2860
81.1078 (-0.1782)

47.0146
47.0070 (-0.0076)

93.2369
92.9925 (-0.2444)

261.6027
261.5719 (-0.0308)

Table 4: Ablation on timestep T and FID Gain(↓)(Heusel et al. (2017)) comparison on three datasets,
bold font denotes the best result.

Method Grumpy-Cat (255× 256) Shells (512× 512) Flowers (1024× 1024)
T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25

FastGAN -0.3293 -0.3469 -0.1535 -0.3491 -0.0834 -6.8665 -6.6561 -7.1870 -6.6300 -6.5589 -4.1543 -4.2225 -3.7452 -3.8132 -4.1090
FreGAN -0.0378 -0.1199 -0.1381 -0.1886 -0.2205 0.7884 -0.6015 -1.1117 -2.1991 -1.1493 -1.8379 -1.7894 -1.7781 -2.2568 -2.0348
Lecam -0.2766 -0.4325 -0.3860 -0.1817 0.0001 -5.1391 -5.9092 -7.2665 -7.1326 -6.9152 -6.3237 -6.5624 -6.6256 -6.7410 -6.7987
MoCA -0.2763 -0.5149 -0.6635 -0.7594 -0.7550 -7.5542 -7.2929 -7.3898 -7.7089 -7.0208 -1.2582 -1.3024 -0.7481 -1.6299 -1.3045

ProtoGAN -0.0949 -0.1428 -0.1280 -0.1423 -0.0580 -1.2599 -1.7558 -2.4143 -2.4288 -2.4892 -0.0706 -0.0705 -0.1181 -0.1578 -0.1782

of image quality, like the DDPM (Ho et al. (2020)) with a few thousand time steps is not as good as
a thousand time steps.

5 PARALLEL WORKS

Concurrently, Kim et al. (2022) is the closest work to ours, it deceives a discriminator by adding an
auxiliary term to the pre-trained score and helps diffusion models better score estimation in a com-
plementary way. However, our method is specially designed for GANs’ sampling improvement,
offering a stable minimization optimization to reduce kullback-Leibler distance between generated
images and real images, which avoids unstable adversarial training. Sadat et al. (2024) proposes
independent condition guidance, by using the fact that conditional score function will be equiva-
lent to the unconditional score when a conditional vector is independent of the input data. On the
basis of CG, SDG (Liu et al. (2023)) extends the condition term to various semantic conditions,
and guides the cosine similarity between images and texts in text-to-image generation. CFGHo &
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(a) FID Gain(↓) comparison on
Grumpy Cat (Zhao et al. (2020)).

(b) FID Gain(↓) comparison on
Fauvism (Liu et al. (2020)).

(c) FID Gain(↓) comparison on
Shells (Karras et al. (2020a)).

Figure 3: We carry out post-hoc discriminator epoch ablation experiments, which accurately reflects
the trend of FID Gain as the post-hoc discriminator’s epoch number changes.

Salimans (2022) replaces the classifier gradient term used as a guide in CG by the difference be-
tween the conditional score and the unconditional score, thus eliminating the dependency on the
classifier. Manifold constraint guidance (Chung et al. (2022)) finds that the projection-based cor-
rection operation makes the data deviate from the manifold, and proposes a correction term with
manifold constraints. DSG (Yang et al. (2024)) regards the calculation of guidance as an optimiza-
tion problem to minimize the guided-loss under the spherical Gaussian constraint, and calculates the
corresponding closed-form solution.

In fact, all classifier guidance (CG) methods not just train a classifier, more importantly, the classifier
must learn to classify noisy images, which is where CG is limited. Our model does not need to
distinguish weather noisy images are realistic or not, greatly improving the convergence speed of
the model.

6 DISCUSSION

6.1 CONCLUSIONS

We tear up the rulebook and study a post-hoc discriminator guidance for mitigating the negative
effects induced by Nash non-equilibrium in GANs. We demonstrate that stochastic gradient descent
(SGD) does not find the Nash equilibrium point in GANs’ training because the Jacobian matrix of its
associated gradient vector field has eigenvalues with zero real part and eigenvalues with large imag-
inary part. This method is more appealing than adversarial optimization as it is min-min problem
instead of max-min GAN training. The optimal post-hoc discriminator predicts the score (density
ratio gradient information) between the generated and true probability density function, to generate
new samples that are more similar to the observed data. Our model is able to adapt to various off-the-
shelf models, and extensive ablation experiments also verify that the Kullback-Leibler divergence
between the true and generated samples can be reduced given an optimal discriminator.

6.2 LIMITATIONS AND IMPROVEMENTS

There are some training issues with regard to post-hoc discriminator, although our method is able
to generalize to most datasets. Firstly, how well the post-hoc discriminator is trained determines the
subsequent sampling performance, especially under limited-data condition, few data and long tail
effects hinder the presence of optimal discriminator. The second issue concerns the generalization
of post-hoc discriminator, which is influenced by many factors, including how well it fits the source
data, how long it takes to train, how many samples it takes, and so on, for we are training the gener-
ated data with real images for classification, and then sampling with the generator. This requires the
ability of the model to generalize. In the future, we will introduce classification networks for few-
shot and long-tail effects, as well as self-supervised learning into post-hoc discriminator training for
better performance.

9
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A APPENDIX

In this appendix, we mainly supplement the proofs of some lemmas in the main text section, as well
as some additional explanations of the theory. In addition, the introduction of the datasets and the
specific experimental details are also shown in this appendix, along with the pseudo-code for our
model training and sampling. Finally, more data results are also presented for further understanding.

Broader impact The propose method achieves a new sampling aid in GANs, sidesteping the notori-
ous adversarial training and building a homeomorphism mapping fθ : Rn → Rn between manifolds
that expands topology basis in a topology space Λ ∈ X ∩ Y which consists of two open sets X
and Y representing real data and generated data respectively. Besides, being capable of generating
plausible and photorealistic images, our method brings potential issue of image abuse and fraud with
the generated fake images. However, we believe that the rational use of such advanced technology
can bring benefits to more fields like films and art production.

A.1 ASSOCIATED GRADIENT VECTOR FIELD

Essentially, the optimization process of GANs is a process of minimizing some metric distance
between two distributions, namely finding the suitable parameter θ to minimize D(pdata, qθ) with
adversarial method, where D(·, ·) denotes the wasserstein distance between real distribution and the
distribution of data generated by generator with θ.

Definition 1 (Nash equilibrium) Given two game players and their corresponding utility functions
g(φ, θ) and d(φ, θ), φ and θ represent discriminator and generator parameter respectively. For a
deterministic parameter policy (φ, θ), ∀ θ, d(φ, θ) ≤ d(φ, θ), g(θ, φ) ≤ g(θ, φ).

The gradient field of any two differentiable two-player games can be defined as

υ(θ, φ) =

[
∇φd(θ, φ)
∇θg(θ, φ)

]
(27)

υ(θ, φ) is so-called associated gradient vector field defined by d and g. Specially, GANs are typically
zero-sum games, namely d = −g, let us take the derivative of υ, have

υ
′
(θ, φ) =

(
∇2

φd(θ, φ) ∇φ,θg(θ, φ)
−∇φ,θd(θ, φ) −∇2

θd(θ, φ)

)
(28)

based on the above definition, we have the following corollaries

Corollary 1 In zero-sum games, υ
′

is negative semi-definite if and only if ∇2
φd(θ, φ) is negative

semi-definite, as well as∇2
θd(θ, φ) positive semi-definite.

proof ∀ w = (w1, w2)
T ̸= 0, ∃

wTυ
′
(x)w = wT

1 ∇2
φd(θ, φ)w1 − wT

2 ∇2
θd(θ, φ)w2 (29)

hence, wTυ
′
(x)w < 0 if and only if wT

1 ∇2
φd(θ, φ)w1 < 0 and wT

2 ∇2
θd(θ, φ)w2 > 0 due to the

arbitrariness of w.

The negative semi-definite case follows in the same way.

proof end

Corollary 2 In zero-sum games, υ
′
(x) is negative semi-definite for any Nash equilibrium point x.

Instead, x is local Nash equilibrium point if x is stability point of υ(x) and υ
′
(x) is negative semi-

definite.

proof If x is local Nash equilibrium point,∇2
φd(θ, φ) is negative semi-definite,∇2

θd(θ, φ) is positive
semi-definite. According to Corollary 1, for any Nash equilibrium point x, υ

′
(x) is always negative

12
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semi-definite. Instead, if υ
′
(x) is negative definite, ∇2

φd(θ, φ) is negative semi-definite, ∇2
θd(θ, φ)

is positive semi-definite, so x is local Nash equilibrium point.

proof end

A.2 RELATION WITH CLASSIFIER GUIDANCE

Classifier guidance aims to control the trained unconditional diffusion model through a classifier to
achieve conditional generation, which can avoid re-training a conditional diffusion model and save
computing resources. The forward process of diffusion model can be formulated as a stochastic
differential equation

dx = ft(x)dt+ gtdω (30)

its corresponding reverse equation (Anderson (1982)) denotes

dx =

(
ft(x)−

1

2
(g2t + σ2

t )∇x log pt(x)

)
dt+ σtdω (31)

the key of condition generation lies in replacing log pt(x) with log pt(x|y). According to Bayes’
theorem

log pt(x|y) = ∇x log pt(x) +∇x log pt(y|x) (32)

where∇x log pt(x) = − ϵθ(xt,t)

βt
, thus

∇x log pt(x|y) = −
ϵθ(xt, t)

βt

+∇x log pt(y|x) (33)

combining Eq. 33 and 26, have

−ϵθ(xt, t)

βt

+∇x log pt(y|x) ≈ sθ(xt) + ωCθ(xt) (34)

In fact, we are training a classifier to improve the correlation of the generated results with the input
signal y if we set label of real data is 1, label of generated data 0. In other words, during the
generation process, the post-hoc discriminator will pick out the samples with high classification
confidence.

A.3 TOPOLOGY PERSPECTIVE ON POST-HOC DISCRIMINATOR GUIDANCE

Here we want to explain our proposed method with topology, especially on the continuous map-
ping and homeomorphism happened in the change between before discriminator guidance (DG) and
after discriminator guidance (DG). Constructing subspace is an important method to obtain new
topological spaces from known ones. Define (X, T ) a topology space, Y is the subset of X , let

T |Y = {U ∩ Y |U ∈ T } (35)

obviously T |Y is a topology of Y (after DG), so-called limit of T on Y , meanwhile, (Y, T |Y )
denotes the subspace of (X, T ) (before DG). Considering the boundedness of tensors, (Y, T |Y )
also denotes closed subspace of (X, T ). Thus, we throw a proposition

Proposition 3 Assume (Y, T |Y ) is the subspace of (X, T ), the subset A of Y is the closed set of
(Y, T |Y ) if and only if there exists closed set F of (X, T ), making A = Y ∩ F .

proof If A is the closed set of (Y, T |Y ), Y \A is the open set of (Y, T |Y ), so there exists the open
set U of (X, T ), making Y \A = Y ∩ U . Let F = XnU , F becomes the closed set of (X, T ) and

13
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A = Y ∩ F . At this point, we prove the necessity of the proposition, and the proof of sufficiency is
similar.

Proposition 4 Assume X as a topology space, Y ⊆ X , satisfying: 1) If B is the base of X ,
the base of subspace Y is {U ∩ Y |U ∈ B}; 2) If A is y ∈ Y on one neighbourhood base of X ,
{V ∩ Y |V ∈ A} denotes a neighbourhood base of y on subspace Y .

where V is the open set of X , V ⊆ U . We know Y is the subset of X , A ⊆ Y , define clXA, intXA
as A’s closure and inner on X , clY A, intY A as A’s closure and inner on Y .

Proposition 5 Assume Y is the subspace of X , A ⊆ Y , have 1) clY A = Y ∩ clXA; 2) intY A =
Y ⊇ intXA.

proof Because clXA is the closed set of X , Y ∩clXA is the closed set of Y , also for A ⊆ Y ∩clXA,
and clY A is the smallest closed set, so clY A ⊆ Y ∩ clXA. Furthermore, as clY A is closed set from
Y , there exists X’s close set F makes clY A = Y ∩F . Also because clXA is the smallest closed set
X includes A.

At this point, we have two topology spaces, denoting spaces before and after DG respectively.

Definition 1 Assume X and Y are two topology spaces, a mapping f : X → Y continues if given
open set U of Y and the preimage f←(U) of U on f is the open set of X .

we define the mapping from X to Y is a continuous mapping, namely an equivalent characterization
of continuous functions from R to R.

Proposition 6 All constant mappings between topological spaces X ,Y are continuous, have 1)
Given topological space X , identity mapping 1X : X → X is continuous; 2) If f : X → Y, g :
Y → Z are continuous mappings, composite mapping g ◦ f : X → Z continues.

1) is obvious, we focus on the proof of 2). Given open set U of Z, because g is continuous, g←(U) is
Y ’s open set, f is continuous, (g ◦f)←(U) = f←(g←(U)) is X’s open set, then g ◦f is continuous.

Combining the previous conclusions, given topological space (X, T ), Y is the subset of X , we have
that Y ’s sub space topology is the coarsest topology on Y making inclusion mapping i : Y ↪→ X
continuous, as well as the fact that mapping f : Z → Y continues if and only if i ◦ f continuous
given topology space Z.

It is worth mentioning that the topology of Y ’s subspace lets inclusion mapping continuous,
namely i : (Y, T |Y ) ↪→ (X, T ) is continuous. At the same time, If S is a topology of Y and
i : (Y,S|Y ) ↪→ (X, T ) is continuous, T |Y ⊆ S. ∀ open set U of X , ∃ Y ’s subspace topology
makes inclusion mapping continuous, for i←(U) = {y ∈ Y |i(y) ∈ U} = U ∩ Y is open set of Y ’s
subspace topology. Further, assume S is topology on Y and i : (Y,S|Y ) ↪→ (X, T ) continuous,
∀V ∈ T |Y , ∃X’s open set U , resulting in V = U ∩Y , according to definition of subspace topology.
Because V = U ∩ Y = i←(U), V ∈ S deduces T |Y ⊆ S.

Of course, whether mapping f : X → Y is continuous decides on the topology of X,Y . But in
practice, considering the gradient descent for neural networks, we fit this mapping with a neural
network, which deduces the continuity of f : X → Y . Next we figure out two topology spaces’
boundary. The image tensors range from −1 to 1.

Proposition 7 Given two topology spaces X,Y , f : X → Y continues, define sequence of X {xn},
if {xn} converges to x, {f(xn)} converges to f(x). In other words, the continuous map preserves
the limit of the sequence.

∀ neighbourhood V of f(x), for f continues, f←(V ) is the neighbourhood of x, assume there exists
N ∈ N, resulting that ∀n ≥ N , xn ∈ f←(V ), namely f(x0) ∈ V , then {f(xn)} converges to f(x).
Also because ∀tensor ∈ [−1, 1], |xn| → 1 and |f(xn)| → 1.

On the other hand, mapping f : X → Y is one to one mapping, meaning that X can be continuously
deformed into Y , and the process is reversible (for we always can find a mapping g : Y → X), so

Definition 2 Given two topology spaces X,Y , f : X → Y continues, assume there exists continuous
mapping g : Y → X , making g ◦ f = 1X : f ◦ g = 1Y , continuous mapping f : X → Y is
homeomorphic mapping.
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Table 5: Ablation on timestep T and FID Gain(↓) comparison on three datasets, bold font denotes
the best result.

Method Panda (Zhao et al. (2020)) Fauvism (Liu et al. (2020)) AF-Wild (Choi et al. (2020))
T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25

FastGAN -0.0117 -0.00913 -0.0175 -0.0151 -0.0193 -0.5382 -0.1688 0.2298 -0.3757 0.44864 -0.1116 0.0202 0.3115 0.5330 0.6043
FreGAN -0.1041 -0.1251 -0.1030 -0.0561 -0.0297 -2.3201 -1.3230 -1.7703 -1.2072 -1.2220 -0.0035 -0.0240 -0.0232 -0.0194 -0.0067
Lecam -0.2309 -0.3214 -0.3669 -0.4281 0.3565 0.1421 -0.0355 0.3363 0.0129 -0.1444 -0.1996 -0.1523 -0.1491 -0.0922 -0.0918
MoCA -0.0021 -0.0143 -0.0188 -0.0473 -0.0526 0.5111 -0.1457 0.6026 0.4354 0.3386 -0.0128 -0.0264 -0.0368 -0.0753 -0.0435

ProtoGAN -0.2914 -0.3423 -0.3891 -0.3870 -0.3034 0.0777 0.0229 -0.0223 -0.1161 -0.1399 -0.1379 -0.0370 0.0846 0.0831 0.3126

In sampling, we fix DG hyper parameter ωc = 1, leading trajectory of sampling towards more
realistic region. For T = 1 (the second iteration), we denote it by the Cartesian product space
X × Y , given two topology spaces (X, T ), (Y.S), the Cartesian product between X and Y can be
formulated as

{U × V |U ∈ T , V ∈ S} (36)

this is so-called T ×S, a topology generated by base. X×Y endows the topological space resulting
from the product of T with S to be called the product space of (X, T ), (Y,S).
Proposition 8 If X , Y are nonempty topological spaces, define pX : X × Y → X and pY :
X × Y → Y are projections, we have the following conclusions:

1) pX : X × Y → X and pY : X × Y → Y are continuous open mapping.
2) Production topology is the coarsest topology on X × Y which makes projection pX and

pY both continuous.
3) Given topological space Z and mapping h : Z → X × Y , h is continuous regarding

production topology on X × Y if and only if pX ◦ h : Z → X and pY ◦ h : Z → Y are
continuous.

We first prove the first conclusion. Given X’s open set U , p←X (U) = U × Y , so pX is continuous,
then, given a basis U × V on X × Y , p←X (U × V ) = U , so pX is open mapping. On one hand,
we know that projection pX and pY are both continuous due to product topology on X × Y , on the
other hand, assumeR is a topology on X × Y that makes projection pX and pY both continuous, ∀
open set U ⊆ X and V ⊆ Y , have

U × V = (U × Y ) ∩ (X × Y ) = p←X (U) ∩ p←Y (V ) ∈ R (37)

R is finer than the product topology T ×S, the coarsest topology on X×Y which makes projection
pX and pY are both continuous.

Here we begin to prove the third conclusion. If h : Z → X × Y is continuous, composite mapping
pX ◦ h, pY ◦ h are continuous. Given Y ’s open set V and X’s open set U , h←(U × Y ) = (pX ◦
h)←(U) and h←(X × Y ) = (pY ◦ h)←(V ) are both Z’s open sets, thus

h←(U × V ) = h←(U × Y ) ∩ h←(X × V ) (38)

so h is continuous. We throw a theorem

Theorem 2(X × Y, pX , pY ) Given product topology space X × Y , ∀Z, f : Z → X, g : Z → Y , ∃
the only one continuous mapping h : Z → X × Y , making f = pX ◦ h, g = py ◦ h.

If Z is a topological space, f : Z → X, g : Z → Y are continuous, define h : Z → X × Y ,
h(z) = (f(z), g(z)), have f = pX ◦h, g = pY ◦h. According to the third conclusion of Proposition
8, h is continuous, and its uniqueness is obvious.

Theorem 2 tells us that there exists a deterministic mapping from Z to topological space after many
times’ discriminator guidance.

A.4 MORE VISUAL DATA AND TABLES

Please see Table 5, 6, 7, 8 and Fig. 4, 5.
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Table 6: Ablation on timestep T and FID Gain(↓) comparison on three datasets, bold font denotes
the best result.

Method AF-Cat (Choi et al. (2020)) AF-Dog (Choi et al. (2020)) Obama (Zhao et al. (2020))
T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25

FastGAN 0.0015 -0.0070 -0.0043 -0.0037 -0.0040 -0.0910 0.0556 -0.1278 0.3063 0.3825 -0.0036 0.0054 0.0145 0.1208 0.0427
FreGAN 0.0010 0.0035 0.0014 -0.0037 -0.0030 -0.0077 -0.0091 -0.0083 0.0282 -0.0560 -0.0003 -0.0015 -0.0003 -0.0014 -0.0032
Lecam -0.1990 -0.0497 -0.0277 0.0829 0.1779 0.0038 0.0139 -0.0102 0.0023 0.0207 -0.1620 -0.2260 -0.1546 -0.1094 -0.0895
MoCA -0.0001 0.0019 0.0043 0.0120 0.0094 -0.0209 0.0352 0.0149 0.0610 0.0699 -0.1865 -0.3339 -0.0341 0.0288 0.5148

ProtoGAN -0.1632 0.0244 0.0018 -0.0011 0.0974 -0.0507 -0.1034 -0.1923 -0.1841 -0.1982 -0.0443 -0.0425 -0.0751 -0.0887 -0.1595

Table 7: Ablation on timestep T and FID Gain(↓) comparison on three datasets, bold font denotes
the best result.

Method Moongate (Liu et al. (2020)) Skull (Liu et al. (2020)) Nature landscape (Liu et al. (2020))
T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25

FastGAN 0.4380 0.5047 0.5436 -0.0465 0.7885 -1.7317 -1.8548 -2.2461 -2.2102 -1.9601 0.1549 -0.0834 0.0168 0.3555 0.1057
FreGAN -4.4526 -4.9770 -5.007 -5.3620 -4.2457 -2.1380 -2.2761 -2.5376 -2.4153 -2.2555 -0.2996 -0.7355 -0.7275 -1.1456 -1.0282
Lecam -0.6524 -0.0106 0.7474 1.5269 1.1231 -0.5642 -0.1160 -0.2241 -0.8304 -0.5292 -1.6258 -1.3905 -1.4712 -1.5547 -1.9264
MoCA 0.7241 0.1896 0.7780 -0.1775 0.5427 -0.9328 -0.4503 -0.7455 -0.2889 -0.8695 -3.7596 -3.1451 -3.6139 -3.2358 -3.6077

ProtoGAN -0.0294 -0.0454 -0.0675 -0.0795 -0.1229 0.0067 0.0092 0.0080 -0.0005 0.0160 -0.0075 0.0034 0.0130 -0.0022 0.0036

Table 8: Ablation on timestep T and FID Gain(↓) comparison on three datasets, bold font denotes
the best result.

Method Place365 Standard (López-Cifuentes et al. (2020)) CUB (Wah et al. (2011)) ImageNet (Deng et al. (2009))
T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25 T=5 T=10 T=15 T=20 T=25

FastGAN -0.0022 0.0017 0.0024 0.0045 -0.0046 -1.1172 -1.2469 -1.0001 0.8087 0.4585 -0.0015 0.0318 0.0208 0.0375 -0.0063
FreGAN -0.0057 -0.0222 -0.0046 -0.0122 -0.0214 -0.3082 0.1993 0.5201 0.3553 0.9626 -0.0770 0.0651 0.1483 0.1073 0.0446
Lecam -0.3593 -0.5142 -0.0684 -0.7830 -0.9406 -0.7459 -2.1386 -1.3402 -1.6490 -1.2875 0.0041 -0.0041 0.0125 -0.0175 -0.0251
MoCA -0.7128 -1.0183 -1.3315 -1.4557 -1.6179 -0.9873 0.0358 0.2030 -0.0971 0.3310 -0.8638 -0.8094 0.6974 0.1668 1.0332

ProtoGAN -0.0381 -0.0400 -0.0612 -0.1549 -0.2444 0.4777 1.0943 0.1177 -1.0095 1.2232 -0.0115 0.0042 -0.0307 -0.0048 0.0557

Figure 4: Comparison results of average 2D power spectrum on Nature landscape (Liu et al. (2020))
and Shells (Liu et al. (2020)). The average 2D power spectrum result for the real data is computed
from all training data, and the results of our method and compared methods are computed from 2k
generated images.

A.5 MORE IMPLEMENT DETAILS

Our experiments are trained and evaluated on one Nvidia Tesla V100, we employ Adam as our
optimizer with β1 = 0.5 and β2 = 0.999, meanwhile, batchsize = 8 and learning rates regarding
generator and discriminator are 2e − 4. For all training sets, we calculate metrics by comparing
2, 000 generated images to the whole training set within 50, 000 iterations, and save checkpoint
every 10, 000 iterations. It is noted that we calculate the FID by comparing a batch of generated
images and the same batch of generated images guided by the discriminator with the real
image. This is a straightforward way to see if our approach works. Furthermore, We choose
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Figure 5: Post-hoc discriminator training epoch comparison results of FID Gain on the remaining
12 datasets.

the value of the original data with the lowest FID to compare with its post-discriminator-guidance
value. Apart from training iteration, we keep hyper-parameters from other comparative networks
unchanged. All experiments are run on PyTorch 1.7.1, and CUDA 10.2.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5.1 IMPLEMENT DETAILS OF BASELINE METHODS

We reimplement all the baseline methods with their official code for fair comparisons. Notably, we
select FastGAN (Liu et al. (2020)), FreGAN (Wang et al. (2022)), MoCA (Li et al. (2022)), Lecam
(Tseng et al. (2021)) and ProtoGAN (Yang et al. (2023)) as our baseline models, these models all
represent the main stream in data-efficient field of GANs. The ablation experiments demonstrate
that our method is able to collocate different network structures. When combining our proposed
techniques upon Lecam (Tseng et al. (2021)) and MoCA (Li et al. (2022)), we consistently keep all
the details unchanged and add our proposed techniques to them. The coefficient of the regularization
term is set as 0.1 following the original paper. Notably, we use the official code and recommended
parameter of MoCA. All of our experiments are run on one Tesla V100 GPU, using PyTorch 1.7.1,
and CUDA 10.2.

A.5.2 IMPLEMENT DETAILS OF POST-HOC DISCRIMINATOR

The post-hoc discriminator network originates from Kim et al. (2022), which combines the encoder
of Unet and a classification layer (e.g. fully connected layers and sigmoid activation function). We
employ Adam as optimizer with fixed learning rate 3e− 4 and weight decay 1e− 7, batchsize = 4
throughout the all experiments, within 10 epochs (save checkpoints every two epochs) with 2, 000
generated images and 2, 000 real images (for datasets whose image number is lower than 2, 000, just
copy themselves until image number satisfies), then utilize binary cross entropy loss function for
gradient descent. In sampling, we set discriminator guidance ωc = 1, selecting the best results by
different combinations of epoch network weights in training and number of iterations in sampling.

A.6 POST-HOC DISCRIMINATOR SAMPLING, PYTORCH-LIKE

n o i s e = t o r c h . r andn ( a r g s . ba tch , n o i s e d i m ) . t o ( d e v i c e )
g imgs , , , = n e t i g ( n o i s e , s k i p s =None )
g i m g s b e g i n = g imgs [ 0 ]

wi th t o r c h . e n a b l e g r a d ( ) :
g i m g s b e g i n t o g r a d = g i m g s b e g i n
f o r i n n e r i t e r in range ( i n n e r i t e r a t i o n ) :

x = g i m g s b e g i n t o g r a d . f l o a t ( ) . c l o n e ( ) . d e t a c h ( ) . r e q u i r e s g r a d ( )
l o g i t s = c l a s s i f i e r ( x , t , s i gmoid =True ) . view ( −1)
p r e d i c t i o n = t o r c h . c l i p ( l o g i t s , 1e −5 , 1 . − 1e −5)
l o g r a t i o = t o r c h . l o g ( p r e d i c t i o n / ( 1 . − p r e d i c t i o n ) )
d i s c r i m i n a t o r g u i d a n c e s c o r e = /
t o r c h . a u t o g r a d . g r ad ( o u t p u t s = l o g r a t i o . sum ( ) , i n p u t s =x , r e t a i n g r a p h = F a l s e ) [ 0 ]
g imgs = x + lambda DG * d i s c r i m i n a t o r g u i d a n c e s c o r e
g i m g s b e g i n t o g r a d = g imgs

f o r j , g img in enumerate ( g imgs ) :
v u t i l s . s a v e i m a g e ( g img . add ( 1 ) . mul ( 0 . 5 ) ,
os . p a t h . j o i n ( d i s t ,
’%d . png ’ % ( i * a r g s . b a t c h + j ) ) ) # , n o r m a l i z e=True , range =( −1 ,1) )

f o r j , g img in enumerate ( g i m g s b e g i n ) :
v u t i l s . s a v e i m a g e ( g img . add ( 1 ) . mul ( 0 . 5 ) ,
os . p a t h . j o i n ( d i s t o r i ,
’%d . png ’ % ( i * a r g s . b a t c h + j ) ) )

Listing 1: post-hoc discriminator sampling code

A.6.1 IMPLEMENT DETAILS OF EVALUATION METRICS

Fréchet Inception Distance (FID) is a metric used to evaluate the discrepancy between the generative
model and the real data distribution. It was proposed by Heusel et al. (2017) and is one of the widely
used evaluation metrics nowadays.
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The FID measures the difference between the generative model and the real data distribution by
computing the Frechet distance between the two distributions. Frechet distance is a method to
measure the distance between two distributions, which takes into account the mean and covariance
matrix of the two distributions and can better describe the difference between the two distributions.

To compute the FID, a set of samples are first drawn from the real data distribution and the generative
model, respectively, and then a pre-trained inception network is used to extract feature vectors from
these samples. Next, the mean and covariance matrices of the two distributions are calculated and
the Frechet distance between them is calculated to obtain the FID value. A smaller FID value means
that the images generated by the generative model are closer to the true data distribution.

As an evaluation metric, FID is widely used in the training and evaluation of generative models. It
can help us evaluate the quality of the generative model more accurately and select a better generative
model. At the same time, FID is also an objective evaluation index, which can avoid the influence
of human subjective factors on the evaluation results. The computation can be formulated as

FID = ∥µ1 − µ2∥2 + Tr(Σ1 +Σ2 − 2
√
Σ1Σ2) (39)

where µ1 and µ2 represents the mean vector of real data distribution and generated data distribution
respectively, Σ1 and Σ2 denote the covariance matrix of the real and generated data, respectively.
Tr(·) is trace of a matrix.

The FID value can be obtained by computing the mean covariance matrix of the two distributions and
computing the Frechet distance between them. The smaller the FID value, the closer the generated
image is to the real data distribution.

A.7 DATASETS DESCRIPTION

AFHQ (Choi et al. (2020)) datasets contain 5k training images of animal faces with 512 resolu-
tion, respectively AF-Dog (389 imgs sampled from original data), AF-Cat (160 imgs sampled from
original data) and AF-Wild (146 imgs sampled from original data). The dataset is made available
under the Creative Commons BY-NC 4.0 license. In experiments, we uniformly compress them to
256× 256 resolution.

100-shot (Zhao et al. (2020)) datasets contain various contents of images, and all the datasets contain
100 256 × 256 training images (e.g. 100-shot-obama, 100-shot-panda and 100-shot-grumpy-cat).
They are ideal for verifying the quality of the generation in low-shot scenarios.

BrecaHAD (Aksac et al. (2019)) dataset contains 162 images for breast cancer histopathologi-
cal annotation and diagnosis. Its texture and content are complex, thus is suited for evaluating
GANs’performance under limited data, facilitating the exploration of data-efficient GANs for down-
stream tasks of the medical field.

Moongate (512×512 resolution 135 imgs), fauvism (512×512 resolution 124 imgs), shells (1024×
1024 resolution 64 imgs), skulls (1024×1024 resolution 96 imgs) and nature landscape (100 1024×
1024-resolution imgs sampled from original data) datasets come from Liu et al. (2020). These
datasets include less than 150 images with different resolutions. Thus we adopt them for evaluating
our model under limited data. We resize them to the closest resolution in implementation.

CelebA-HQ (Karras (2017)) is a high-quality face dataset developed by the Chinese University of
Hong Kong and contains 30,000 images with 1024×1024 resolution. This dataset is a high-quality
version of CelebA suitable for various computer vision tasks such as image generation, image super-
resolution, image-to-image translation, etc. We randomly sample 100 images for training and metric
computation.

Cub-200-2011 (Wah et al. (2011)) dataset is a fine-grained image classification dataset released by
Caltech, which is an extended version of CUB-200 dataset. The dataset contains 11,788 images of
200 bird species, and each image is annotated with detailed information, including object bounding
boxes, part locations, binary attributes, and subcategory labels. These images are often used for
few-shot fine-grained image classification or detection tasks. Specifically, we randomly sample 100
images from it and resize them to 256× 256 resolution for training and sampling.
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Oxford 102 Flowers (Nilsback & Zisserman (2008)) Dataset is a flower collection dataset mainly
used for image classification. It is divided into 102 categories totaling 102 flowers, where each
category contains 40 to 258 images. The dataset was published in 2008 by the Department of
Engineering Sciences, University of Oxford. Similarly, we randomly sample 100 images from it
and resize them to 512× 512 resolution for training and sampling.

The Places365 (López-Cifuentes et al. (2020)) dataset is a scene recognition dataset. It is com-
posed of 10 million images comprising 434 scene classes. There are two versions of the dataset:
Places365-Standard with 1.8 million train and 36000 validation images from K=365 scene classes,
and Places365-Challenge-2016, in which the size of the training set is increased up to 6.2 million
extra images, including 69 new scene classes (leading to a total of 8 million train images from 434
scene classes). we randomly sample 100 images from it and resize them to 256× 256 resolution for
training and sampling.

Flickr-Faces-HQ (FFHQ) (Karras et al. (2019)) is a high-quality image dataset of human faces,
originally created as a benchmark for generative adversarial networks (GAN). The dataset consists
of 70,000 high-quality PNG images at 1024×1024 resolution and contains considerable variation
in terms of age, ethnicity and image background. It also has good coverage of accessories such as
eyeglasses, sunglasses, hats, etc. The images were crawled from Flickr, thus inheriting all the biases
of that website, and automatically aligned and cropped using dlib. Only images under permissive
licenses were collected. Various automatic filters were used to prune the set, and finally Amazon
Mechanical Turk was used to remove the occasional statues, paintings, or photos of photos. We
randomly sample 100 images for training and metric computation.

The ImageNet (Deng et al. (2009)) dataset is a computer vision dataset created by Professor Fei-Fei
Li at Stanford University. The dataset contains 14,197,122 images and 21,841 Synset indices. A
Synset is a node in the WordNet hierarchy, which is again a set of synonym sets. The ImageNet
dataset has been a benchmark for evaluating the performance of image classification algorithms.
The ImageNet dataset is a large image dataset established to promote the development of computer
image recognition technology. The 2016 ImageNet dataset already has over 10,000 images, each of
which has been manually labeled. The images in the ImageNet dataset cover most of the types of
images you will see in life. ImageNet was originally a dataset with over 1 million images. It contains
a variety of images, and each image is associated with a label (category name). The ILSVRC image
recognition competition using this huge dataset is held every year. Similarly, we randomly sample
100 images for training and metric computation.
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