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ABSTRACT

Despite the impressive capabilities of large language models (LLMs), their out-
puts often exhibit inconsistent correctness and unreliable factual accuracy. In
high-stakes domains, overconfident yet incorrect predictions can lead to serious
consequences, highlighting the need for robust uncertainty estimation. To address
this, we introduce SelectLLM, an end-to-end method designed to enhance the
ability of LLMs to recognize and express uncertainty effectively. By integrating
selective prediction into finetuning, SelectLLM optimizes model performance
over the covered domain, achieving a more balanced trade-off between predic-
tive coverage and utility. Experimental results on TriviaQA, CommonsenseQA
and MedConceptsQA show that SelectLLM significantly outperforms standard
baselines, improving abstention behaviour while maintaining high accuracy.

1 INTRODUCTION

Large language models (LLMs) have rapidly become foundational components in natural language
processing (NLP), driving progress across a wide range of tasks – from open-ended generation to
complex reasoning. Despite their huge progress and impressive capabilities, LLMs still frequently
produce outputs with varying levels of correctness and factual accuracy. A core challenge in deploying
these models in real-world settings lies in balancing accuracy with calibrated confidence. While high
accuracy remains a primary goal, it is equally critical for models to recognize and signal their own
uncertainty, particularly in high-stakes scenarios such as healthcare (Busch et al., 2025; Denecke
et al., 2024), finance (Yoo, 2024; Nie et al., 2024), and law (El Hamdani et al., 2024; Colombo
et al., 2024). Overconfident incorrect responses can be significantly more harmful than abstentions
or cautious, low-confidence responses. To address this, we leverage confidence modeling to enable
selective prediction, allowing the system to abstain from answering when uncertainty is high (Wen
et al., 2024), thereby trading off coverage for reliability. This trade-off is especially important in
safety-critical applications or decision-support systems, where deferring uncertain cases to a human
or fallback system is preferable to propagating potentially erroneous outputs. In this paper, we
introduce a principled approach to enhancing safety of an LLM that allows a model to abstain from
making a prediction when it is uncertain, thereby reducing the risk of harmful or misleading outputs.
However, abstention introduces a secondary trade-off: while conservative behavior can reduce risk,
excessive abstention diminishes the utility of the model by forgoing opportunities where correct
responses are feasible. A model that abstains too frequently may be safe but ultimately useless. For
example, in the "needle in-the-haystack" benchmark, LLMs become more uncertain when given
the “nonexistent” option, even when capable of providing correct answers (Kim et al., 2025). This
highlights the challenge of balancing risk with utility (coverage): optimizing both the correctness of
answers and the number of answered questions.

We formalize this challenge as a risk-coverage trade-off and categorize model outputs into four
distinct cases following the previous literature (Stengel-Eskin et al., 2024; Cheng et al., 2024), as
illustrated in Table 1: ❶ Accepting a correct answer — the ideal case, contributing to both utility
and reliability; ❷ Rejecting an incorrect answer — also desirable, as it avoids unreliable answers;
❸ Rejecting a correct answer — suboptimal, reducing the utility of the model; ❹ Accepting an
incorrect answer — the most harmful case, compromising the accuracy of the model. Our objective
is to maximize the occurrence of the first two cases while minimizing the occurrence of the latter two.
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To illustrate the risk-coverage trade-off challenge, consider two medical AI assistants designed to help
doctors interpret diagnostic test results. Assistant A, optimized solely for utility, studied all diagnostic
topics uniformly but lacks the ability to accurately judge when to abstain. Consequently, it sometimes
provides incorrect answers with high confidence or unnecessarily abstains even when it could have
answered correctly. In contrast, Assistant B explicitly accounts for the risk-coverage trade-off by
carefully distinguishing between cases it can confidently address and those it should avoid. When
faced with ambiguous diagnostic cases, Assistant B appropriately abstains, whereas in clear-cut cases
that Assistant A might wrongly skip, Assistant B reliably provides accurate answers. Consequently,
Assistant B achieves the best average diagnostic performance, as illustrated in Figure 1.

Figure 1: Illustration of risk-coverage trade-off. Given a question, Assis-
tant A (base LLM), optimized solely for utility, often produces incorrect
answers due to overconfidence. In contrast, Assistant B (with SelectLLM),
which explicitly accounts for the risk–coverage trade-off, recognizes its
limitations and abstains when uncertain. As a result, it avoids more errors
and achieves better performance on diagnostic tasks.

To address this challenge, we
propose a novel method, called
SelectLLM, that explicitly pro-
duces confidence estimates and
incorporates the task of confi-
dence estimation into its train-
ing objectives. SelectLLM as-
signs confidence scores to ques-
tions rather than to generated
answers, thereby quantifying
the reliability of the LLM’s re-
sponse to specific queries in-
dependent from the multiple
alternative answers generated.
Questions can be classified into
two categories based on a con-
fidence threshold: those with
confidence above a given thresh-
old (covered by the model) and
those below the threshold (not
covered). Within the covered set of questions, we further distinguish between the questions the
model is confident in answering correctly and those it confidently identifies as beyond its capability,
corresponding to the first and second cases mentioned previously.

SelectLLM is based on a well-trained LLM and jointly trains (fine-tunes the first and trains the
second) two heads (shown in Figure 2): ❶ a decoding head, corresponding to the original LLM
output layer for autoregressive token generation; ❷ a selection head, outputting a confidence score
for the question. This two-head design is motivated by the known calibration deficiencies of trained
LLMs. In a well-calibrated model, the decoding head’s next-token probabilities could be used directly
for confidence estimation. However, LLMs often exhibit overconfidence or underconfidence, making
it necessary to learn a separate abstention signal. The selection head is explicitly optimized to improve
the risk–coverage trade-off, allowing the model to balance utility with reliability. Our contributions
are summarized as follows:

• We introduce SelectLLM, which incorporates risk–coverage trade-off control into the LLM
training stage. It combines Direct Preference Optimization (DPO) (Rafailov et al., 2023)
with confidence estimation to improve the risk-coverage trade-off;

• We construct three high-quality benchmarks for DPO fine-tuning based on open-sourced
Question-and-Answer datasets, and conduct extensive experiments on seven baselines with
three different LLMs, demonstrating that SelectLLM significantly outperforms state-of-
the-art baselines in terms of risk and coverage metrics;

• We validate the confidence scores produced by SelectLLM by comparing their distribution
to scores derived from the tone and phrasing of the generated responses, demonstrating that
SelectLLM can natively output reliable confidence estimates for its predictions without
relying on any external models.
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LLM

Selection head

Where is Boston ?

HS 1

Boston is in USA

HS 2 HS 3 HS 4 HS 5 HS 6 HS 7 HS 8

Question Answer

Confidence DPO Loss

Decoding head

Figure 2: Overview of SelectLLM. Given a question–answer input pair, the underlying LLM processes the full
sequence and produces a hidden state (HS) for each token. The selection head operates on the hidden state
corresponding to the last token of the question to estimate a confidence score for abstention; while the decoding
head uses the answer-related hidden states to compute the DPO loss for LLM fine-tuning. This dual-head design
enables SelectLLM to jointly optimize for utility and accuracy.

Table 1: Four cases of the answer to a question: “In which branch of the arts does Allegra Kent work?”.

Accept (high confidence) Reject (low confidence)

Correct Allegra Kent is a ballet dancer. She worked as a principal
dancer with the New York City Ballet.

I’m not entirely certain, but I think Allegra Kent might be
involved in ballet.

Incorrect Allegra Kent is a renowned opera singer who performed
in major productions throughout Europe.

I’m not really sure, but maybe Allegra Kent is a painter?

2 RELATED WORK

Uncertainty Quantification in LLMs. Uncertainty estimation for large language models (LLMs)
spans several complementary paradigms. and generally falls into two categories: (i) black-box
approaches and (ii) white-box approaches. Black-box methods include verbalized uncertainty, where
models are prompted to express confidence in natural language (Tanneru et al., 2023; Yona et al., 2024;
Wei et al., 2023; Lin et al., 2023; Huang et al., 2024), and sampling-based methods, which estimate
predictive uncertainty from variability across multiple generations (Cole et al., 2023; Ji et al., 2024;
Xiong et al., 2023). White-box approaches, in contrast, exploit model internals such as token-level
probabilities, calibration of log-likelihoods, or hidden-state diagnostics to produce confidence scores.
Related work includes TokenSAR (Duan et al., 2023), P(True) (Kadavath et al., 2022) and Semantic
Entropy (Kuhn et al., 2023). While many of these techniques primarily serve to identify uncertain
predictions and guide abstention, there is also a growing line of work on uncertainty-aware training,
where uncertainty estimates inform parameter updates (Krishnan et al., 2024; Niu et al., 2024; Yang
et al., 2023b). Our approach builds on these advances by directly incorporating selective prediction
objectives into fine-tuning.

Alignment and Confidence in LLMs. Efforts to align LLMs with human preference, such as
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Direct Preference Optimization
(DPO) (Rafailov et al., 2023), adjust model parameters to encourage desired behaviours. Kang et al.
(2024) proposed conservative reward modeling to encourage LLMs to be more cautious in their
predictions, which relates to our objective of selective prediction. Piché et al. (2024) introduced
self-restraint fine-tuning, aiming to increase model confidence when appropriate while reducing
overconfidence. Recent works such as (Stengel-Eskin et al., 2024) and (Cheng et al., 2024) utilize
DPO to align LLMs with human preference to guide the model to answer questions it knows and to
avoid answering questions it does not know.

Selective Prediction in LLMs. Selective prediction has a rich history in machine learning (Fumera
& Roli, 2002; Wiener & El-Yaniv, 2015; Cortes et al., 2016a;b), and has recently been extended
to LLMs (Yoshikawa & Okazaki, 2023; Lee et al., 2024; Srinivasan et al., 2024; Yang et al.,
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2023a). However, none of these LLM-related works incorporates selective coverage into model
training. SelectiveNet (Geifman & El-Yaniv, 2019) provides a foundational framework for selective
classification in deep networks. Our work extends this idea to the generative setting of LLMs,
which poses unique challenges. SelectLLM differs from prior frameworks such as SelectiveNet in
several critical ways. While SelectiveNet targets classification and regression, SelectLLM is designed
for sequence generation. To enable this, we introduce a new module that embeds the generated
sequence before passing it to a confidence head, enabling reliable abstention decisions for natural
language outputs. Moreover, SelectiveNet employs three heads—reward, selection, and auxiliary—to
encourage shared representation learning. In contrast, SelectLLM adds only a single selection head
g(·) to the original LLM and fine-tunes the entire framework to align with human preferences. This
design enables SelectLLM to balance generation quality, prediction accuracy, and selective abstention,
offering a principled framework for calibrated and trustworthy language generation.

In summary, by synthesizing advances from uncertainty quantification, fine-tuning, and selective pre-
diction, SelectLLM introduces a principled framework that jointly optimizes predictive performance
and uncertainty estimation, a contribution of particular significance for high-stakes applications.

3 PROBLEM FORMULATION

We define coverage as the proportion of questions for which the model is confident enough to provide
an answer:

coverage =
1

n

n∑
i=1

(1− ai),

where n is the total number of questions, ai = 1 if the model abstains on the ith question and ai = 0
otherwise. While risk is defined as the error rate over the set of answered questions:

risk =

∑n
i=1 1(ŷi /∈ Yi ∧ ai = 0)∑n

i=1(1− ai)
,

where ŷi is the model’s output, Yi is the set of correct answers for the ith question.

The goal is to ensure that LLMs can reliably estimate their predictive confidence and abstain when
uncertainty is high, while also minimizing unnecessary abstentions to retain practical utility. Our
approach is built on Direct Preference Optimization (DPO) (Rafailov et al., 2023), a human preference
alignment method that fine-tunes language models using pairwise comparisons of answers without
the need to explicitly model a reward function.

DPO (Rafailov et al., 2023) is a human preference alignment method that fine-tunes language models
using comparisons of pairs of answers without the need to explicitly model a reward function.
Specifically, in the training stage, we are given (1) a dataset X = {x1, x2, . . . , xn}, where each
xi is a question posed to the model; (2) a corresponding set of human preference annotations
P = {(yi,+, yi,−)}, where yi,+ and yi,− denote the preferred and rejected answers to question xi,
respectively; and (3) a predefined coverage rate 0 < c < 1, which represents the target proportion of
questions for which the user expects the model to provide confident answers. Our goal is to maximize
the likelihood of human-preferred answers relative to rejected ones given the coverage constraint c,
yielding a fine-tuned model Mselect and a selection head g(·) which outputs a confidence score ci
indicating the model’s confidence in answering a specific question xi.

In the inference stage, given (1) a dataset of input questions, X = {x1, x2, . . . , xn}, where each xi

is a question; and (2) a trained model Mselect and its selection head g(·), the model produces (1) a
set of LLM-generated answers, Ŷ = {ŷ1, ŷ2, . . . , ŷn}, where each ŷi is the model’s answer to xi;
and (2) a set of confidence scores, C = {conf1, conf2, . . . , confn}, where each confi represents the
model’s confidence that it can answer question xi correctly.

Given the model’s answer to a question, together with its confidence score to answer the question,
the model abstains when its confidence score confi is below a given threshold τ . More formally, the

abstention decision for question xi is defined as ai =
{
1 if confi < τ

0 otherwise
.

4
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4 SELECTLLM

Our proposed method SelectLLM enhances pre-trained LLMs by introducing an additional head that
explicitly estimates the model’s confidence in answering a given question correctly. This selection
head is trained or fine-tuned jointly with the base model. Specifically, given a pre-trained LLM πθ,
we augment it with a selection head g(·), which outputs a confidence score conf ∈ (0, 1).

Unlike traditional confidence estimation methods that rely on token-level probabilities, our selection
head operates on the last-layer hidden state of the final token in the input question. This design
ensures that confidence estimation is based solely on the model and the input question.

4.1 SELECTION HEAD ARCHITECTURE

The selection head is implemented as a lightweight two-layer multilayer perceptron (MLP) that maps
the final hidden representation of the language model to a scalar confidence score. Concretely, the
hidden state of the last token is first transformed using a linear projection from the model dimension
dmodel to a 512-dimensional intermediate space, followed by a ReLU nonlinearity and a dropout
layer with probability p = 0.1. A second linear layer maps this 512-dimensional vector to a single
logit, which is subsequently passed through a sigmoid activation to produce a confidence value in the
range (0, 1). This compact architecture adds negligible overhead while enabling the model to learn a
calibrated selection policy.

The additional cost introduced by the selection head is negligible relative to the backbone computation.
First, during training, the gradient updates for the large-scale language model (with billions of
parameters) dominate the total compute cost, while the selection head contributes only a tiny number
of additional parameters and operations, resulting in virtually no change in wall-clock time. Second,
during inference, the selection head operates solely on the hidden state computed in the prefill
stage, either in parallel with or immediately before generation. Consequently, it adds only a single
lightweight matrix multiplication, causing no noticeable increase in latency.

4.2 LOSS FUNCTION

The loss function of SelectLLM combines the DPO loss, which aligns the model’s outputs with
human preferences, and the Select loss, which manages the risk–coverage trade-off.

The DPO loss aligns the model’s outputs with human preferences without requiring explicit reward
modeling or reinforcement learning. Given a dataset of human preferences P = {(xi, yi,+, yi,-)},
where yi,+ is the preferred response and yi,- is the rejected response to question xi, the DPO loss is
defined as:

LDPO(πθ, πref) = −E(x,y+,y-)∼P

[
log σ

(
β log

πθ(y+ | x)
πref(y+ | x)

− β log
πθ(y- | x)
πref(y- | x)

)]
(1)

where:

• πθ is the LLM we want to fine-tune.
• πref is a reference model, usually a frozen version of the original pre-trained language model.
• σ is the sigmoid function.
• β is a hyperparameter that controls the amount of divergence from the reference model πref.

Building on Section 3, we define the empirical selective risk for LLM fine-tuning as:

r̂ =
1

n

n∑
i=1

(g(hi) · LDPO) (2)

where hi denotes the hidden state of the last token in the question, g(hi) ∈ [0, 1] is the selection
function that quantifies the model’s confidence for the given question.

Notably, since the original DPO loss only boosts the margin between the chosen answer and the
rejected answer, it may simultaneously decrease the probabilities of both chosen and rejected answers,
compared to the reference model, which is not desirable (Rafailov et al., 2024; Feng et al., 2024; Pal
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et al., 2024). Therefore, we define a marginal function measuring the difference in the probabilities
between the answers of the fine-tuned model and the reference model, which is defined as follows:

w(y) = β (log πθ(y)− log πref(y)) (3)

where β is a hyper-parameter, and πθ, πref follow the same definitions as in the DPO loss.

Then we define the risk for generating chosen and rejected answers using Equation 3:

ℓ(πθ, πref, y) =

{
log σ (max(0,−w(y))) if y ∈ y+

log σ (max(0, w(y)) if y ∈ y-

Mathematically, these are not the same as DPO. DPO encourages w(y+) > w(y−); while this
additional risk term encourages w(y+) ≥ 0 (do not degrade chosen probability below reference) and
w(y−) ≤ 0 (do not increase rejected probability above reference). The intuition behind this risk is as
follows: a penalty is applied if the fine-tuned model assigns a lower probability to chosen answers
than the reference model, or a higher probability to rejected answers.

Building on the above, we define a modified empirical selective risk as follows:

r̂ℓ(πθ, πref, g) =
1

n

n∑
i=1

((1−w+−w-) ·LDPO+w+ ·ℓ(πθ, πref, yi,+)+w- ·ℓ(πθ, πref, yi,-)) ·g(hi) (4)

where w+ and w- are hyper-parameters defined by the users. In the appendix, we include an ablation
study to demonstrate the effectiveness of the two additional terms ( ℓ(πθ, yi,+) and ℓ(πθ, yi,-)).

The Select loss aims to minimize the selective risk while maintaining a predefined coverage level c.
Formally, the Select objective is given by:

LSelect = r̂ + λ ·Ψ(c− ϕ̂(g)) (5)

where ϕ̂(g) = 1
n

∑n
i=1 g(hi) is the empirical coverage, λ > 0 is a regularization parameter, and

Ψ(a) = max(0, a)2 penalizes deviations from the target coverage rate c defined by the user.

Finally, the Combined loss is defined as a weighted sum of the Select loss and the fine-tuning loss:

LCombined = α · LSelect + (1− α) · LDPO (6)

where α ∈ [0, 1] balances the weight of the two objectives. Following Geifman & El-Yaniv (2017),
we set α = 0.5 without hyperparameter tuning in all experiments.

If we do not incorporate the Select loss, the model may produce outputs aligned with human
preferences but lack effective confidence calibration, which could result in excessive abstention or
incorrect responses overly confident. The use of the original DPO loss, LDPO, is also essential to
optimizing SelectLLM. Since the selection head is initialized randomly, without LDPO, SelectLLM
will focus on a fraction c of the training set, before accurate low level features are constructed. In
such a case, SelectLLM will tend to overfit to the wrong subset of the training set. The LDPO exposes
the SelectLLM model to all training instances throughout the training process. Thus, integrating both
losses ensures that the model achieves a balanced performance – producing high-quality, preference-
aligned outputs while maintaining optimal coverage through calibrated confidence estimation.

5 EXPERIMENTS

In this section, we first compare SelectLLM against seven baseline models on the TriviaQA (Joshi
et al., 2017) and CommonsenseQA (Talmor et al., 2018) benchmarks, two widely used datasets for
evaluating open-domain question-answering systems. We then demonstrate SelectLLM’s ability to
generalize across domains by fine-tuning on CommonsenseQA and testing on TriviaQA. Next, we
validate the confidence scores produced by SelectLLM, followed by an ablation study to assess the
impact of the reward loss terms and the coverage–risk trade-off.
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5.1 EXPERIMENTAL SETUP

We use Llama-3.1-8B-Instruct1(Grattafiori et al., 2024), Mistral-7B-Instruct-v0.22(Jiang et al., 2023)
and Qwen2.5-14B-Instruct3(Yang et al., 2025) in the experiments as the base models. We use
QLoRA (Dettmers et al., 2023) with rank 16 to train all the models. For comparison, we use base
(LLM without finetuning), LACIE (Stengel-Eskin et al., 2024) (DPO-based finetuning), LARS (Yaldiz
et al., 2024) (uses a well-trained score function), MARS (Bakman et al., 2024) (uses a QA evaluator
model), TokenSAR (Duan et al., 2023) (uses a sentence similarity model), P(True) (Kadavath et al.,
2022) (a self-check method) and Semantic Entropy (SE) (Kuhn et al., 2023) (uses token probabilities)
as our baselines. For all models, we report average performance across 5 seeds. We perform all the
LLM fine-tuning on one A100-40GB GPU.

Metrics. Across all the experiments, we report the following evaluation metrics: the number of
true positives (TP), the number of true negatives (TN), Precision, Recall, and Coverage. We also
include the TRUTH metric introduced in Cheng et al. (2024), defined as the sum of TP and TN,
which captures the number of correctly accepted and correctly abstained responses. Because the test
dataset contains 1,000 samples, the upper bound of TRUTH is 1,000. As there are no ground-truth or
reference confidence scores provided for each question, we cannot report AUROC or ECE scores.

For score-based methods (SelectLLM, LARS, MARS, TokenSAR, P(True), and SE), we tune a
threshold on the validation set to maximize the TRUTH metric and then apply the same threshold
to the test set for abstention. For non-score-based methods (base and LACIE), we use a rule-based
evaluation strategy: a response is accepted as long as the model provides an answer and is rejected
only if the model explicitly refuses or states that it does not know.

Datasets. We use the TriviaQA (Joshi et al., 2017), CommonsenseQA (Talmor et al., 2018), and
MedConceptsQA (Shoham & Rappoport, 2024) datasets. Following Stengel-Eskin et al. (2024), for
TriviaQA we randomly sample 10,000, 1,000, and 1,000 questions for the training, validation, and
test sets, respectively. For CommonsenseQA, we randomly sample 8,000, 1,000, and 1,000 questions
for the training, validation, and test sets, respectively. For MedConceptsQA, which is used solely for
evaluation, we randomly sample 1,000 questions each for the validation and test sets.

To construct the chosen/rejected pairs used for LACIE and SelectLLM fine-tuning, we first augment
each dataset with model-generated answers and their associated confidence scores. Specifically, we
use the base models mentioned above to generate an answer for each question and then employ
DeepSeek-v3 (Liu et al., 2024) to assign a confidence score based on the tone and phrasing of the
generated response. We refer to this score as tone-confidence. The prompt provided to DeepSeek-v3
is: “Rate how confident the response appears based solely on its tone and phrasing.”

We set a confidence threshold of 0.7: answers with scores above this threshold are accepted, while
those below are rejected. If no correct answer exceeds the threshold, we default to a generic
response—“I don’t know the answer.”—as the chosen answer. Such fallback responses occur in
roughly 30% of the fine-tuning dataset. All remaining answers to the same question are treated as
rejected. Finally, we construct the fine-tuning pairs for both LACIE and SelectLLM by sampling one
chosen and one rejected answer for each question.

5.2 IN-DISTRIBUTION PERFORMANCE

We conduct experiments on the TriviaQA and CommonsenQA datasets. As shown in Table 2&3, our
method SelectLLM, consistently and substantially improves model truthfulness and precision across
all three language models. It achieves the highest TRUTH score by a significant margin in every
experiment—for instance, reaching 752.0 with Llama-3.1 compared to the base model’s 601.7. This
strong performance is primarily driven by its unique strength in correctly abstaining from providing
an answer, as evidenced by its leading True Negative (TN) values (e.g., 230.3 for Mistral-7B on
TriviaQA and 142.6 on CommonsenseQA). In contrast, all other score-based methods (LARS, MARS,
TokenSAR, P(True), SE) fail to provide a reliable confidence score, since their low TN counts and

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
2https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
3https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
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Table 2: TriviaQA performance. ↑ indicates the higher the better, and ↓ indicates the lower the better. The TN
value for both the base and LACIE is 0.0 (with a corresponding Recall of 1.0), since they do not abstain from
any answers.

Model TP ↑ TN ↑ TRUTH ↑ Precision ↑ Recall ↑ Coverage (%)
Llama-3.1-8B-Instruct
base 601.7±2.3 0.0±0.0 601.7±2.3 0.602±0.002 1.000±0.000 100.0±0.0
LARS 579.3±3.7 45.2±4.0 624.2±6.5 0.627±0.018 0.949±0.005 92.4±8.8
MARS 556.2±8.9 57.1±2.4 613.4±7.6 0.626±0.017 0.912±0.015 88.9±9.9
TokenSAR 559.2±9.3 62.3±6.2 621.1±7.9 0.630±0.006 0.916±0.022 88.7±14.6
P(True) 565.6±2.1 54.8±4.1 621.9±5.4 0.622±0.014 0.965±0.015 94.7±3.7
SE 589.5±7.4 32.1±5.8 619.3±7.5 0.627±0.010 0.926±0.011 90.1±12.8
LACIE (DPO) 579.3±23.6 0.0±0.0 579.3±23.6 0.579±0.024 1.000±0.000 100.0±0.0
SelectLLM (c = 0.75) 582.0±19.7 170.0±25.2 752.0±2.6 0.773±0.015 0.884±0.021 75.96±3.63

Mistral-7B-Instruct-v0.2
base 598.3±4.0 0.0±0.0 598.3±9.0 0.598±0.009 1.000±0.000 100.0±0.0
LARS 587.4±7.5 48.2±3.4 635.3±8.2 0.626±0.010 0.977±0.008 93.8±12.9
MARS 558.5±8.1 40.2±4.2 598.1±2.9 0.608±0.013 0.928±0.010 91.7±4.7
TokenSAR 529.4±8.7 61.2±2.5 590.9±4.8 0.610±0.012 0.880±0.016 86.7±11.9
P(True) 532.8±10.9 81.2±5.1 613.1±6.4 0.626±0.009 0.885±0.015 85.0±8.3
SE 582.3±8.3 33.7±6.0 615.3±3.6 0.614±0.020 0.968±0.009 94.8±18.0
LACIE (DPO) 568.4±3.4 0.0±0.0 568.4±7.4 0.568±0.007 1.000±0.000 100.0±0.0
SelectLLM (c = 0.70) 522.0±19.9 230.3±24.7 752.3±12.3 0.741±0.019 0.891±0.039 70.87±4.21

Qwen2.5-14B-Instruct
base 636.2±10.7 0.0±0.0 636.2±10.7 0.636±0.011 1.000±0.000 100.0±0.0
LARS 624.0±6.4 17.1±4.2 641.2±2.0 0.643±0.016 0.981±0.008 97.1±3.7
MARS 605.7±7.2 27.2±5.1 632.1±7.7 0.642±0.011 0.951±0.011 94.2±9.5
TokenSAR 580.4±2.3 72.2±11.8 652.6±3.6 0.665±0.015 0.912±0.012 87.2±7.4
P(True) 613.1±11.1 34.7±6.5 647.2±13.9 0.650±0.020 0.964±0.013 94.3±12.5
SE 624.2±9.5 30.3±2.4 654.7±5.8 0.651±0.011 0.981±0.008 95.8±14.6
LACIE (DPO) 646.7±3.3 0.0±0.0 646.7±3.3 0.647±0.003 1.000±0.000 100.0±0.0
SelectLLM (c = 0.80) 599.5±24.3 141.8±20.2 741.3±9.8 0.745±0.021 0.919±0.027 80.55±5.14

only marginal precision gains over the base model demonstrate an inability to effectively identify and
filter out incorrect answers. We further analyze the confidence scores generated by SelectLLM in
Section 5.5.

Consequently, when SelectLLM does generate a response, its reliability is much higher, reflected in its
top-ranking Precision scores (e.g., 0.745 for Qwen2.5 on TriviaQA vs. the base model’s 0.636). This
enhanced precision comes with a deliberate sacrifice of lower Coverage and Recall, as SelectLLM
strategically answers fewer questions to avoid making errors. This demonstrates its effectiveness for
applications where accuracy is more critical than providing an answer to every query.

5.3 OUT-OF-DISTRIBUTION GENERALIZATION

To further assess the generalizability of SelectLLM, we evaluate its performance on out-of-distribution
(OOD) datasets. Specifically, the tested models are fine-tuned on CommonsenseQA, without any
additional fine-tuning on the test datasets – TriviaQA and MedConceptsQA. The evaluation results
are reported in Table 7&5. The results demonstrate that the learned abstention ability is transferable
to OOD datasets. While the base and LACIE (DPO) models, which lack an abstention mechanism,
are forced to answer every question, resulting in a True Negative (TN) of 0.0 and a low Precision,
SelectLLM successfully transfers its learned skill of abstaining from uncertain queries to the unseen
domains. This is clearly evidenced by its high TN counts: 74.0 on TriviaQA and a remarkable
172.0 on MedConceptsQA. By correctly identifying and abstaining from these challenging OOD
questions, SelectLLM significantly boosts its Precision and surpasses the performance of both the base
models and LACIE (DPO). The successful transfer of its capability results in a higher TRUTH score,
showing that SelectLLM is not only more reliable in familiar settings but also exhibits robustness and
generalizability when faced with novel data.
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Table 3: CommonsenseQA performance. ↑ indicates the higher the better, and ↓ indicates the lower the better.
The TN value for both the base and LACIE is 0.0 (with a corresponding Recall of 1.0), since they do not
abstain from any answers.

Model TP ↑ TN ↑ TRUTH ↑ Precision ↑ Recall ↑ Coverage (%)
Llama-3.1-8B-Instruct
base 627.3±10.1 0.0±0.0 627.3±10.1 0.627±0.004 1.000±0.000 100.0±0.0
LARS 575.6±4.4 14.2±6.2 589.0±9.1 0.616±0.019 0.917±0.027 93.4±12.8
MARS 567.3±7.2 11.1±6.1 578.8±8.9 0.610±0.011 0.904±0.010 92.9±11.0
TokenSAR 554.3±7.5 21.1±6.4 575.7±12.5 0.612±0.020 0.884±0.014 90.6±5.5
P(True) 566.1±6.9 13.3±5.7 579.7±4.7 0.611±0.013 0.903±0.018 92.6±9.2
SE 559.4±7.6 20.0±5.9 579.1±3.4 0.613±0.020 0.891±0.031 91.2±9.9
LACIE (DPO) 733.7±12.2 0.0±0.0 733.7±12.2 0.734±0.012 1.000±0.000 100.0±0.0
SelectLLM (c = 0.85) 697.2±23.1 98.6±22.1 795.8±11.2 0.834±0.016 0.915±0.027 83.28±4.09

Mistral-7B-Instruct-v0.2
base 596.2±12.9 0.0±0.0 596.2±10.9 0.596±0.009 1.000±0.000 100.0±0.0
LARS 595.9±8.7 19.5±4.1 614.5±7.3 0.607±0.012 0.998±0.004 98.0±9.3
MARS 582.3±7.5 26.8±6.7 608.1±9.5 0.606±0.016 0.976±14.1 96.0±12.4
TokenSAR 571.3±6.8 27.5±2.7 598.2±6.2 0.602±0.019 0.958±0.016 94.8±21.9
P(True) 563.6±7.4 51.7±5.5 614.1±6.9 0.614±0.010 0.945±18.7 91.6±10.9
SE 579.3±11.2 24.6±10.3 603.9±7.1 0.604±0.012 0.972±15.4 95.9±13.3
LACIE (DPO) 603.7±9.0 0.0±0.0 603.7±9.0 0.604±9.9 1.000±0.000 100.0±0.0
SelectLLM (c = 0.80) 611.6±29.4 142.6±27.9 754.2±10.7 0.775±0.028 0.900±0.026 78.8±6.43

Qwen2.5-14B-Instruct
base 800.0±12.4 0.0±0.0 800.0±12.4 0.800±0.011 1.000±0.000 100.0±0.0
LARS 798.2±13.8 19.5±7.1 817.0±8.4 0.815±0.010 0.998±0.005 97.9±8.2
MARS 785.8±5.9 52.2±15.3 837.4±6.8 0.841±0.011 0.981±0.008 93.3±7.7
TokenSAR 713.6±9.3 62.2±2.8 775.8±12.1 0.838±0.022 0.891±0.014 85.1±7.9
P(True) 768.3±7.7 12.0±5.2 780.2±7.6 0.803±0.018 0.960±0.010 95.6±10.9
SE 777.3±4.5 41.7±9.9 818.5±7.4 0.830±0.010 0.971±0.009 93.6±8.3
LACIE (DPO) 823.7±4.0 0.0±0.0 823.7±4.0 0.824±0.004 1.000±0.000 100.0±0.0
SelectLLM (c = 0.90) 777.4±9.0 68.6±8.7 846.0±3.0 0.884±0.011 0.938±0.016 88.01±1.70

Table 4: TriviaQA (out-of-distribution) performance. The TN value for both the base and LACIE is 0.0 (with a
corresponding Recall of 1.0), since they do not abstain from any answers.

Model TP ↑ TN ↑ TRUTH ↑ Precision ↑ Recall ↑ Coverage (%)
Llama-3.1-8B-Instruct
base 601.7±2.3 0.0±0.0 601.7±2.3 0.602±0.002 1.000±0.000 100.0±0.0
LACIE (DPO) 579.3±23.6 0.0±0.0 579.3±23.6 0.579±0.024 1.000±0.000 100.0±0.0
SelectLLM (c = 0.85) 555.0±12.7 74.0±10.1 629.0±13.6 0.626±0.012 0.933±0.011 86.72±3.67

Table 5: MedConceptsQA (out-of-distribution) performance. The TN value for both the base and DPO is 0.0
(with a corresponding Recall of 1.0), since they do not abstain from any answers.

Model TP ↑ TN ↑ TRUTH ↑ Precision ↑ Recall ↑ Coverage (%)
Llama-3.1-8B-Instruct
base 319.0±5.13 0.0±0.00 319.0±5.13 0.319±0.05 1.000±0.00 100.0±0.00
LACIE (DPO) 465.0±37.48 0.0±0.00 465.0±37.48 0.465±0.04 1.000±0.00 100.0±0.00
SelectLLM (c = 0.75) 406.7±22.23 172.0±4.89 578.7±17.62 0.543±0.03 0.839±0.01 75.0±0.12

5.4 EFFECTIVENESS ON A NON-QA TASK

To further evaluate the effectiveness of SelectLLM on the non-QA tasks with objective ground
truth, we conduct additional experiments on GSM8K, a high-quality grade-school math dataset
with verifiable ground truth. We used the same data construction and training pipeline as in the
QA setting, using Mistral-7B-Instruct-v0.2 as the base model. The dataset was split into
6,000 training samples, 1,000 validation samples, and 1,000 test samples. The results in Table 6 show
that SelectLLM substantially improves precision and overall correctness on math reasoning without
any task-specific engineering. This confirms that our proposed method is task-agnostic and extends
naturally to domains with objectively measurable correctness.
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Table 6: GSM8K-math (non-QA) performance. The TN value for both the base and DPO is 0.0 (with a
corresponding Recall of 1.0), since they do not abstain from any answers.

Model TP ↑ TN ↑ TRUTH ↑ Precision ↑ Recall ↑ Coverage (%)
Llama-3.1-8B-Instruct
Base 482.0±3.8 0.0±0.0 482.0±3.8 0.482±0.003 1.000±0.0 100.0±0.0%
DPO 551.0±12.2 0.0±0.0 551.0±12.2 0.551±0.012 1.000±0.0 100.0±0.0%
SelectLLM (c = 0.7) 558.0±15.6 165.0±18.3 723.0±16.7 0.811±0.012 0.922±0.018 70.39±1.9%

5.5 VALIDATION OF SELECTLLM CONFIDENCE SCORES

In this section, we validate the confidence scores generated by SelectLLM by comparing their
distribution with the tone-confidence score (referred to Section 5.3) produced by DeepSeek-v3. To
visualize these two distributions, we first divide the tone-confidence scores into five bins ([0.2, 0.36],
[0.36, 0.52], [0.52, 0.68], [0.68, 0.84], [0.84, 1.00]). Each sample is assigned to a bin based on its tone-
confidence score. We then compute the mean tone-confidence and the mean SelectLLM-generated
confidence for the samples within each bin.

Figure 3 illustrates a small distribution difference between the confidence scores produced by Se-
lectLLM and the tone-confidence scores generated by DeepSeek-v3 on two datasets. The close
alignment of the mean SelectLLM confidence scores with the corresponding tone-confidence scores
across all bins demonstrates that the selection head produces meaningful and well-calibrated confi-
dence estimates. This evidence supports the conclusion that SelectLLM can internally and reliably
estimate its own prediction confidence, without requiring external reference models.

Figure 3: Distribution Difference between tone-confidence and SelectLLM-confidence for in-distribution (left,
CommonsenseQA) and out-of-distribution (right, MedConceptsQA)

6 CONCLUSION

In this paper, we have introduced an alignment-based method, called SelectLLM, that explicitly
produces confidence estimates and incorporates the task of confidence estimation into its training
objectives. Our extensive empirical evaluations on three QA benchmark datasets, using three different
LLMs, demonstrate that SelectLLM consistently achieves better risk-coverage tradeoffs than seven
baselines. SelectLLM’s notable strengths include superior uncertainty calibration, robust cross-
domain generalization, and flexible, tunable performance. These experimental outcomes confirm
SelectLLM as an effective and principled solution for enhancing model reliability and practical utility
in uncertainty-sensitive, real-world scenarios.
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A QUALITATIVE ANALYSIS

In the following table, we provide the qualitative examples of the base and SelectLLM fine-tuned
Llama3.1-8B models, together with the SelectLLM confidence score to the questions. Correct
answers are highlighted in green. These examples demonstrate the effectiveness of SelectLLM in
two key aspects: it enables the model to express high confidence when it truly knows the answer, and
to avoid overconfidence when uncertain. Moreover, SelectLLM produces accurate confidence scores
without relying on any external model. This demonstrates SelectLLM ’s ability to achieve a better
risk–coverage trade-off.

Question base (Llama3.1-8B) SelectLLM
While people just throw
coins down them now, what
originally had a pail to be
lowered for it’s intended
use? Choose the answer
from the following choices.
(a) garage. (b) utility room.
(c) slide. (d) wishing well.
(e) garden.

I’m about 50% confident in my answer. I think the
answer is d. I choose this because in a wishing
well, a pail or bucket is often lowered down into
the well so people can collect water.
[Correct & Unconfident]

(d) wishing well. A wishing well is a type of
stone-lined well that was originally built with a
pail lowered down a rope for people to make a
wish and retrieve water. The pail made it possible
for people to make a wish and then retrieve water.
This is the origin of the wishing well. The answer
choice is (d) wishing well. I am 95% sure.
[Correct & Confident,
SelectLLM-confidence=0.968]

Miss Grady took a stick
from Bob because he was
playing with it during class.
She wanted to make sure
that he couldn’t get to it so
she put it where? Choose
the answer from the
following choices. (a) desk
drawer. (b) kitchen drawer.
(c) classroom. (d) pocket.
(e) office.

Miss Grady put the stick where so that Bob could
not get to it. In order to do that, she would most
likely have put it in a location where she would
have control over it. The classroom is where Miss
Grady would have the most control over the stick,
so that’s where she would have put it. Answer: C.
[Incorrect & Confident]

(a) or (d) possibly (d) perhaps a pencil or supply
box, but (d) a desk drawer or (d) supply cabinet
would be most likely. Explanation: Since Miss
Grady took the stick from Bob to prevent him
from using it, she would likely put it in a secure
location where he would not be able to get to it.
[Abstention & Unconfident,
SelectLLM-confidence=0.051]

What is the description of
the medical code S04.019S
in ICD10CM? A.
Unspecified fracture of
unspecified thoracic
vertebra, subsequent
encounter for fracture with
nonunion. B. Terrorism
involving fires,
conflagration and hot
substances, civilian injured,
subsequent encounter. C.
Injury of optic nerve,
unspecified eye, sequela.
D. Laceration of abdominal
wall with foreign body,
epigastric region without
penetration into peritoneal
cavity, sequela.

I am 95% confident that my answer is B.
Terrorism involving fires, conflagration and hot
substances, civilian injured, subsequent encounter.
This is because the code S04.019S starts with
S̈04ẅhich is the code for terrorism, and the
0̈19Sr̈epresents the subsequent encounter for a
civilian injured. This makes option B the most
likely correct answer.
[Incorrect & Confident]

None of the options describe a code that is the
same as T32.98 in ICD10CM. The options
provided don’t seem to be correct. The only way
to actually answer this question would be to look
at the ICD10CM for the code T32.98.
[Abstention & Unconfident,
SelectLLM-confidence=0.233]

B EFFECT OF TWO ADDITIONAL LOSS TERMS

We compare the performance of SelectLLM using the Llama-3.1-8B-Instruct model with/without the
two reward loss terms mentioned in Equation 4 on TriviaQA benchmark, and report the results in
Table 6 (c = 0.80). The table shows that integrating the additional reward loss terms significantly
boosts overall model performance. Models that incorporate these terms consistently outperform those
without, providing empirical validation for the theoretical rationale behind penalizing misalignment
relative to the reference model.

C ABLATION STUDY

To assess the robustness of SelectLLM, we conducted a sensitivity analysis on five key hyperparame-
ters: the target coverage rate c, the loss weighting parameter α, the regularization parameter λ, the
learning rate, and batch size. All experiments were performed using Llama-3.1-8B-Instruct on the
TriviaQA dataset. As illustrated in Figure 4, SelectLLM demonstrates consistent superiority over the
baselines (Base Model and LACIE) across a wide range of hyperparameter configurations. These
results confirm that SelectLLM’s improvements in the risk-coverage trade-off are robust and not
artifacts of narrow hyperparameter tuning.
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Table 7: Ablation Study in terms of the additional loss ℓ(πθ, y) on TriviaQA. ↑ indicates the higher the better,
and ↓ indicates the lower the better.

Model TP ↑ TN ↑ TRUTH ↑ Precision ↑ Recall ↑ Coverage (%)

Llama-3.1-8B-Instruct

base 601.7±2.3 0.0±0.0 601.7±2.3 0.602±0.002 1.000±0.000 100.0±0.0

SelectLLM w/o ℓ(πθ, y) 572.1±22.3 123.6±21.9 695.7±11.7 0.704±0.019 0.901±0.023 80.04±3.89

SelectLLM w/ ℓ(πθ, y) 599.5±24.3 141.8±20.2 741.3±9.8 0.745±0.021 0.919±0.027 80.55±5.14
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(b) Regularization parameter λ
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(c) Target coverage rate c
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Figure 4: Risk-Coverage Curves for Different Hyper-parameters.

D LLM USAGE

This work aims to balance the coverage and accuracy for large language models (LLMs). All the base
models tested in this paper are LLMs, including Llama-3.1-8B-Instruct, Mistral-7B-Instruct-v0.2,
and Qwen2.5-14B-Instruct. LLMs are also used for language polishing and to improve the paper’s
readability.
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