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Reproducibility Summary
Scope of Reproducibility — Our work reproduced the paper Hyper-graph-Induced Semantic
Tuplet (HIST) Loss for Deep Metric Learning [1] and investigate the HIST loss with the fol‐
lowing five claims: (i) HIST loss performs consistently regardless of the batch size, (ii)
its performance is irrespective of the number of HGNN layers, (iii) the positive scaling
factor of semantic tuplets enhances semantic relation modeling, (iv) a large tempera‐
ture parameter τ is effective; if τ >16, HIST loss is insensitive to the scaling parameter,
(v) the HIST achieved SOTA performances under the standard evaluation settings [2, 3].

Methodology — To verify above claims, we extended the experiments proposed in [1]. Our
study involves: (a) reproducing the HIST loss performances as configurations proposed
in [1], (b) optimizing HIST loss using Bayesian optimization, and (c) investigating the
impacts and robustnesses of key modules (prototypical distributions and semantic tu‐
plets). These experiments were conducted on 2 NVIDIA V100 GPUs and took about 1,108
GPU hours.

Results — Our study confirms three (iii, iv and v) claims from [1]. However, it cannot fully
support the other claims (i and ii). Using the configurations given in [1], we achieved
comparable performances on the CARS196 dataset, but large deviances were observed
on other datasets, which dropped by 1.5% and 1% R@1 using ResNet50. By implement‐
ing Bayesian optimization, the performances are improved by 0.7% and 0.4% R@1 on
CARS196 and CUB‐200‐2011. We also close the performance gap for SOP dataset from
‐1% to ‐0.6% compared to the proposed results in [1] using ResNet50.

What was easy — [1] is a well‐structured and ‐written work, that allows us to clearly com‐
prehend the primary concepts.

What was difficult — [1] did not investigate joint contributions between various modules
like hidden sizes and embedding sizes. Additionally, the performance of HIST cannot
be fully reproduced with given configurations proposed in [1]. To address this, an addi‐
tional hyperparameter search has to be performed, which is time‐consuming.

Communication with original authors —We attempted to contact the authors of [1] for more
details regarding the experimental configurations and hyperparameters. Unfortunately,
before completing this report, we did not receive any responses.

Copyright © 2023 J. Yuan and D. Le-Phuoc, released under a Creative Commons Attribution 4.0 International license.
Correspondence should be addressed to Jicheng Yuan (jicheng.yuan@tu-berlin.de)
The authors have declared that no competing interests exist.
Code is available at https://github.com/jichengyuan/MLRC2022_HIST. – SWH swh:1:rev:aa9738a884343fb4798f8b06c7a8b9288eca6b14.
Open peer review is available at https://openreview.net/forum?id=JJQbk2hIQ5.

ReScience C 9.2 (#8) – Yuan and Le-Phuoc 2023 1

https://orcid.org/0009-0002-4448-2809
https://orcid.org/0000-0003-2480-9261
mailto:jicheng.yuan@tu-berlin.de
https://github.com/jichengyuan/MLRC2022_HIST
https://archive.softwareheritage.org/swh:1:rev:aa9738a884343fb4798f8b06c7a8b9288eca6b14/
https://openreview.net/forum?id=JJQbk2hIQ5
https://rescience.github.io/


[Re] Hypergraph-Induced Semantic Tuplet Loss for Deep Metric Learning

1 Introduction

Deep Metric Learning (DML) is a crucial area of research in the field of computer vi‐
sion, which tries to learn a feature embedding that maps input data into a feature space
where the distance between the embeddings corresponds to the similarity between the
inputs [4, 5]. This is a key step for tasks such as image retrieval [6, 7, 8], face recog‐
nition [9, 10, 11], and person re‐identification [12, 13, 14]. However, traditional pair‐
wise [15] and triplet loss [16] functions have limitations, e.g. slow convergence and lack
of relations between data samples [15] when dealingwith samples with similar visual ap‐
pearances among the same and different classes. The proposed method demonstrated
in [1] addressed these limitations by introducing the HIST loss function, designed to ex‐
ploitmultilateral semantic relations and leverage in‐batched semantic relations for each
sample and class by hypergraph modeling. Moreover, HIST loss outperforms the state‐
of‐the‐art techniques [17, 18, 19] on CUB‐200‐2011, CARS196, and SOP datasets under the
standard evaluation settings [2, 3, 20, 7]. Our work aims to verify the performances and
effectiveness of the HIST loss, as well as to confirm the main claims/results proposed
in [1] in the context of image retrieval.

2 Scope of reproducibility

Our scope of this work focuses on verifying the effectiveness of the proposed HIST loss
in [1], which specifically addresses the problem of multilateral semantic relations for
intra‐ and inter‐classes samples in each mini‐batched and utilizes a HGNN to model
class‐discriminative visual semantics. The main claims in [1] are:

• Claim 1: The proposedHIST loss performs consistently performance regardless of
mini‐batch size Nb.

• Claim 2: Regardless of the quantity of HGNN layers L, the HIST loss shows consis‐
tently performance.

• Claim 3: The scaling factor α in constructing the HGNN, which controls the reflec‐
tion ratio of negative samples, reveals that the positive value contributes to reliable
performance on HIST loss for modeling semantic relations of samples.

• Claim 4: Large temperature scaling parameter τ is effective in deep metric learn‐
ing, and HIST loss is not sensitive to the scaling parameter λs if τ >16.

• Claim 5: The HIST loss achieves SOTA performances on CUB‐200‐2011, CARS196,
and SOP datasets under the standard evaluation settings [2, 3, 20, 7].

3 Methodology

Initially, we attempted to reproduce experiments and verify claims by utilizing the pro‐
vided code repository1 and configurations given in [1], which were evaluated on three
datasets, namely CUB‐200‐2011, CARS196 and SOP, with two backbones, ResNet‐50[21]
and BN‐Inception[22], pretrained on ImageNet‐1k [23]. However, during conducting ex‐
periments, we found that only the performances on the CARS196 dataset can be fully re‐
produced, while the other datasets yielded inconsistent results to those proposed in [1].
In addition, the existing code repository did not contain the implementation of the
multi‐layer HGNN. Hence, we partially reimplemented and extended the existing code
and conducted a hyperparameter search utilizing Bayesian optimization. Specifically,
we performed approximately 200 runs on each backbone for CUB‐200‐2011 and CARS196

1https://github.com/ljin0429/HIST
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datasets, while for the SOP, due to its vast size and limited resources, we conducted 30
experiments on each backbone. In the end, we retrained the model based on the best
configurations we found and compared our results to those proposed in [1]. All exper‐
iments were conducted using 2 Nvidia Tesla V100 16GB GPUs for approximately 1,108
GPU hours.

3.1 Model descriptions

Figure 1. Overview of the pipeline for Hypergraph‐Induced Semantic Tuplet (HIST) loss [1].

The proposed approach, as demonstrated in Figure 1, employs pretrained CNN as the
backbone to extract features from an input image xi and output a D‐dimensional feature
map fi ∈ RD. Then, given the C classes in the training set, the learnable distributions
are applied to model the feature distribution for each class, which are denoted by D =
{D1, ...,DC}. Accordingly, the distribution loss is defined by the equation 1,

LD =
1

Nb

Nb∑
i=1

−logPi (1)

where Pi is the probability for the ith sample to measure its assigning quality according
to its true distribution and is defined by the equation 2,

Pi =
exp(−τd2m(fi,D+))∑

DC∈D exp(−τd2m(fi,DC))
(2)

where τ is a hyperparameter [24] to scale the contribution between positive/negative
samples, d2m is the squared Mahalanobis distance, in which the D+ works to measure
the distance between the modeled true categorical centroid and the positive samples,
whileDC is employed to calculate the distances among other classes. In this way, the dis‐
tribution lossLD can guide to assign samples in eachmini‐batch to their corresponding
centroids and aim to model the true feature distributions and alleviate the intra‐classes
variations among samples from the same class, which are caused by different points
of views, backgrounds or poses. Afterward, the semantic tuplets for each class c will
be constructed based on the measured distances between the learned distributions and
feature embedding to model multilateral semantic relations using the equation 3,

Sij =

{
1 if yi = Cj ,

e−αd2
m(fi,DCj

) otherwise,
(3)

where Sij means the semantic relation between i‐th sample in one mini‐batch and j‐th
class in C. For each semantic tuplet Sij depicted in Figure 1, the weight of positive sam‐
ples for class Cj will be assigned to 1; otherwise, the weight‐relation will be regulated by
themeasured distance between learned distributionsDCj

and extracted features fi from
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the backbone. α is a hyperparameter affecting the reflection ratio of negative samples.
Then, a hypergraphH = (V, E) will be constructed denoted by the equation 4,

Hij =

{
1 if vi ∈ ej ,
0 otherwise,

(4)

where the nodes vi ∈ V represent the embedding features and hyperedges ej ∈ E denote
the semantic tuplets, which reflect the semantic relation between positive and negative
samples with incidence weights in [0, 1].

In addition, according to the definition of semantic tuplets, if all the samples connected
by one hyperedge belong to the same class Cj , this hyperedge ej is a positive hyperedge;
otherwise, it will be defined as a negative hyperedge. In detail, the dimension of the out‐
put from the constructed hypergraph is set to be the same as the dimension of semantic
tuples, i.e. Zout ∈ RNb×C , where Nb is the number of samples in each mini‐batch and
C is the number of classes. Afterward, output logits followed by a softmax function
can then represent the final discriminative probabilities. During training, the CE loss
between the ground truth and output of HGNN is defined by the equation 5.

LCE = − 1

Nb

Nb∑
i=1

C∑
j=1

Yij logŶij (5)

In the end, the HIST loss, which is applied to optimize the whole network, will be de‐
noted by the equation 6,

LHIST = LD + λsLCE (6)

where λs is a hyperparameter to scale the CE loss and balance the contribution between
the learned distributions and hypergraph.

3.2 Datasets
We conducted our experiments on CUB‐200‐2011, CARS196, and Stanford Online Prod‐
ucts(SOP) datasets in the context of image retrieval. In detail, CARS‐196 contains 16,185
car images with 196 different classes; CUB‐200‐2011 comprises 11,788 bird images from
200 distinct classes; SOP is the largest one of the three datasets, which consists of 120,053
product images and 22,634 classes. For each dataset, the experiments are conducted on
two ImageNet pretrained backbones(ResNet‐50 and BN‐Inception). For the data‐split,
we followed the standard evaluation setting as proposed in [1], which designates half
of the total number of classes for training and the remainder for evaluation. Table 1
provides a summary of the overall statistics for each dataset.

Dataset URL #Images #Classes
Train Test Train Test

CUB‐200‐2011 [25] Link 5,864 5,924 100 100
CARS196 [26] Link 8,054 8,131 98 98

SOP [3] Link 59,551 60,502 11,318 11,316

Table 1. Dataset statistics for Train‐Test Configuration.

3.3 Hyperparameters
Initially, we conducted experiments in accordance with the configurations and hyper‐
parameters given in [1]. Unfortunately, we only obtained results consistent with those
proposed in [1] on the CARS‐196 dataset. For the SOP and CUB‐200‐2011 datasets, the
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performances based on the reported hyperparameters dropped significantly. More de‐
tails are shown in Table 3. Hence, we performed an extended hyperparameter search
utilizing Bayesian optimization for the following factors, i.e. the scaling factor of HIST
loss λs, the scaling factor of semantic tuplets α, the mini‐batch sizeNb and the tempera‐
ture factor of the prototypical distributions τ . More details about our parameter‐search
for each dataset and backbone are attached in the appendix, as Table 5 and Table 6.
The proposed parameters in [1] and our best‐searched parameters are shown in Table 2.
Additionally, we also visualize the embedding features from CARS196 on ResNet‐50, as
shown in Figure 4 and Figure 5.

DatasetsBackbone Hyper‐
parameters CARS196 CUB‐200‐2011 SOP

τ 32(32) 32(24) 16(20)
bs 32(32) 32(32) 32(32)
α 0.9(0.9) 1.1(1.15) 2.0(2.1)ResNet‐50[21]
λs 1.0(0.8) 1.0(1.0) 1.0(0.5)
τ 24(22) 16(20) 16(12)
bs 32(32) 32(32) 32(32)
α 0.9(0.9) 1.0(0.95) 1.6(1.55)BN‐Inception[22]
λs 1.0(1.5) 1.0(1.2) 1.0(1.5)

Table 2. Hyperparameters proposed in [1] and our best‐searched results(in bracket) when using
ResNet‐50/BN‐Inception as the backbone. The values depicted in red are from our search, which
are different from those in [1].

3.4 Experimental setup and code
The existing code did not include the configurations to investigate the effect of HIST
loss under the varied number of HGNN layers and distance metrics. Hence, we com‐
pleted the code for our experiments based on the existing repository, which is available
at this repository. To provide a fair comparison, we evaluate our results by the metrics
proposed in [1], namely Recall@K(R@K), andNormalizedMutual Information(NMI). Sec.4
and Sec.5 will providemore details about our reproduced results and a discussion of our
results and findings.

3.5 Computational requirements
All experiments were performed on our server with two Nvidia Tesla V100‐16GB GPUs.
Hyperparameter search by Bayesian Optimization took approximately a total of 1,050
GPU hours. More details about running‐time and configurations on each dataset and
backbone are attached in Table 7, Table 9, and Table 8 of the appendix.

4 Results

In this section, wewill report our results for the aforementioned experiments and verify
claims 1 ‐ 5 in Sec.2. Overall, not all the claims can be supported by our reproduced
results. In addition, we conduct additional experiments to investigate the performance
of HIST loss affected by other modules, e.g. the number of layers for HGNN, distinct
distance metrics, and the embedding sizes, which were not included or not discussed
in depth in [1].
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4.1 Results reproducing original paper
Based on our reproduced results, shown in Figure 2, Figure 3(b), and Table 3, claims 3, 4,
and 5 can be fully supported. Oppositely, claims 1 and 2 can not be completely approved
due to the inconsistent performance of HIST loss under distinct parameter settings.

(a) Impact ofNb (b) Impact of L (c) Impact of α

Figure 2. Impact of distinct hyperparameters on CARS196 using ResNet‐50 as Backbone.

Claim 1: Performance of HIST loss is consistent regardless of mini-batch size Nb — Figure 2(a)
depicts the performances of HIST loss under various Nb. It indicates that when Nb is
larger than 32, the performances for learning the multilateral semantic relations by se‐
mantic tuplets and HIST loss are almost consistent. Accordingly, with small bach‐size,
such as 8 or 16, due to the limited number of learned features per batch, discriminative
features between positive/negative samples can not be learned efficiently. Therefore,
claim 1 can only be supported within a limited range, i.e. Nb ≥ 32.

Claim 2: Performance of HIST loss is consistent regardless of HGNN layersL — To verify Claim 2,
we conduct experiments with various layers of HGNN, i.e. L ∈ {1, 2, 3, 4, 5}. Figure 2(b)
indicates that when L ≥ 3, the performances of HIST loss decrease significantly, by
about ‐3% R@1 for CARS196 using ResNet‐50 as backbone compared to L = 2. Hence,
claim 2 can not be fully supported based on our reproduced results.

Claim 3: Positive scaling factor α contributes reliable and consistent performance — Figure 2(c)
indicates that the performances of HIST loss differ slightly with diverse α. It suggests
that the hist loss is insensitive to positive α, which can adjust the contributions of pos‐
itive and negative samples while constructing semantic tuplets. This allows claim 3 to
be supported.

Claim 4: Large temperature scaling parameter τ is effective; if τ >16, HIST loss is insensitive to
the scaling parameter λs — To verify the effectiveness of τ and λs, we set distinct values,
i.e. τ ∈ {8, 16, 24, 32} and λs ∈ {0.6, 1.0, 1.5, 2.0}. Figure 3(b) demonstrates that our
reproduced results are consistent with the claim 4 proposed in [1], i.e. the performances
are consistent if τ ≥ 16. Moreover, HIST loss is not sensitive to λs .

Claim 5: The SOTA performances of HIST loss under the standard evaluation settings [2, 3, 20, 7]. —
Table 3 shows the original([OA]HIST) and our reproduced results([RE]HIST) under stan‐
dard evaluation settings. For CARS196 and CUB‐200‐2011 using ResNet50 as backbone,
our results after tuning([TUNE]HIST) are improved by 0.7% and 0.4% R@1 than the re‐
ported results. For the SOP dataset, the reproduced results under proposed hyperpa‐
rameters and configurations are not well compared to those in [1]. The differences are
‐2.4% and ‐0.9% @R1 using the backbone BN‐Inception and ResNet‐50, respectively. By
utilizing our settings in Table 2, the gap between the reported and our fine‐tuned results
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Backbone Method CUB‐200‐2011 CARS‐196 SOP
R@1R@2R@4NMIR@1R@2R@4NMIR@1R@10R@100NMI

BN‐Inception
[OA]HIST 70.0 80.2 87.5 71.0 87.6 92.8 95.5 73.2 79.8 91.2 96.4 92.5
[RE]HIST 68.7 78.3 86.2 70.3 87.6 92.8 95.7 73.1 77.4 89.6 95.4 89.9

[TUNE]HIST 70.0 79.4 86.6 70.8 88.1 92.7 95.7 73.4 77.9 90.1 95.8 90.5

ResNet‐50
[OA]HIST 71.6 81.4 88.3 74.3 89.8 94.0 96.5 75.5 81.6 92.2 96.8 93.0
[RE]HIST 70.1 79.7 87.4 72.9 89.8 94.4 96.6 75.4 80.7 91.2 96.4 91.9

[TUNE]HIST 72.3 81.8 88.5 75.6 90.2 94.5 96.8 75.8 81.0 91.6 96.3 92.2

Table 3. Reported, reproduced, and our fine‐tuned Results under the standard evaluation settings
as proposed in [1]. OA, RE, TUNE denote the results were the highest scores quoted from [1], re‐
produced based on the reported configurations in [1], reproduced by our best‐searched settings
by Bayesian optimization. The best results are marked in bold.

are close to 1.9% and 0.6% R@1 on BN‐Inception and ResNet‐50. Given that the vast ma‐
jority of reproduced results are compatible with the reported ones. Hence, claim 5 can
be almost supported.

4.2 Joint contribution from multi-parameters and Ablation study on distance metrics
In addition to the claimed impact of the reported hyperparameters in [1] above, other
factors also play an important role in the robustness of HIST loss, e.g. the hidden‐size of
HGNN, the embedding size of the backbone, the various distancemetrics, and their joint
contribution to the HIST loss. Hence, we conduct additional experiments to investigate
the robustness further.

(a) Impact of embedding size andHGNNhidden‐size (b) Impact of τ and λs

Figure 3. Joint contribution of hyperparameters on CARS196 using ResNet‐50.

Distance Metrics R@1 R@2 R@4
Euclidean 87.2 92.5 95.4
Cosine 88.7 93.6 96.1

Mahalanobis 90.2 94.5 96.8

Table 4. Robustness of HIST loss with various distance metrics on CARS196 using ResNet‐50.

Joint contribution from the embedding sizes and HGNN hidden-size — Figure 3(a) indicates that
HIST loss is consistent if the embedding or HGNN hidden‐size is larger than 256. More‐
over, both values should be compatible with each other, i.e the best performances are
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on the diagonal. Otherwise, if both are set to 256, the ability of the feature representa‐
tion from the backbone and HGNN will be constrained.

Ablation study on distance metrices — In addition, we conduct experiments with distinct
distance metrics to investigate the robustness of HIST loss further. Table 4 indicates
that HIST loss performed insignificant deviations under various distance metrics for
constructing semantic tuplets.

5 Discussion

Overall, by comparing our results shown in Sec.4 to those reported in [1], we can con‐
clude that 3 out of 5 claims presented in Sec.2 can be supported. However, the other two
claims can not be fully supported. For claim 1, the performance of HIST loss dropped
significantly when Nb < 16. This indicates that the small Nb cannot contribute to ef‐
fectively constructing positive/negative sample pairs. Hence, it will impact the quality
of constructed semantic tuplets and reduce the effectiveness of HGNN; for claim 2, the
impact of the number of HGNN layers L is not isolated. Accompany with other hyper‐
parameters, e.g. the number of HGNN hidden‐size. Their interactions will contribute
a cumulative effect on the performance of HIST. Due to the constrained resources, we
cannot conduct additional experiments to investigate deeper in this direction. Regard‐
ing claims 3 and 4, our experiments are consistent with the results from [1]. Therefore,
for constructing semantic tuplets, the positive scaling parameter α can yield consistent
results for HIST loss. Finally, for claim 5, based on the standard settings proposed in [1],
we cannot reproduce comparable performances as those from [1], which may be due
to the versions of CUDA, cuDNN, etc. In addition, by using Bayesian optimization to
search for hyperparameters, we achieved improved performance on CARS196 and CUB‐
200‐2011 datasets; for the SOP dataset, with our configuration in Table 2, the margin
between our results after tuning and those from [1] has been decreased, but still are
‐0.6% and ‐1.9% R@1 on ResNet‐50 and BN‐Inception. Due to limited resources, we can‐
not perform larger‐scale experiments to verify and improve the performance of the SOP
dataset.

5.1 What was easy
The paper[1] is well‐structured and contains explicit theoretical derivations, which pro‐
vided us with a clear understanding of the concepts for semantic tuplets, HGNN, and
HIST loss underlying the proposed method. Benefiting from these, the reimplementa‐
tion of the multi‐layered HGNN, distinct distance metrics, and the reproducing of ex‐
periments are highly efficient.

5.2 What was difficult
We tried many distinct experimental configurations to reproduce comparable results
as those proposed in [1]. The performance of HIST loss might vary greatly according
to the interaction of multiple parameters, such as the HGNN hidden size and HGNN
layers. Due to the restricted computational capability, we cannot thoroughly investigate
that. In addition, intuitively, a larger embedding size will bring more diverse learned
feature representations; nevertheless, due to the HGNN as a downstreammodule, their
effects should be carefully balanced for the final learned features. Moreover, HGNN can
guide the backbone to find discriminative features between positive/negative samples;
accordingly, the backbone should contributewell‐learned features that contribute to the
high quality of semantic tuplets, which HGNN can then utilize to learn.
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5.3 Conclusion
In this study, we reproduce the effectiveness of HIST loss under various hyperparam‐
eters, e.g. the scaling parameter α. the number of HGNN layers L, the temperature
parameter τ and distinct modules, e.g. HGNN, distance metrics, and semantic tuplets.
From our reproduced results in Sec.4, we can conclude that the performances of HIST
loss cannot be fully reproduced by the reported experimental settings in [1], but this
point will not influence the effectiveness of HIST loss. Through hyperparameter search,
we reproduce comparable and better performances than SOAT on CUB‐200‐2011 and
CARS196 datasets. In addition, for the scalability of HIST loss to other large datasets,
the constraints of the high demand of computing power from HGNN and similarity es‐
timation need to be investigated and solved. Moreover, by introducing the HIST loss,
multilateral semantic relations and the centroids across classes can be well constructed
utilizing semantic tuplets and prototypical distributions. Finally, some factors, which
are not investigated in depth in [1], e.g. combined contributions from HGNN hidden‐
size, the embedding size of backbone, and various distance metrics, will affect the per‐
formance of the HIST loss as well. Hence, these factors need to be further investigated
and adjusted for other downstream tasks.
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6 Appendix

Datasets Hyper‐parameters
λs α τ Nb

CARS196 {0.5,0.8,1.0,1.2} {0.9,0.95,1.0,1.1,1.2} {16,20,24,28,32} {8,16,32}
CUB‐200‐2011 {0.5,0.8,1.0,1.2,1.5} {0.9,0.95,1.0,1.05,1.15} {16,20,24,28,32,36} {8,16,32}

SOP {0.5,0.8,1.0,1.2,1.5} {1.9,1.95,2.0,2.1,2.15} {12,14,16,20,22,24} {8,16,32}

Table 5. Hyper‐parameters tuning on ResNet‐50

Datasets Hyper‐parameters
λs α τ Nb

CARS196 {0.5,0.8,1.0,1.2,1.5} {0.9,0.95,1.0,1.1,1.15} {16,20,22,28,32} {8,16,32}
CUB‐200‐2011 {0.5,0.8,1.0,1.2,1.5} {0.9,0.95,1.0,1.05,1.15} {16,20,24,28,32,36} {8,16,32}

SOP {0.5,0.8,1.0,1.2,1.5} {1.5,1.55,1.6,1.65,1.7,1.75} {12,14,16,20,22,24} {8,16,32}

Table 6. Hyper‐parameters tuning on BN‐Inception

Dataset Running‐time Epochs Batch‐size Embedding‐size

CARS196 ~0.9 Ghour 60

32 32

~0.6 Ghour 50

CUB‐200‐2011 ~1.1 Ghours 30
~1.7 Ghours 40

SOP ~9.3 Ghours 60
~7.2 Ghours 60

Table 7. Running‐time for each dataset based on the HIST configuration(Ghour is short for GPU‐
hour). Blue values represent the runnings on BN‐Inception; Red values stand for the runnings on
ResNet‐50.

Module Name CUB‐200‐2011 CARS196 SOP

HGNN
#layers 2

Hidden size 512
lr‐HGNN 5e‐4 5e‐4 1e‐3

D Initialization He‐normal
lr‐D 5e‐2 1e‐1 1e‐2

Hyper‐parameters
λs 1.2 1.5 1.5
τ 20 22 12
α 0.95 1.0 1.55

Training

Batch size 32
Learning rate 1e‐4
Optimizer AdamW
Warm‐up True
Epochs 30 60 60

Weight decay 1e‐4 5e‐5 1e‐4
lr scheduler Step(5/0.5) Step(10/0.5) Step(10/0.5)
BN freeze True True False

Table 8. Configurations for training and evaluation on the backbone BN‐Inception.
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Module Name CUB‐200‐2011 CARS196 SOP

HGNN
#layers 2

Hidden size 512
lr‐HGNN 6e‐4 1e‐3 1e‐3

D Initialization He‐normal
lr‐D 1e‐1 1e‐1 1e‐2

Hyper‐parameters
λs 1 0.8 0.5
τ 24 32 20
α 1.15 0.9 2.1

Training

Batch size 32
Warm‐up True
Optimizer Adam

Learning‐rate 1.2e‐4 1e‐4 1e‐4
Epochs 40 50 60

Weight decay 5e‐5 1e‐4 1e‐4
lr scheduler Step(5/0.5) Step(10/0.5) Step(10/0.5)
BN freeze True True False

Table 9. Configurations for training and evaluation on the backbone ResNet‐50.

Figure 4. Embedding visualization on CARS196 training‐set using ResNet50 as backbone.
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Figure 5. Embedding visualization on CARS196 test‐set using ResNet50 as backbone.
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