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Indexability of Restless Bandit Problems and
Optimality of Whittle Index for Dynamic

Multichannel Access
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Abstract—In this paper, we consider a class of restless mul-
tiarmed bandit processes (RMABs) that arises in dynamic
multichannel access, user/server scheduling, and optimal activa-
tion in multiagent systems. For this class of RMABs, we establish
the indexability and obtain Whittle index in closed form for both
discounted and average reward criteria. These results lead to a
direct implementation of Whittle index policy with remarkably
low complexity. When arms are stochastically identical, we show
that Whittle index policy is optimal under certain conditions.
Furthermore, it has a semiuniversal structure that obviates the
need to know the Markov transition probabilities. The optimality
and the semiuniversal structure result from the equivalence be-
tween Whittle index policy and the myopic policy established in
this work. For nonidentical arms, we develop efficient algorithms
for computing a performance upper bound given by Lagrangian
relaxation. The tightness of the upper bound and the near-optimal
performance of Whittle index policy are illustrated with simula-
tion examples.

Index Terms—Dynamic channel selection, indexability, myopic
policy, opportunistic access, restless multiarmed bandit (RMAB),
Whittle index.

I. INTRODUCTION

A. Restless Multiarmed Bandit Problem

R ESTLESS MULTIARMED BANDIT PROCESSES
(RMABs) are generalizations of the classical multiarmed

bandit processes (MAB), which have been studied since 1930s
[1]. In a MAB, a player, with full knowledge of the current state
of each arm, chooses one out of arms to activate at each time
and receives a reward determined by the state of the activated
arm. Only the activated arm changes its state according to a
Markovian rule while the states of passive arms are frozen. The
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objective is to maximize the long-run reward over an infinite
horizon by choosing which arm to activate at each time.

The classical MAB problem remained open for almost 40
years until Gittins showed in [2] and [3] that the optimal policy
has an index structure.1 Specifically, a priority index (now
known as Gittins index) can be assigned to each state of each
arm, and the optimal action at each time is to activate the arm
whose current state has the largest index. The significance of
this result is that arms are decoupled when computing the index,
thus reducing an -dimensional problem to independent
1-D problems. As a consequence, the complexity of finding the
optimal policy for a MAB is reduced from exponential with
to linear with .

Whittle generalized MAB to RMAB by allowing multiple
arms to be activated simultaneously and allowing pas-

sive arms to also change states and offer rewards [5]. Either of
these two generalizations would render Gittins index policy sub-
optimal in general, and finding the optimal solution to a general
RMAB has been shown to be PSPACE-hard by Papadimitriou
and Tsitsiklis [6].

By considering the Lagrangian relaxation of the problem,
Whittle proposed a heuristic index policy for RMABs [5].
Whittle index policy is the optimal solution to RMABs under a
relaxed constraint: the number of activated arms can vary over
time provided that its average over the infinite horizon equals
to . This average constraint leads to decoupling among arms,
subsequently, the optimality of an index policy. Under the strict
constraint that exactly arms are to be activated at each time,
Whittle index policy has been shown to be asymptotically (as

approaches infinity) optimal under certain conditions [7].
These conditions have been shown to always hold for two-state
and three-state RMABs [7], [8]. In the finite regime, extensive
empirical studies have demonstrated the near-optimal perfor-
mance of Whittle index policy (see, for example, [9]–[11]).

Unfortunately, not every RMAB has a well-defined Whittle
index; those that admit Whittle index policy are called indexable
[5]. The indexability of an RMAB is often difficult to establish,
the optimality of Whittle index policy in the finite regime is gen-
erally unknown, and computing Whittle index can be complex,
often relying on numerical approximations that do not apply to
RMABs with an infinite state space considered in this paper.

In this paper, we show that for a significant class of RMABs
most relevant to dynamic multichannel access applications, the
indexability can be established, Whittle index can be obtained in
closed form, and, under certain conditions, Whittle index policy

1According to Whittle [4], Gittins had the result in the late 1960s, but, deferred
formal publication until 1974.
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Fig. 1. The Gilber–Elliot channel model.

achieves the optimal performance with a simple semiuniversal
structure that is robust against model mismatch and variations.
This class of RMABs is described next.

B. Dynamic Multichannel Access

Consider the problem of probing independent Markov
chains. Each chain has two states—good and bad —with
different transition probabilities across chains (see
Fig. 1). At each time, a player chooses chains
to probe and receives a reward for each probed chain that is in
the good state. The objective is to design an optimal policy that
governs the selection of chains at each time to maximize the
long-run reward.

The above general problem arises in a wide range of com-
munication systems, including cognitive radio networks, down-
link scheduling in cellular systems, opportunistic transmission
over fading channels, and resource-constrained jamming and
antijamming. In the communications context, the -indepen-
dent Markov chains correspond to communication channels
under the Gilbert–Elliot channel model [12], which has been
commonly used to abstract physical channels with memory (see,
for example, [13] and [14]). The state of a channel models the
communication quality of this channel and determines the re-
ward of accessing this channel. For example, in cognitive radio
networks where secondary users search in the spectrum for idle
channels temporarily unused by primary users [15], the state
of a channel models the occupancy of the channel by primary
users. For downlink scheduling in cellular systems, the user is
a base station, and each channel is associated with a downlink
mobile receiver. Downlink receiver scheduling is thus equiva-
lent to channel selection.

The application of this problem also goes beyond commu-
nication systems. For example, it has applications in target
tracking as considered in [16], where unmanned aerial
vehicles are tracking the states of targets in each
slot.

C. Main Results

Fundamental questions concerning Whittle index policy since
the day of its invention have been its existence, its performance,
and the complexity in computing the index. What are the nec-
essary and/or sufficient conditions on the state transition and
the reward structure that make an RMAB indexable? When can
Whittle index be obtained in closed form? For which special
classes of RMABs is Whittle index policy optimal? When nu-
merical evaluation has to be resorted to in studying its perfor-
mance, are there easily computable performance benchmarks?

In this paper, we attempt to address these questions for the
class of RMABs described above. As will be shown, this class
of RMABs has an uncountable state space (when considering

all possible initial conditions), making the problem highly non-
trivial. The underlying two-state Markov chain that governs the
state transition of each arm, however, brings rich structures into
the problem, leading to positive and surprising answers to the
above questions. The wide range of applications of this class
of RMABs makes the results obtained in this paper generally
applicable.

Under both discounted and average reward criteria, we
establish the indexability of this class of RMABs. The basic
technique of our proof is to bound the total amount of time
that an arm is made passive under the optimal policy. The
general approach of using the total passive time in proving
indexability was considered by Whittle [5] when showing that
a classic MAB is always indexable. Applying this approach
to a nontrivial RMAB is, however, much more involved, and
our proof appears to be the first that extends this approach
to RMABs. We hope that this work contributes to the set of
possible techniques for establishing indexability of RMABs.

Based on the indexability, we show that Whittle index can
be obtained in closed form for both discounted and average
reward criteria. This result reduces the complexity of imple-
menting Whittle index policy to simple evaluations of these
closed-form expressions. This result is particularly signif-
icant considering the uncountable state space which would
render numerical approaches impractical. The monotonicity
and piecewise concavity [for positively correlated arms2 (i.e.,

)] or piecewise convexity [for negatively correlated
arms (i.e., )] of Whittle index are also established.
The monotonicity of Whittle index leads to an interesting
equivalence with the myopic policy—the simplest nontrivial
index policy—when arms are stochastically identical (i.e., all
arms have the same Markovian dynamics and reward structure).
This equivalence allows us to work on the myopic index, which
has a much simpler form, when establishing the structure, the
optimality, and the performance (in terms of system parame-
ters) of Whittle index policy for stochastically identical arms.
A sufficient condition for the equivalence between Whittle
index policy and the myopic policy for a general RMAB is also
established.

When arms are stochastically identical, we show that Whittle
index policy is optimal under certain conditions. This result pro-
vides an example for the optimality of Whittle index policy in
the finite regime. The approximation factor of Whittle index
policy (the ratio of the performance of Whittle index policy to
that of the optimal policy) is analyzed when the optimality con-
ditions do not hold. The performance of Whittle index policy in
terms of the system parameters is also analyzed. Furthermore,
we show that Whittlle index policy has a semiuniversal structure
that obviates the need to know the Markov transition probabili-
ties. The only required knowledge about the Markovian model
is the order of and . This semiuniversal structure reveals
the robustness of Whittle index policy against model mismatch
and variations. The optimality and the structure of Whittle index
policy for stochastically identical arms are obtained based on its

2It is easy to show that � � � corresponds to the case where the channel
states in two consecutive slots are positively correlated, i.e., for any distribution
of ����, we have ������� ������������ ��� ���� � ����� � �, where
���� is the state of the Gilbert–Elliot channel in slot �. Similarly, � � �

corresponds to the case where ���� and ������ are negatively correlated, and
� � � the case where ���� and ���� �� are independent.
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equivalence to the myopic policy and prior findings in [17]–[19]
on the myopic policy for this class of RMAB.

When arms are nonidentical, numerical evaluations are
resorted to when assessing the performance of Whittle index
policy. To this end, we develop an efficient algorithm for
computing an upper bound of the optimal performance given
by Lagrangian relaxation. We show that this algorithm runs
in at most time to compute the performance
upper bound within -accuracy for any . When every
arm is negatively correlated, this algorithm produces the exact
performance upper bound in time. Simulation
examples demonstrate both the tightness of the upper bound
and the near-optimal performance of Whittle index policy.

D. Related Work

Dynamic multichannel access in the context of cogni-
tive radio systems has been studied in [20] and [21] where the
problem is formulated as a partially observable Markov decision
process (POMDP) to take into account potential correlations
among channels. For stochastically identical and independent
channels and under the assumption of single-channel sensing

, the structure, optimality, and performance of the
myopic policy were studied in [17], where the semiuniversal
structure and the performance characterization of the myopic
policy were established for all and the optimality of the
myopic policy proved for (both positive and negative
correlation cases). The optimality of the myopic policy was
extended to positively correlated channels with
in [18], and then to arbitrary in [19]. Extensions to cases
with probing errors were addressed in [22]. The equivalence
between the myopic policy and Whittle index policy established
in this paper for stochastically identical channels shows that the
results obtained in [17]–[19] for the myopic policy are directly
applicable to Whittle index policy. Furthermore, we also ad-
dress extensions to negatively correlated arms. Specifically, we
show that Whittle index policy is optimal for . For
a general , we establish the approximation factor of Whittle
index policy.

Other examples of applying the general RMAB framework
to communication systems can be found in [23]–[25]. In [23],
the problem of multichannel allocation in single-hop mobile
networks with multiple service classes was formulated as an
RMAB, and sufficient conditions for the optimality of a myopic-
type index policy were established. In [24], multicast scheduling
in wireless broadcast systems with strict deadlines was formu-
lated as an RMAB with a finite state space. The indexability was
established and Whittle index was obtained in closed form. In
[25], a bandwidth allocation problem arisen in queuing systems
was formulated as an RMAB with countable sate space; the in-
dexability, closed-form Whittle index, and sufficient conditions
for the optimality of Whittle index policy were obtained. The
RMAB framework has also been applied to economic systems
for handling inventory regulation [26].

In the general context of RMAB, there is a rich literature on
indexability. See [10] for examples of specific indexable restless
bandit processes and [27] and [28] for a numerical approach of

testing indexability and calculating Whittle index. We point out
that the numerical approach established in [27] and [28] only
applies to RMABs with a finite state space and under specific
values of the system parameters (such as the transition probabili-
ties and the reward of each arm). Consequently, if any parameter
(in particular, the transition probabilities) takes infinite possible
values, the procedure cannot enumerate all possible system set-
tings. In this paper, we show that for the class of RMAB con-
sidered here, indexability holds regardless of the system param-
eters and the closed-form Whittle index is obtained in terms of
general system parameters.

Constant-factor approximation algorithms for RMABs have
also been explored in the literature. For the same class of
RMABs as considered in this paper, Guha and Munagala
[29] developed a constant-factor approximation via
linear programming (LP) relaxation under the condition of

for each arm. In [30], Guha et al. developed
a factor- approximation policy via LP relaxation for the
so-called monotone restless bandit processes.

In [16], Le Ny et al. have considered the same class of
RMABs motivated by the applications of target tracking.
They have independently established the indexability and
obtained the closed-form expressions for Whittle index under
the discounted reward criterion. A conference version of our
result was published at the same time as [16]. Our approach to
establishing indexability and obtaining Whittle index is, how-
ever, different from that used in [16], and the two approaches
complement each other. Indeed, the fact that two completely
different applications lead to the same class of RMABs lends
support for a detailed investigation of this particular type of
RMABs. We also include several results that were not consid-
ered in [16]. In particular, we consider both discounted and
average reward criteria, develop algorithms for and analyze
the complexity of computing the optimal performance under
the Lagrangian relaxation, and establish the semiuniversal
structure, the optimality, and the performance of Whittle index
policy for stochastically identical arms.

E. Organization

The rest of the paper is organized as follows. In Section II, the
RMAB formulation is presented. In Section III, we introduce the
basic concepts of indexability and Whittle index. In Section IV,
we address the total discounted reward criterion, where we es-
tablish the indexability, obtain Whittle index in closed form, and
develop efficient algorithms for computing an upper bound on
the performance of the optimal policy. Simulation examples are
provided to illustrate the tightness of the upper bound and the
near-optimal performance of Whittle index policy. In Section V,
we consider the average reward criterion and obtain results par-
allel to those obtained under the discounted reward criterion.
In Section VI, we consider the special case when channels are
stochastically identical. We show that Whittle index policy is
optimal under certain conditions and has a simple and robust
structure. The approximation factor of Whittle index policy is
also analyzed. Section VII concludes this paper.
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II. PROBLEM STATEMENT AND RESTLESS

BANDIT FORMULATION

A. Dynamic Multichannel Access

We motivate this class of RMABs by considering the ap-
plication of dynamic multichannel access. Consider inde-
pendent Gilbert–Elliot channels, each with transmission rate

. Without loss of generality, we normalize
the maximum data rate: . The state of
channel —good or bad —evolves from slot to slot as a
Markov chain with transition matrix as
shown in Fig. 1.

At the beginning of slot , the user selects out of chan-
nels to sense. If the state of the sensed channel is , the
user transmits and collects units of reward in this channel.
Otherwise, the user collects no reward in this channel. Let
denote the set of channels chosen in slot . The reward ob-
tained in slot is thus given by

Our objective is to maximize the expected long-run reward by
designing a sensing policy that sequentially selects channels
to sense in each slot.

B. Restless Multiarmed Bandit Formulation

The channel states are not di-
rectly observable before the sensing action is made. The user
can, however, infer the channel states from its decision and ob-
servation history. It has been shown that a sufficient statistic for
optimal decision making is given by the conditional probability
that each channel is in state given all past decisions and obser-
vations [31]. Referred to as the belief vector or information state,
this sufficient statistic is denoted by ,
where is the conditional probability that . Given
the sensing action and the observation in slot , the belief
state in slot can be obtained recursively as follows:

(1)

where

denotes the operator for the one-step belief update for unob-
served channels.

If no information on the initial system state is available, the
th entry of the initial belief vector can be set to the sta-

tionary distribution of the underlying Markov chain

(2)

It is now easy to see that we have an RMAB, where each
channel is considered as an arm and the state of arm in slot is
the belief state . The user chooses an action consisting
of arms to activate (sense) in each slot, while other arms are
made passive (unobserved). The states of both active and passive
arms change as given in (1). A policy is a

function that maps from the belief vector to the action
in slot .

There are two commonly used performance measures. One is
the expected total discounted reward over the infinite horizon

(3)

where is the discount factor and is the re-
ward obtained in slot under action determined
by the policy . This performance measure applies when re-
wards in the future are less valuable, for example, in delay-sen-
sitive communication systems. It also applies when the horizon
length is a geometrically distributed random variable with pa-
rameter . For example, a communication session may end at
a random time, and the user aims to maximize the number of
packets delivered before the session ends.

The other performance measure is the expected average re-
ward over the infinite horizon [32]

(4)

This is the common measure of throughput in the context of
communications.

For notation convenience, let
denote the RMAB with the discounted reward criterion, and

the RMAB with the average
reward criterion.

III. INDEXABILITY AND INDEX POLICIES

In this section, we introduce the basic concepts of indexability
and Whittle index policy.

A. Index Policy

An index policy assigns an index to each state of each arm to
measure how rewarding it is to activate an arm at a particular
state. In each slot, the policy activates those arms whose cur-
rent states have the largest indices.

For a strongly decomposable index policy, the index of an arm
only depends on the characteristics (transition probabilities, re-
ward structure, etc.) of this arm. Arms are thus decoupled when
computing the index, reducing an -dimensional problem to
independent 1-D problems.

A myopic policy is a simple example of strongly decompos-
able index policies. This policy ignores the impact of the current
action on the future reward, focusing solely on maximizing the
expected immediate reward. The index is thus the expected im-
mediate reward of activating an arm at a particular state. For the
problem at hand, the myopic index of each state of arm is
simply . The myopic action under the belief state

is given by

(5)

B. Indexability and Whittle Index Policy

To introduce indexability and Whittle index, it suffices
to consider a single arm due to the strong decomposability
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Fig. 2. The performance by Whittle index policy �� � �� � � �� �� �
� ����� ���� ���� ��	� ���� ����������� � � �����������
� ��
�����
��������� and � � ����		�������������������
	����������������
�������
.

of Whittle index. Consider a single-armed bandit process (a
single channel) with transition probabilities and
bandwidth (here we drop the channel index for notation
simplicity). In each slot, the user chooses one of two pos-
sible actions— —to make the
arm passive or active. An expected reward of is obtained
when the arm is activated at belief state , and the belief state
transits according to (1). The objective is to decide whether to
active the arm in each slot to maximize the total discounted
or average reward. The optimal policy is essentially given by
an optimal partition of the state space into a passive set

and an active set , where
denotes the optimal action under belief state .

Whittle index measures how attractive it is to activate an arm
based on the concept of subsidy for passivity [5]. Specifically,
we construct a single-armed bandit process that is identical to
the above specified bandit process except that a constant subsidy

is obtained whenever the arm is made passive. Obviously, this
subsidy will change the optimal partition of the passive and
active sets, and states that remain in the active set under a larger
subsidy are more attractive to the user. The minimum subsidy

that is needed to move a state from the active set to the passive
set under the optimal partition thus measures how attractive this
state is.

We now present the formal definition of indexability and
Whittle index. We consider the discounted reward criterion.
Their definitions under the average reward criterion can be
similarly obtained.

Denoted by , the value function represents the max-
imum expected total discounted reward that can be accrued from
a single-armed bandit process with subsidy when the initial
belief state is . Considering the two possible actions in the first
slot, we have

(6)

where denotes the expected total discounted reward
obtained by taking action in the first slot followed by the op-
timal policy in future slots. Consider . It is
given by the sum of the subsidy obtained in the first slot
under the passive action and the total discounted future reward

which is determined by the updated belief state
[see (1)]. can be similarly obtained, and

we arrive at the following dynamic programming:

(7)

(8)

The optimal action for belief state under subsidy is
given by

if
otherwise.

(9)

The passive set under subsidy is given by

(10)

(11)

Definition 1: An arm is indexable if the passive set of
the corresponding single-armed bandit process with subsidy
monotonically increases from to the whole state space as

increases from to . An RMAB is indexable if every
arm is indexable.

Under the indexability condition, Whittle index is defined as
follows.

Definition 2: If an arm is indexable, its Whittle index
of the state is the infimum subsidy such that it is optimal to
make the arm passive at . Equivalently, Whittle index is
the infimum subsidy that makes the passive and active actions
equally rewarding

(12)

(13)

In Fig. 2, we compare the performance (throughput) of the
myopic policy, Whittle index policy, and the optimal policy for
the RMAB formulated in Section II. We observe that Whittle
index policy achieves a near-optimal performance while the my-
opic policy suffers from a significant performance loss.

IV. WHITTLE INDEX UNDER DISCOUNTED REWARD CRITERION

In this section, we focus on the discounted reward criterion.
We establish the indexability, obtain Whittle index in closed
form, and develop efficient algorithms for computing an upper
bound of the optimal performance to provide a benchmark for
evaluating the performance of Whittle index policy.

A. Properties of Belief State Transition

To establish indexability and obtain Whittle index, it suffices
to consider the single-armed bandit process with subsidy .
Again, we drop the channel index from all notations and set

.
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Fig. 3. The �-step belief update of an unobserved arm �� � � �.

Fig. 4. The �-step belief update of an unobserved arm �� � � �.

The following lemma establishes properties of belief state
transition that reveal the basic structure of the RMAB consid-
ered in this paper. We resort often to these properties when de-
riving the main results.

Lemma 1: Let
denote the -step belief update of when the arm

is unobserved for consecutive slots. We have

(14)

(15)

Furthermore, the convergence of to the stationary distri-
bution has the following property.
Case 1) Positively correlated channel . For any

monotonically converges to as
(see Fig. 3).

Case 2) Negatively correlated channel . For any
and converge, from

opposite directions, to as (see Fig. 4).

Proof: , where
is the -step transition probability

from to , and is the
-step transition probability from to . From the eigendecom-

position of the transition matrix (see [33]), we have
and , which

leads to (14). Other properties follow directly from (14).

Next, we define an important quantity . Referred to
as the first crossing time, is the minimum amount of
time required for a passive arm to transit across starting from

For a positively correlated arm, we have, from Lemma 1, (16),
shown at the bottom of the page. For a negatively correlated arm,
we have

if
if and
if and

(17)

In the next section, we will show that the optimal policy
for the single-armed bandit process with subsidy is a threshold
policy: the arm will be activated if its belief state crosses a cer-
tain threshold . In other words, starting from an arbitrary
belief state , the first active action on the arm is taken after

slots. After the active action is taken, belief state of
this arm is either or in the next slot. Consequently, the
value function of the arm starting from an arbitrary belief state
only depends on the first crossing time and the value
functions of and . These results lead to sufficient equa-
tions to solve for the value function and the total passive time
in closed-form (see Sections IV-C and IV-D), which are the key
quantities in establishing the indexability and the closed-form
Whittle index (see Section IV-E).

B. The Optimal Policy for the Single-Armed
Bandit Process With Subsidy

In this section, we show that the optimal policy for the single-
armed bandit process with subsidy is a threshold policy. This
threshold structure is obtained by examining the value func-
tions and given in (7) and
(8). From (8), we observe that is a linear func-
tion of . Following the general result on the convexity of the
value function of a partially observable Markov decision process
(POMDP) [34], we conclude that given in
(7) is convex in . These properties of and

lead to the following lemma.

Lemma 2: The optimal policy for the single-armed bandit
process with subsidy is a threshold policy, i.e., there exists
an such that

if
if

and .

if

if

if

(16)
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Fig. 5. The optimality of a threshold policy (� � � � ��.

Fig. 6. The optimality of a threshold policy �� � ��.

Proof: Consider first . We have the following
inequality regarding the end points of and

(see Fig. 5):

(18)

(19)

Since is linear in and is
convex in and must have
one unique intersection at some point as shown in Fig. 5.

When , it is optimal to make the arm passive all the
time since the expected immediate reward by activating the
arm is uniformly upper bounded by (see Fig. 6). We can thus
choose for any .

When , we have (see Fig. 7)

(20)

(21)

Based on the convexity of in , we have
for any . It is

thus optimal to always activate the arm, and we can choose
for any . Lemma 2 thus follows. The expres-

sions of and given in Figs. 6
and 7 are obtained from the closed-form expression of the value
function, which will be shown in Section IV-C.

Fig. 7. The optimality of a threshold policy �� � ��.

C. Closed-Form Expression of the Value Function

In this section, we obtain closed-form expressions for the
value function . This result is fundamental to calcu-
lating Whittle index in closed-form and analyzing the perfor-
mance of Whittle index policy.

Based on the threshold structure of the optimal policy,
the value function can be expressed in terms of

for some , where
is the index of the slot when the belief

transits across the threshold for the first time [recall that
is the first crossing time given in (16) and (17)].

Specifically, in the first slots, the subsidy is ob-
tained in each slot. In slot , the belief state
transits across the threshold and the arm is activated.
The total reward thereafter is .
We thus have, considering the discount factor

(22)

Since is a function of and
as shown in (7), we only need to solve for

and . Note that and are simply two specific
values of ; both and can be written as
functions of themselves through (22). We can thus solve for

and as given in Lemma 3.

Lemma 3: Let denote the threshold of the optimal
policy for the single-armed bandit process with subsidy . The
value functions and can be obtained in
closed-form as given below.
Case 1) Positively correlated channel [see

(23)–(24), shown at the bottom of the next page].
Note that is given explicitly in (23) while

is given in terms of for the
ease of presentation.

Case 2) Negatively correlated channel [see
(25)–(26), shown at the bottom of the next page].
Note that is given explicitly in (25) while

is given in terms of for the
ease of presentation.

Proof: The key to the closed-form expressions for
and is to find the first slot in which the
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optimal policy activates the arm [i.e., the belief state transits
across the threshold ]. This can be done by applying the
transition properties of the belief state given in Lemma 1. See
Appendix I for the complete proof.

D. The Total Discounted Time of Being Passive

In this section, we study the total discounted time that the
single-armed bandit process with subsidy is made passive.
This quantity plays the central role in our proof of indexability
and in the algorithms of computing an upper bound of the
optimal performance as shown in Sections IV-E and IV-F,
respectively.

Let denote the (expected) total discounted time that
the single-armed bandit process with subsidy is made passive
under the optimal policy when the initial belief state is . It has
been shown by Whittle that is the derivative of the
value function with respect to [5]

This result is intuitive: when the subsidy for passivity in-
creases, the rate at which the total discounted reward
increases is determined by how often the arm is made passive.

Based on the threshold structure of the optimal policy, we
can obtain the following dynamic programming equation for

similar to that for given in (22):

(27)

Specifically, the first term in (27) is the total discounted time
of the first slots when the arm is made passive.
In slot , the arm is activated. With proba-
bility , the channel is in the good state in this
slot, and the total future discounted passive time is .
With probability , the channel is in the bad
state in this slot, and the total future discounted passive time is

.
By considering and , both and

can be written as functions of themselves through
(27). We can thus solve for and as given
in Lemma 4.

Lemma 4: Let denote the threshold of the optimal
policy for the single-armed bandit process with subsidy . The
total discounted passive times and are
given as follows.

if

if

if

(23)

if

if
(24)

if

if

if

(25)

if

if
(26)
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Case 1) Positively correlated channel [see
(28)–(29), shown at the bottom of the page].

Case 2) Negatively correlated channel [see
(30)–(31), shown at the bottom of the page].

Proof: The process of solving for and
is similar to that of solving for and

. Details are omitted. and can
also be obtained by taking the derivatives of and

with respect to .

We point out that is not differentiable in at
every point (i.e., the left derivative may not equal to the right
derivative). Suppose that is not differentiable at .
Then, it can be shown that the left derivative at corresponds
to the case when the threshold is included in the
active set while the right derivative corresponds to the case
when is included in the passive set. In this paper,
we include the threshold in the passive set [see (11)], i.e., we
choose the passive action when both actions are optimal. As a
consequence, we consider the right derivative of when
it is not differentiable.

The following lemma shows the piecewise constant (a stair
function) and monotonically increasing properties of
as a function of (see an illustration in Figs. 10 and 11). These
properties allow us to develop an efficient algorithm for com-
puting a performance upper bound as shown in Section IV-F.

Lemma 5: The total discounted passive time as a
function of is monotonically increasing and piecewise con-
stant (with countable pieces for and finite pieces for

). Equivalently, the value function is piece-
wise linear and convex in .

Proof: The piecewise constant property follows directly
from (27) and Lemma 4. The monotonicity of applies
to a general restless bandit and has been stated without proof by
Whittle [5]. We provide a proof below for completeness.

We show that is convex in , i.e., for any

(32)

Consider the optimal policy under subsidy .
If we apply to the system with subsidy , the total dis-
counted reward will be

Since may not be the optimal policy under subsidy , we
have

(33)

Similarly

(34)

Equation (32) thus follows from (33) and (34).

if

if

if

(28)

if

if
(29)

if

if

if

(30)

if

if
(31)
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E. Indexability and Whittle Index Policy

With the threshold structure of the optimal policy and the
closed-form expressions of the value function and discounted
passive time, we are ready to establish the indexability and solve
for Whittle index.

Theorem 1: The RMAB is in-
dexable.

Proof: The proof is based on Lemmas 2 and 4. Details are
given in Appendix II.

Theorem 2: Whittle index for arm of the
RMAB is given as follows.
Case 1) Positively correlated channel . See (35),

shown at the bottom of the page.
Case 2) Negatively correlated channel . See

(36), shown at the bottom of the page.

Proof: By the definition of Whittle index, for a given belief
state , its Whittle index is the subsidy that is the solution to
the following equation of :

(37)

From the closed-form expressions for ,
and given in Lemma 3, we can solve (37) and
obtain Whittle index.

The following properties of Whittle index follow
from Theorems 1 and 2.

if

if

if

(35)

where

if or

if

if

if

(36)

where

and
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Fig. 8. Whittle index: (a) � � ���� � � ���� � � ���; (b) � � ���� � � ���� � � ���.

Corollary 1 (Properties of Whittle Index):
• is a monotonically increasing function of . As

a consequence, Whittle index policy is equivalent to the
myopic policy for stochastically identical arms.

• For a positively correlated channel ,
is piecewise concave with countable pieces. More specif-
ically, is linear in and , concave in

, and piecewise concave with countable pieces in
[see Fig. 8(a)].

• For a negatively correlated channel
is piecewise convex with finite pieces. More specifi-
cally, is linear in and , concave in

, and [see Fig. 8(b)].
The equivalence between Whittle index policy and the my-

opic policy is particularly important. It allows us to establish the
structure and optimality of Whittle index policy by examining
the myopic policy which has a very simple index form. The fol-
lowing theorem shows that this equivalence can be extended to
a general RMAB under certain conditions.

Theorem 3: For a general RMAB, Whittle’s index policy is
equivalent to the myopic policy under the following conditions.

1) Arms are stochastically identical.
2) The optimal policy for the single-armed bandit with sub-

sidy has the following threshold structure on the reward
space: under any subsidy , the expected immediate re-
ward obtained from any state in the active set is no less
than that obtained from any state in the passive set, i.e.,

for all

where denote the complement of passive set
.

3) The RMAB is indexable.
Proof: Based on the second and third conditions, Whittle

index of a state is monotonically increasing with the reward
of this state, leading to the equivalence between Whittle index
policy and the myopic policy for stochastically identical arms.

Note that for the class of RMAB considered here, the region
of for a positively correlated arm is the most complex.
The infinite but countable concave pieces of Whittle index in
this region correspond to each possible value of the first crossing
time . This region presents most of the
difficulties in analyzing the performance of Whittle index policy
as shown in Section IV-F.

F. Performance of Whittle Index Policy

1) The Optimality of Whittle Index Policy Under a Relaxed
Constraint: Whittle index policy is the optimal solution to a
Lagrangian relaxation of RMABs [5]. Specifically, the number
of activated arms can vary over time provided that its discounted
average over the infinite horizon equals to . Let denote
the number of arms activated in slot . The relaxed constraint is
given by

(38)

Let denote the maximum expected total discounted
reward that can be obtained under this relaxed constraint when
the initial belief vector is . Based on the Lagrangian multi-
plier theorem, we have [5]

(39)

where is the value function of the single-armed bandit
process with subsidy that corresponds to the th channel.

The above equation reveals the role of the subsidy as the
Lagrangian multiplier and the optimality of Whittle index policy
for RMABs under the relaxed constraint given in (38). Specif-
ically, under the relaxed constraint, Whittle index policy is im-
plemented by activating, in each slot, those arms whose current
states have a Whittle index greater than a constant . This
constant is the Lagrangian multiplier that makes the relaxed
constraint given in (38) satisfied, or equivalently, the Lagrangian
multiplier that achieves the infimum in (39). It is not difficult to
see that Whittle index policy implemented by comparing to a
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Fig. 9. The optimal performance under relaxed constraint �� � ��� �
�� �� � � ����� ���� ������	� ��
� �������� ����� �� � �
�������	� ������
�����������
� ��
�� � � 	��� ��� � � 	� � � � � �� � � ����.

constant is the optimal policy [i.e., achieves ] for
RMABs under the relaxed constraint.

2) An Upper Bound of the Optimal Performance: Under the
strict constraint of for all , Whittle index policy is
implemented by activating those arms with the largest indices
in each slot. Its optimality may be lost.

Let denote the maximum expected total discounted
reward of the RMAB under the strict constraint that
for all . It is obvious that

thus provides a performance benchmark for all
RMAB policies, including Whittle index policy. Unfortunately,

as given in (39) is, in general, difficult to obtain due
to the complexity of calculating the value functions of all arms
and searching for the infimum over an uncountable space. For
the problem at hand, however, we have obtained in
closed form as given in Lemma 3. Furthermore, the piecewise
constant structure of the discounted passive time
given in Lemma 5 leads to efficient algorithms for searching
for the infimum of the value functions over as shown below.

Let

We then have . From Lemma
5, it is easy to see that is convex in as illus-
trated in Fig. 9. The infimum of is achieved at
at which the derivative of with respect to be-
comes nonnegative for the first time [note that is
not differentiable at every , and we consider the right deriva-
tive when it is not differentiable]. Equivalently

Fig. 10. The passive time for different regions �� 	 � �.

From Lemma 5, is piecewise constant for each
channel (see Figs. 10 and 11). We can thus partition the range
of into disjoint regions such that is constant
in each region. To obtain , we only need to check each re-
gion successively until becomes nonnegative for
the first time [due to the monotonically increasing property of

in ]. The difficulty is that for a positively corre-

lated channel, there are infinite constant regions of
(see Fig. 11). However, we can find an arbitrarily small interval

—referred to as the gray area—outside which
there are only finite number of constant regions of .
By setting the gray area for each positively correlated channel
small enough, we can find an that is arbitrarily close to
so that for any .
Specifically, we set the length of the gray area for each posi-
tively correlated channel to (i.e., )
where . The total length of the gray area over all
channels is thus at most , i.e., . Based on the con-
vexity of , the maximum derivative of
for is achieved at , which is equal to .
Thus, we have

We point out that if does not fall into the gray area, the
algorithm will obtain and without error. In the
special case when every channel is negatively correlated, the al-
gorithm will always output the exact value of and .
The detailed algorithm is given in Fig. 12. The complexity of
this algorithm is given in Theorem 4.

Theorem 4: For any , the algorithm given in Fig. 12
runs in at most time to output a value that is
within of for any .

Proof: See Appendix III.

To find the infimum of , we can also carry out a
binary search on subsidy . It can be shown that this algorithm
runs in time. However, it cannot output the exact
value of and .

Fig. 13 shows an example of the performance of Whittle index
policy. It demonstrates the near-optimal performance of Whittle
index policy and the tightness of the performance upper bound.

V. WHITTLE INDEX UNDER AVERAGE REWARD CRITERION

In this section, we investigate Whittle index policy under the
average reward criterion and establish results parallel to those
obtained under the discounted reward criterion in Section IV.
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Fig. 11. The passive time for different regions �� � � �.

Fig. 12. Algorithm for computing the upper bound of the optimal performance.

A. The Value Function and the Optimal Policy

First, we present a general result by Dutta [35] on the relation-
ship between the value function and the optimal policy under the
total discounted reward criterion and those under the average
reward criterion. This result allows us to study Whittle index
policy under the average reward criterion by examining its lim-
iting behavior under the discounted reward criterion as the dis-
count factor .

Dutta’s Theorem [35]. Let be the belief space of a POMDP
and the value function with discount factor for belief

. The POMDP satisfies the value boundedness condition
if there exist a belief , a real-valued function ,
and a constant such that

for any and . Under the value-boundedness
condition, if a series of optimal policies for a POMDP with
discount factor pointwise converges to a limit as ,
then is the optimal policy for the POMDP under the average
reward criterion. Furthermore, let denote the maximum

3Here we do not consider the trivial case that the arm has absorbing states.

expected average reward over the infinite horizon starting from
the initial belief . We have

and is independent of the initial belief .

Next, we will show that the single-armed bandit process
with subsidy under the discounted reward criterion (see
Section III-B) satisfies the valueboundedness condition.

Lemma 6: The single-armed bandit process with subsidy
under the discounted reward criterion satisfies the value-bound-
edness condition. More specifically, we have3

for all (40)

where .
Proof: See Appendix IV.

Under the value boundedness condition, the optimal policy
for the single-armed bandit process with subsidy under the av-
erage reward criterion can be obtained from the limit of any
pointwise convergent series of the optimal policies under the
discounted reward criterion. Lemma 7 shows that the optimal
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Fig. 13. The performance of Whittle index policy �� � �� �� � �
����� ���� �������� ���� ������	� ����� �� � � ���
� ������	���������
�������� ����� � � � for � � �� � � � � �� and � � ���
.

policy for the single-armed bandit process with subsidy under
the average reward criterion is also a threshold policy.

Lemma 7: Let denote the threshold of the optimal
policy for the single-armed bandit process with subsidy
under the discounted reward criterion. Then,
exists for any . Furthermore, the optimal policy for the
single-armed bandit process with subsidy under the average
reward criterion is also a threshold policy with threshold

.
Proof: See Appendix V.

B. Indexability and Whittle Index Policy

Based on Lemma 7, the RMAB is
indexable if the threshold of the optimal policy is mono-
tonically increasing with subsidy . Next, we show that the

monotonicity holds and the RMAB
is indexable. Moreover, we obtain Whittle index in closed form
as shown below.

Theorem 5: The RMAB is in-
dexable with Whittle index given below.
Case 1) Positively correlated channel . See (41),

shown at the bottom of the page.
Case 2) Negatively correlated channel . See

(42), shown at the bottom of the page.

Proof: See Appendix VI.

The monotonicity and piecewise concave/convex properties
of Whittle index under the discounted reward criterion given in
Corollary 1 are preserved under the average reward criterion.
The only difference is that Whittle index under the discounted
reward criterion is always strictly increasing with the belief state
while Whittle index under the average reward criterion
is a constant function of when for a
negatively correlated channel [see (42)].

C. The Performance of Whittle Index Policy

Similarly to the case under the discounted reward criterion,
Whittle index policy is optimal under the average reward
criterion when the constraint on the number of activated arms

is relaxed to the following:

Let denote the maximum expected average reward that
can be obtained under this relaxed constraint when the initial be-
lief vector is . Based on the Lagrangian multiplier theorem,
we have [5]

(43)

if or

if

if

(41)

if or

if

if

if

(42)
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where is the value function of the single-armed bandit
process with subsidy that corresponds to the th channel.

Let denote the maximum expected average reward
of the RMAB under the strict constraint that for all
. Obviously

thus provides a performance benchmark for Whittle index
policy under the strict constraint. To evaluate , we consider
the single-armed bandit with subsidy under the average re-
ward criterion. The value function and the average passive
time can be obtained in closed form as shown in
Lemma 8.

Lemma 8: The value function and can be obtained
in closed form as given below, where is the threshold of
the optimal policy. Furthermore, is piecewise constant and
increasing with . See (44)–(45), shown at the bottom of the
page.

Proof: Under the value-boundedness condition as shown
in Section V-A, we have, according to Dutta’s theorem

which leads to (44) directly. The closed-form expression for
can be obtained from the derivative of with respect to .
The proof that is increasing with is similar to that given
in Lemma 5.

Based on the closed-form given in Lemma 8, we can ob-
tain the subsidy that achieves the infimum in (43). Specif-
ically, the subsidy that achieves the infimum in (43) is the
supremum value of satisfying .
After obtaining , it is easy to calculate the infimum according
to the closed-form given in Lemma 8. With minor changes,
the algorithm in Section IV-F can be applied to evaluate the
upper bound . We notice that the initial belief will not be con-
sidered in the algorithm, which leads to a shorter running time.

Simulation results similar to Fig. 9 have been observed,
demonstrating the near-optimal performance of Whittle index
policy under the average reward criterion.

Fig. 14. The structure of Whittle index policy �� � � �.

VI. WHITTLE INDEX POLICY FOR STOCHASTICALLY

IDENTICAL CHANNELS

Based on the equivalence between Whittle index policy and
the myopic policy for stochastically identical arms, we can an-
alyze Whittle index policy by focusing on the myopic policy
which has a much simpler index form. In this section, we es-
tablish the semiuniversal structure and study the optimality of
Whittle index policy for stochastically identical arms.

A. The Structure of Whittle Index Policy

The implementation of Whittle index policy can be described
with a queue structure. Specifically, all channels are ordered
in a queue, and in each slot, those channels at the head of the
queue are sensed. Based on the observations, channels are re-
ordered at the end of each slot according to the following simple
rules.

When , the channels observed in state will stay
at the head of the queue while the channels observed in state
will be moved to the end of the queue (see Fig. 14).

When , the channels observed in state will stay at
the head of the queue while the channels observed in state will
be moved to the end of the queue. The order of the unobserved
channels is reversed (see Fig. 15).

The initial channel ordering is determined by the initial
belief vector as given below

(46)

if

if

if

other cases

(44)

and

if

if

if

other cases.

(45)
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Fig. 15. The structure of Whittle index policy �� � � �.

Fig. 16. Tracking the change in channel transition probabilities occurred at � �
�.

The proof is similar to that in [17] for the case of and
omitted here.

The advantage of this structure of Whittle index policy is
twofold. First, it demonstrates the simplicity of Whittle index
policy: channel selection is reduced to maintaining a simple
queue structure that requires no computation and little memory.
Second, it shows that Whittle index policy has a semiuniversal
structure; it can be implemented without knowing the channel
transition probabilities except the order of and . As a re-
sult, Whittle index policy is robust against model mismatch and
automatically tracks variations in the channel model provided
that the order of and remains unchanged. As show in
Fig. 16, the transition probabilities change abruptly in the fifth
slot, which corresponds to an increase in the occurrence of good
channel state in the system. From this figure, we can observe,
from the change in the throughput increasing rate, that Whittle
index policy effectively tracks the model variations.

B. Optimality and Approximation Factor
of Whittle Index Policy

The optimality of the myopic policy was first shown for
(both positive and negative correlation cases) in [17]. It was

then extended to any number of positively correlated channels

with single channel sensing in [18], and then to ar-
bitrary in [19]. Based on the equivalence between Whittle
index policy and the myopic policy, we conclude that Whittle
index policy is optimal for any and when .

In this section, we extend the optimality of Whittle index
policy to negatively correlated channels with . For
a general , we establish the approximation factor of Whittle
index policy. Furthermore, we characterize the performance of
Whittle index policy in terms of the system parameters for both
positively and negatively correlated channels. Specifically, we
obtain a lower bound and an upper bound on the average reward

achieved by Whittle index policy, as given in Theorem 6.

Theorem 6 (Lower and Upper Bounds of the Performance of
Whittle Index Policy): Recall that denote the average reward
achieved by the optimal policy. We have

if (47)

if (48)

Proof: The upper bound of is obtained from the upper
bound of the optimal performance for generally nonidentical
channels as given in (43). The lower bound of is obtained
from the structure of Whittle index policy. See Appendix VII
for the complete proof.

Corollary 2: Let be the approximation factor defined
as the ratio of the performance by Whittle index policy to the
optimal performance. We have, under the condition of

for

Proof: See Appendix VIII.

VII. CONCLUSION

In this paper, we considered a class of RMABs arisen in dy-
namic multichannel access, user/server scheduling, and optimal
activation in multiagent systems. For this class of RMAB, we es-
tablished the indexability and obtained Whittle index in closed
form for both discounted and average reward criteria. The basic
approach is on analyzing the optimal passive time for a single
arm with subsidy, which extends Whittle’s original proof of the
indexability for the classical MAB [5]. For stochastically iden-
tical arms, we further showed that Whittle index policy is equiv-
alent to the myopic policy that has a simple and robust semiu-
niversal structure. This equivalence leads to an analytical char-
acterization of the optimality and the performance of Whittle
index policy. For nonidentical arms, we developed efficient al-
gorithms for computing a performance upper bound given by
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Fig. 17. The first threshold crossing time for different regions of� ��� when � � � (the top partition is for��� � � ����, the bottom for��� � � ����).

Fig. 18. The first threshold crossing time for different regions of� ��� when � � � (the top partition is for��� � � ����, the bottom for��� � � ����).

Lagrangian relaxation. The tightness of the upper bound and
the near-optimal performance of Whittle index policy were il-
lustrated with simulation examples. Recently, this work was ex-
tended to non-Markovian arm models in [36], where the index-
ability, Whittle index, and the asymptotic optimality of Whittle
index policy were established under certain conditions.

APPENDIX I
PROOF OF LEMMA 3

From (22), we have

(49)

(50)

As shown in (7), is a function of
and for any . We thus have (49)

and (50) for two unknowns and provided
that we can obtain the two first crossing times
and .

From (16) and (17), we can obtain these first crossing times
by considering different regions that the threshold may
lie in (see Figs. 17 and 18). We can thus solve for
and from (49) and (50) by considering each region
within which both first crossing times and

are constant.

APPENDIX II
PROOF OF THEOREM 1

It suffices to prove that an arm with an arbitrary transition
matrix is indexable. Based on the threshold structure of the

optimal policy for the single-armed bandit with subsidy given
in Lemma 2, indexability is reduced to the monotonicity of the
threshold , i.e., is monotonically increasing with
the subsidy for . To prove the monotonicity of

, we first give Lemma 9.

Lemma 9: Suppose that for any we have

(51)

Then, is monotonically increasing with .

We prove Lemma 9 by contradiction. Assume that there exists
an such that is decreasing at . Then, there
exists an such that for any , we have

(52)
Since is the threshold of the optimal policy under sub-
sidy , we have

(53)

From (52) and (53), we have

which contradicts with (51). Lemma 9 thus holds.
According to Lemma 9, it is sufficient to prove (51). Recall

that . From (7) and (8), we can write (51)
as

(54)

To prove (54), we consider the following three regions of
.

• Region 1: . Based on the
lower bound of the updated belief given in Lemma 1, the
arm will be activated in every slot when the initial be-
lief . Thus,

; (54) holds trivially.
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• Region 2: . In this region, the arm is
made passive in every slot when the initial belief state is

. This is because for
any (see Lemma 1 and Figs. 3 and 4). Therefore,

. Since both and
are upper bounded by , it is easy to see that

(54) holds.
• Region 3: . In this re-

gion, (see Figs. 3 and 4). Thus,
is in the active set, which gives us

(55)

To prove (54), we consider the positively correlated and
negatively correlated cases separately.

Case 1) Negatively correlated channel . Since
is in the active set. We

thus have

(56)

Substituting (55) and (56) into (54), we reduce (54)
to the following:

(57)

Notice that the left-hand side of (57) is increasing
with and . It thus suffices to show
the inequality by replacing with its upper
bound and with its upper bound .
After some simplifications, it is sufficient to prove

(58)

It is easy to see that is convex in
, and . We thus conclude

that for any .
Case 2) Positively correlated channel . Since

is in the active set. We
thus have

(59)

Substituting (55) and (59) into (54), we reduce (54)
to the following:

(60)

Substituting the closed form of given in (28) into
(60), we end up with an inequality in terms of
and . Notice that the left-hand side of (60) is decreasing
with . It thus suffices to show the inequality by replacing

with its lower bound [by the def-
inition of ]. Let . After some sim-
plifications, it is sufficient to show that for any

(61)

Since and , it is sufficient to prove
that is strictly decreasing with for , which
follows by showing for

(62)

To show for , we will establish the
following two facts:

i) ;

ii) is strictly increasing with .

To prove (i), we set in (62). After some simplifications,
we need to prove

(63)

Since , it is sufficient to prove that
is monotonically decreasing with , i.e., we need to prove

(64)

Since , it is easy to see that (64)
holds. We thus proved (i).

To prove (ii), it suffices to show that the coefficient of in
(62) is nonnegative, i.e., we need to prove

(65)

Since , we have
. It is easy to see that (65) holds. We thus proved (ii).

From (i) and (ii), it is easy to see that for any
. We thus proved the indexability.

APPENDIX III
PROOF OF THEOREM 4

We notice that Step 1 runs in time. In Step 2, the number
of regions that needs to be calculated for each channel is at most

. It runs in constant time to find and
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for channel . So Step 2 runs in at most time.
In Step 3, the ordering of all those probabilities needs at most

time.Step 4
runsin timeforeachregionthatdoesnotbelongto .SoStep
4 runs in at most time. Finally, Step 5 runs in
time.Overall, thealgorithmrunsinatmost time.

APPENDIX IV
PROOF OF LEMMA 6

From the closed-form (see Lemma 3), we have,
for any

(66)

From Figs. 6, 7, and 5, we have, for any

(67)

Consequently, we have, for any

Since for any ,
then for any
and . Thus, the value-boundedness condition is
satisfied.

APPENDIX V
PROOF OF LEMMA 7

The convergence of is trivial for and .
For , let . This limit

exists and is given in Theorem 5 (it is tedious and lengthy to get
the limit and we skip the detailed calculation). Define as
the inverse function of . We notice that is a constant
function (thus not invertible) when [see
(42)]. In this case, we set . Formally, we have

if
if
if

(68)

Next, we prove that as by
contradiction. Since and is
increasing with is also increasing with . Assume
first that is strictly increasing at point . We prove

by contradiction as follows.
Assume , i.e., there exist an , a

, and a series such that
for any . If for

any , then for
any by the monotonicity of . Since is
strictly increasing at point , there exists a such
that . Then, we have, for any

which contradicts with the fact that
as . The proof for the case when

for any is similar to the above.
Consider next that is not strictly increasing at point

. This case only occurs when and
. We notice that increasingly converges

to as . Thus,
by the monotonicity of . Assume , i.e.,
there exist an , a , and a series

such that for any . We have
for any by the

monotonicity of . Since is strictly increasing in
, there exists a such that

. Then, we have, for any

which contradicts with the fact that
as .

Next, we show that the optimal policy for the single-
armed bandit process with subsidy under the discounted reward
criterion pointwise converges to a threshold policy as

. To see this, we construct as follows: 1) if , then
the arm is made active all the time; 2) if , the arm is
made passive all the time; and 3) if , then is
made passive when current state , otherwise it is
activated. Since converges to as , it is
easy to see that pointwise converges to for any

. Because the single-armed bandit process with subsidy under
the discounted reward criterion satisfies the value boundedness
condition (see Lemma 6), the threshold policy is optimal for
the single-armed bandit process with subsidy under the average
reward criterion based on Dutta’s theorem.

APPENDIX VI
PROOF OF THEOREM 5

Since and is monotonically
increasing with (see Theorem 1), it is easy to see that
is also monotonically increasing with . Therefore, the bandit
is indexable.

Next, we prove that is indeed
Whittle index under the average reward criterion. For a belief
state of an arm, its Whittle index is the infimum subsidy
such that is in the passive set under the optimal policy for
the arm, i.e., the infimum subsidy such that
(according to Lemma 7). From (68) and the monotonicity of

with , we have that is the infimum subsidy
such that .
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APPENDIX VII
PROOF OF THEOREM 6

The proof for the lower bound of is an extension of that
with single-channel sensing given in [17]. It is, how-
ever, much more complex to analyze the performance of Whittle
index policy when . The lower bound obtained here is
looser than that in [17] when applied to the case of .

Define a transmission period on a channel as the number of
consecutive slots in which the channel has been continuously
sensed before being moved to the end of the queue. Based on
the structure of Whittle index policy, it is easy to show that

if

if
(69)

where is the average length of the transmission period over
the infinite time horizon.

To bound the throughput , it is equivalent to bound the
average length of the transmission period as shown in (69).
We consider the following two cases.
Case 1) . Let denote the belief value of the

chosen channel in the first slot of a transmission pe-
riod. The length of this transmission period has
the following distribution:

(70)

It is easy to see that if , then stochasti-
cally dominates .
From the structure of Whittle index policy,

, where is the number of consecutive
slots in which the channel has been unobserved
since the last visit to this channel. When the user
leaves one channel, this channel has the lowest
priority. It will take at least slots before the
user returns to the same channel, i.e., .
Based on the monotonically increasing property
of the -step transition probability (see
Fig. 3), we have .
Thus, is stochastically dominated
by , and the expectation of the former leads to
the lower bound of given in (47).

Case 2) . In this case, has the following dis-
tribution:

(71)
Opposite to Case 1, stochastically dominates

if .
From the structure of Whittle index policy,

, where is the number of con-
secutive slots in which the channel has been un-
observed since the last visit to this channel. If

is odd, then since
is an even number (see Fig. 4). If

is even, then is at least . we have
. Thus, is

stochastically dominated by , and
the expectation of the latter leads to the lower bound
of as given in (48).

Next, we show the upper bound of . From (43), we have
since channels are stochastically

identical.
When , we have

(72)

When , we have

(73)

APPENDIX VIII
PROOF OF COROLLARY 2

We first prove that Whittle index policy is optimal when
. We construct a genie-aided system where the user knows

the states of all channels at the end of each slot . In this
system, Whittle index policy is clearly optimal, and the optimal
performance is the upper bound of the original one. For the orig-
inal system where the user only knows the states of the sensed

channels, we notice that the channel ordering by Whittle
index policy in each slot is the same as that in the genie-aided
system. Whittle index policy thus achieves the same perfor-
mance as in the genie-aided system. It is thus optimal.

Next, we show that Whittle index policy achieves at least
of the optimal performance for negatively corre-

lated channels . According to Theorem 6, we arrive
at the following inequality (notice that ):

if

(74)

Note that

(75)

Combining (74) and (75), we have .
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