
Explaining Temporal Plans with Incomplete Knowledge and Sensing Information

Yaniel Carreno 1,2,3, Alan Lindsay 2, Ronald P. A. Petrick 1,2

1 Edinburgh Centre for Robotics, Edinburgh, UK
2 Department of Computer Science, Heriot-Watt University, Edinburgh, UK

3 School of Informatics, The University of Edinburgh, Edinburgh, UK
{y.carreno, alan.lindsay, r.petrick}@hw.ac.uk

Abstract

The challenge of explaining AI solutions is driven by the need
for trust, transparency in the decision process, and interac-
tion between humans and machines, which allows the first to
comprehend the reasoning behind an AI algorithm decision.
In recent years, Explainable AI Planning (XAIP) has emerged
to provide the grounds for querying AI planner behaviour in
multiple settings, such as problems requiring temporal and
numeric reasoning. This paper introduces an analysis of ex-
plainability for temporal planning problems that require rea-
soning about incomplete knowledge and sensing information.
We present an approach called Explainable AI Planning for
Temporally-Contingent Problems (XAIP-TCPs) that defines
a set of interesting questions from the temporal and contin-
gent planning perspective, covering numeric, temporal, and
contingent notions in the presence of incomplete knowledge
and sensing information. We present an analysis of the main
elements required to deliver compelling explanations for a
new set of domains motivated by real-world problems.

1 Introduction
As planning technology has matured over the years, we have
seen its adoption in a growing number of real-world appli-
cations (Maurelli et al. 2016; Hastie et al. 2018; Bernardini
et al. 2020). This can be attributed to the general applicabil-
ity of planning tools (Kerschke et al. 2019) and the relative
flexibility of the various languages available for representing
different types of problems (e.g., classical (McDermott et al.
1998), temporal (Fox and Long 2003)). Automated planners
operate over a problem model (consisting of domain proper-
ties, actions, goals, cost functions, etc.) that must capture
critical constraints about the underlying problem in order
for a generated plan—a structured collection of actions that
transforms the model’s initial state into a goal state—to be
effective for execution. Planning models for real-world ap-
plications can be quite complex, representing numeric and
temporal constraints and uncertainty about the world.

An issue of growing concern for AI-based approaches to
real-world applications is the explainability of the solution to
end users—interested parties interacting with the system—
and the process that brought it about (Smith 2012). The field
of Explainable Planning (XAIP) (Fox, Long, and Magazzeni

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: General architecture for plan explainability with
temporally-contingent problems. The XAIP-TCP reasoner
considers model properties and the output of the planning
and execution system to provide explanations to end users.

2017) aims to tackle this problem by considering the need
for trust, transparency, and interaction with humans in the
context of the planning process. Automated planning solu-
tions are particularly well suited for explanation generation
(Chakraborti, Sreedharan, and Kambhampati 2020) due to
their use of symbolic models—an approach that has previ-
ously been demonstrated by exploiting the planning model
to generate explanation content (Chakraborti et al. 2017; Ei-
fler et al. 2020).

Fox, Long, and Magazzeni (2017) presented a general
roadmap for XAIP and posed the key questions linking plan-
ner behaviour to explainability. The work focuses on plan
solutions generated by AI solvers (also known as tempo-
ral planners), such as POPF (Coles et al. 2010) and OPTIC
(Benton, Coles, and Coles 2012), which solve numeric and
temporal constraints. However, the solutions do not consider
how they interact with potential uncertainty in the world
state. For example, Figure 1 shows a problem where an
Autonomous Underwater Vehicle (AUV) has to inspect and
close multiple valves with an unknown state (open or ¬open)
at planning time. In addition, the AUV needs to refuel during
the mission by coordinating with an Autonomous Surface
Vehicle (ASV). The ASV is available at different positions
in the environment for specific periods. These constraints are
considered by the planning and execution system to generate
a plan solution that depends on the model properties (e.g., in-

complete knowledge, temporal and numeric requirements).
On the planning side, the problem requires the planner to
generate multiple sub-plans that deal with all possible valve
states. On the user side, an end-user may query the system
to ask questions about a generated plan, e.g., Q1: Why did
the planner use action sense-valve?, or Q2: What happens if
the planner remove action sense-valve?.

In this paper, we extend the roadmap proposed by Fox,
Long, and Magazzeni (2017) to address the main chal-
lenges of explainability for Temporally-Contingent Prob-
lems (TCPs). We focus on temporal planning problems with
numeric constraints where the action sequences required to
reach a goal lead to conditional plans resulting from the
presence of incomplete information and sensing actions. We
extend the work in (Smith 2012; Fox, Long, and Maga-
zzeni 2017) by presenting explainability that can help the
questioner understand the problem’s solution considering
the domain’s properties represented in the model acquisition
(Sreedharan et al. 2020) and plan’s output. We (i) introduce
the idea of temporally-contingent planning problem, (ii) de-
fine a general structure of a plan solution for these planning
problems, (iii) introduce two real-world domains that con-
tain temporal and numeric specifications, as well as condi-
tional elements associated with incomplete knowledge and
sensing information, and (iv) present Explainable Planning
for Temporally-Contingent Problems (XAIP-TCP), defining
the main questions and potential answers to explain plans
for these type of problems.

2 Example Domains
This section introduces two example domains that will mo-
tivate our approach and guide the analysis through the paper.
These domains1 are inspired by real-world problems that re-
quire both temporal and numeric reasoning to achieve a plan.
In addition, domain problems present unknown properties
that require sensing actions in the plan to acquire the incom-
plete/unknown information in the initial states, which leads
to planning solutions with multiple branches that respond to
all possible outcomes of these unknown properties. There-
fore, the use of sensing actions (Petrick and Bacchus 2002;
Hoffmann and Brafman 2005; Muise, Belle, and McIlraith
2014) solves the uncertainty in the world state. An example
of a branching plan solution in presented in Figure 3, where
each plan branch is conditioned on a possible value that a
sensing action could return. Plans (including plan branches)
may further be required to satisfy certain numeric and tem-
poral constraints. This added complexity in the structure of
the plans leads to challenges at the explanation level.

Domain 1 (Offshore Energy Platform). This domain is an
extension of the Inspection domain in (Carreno et al. 2020b),
where a robot has to move to specific locations by choosing
among various paths (P-AB1, P-BC1, P-BC2, ...). Figure 2
(left) shows a general representation of the problem, where
green arrows indicate possible directions the robot can take
from each waypoint. We consider the situation where a robot
must reach WP-B and WP-C starting from WP-A. Single or

1
https://github.com/YanielCarreno/tcp-domains.

Figure 2: Illustration of the Offshore Energy Platform (left)
and the Valve Manipulation (right) domains.

Figure 3: An example of a plan with branches for the Valve
Manipulation domain. The outcome of the sensing action
sense-valve provides certainty around the incomplete
knowledge (valve’s state) in the initial state. [t,d] repre-
sents the action start time and its duration respectively.

multiple paths can link points. Robots must use the same
paths for navigation, which increases the risk of collision.
A robot must observe if the path is clear before travelling a
route. The number of routes between points is fixed, with a
hierarchy based on distance. We consider that at least one of
the paths from a robot’s current position is always free.

The domain includes two actions, navigation(?r
?wpi ?wpf ?p) and sense-path(?r ?s ?wpi ?p),
where ?r defines the robot, ?wpi and ?wpf the initial and
final waypoint respectively, and ?s the sensor. The type poi
defines the state of the path ?p between points which is un-
known. Therefore, objects of the type poi enclose elements
of uncertainty that require a sensing action to acquire the
incomplete information. A plan solution will present multi-
ple branches after the sensing action that leads to the possi-
ble property (path state) outcomes. For this domain, ?p in-
stances of type poi describe the paths. The navigation
action requires as preconditions to know possible paths
between two points and if the path is free. Therefore,
(path option ?wpi ?wpf ?p) and (path free ?wpi
?p) have to hold.

WP-A and WP-B are connected by a single path. In
this case, the problem initial state defines the single path

connecting the points is known. Therefore, (path option
wp-a wp-b p-ab1) and (path free wp-a p-ab1) are
at the initial state. Multiple paths exist to navigate from WP-
B to WP-C. The first path checked is P-BC1 (shortest path)
which is occupied, leading to the sensing action to check
other paths. Here, the planner will consider fixed times for
sensing action. However, the duration of the navigation can
significantly change the plan makespan. Therefore, the im-
plementation of future actions can occur at different time
frames depending on the branch. These possible changes in
the implementation times have to be considered by the oper-
ators to implement further missions that might require coor-
dination amongst a fleet of robots.

Domain 2 (Valve Manipulation). This domain represents
an updated version of the underwater domains used in (Mau-
relli et al. 2016; Carreno et al. 2020a). An offshore scenario
includes a set of blowout preventers (BOPs), structures with
a valve attached that can be open or closed. An AUV must
ensure that two valves (v1 and v2) are closed during a mis-
sion. The robot has to communicate data every time it is
recorded. In the initial state, the robot is at the deployment
base. From the base, it is possible to navigate to the BOPs,
and from there, the AUV can manipulate the valve. The ac-
tion the AUV should take depends on the state of the valve: if
the valve is open, it should be closed; if the valve is closed,
the AUV does not need to perform any action. The valve
state can be checked using a sensing action. In addition, the
robot needs to refuel during the mission to keep a certain
energy level by coordinating a refuel action with an ASV,
which is in multiple refuel points at different time slots. Fig-
ure 2 (right) shows a general representation of the environ-
ment. A plan solution for this problem (assuming no refu-
elling action) is presented in Figure 3 where, green squares
enclosed the sensing actions in the plan. The solution shows
a branched plan that consider the possible outcomes of the
valve state (unknown property at the planning time) that can
be acquired using a sensing action during the plan execution.

In this example the domain action sense-valve adds
knowledge related to possible valve states. The action
close-bop includes the precondition (state on ?v -
poi). Therefore, if during plan execution the AUV iden-
tifies (state on v1), the proposition is true along the
branch and the action close-bop should be planned for
the branch the robot takes. Otherwise, if ¬(state on v1)
the robot proceeds to execute the next action in the plan
associated with a different mission goal. The AI planner
needs to reason about possible action sequences consider-
ing the sensing action outcomes. Valve Manipulation in-
cludes temporal constraints, to support refuelling. In addi-
tion, the domain introduces numeric constraints associated
with data communication. Action close-bop has an ef-
fect that increases (data acquired ?r - robot) while
action sense-valve is conditioned by the robot data capac-
ity. This constraint makes the robot navigate to the surface
and communicate data, using action broadcast-data, be-
fore executing a new sensing action if data was previously
acquired. Therefore, the ¬(state on ?v) plan solution
presents a completely different sequence of actions.

For this domain, numeric constraints are required to con-
trol the data recorded when the valve is turned off. Tem-
poral constraints are essential for scheduling the refuelling
activities due to the ASV’s time availability at different loca-
tions. There is no sequence of actions that allows the AUV to
achieve the goal without the knowledge of the valve states:
choosing the correct action to execute after sensing the state
of a valve depends on the (run-time) result of whether and
when the valve is open or ¬open. The characteristics of
this problem where the solution requires considering tempo-
ral and numeric constraints and reasoning about incomplete
sensing information make it a temporally-contingent plan-
ning problem.

3 Temporally-Contingent Planning
This section defines the TCP model and its plan structure,
introducing features defining the problem and guiding the
planning search.

Planning Model. A common aspect among AI planning
approaches is the role of the model for finding solutions
to a problem. Models define the domain dynamics and are
fundamental for obtaining a genuine solution that increases
the probability of plan success. Definition 1 describes a
temporally-contingent planning problem (PTC). The prob-
lem syntax follows PDDL2.1 (Fox and Long 2003) to con-
sider propositional temporal planning problems with Timed
Initial Literals (TILs) (Cresswell and Coddington 2003).

Definition 1. A temporally-contingent planning problem is
a tuple PTC := 〈P,F ,A,∆, I,G, T 〉, where P is set of
atomic propositions; F is a set of task numeric variables
called fluents; A is a set of instantaneous and durative phys-
ical actions, with controllable and known duration; ∆ is a
set of sensing actions (observations), separate from A such
that ∆ ∩ A = ∅ that considers temporal notions; I is the
set of clauses over the propositions and fluents defining the
initial state, I : P ∪ F → {>,⊥} ∪ R, where > and ⊥
denote the defined and undefined values, respectively; G is
a set of goals, where G : P ∪ F → {>,⊥} ∪ R is a (pos-
sibly partial) function that describes the goal conditions; T
is a set of time windows defined as TILs, where each TIL
l = 〈t(l), lit(l)〉 ∈ T defines the time t(l) and the literal
lit(l), specifying which proposition p becomes true (or false)
at time t(l), where p ∈ P .

A literal l is a proposition p ∈ P or its negation ¬p. A
set of literals L is consistent if the condition {p, ¬p} * L
holds; and complete if {p, ¬p} ∩ L 6= ∅ holds for every p
∈ P . A state s is defined as a consistent and complete set
of literals. A belief state b represents the set of world states
that are possible. Actions in the planning model are defined
as physical actions (see Definition 2) or sensing actions (see
Definition 3). Sensing actions are nondeterministic actions
that can result in more than one possible state.

Definition 2. A (deterministic) instantaneous action ai,
where ai ∈ A; and a durative action ad, where ad ∈ A;
are defined by the tuple 〈aipre

, aieff
〉 and 〈adpre

, adeff
, addur

〉
respectively. aipre

and adpre
represent sets of conditions and

preconditions respectively that must hold for the actions to

be applicable; aieff
and adeff

represent the sets of action ef-
fects; and addur

is a set of action duration constraints.

Definition 3. A sensing action δ, where δ ∈ ∆ is defined
by the tuple 〈δpre , δeff , δdur 〉; δpre is the preconditions (a
set of literals) required for δ being executable; δeff defines
the sensing action effects (a set of literals) where a literal l
in the set δeff reveals the truth value of the unknown atomic
proposition p ∈ P at the end of the action; and δdur parame-
ter represents a set of duration constraints (controllable and
known). Sensing actions are always durative actions.

The TCP is a special case of Planning in a Partially Ob-
servable environment with Sensing actions (PPOS) prob-
lems where the source of uncertainty comes from the sensing
actions (Muise, Belle, and McIlraith 2014). Our work con-
siders PPOS problems with durative actions. Physical ac-
tions are treated as deterministic while sensing actions are
encoded as nondeterministic actions. Action navigation
in the Valve Manipulation domain represents a physical ac-
tion that has fully deterministic effects, such as the loca-
tion of the robot ?r: at the action start (at ?r ?wpi), and
at the end (at ?r ?wpf), therefore, (explored ?wpf).
Figure 4 shows the sensing action sense-valve, which
presents an effect associated to define the true state of a
valve. The action representation defines the robot ?r will
acquire incomplete knowledge regarding possible values of
a particular literal l as an effect of implementing the sensing
action. The construct (at end (K+ (proposition)))
represents this and defines the knowledge acquisition for
a proposition with incomplete information. Using this rep-
resentation, we distinguish the incomplete knowledge as-
sociated with a literal l from a false l. Here, we present
a general structure of the construct, which depends on the
designer and introduces the nondeterministic behaviour in
the domain. Other authors such as Hoffmann and Brafman
(2005) and Petrick and Bacchus (2002) use a different con-
struct with the same objective. Besides, a δ adds a set of de-
terministic effects, such as robot ?r is busy over the action
duration, and it is (available ?r) when action ends.

Our problems are simple PPOS problems (Bonet and
Geffner 2011), which can be mapped into Fully Observ-
able NonDeterministic (FOND) planning problems (Muise,
Belle, and McIlraith 2014). For a simple PPOS problem (i)
the non-unary clauses in the initial state I are invariant and
(ii) no hidden literal emerges in the effects of a nondeter-
ministic action. Another interesting feature of this type of
problem is that uncertainty decreases monotonically, i.e., the
unknown properties cannot become unknown again after be-
coming known. The TCP model encloses the uncertainty as-
sociated with the nondeterministic action outcomes. The im-
plementation of belief tracking—computation of the succes-
sor belief state b′—is required to solve the PTC . The TCP
model provides the answer to two questions that compile
away the uncertainty while searching for a plan. Q1: What
information is unknown/incomplete at the initial state?, and
Q2: How does the planner reason/update the incomplete
knowledge?.

The first question attempts to define the incomplete
knowledge associated with a particular proposition. Follow-

(:durative-action sense-valve

:parameters (?r - auv ?s - sensor ?v - poi ?wp - wpoint)

:duration (= ?duration 5)

:condition (and (over all (at ?r ?wp))

(over all (valve_at ?v ?wp))

(over all (camera_equipped ?r ?s)) (...))

:effect (and (at start (not (available ?r)))

(at end (available ?r)) (...)

(at end (K+ (state on ?v))))

)

Figure 4: Durative sensing (PDDL) action sense-valve.

(:unknown-prop

(state on v1) (state on v2)

(...)

(flow-val v1 f1) (flow-val v1 f2) (flow-val v1 f3)

(flow-val v2 f1) (flow-val v2 f2) (flow-val v2 f3)

)

Figure 5: Construct unknown-prop associated to on/off
valve’s state (top) and possible valve’s flows (bottom).

ing the Valve Manipulation domain example, the problem
should define the possible (unknown) values (at planning
time) the proposition (state on ?v) might hold. Exam-
ples of representing incomplete information in the problem
model are presented in Figure 5. The first unknown propo-
sitions indicate that the (state on v1) and (state on
v2) are unknown in the initial state. The second is the case
the flow ?f passing through a valve ?v is unknown, and
the number of (flow) possibilities associated with the same
valve is a fixed set. In this case, multiple unknown propo-
sitions p represent the possible valve’s flow, which differs
from the first example associated with a single p (true or
false) value. Previous approaches inspire our representation
of the incomplete knowledge in the domain (Hoffmann and
Brafman 2005; Petrick and Bacchus 2002) that also consider
uncertainty in the initial state I.

The second question’s answer relates to the generation
of the contingent sub-plans (branches) that model the real
value of an unknown literal l at the planning time. Fig-
ure 6 shows a constructed example that defines the up-
dates associated with the incomplete information that will
be true in each branch. The updates are a complex nest-
ing of and and oneof clauses. Some of the nondetermin-
ism is independent, and others contain dependencies de-
fined by the ands. In cases the nondeterminism is inde-
pendent, the knowledge-updates can include information
that only branch on know-whether facts (e.g., the valve’s
state is open or closed) that the plan branches on. The in-
complete knowledge becomes available at run time through
sensing actions, which specify the knowledge’s acquisition
details. The knowledge acquired is previously defined in the
knowledge-updates and used at the planning time to gen-
erate the set of action’s effects associated with the same un-
known proposition (e.g., (state on ?v)). The determin-
istic effects introduced by a sensing action will be true at
the end of the action independently of the real value of the

(:knowledge-updates

(oneof (state on v1)

(and (not (state on v1)) (valve_closed wp32)))

(oneof ...)

(oneof (and (flow v1 f1)

(not (flow v1 f2)) (not (flow v1 f3)))

(and (not (flow v1 f1))

(flow v1 f2) (not (flow v1 f3)))

(and (not (flow v1 f1))

(not (flow v1 f2)) (flow v1 f3)))

)

Figure 6: Construct knowledge-updates associated to
on/off valve’s state (top) and possible valve’s flows (bottom).

unknown proposition. However, deterministic effects could
affect the ordering of actions in different branches depend-
ing on the true value of an unknown proposition.

A practical example for valve v1 shows one update
will lead to creating a branch that considers (state on
v1) (valve is open). Consequently, action close-bop
is required in the branch to close the valve and reach
the effect (valve closed wp32), where (valve at v1
wp32). The second possible update defines the valve as al-
ready closed (¬(state on v1)) and that leads directly to
reach the (valve closed wp32) proposition. In the sec-
ond example, the knowledge-updates establishes a fixed
number of possible flows passing through the valve and
when one of the flows is true, the others are false (excluded).

Plan Structure. The solution to the nondeterministic plan-
ning problem with temporal constraints PTC is thus a con-
tingent plan which induces a set of temporal plans. These
problems require combining temporal and contingent plan-
ning to deal with observations, incomplete information, tem-
poral and numeric constraints. The solution to this planning
problem requires an AI solver capable of solving a time-
knowledge aware plan ΠTC (see Definition 4).

Definition 4. A time-knowledge aware plan ΠTC = (N , E)
for a temporally-contingent planning problem PTC is a
transition tree B, represented as an AND/OR graph, where
nodes N are labelled with actions built on a set of tuples,
πP := 〈a, t, d〉 for physical actions, and πS := 〈δ, t, d〉 for
sensing actions; and edges E represent the action outcomes,
denoting the set of propositions whose value are known af-
ter an action execution, where a ∈ A is an instantaneous
or durative action, δ ∈ ∆ is a durative sensing action, t
is the action starting time, d represents the action duration,
t ∈ R≥0, and d ∈ R>0 when actions have a duration.

We emphasise ΠTC solves PTC iff the executions ΠTC

recommends are applicable in b for PTC and they lead to
a belief state b′′ where G holds. The discussion of the AI
planner properties is out of the scope of this paper. Figure 7
shows a section of the general structure for a temporally-
contingent planning problem solution (plan output) for the
Valve Manipulation domain. The contingency elements are
represented for the branches, which depends on the effects of
the sensing action. The temporal reasoning allows the agent
to know the time associated with action implementations for

Time: (Action Name) [Duration]

0.00: (navigation auv base v1) [100.00]

100.01: (sense-valve auv v1) [30.00]

<BRANCH, 1, true, (state on v1)>

130.02: (close-bop auv v1) [50.00]

(...)

460.07: (sense-valve auv v2) [30.00]

<BRANCH, 2, true, (state on v2)>

(...)

<BRANCH, 2, false, (state on v2)>

490.08: (navigation auv v2 base) [197.67]

687.76: (recover auv base) [1.00]

<BRANCH, 1, false, (state on v1)>

130.02: (navigation auv v1 s3) [80.00]

(...)

Figure 7: A temporally-contingent plan solution for a Valve
Manipulation domain problem.

all contingent sub-plans. Regarding makespan, TCP plan so-
lution introduces the know-when concept—property that de-
fines the time t at which the proposition p ∈ P knowledge is
available—in the plan time-space to specify the time a par-
ticular proposition is known. The agent’s behaviour is de-
scribed by one of those plans considering plan execution
outcomes. Therefore, the knowledge acquired during plan
implementation guides the branch selection.

4 Explaining AI Planning for TCPs
This section highlights the main elements of model-based
and plan-based explanations and the global connections be-
tween these concepts and the TCP. We introduce preliminary
features for TCP explainability that are used in Section 5 and
Section 6 to explain the specifics of the solutions.

Model-based Explanation. Model-based explanations are
generated using algorithm-agnostic methods where the
model’s characteristics support the properties of a solution.
Model-based explanation aims to exploit the model to iden-
tify properties that can be used to build explanations (Ei-
fler et al. 2020). Explainability approaches based on the
model can use two considerations: (i) inference reconcilia-
tion; and/or (ii) model reconciliation. For inference reconcil-
iation processes (Zhao and Sukkerd 2019), it is common to
allow the users to introduce specific questions about a plan
(Fox, Long, and Magazzeni 2017), engage in explanatory di-
alogue, and/or introduce abstraction techniques that provide
the user with tools to understand the plan. In model recon-
ciliation approaches (Chakraborti et al. 2017; Chakraborti,
Sreedharan, and Kambhampati 2020) the focus is on the dif-
ference between the planner’s and the user’s models and ex-
planations are generated to align them.

A common point of interest to all approaches involved
in explaining AI planning solutions is knowing the model’s
properties. XAIP-TCP may consider the properties associ-
ated with the explanation of deterministic plans, previously
examined in (Fox, Long, and Magazzeni 2017; Cashmore
et al. 2019) with the nondeterministic elements in the prob-
lem. The first reference for the XAIP-TCP to explain a solu-
tion involving nondeterministic effects are the model’s prop-

erties specified by the Planning and Execution System de-
signer through the questions (see Section 3) that answer the
know-whether proposition.

Plan-based Explanation. A plan solution is a fundamental
component for XAIP. Planning mechanisms tend to make
deterministic and repeatable choices at each decision point.
Therefore, the choice of the actions in a plan is transparent
at different levels, based on the task’s knowledge. The ex-
ecution of plans generates a sequence of tuples composed
of actions, time and observations which can be used: (i) to
explore the reasons behind the choice of actions, and (ii) to
focus on aspects of state or of action choice, depending on
the question to provide explanations. In our work, the plan’s
output enhances the explanation of observations that lead to
multiple sub-plans. These sub-plans are associated with ac-
quiring knowledge or sensing information incomplete at the
initial state. Finally, plans support explainability associated
with failures. XAIP-TCP can use the know-when concept to
explain the knowledge acquisition process, which might in-
volve sensing actions. This concept supports plan verbalisa-
tion over long-term horizons and large state spaces.

5 Questions in the Explanation Process
This section introduces questions to guide the search for
explanations of a temporally-contingent planning problem
solution. The request for “reasons” explores the available
knowledge for the system and is unknown by the questioner.
The explanation of a plan should balance the complexity of
the (i) reasoning generated by the AI planner and (ii) the
question’s solution. We focus on inference reconciliation to
explain TCP. The formal questions represent an extension to
previous work (Fox, Long, and Magazzeni 2017; Eifler et al.
2020) explaining the TCP complexity.

Q1: Why did the planner use action (a or δ) in ΠTC?. The
implementation of an action (a or δ) could be linked to ful-
fil preconditions required for later actions in the plan that
(i) achieve goal states, (ii) maintain resource constraints at
optimal levels, or (iii) acquire sensing information.

Q2: Why did the planner use action a in ΠTC after δ?. The
sensing action has the role of acquiring information defined
as unknown/incomplete in the initial state I. The selection
of a can be linked to the knowledge offered by the execution
of δ. However, action a might also be influenced by oppor-
tunity and the metric consequences of splitting a plan.

Q3: Why did the planner not do something different (at this
stage) or (in this branch)?. This question is a version of Q2.
However, it considers direct alternatives to the initial solu-
tion proposed by the planner. This type of question directs
the analysis over the alternative plan behaviours the ques-
tioner should specify in the question.

Q4: Why can the planner not do a particular action or se-
quence?. This question is associated with the possible un-
solvability of planning problems. This type of question tends
to be difficult to explain in our domains, considering the plan
solution is not completely deterministic. We have a set of
conditional sub-plans that we might need to explore (all of

them) to find why the plan fails. These questions can query
the domain about specific times for action implementation
(particularly sensing actions). For instance, the SATELLITE

TIME domain from IPC-4 considers time constraints for the
implementation of actions associated to sensing. In our do-
mains, the implementation of a sensing action could depend
on numeric constraints.

Q5: Why is what the planner proposes to do more cost
efficient than something else?. Our domains can present
branches with different numbers of actions and sequences
that might lead to analyse a wide range of different outputs.
This question is very specific to analyse the metric we use
for plan evaluation.

Q6: Why does the planner need to replan if something hap-
pens?. This question focuses on plan execution and intends
to analyse the reasons for replanning at particular times. The
idea is to look for explainability elements associated with the
replanning times and failures. We use the question to find the
reasons for replanning related to TCP’s characteristics.

6 Providing Explanations
In this section, we highlight a roadmap that allows the ques-
tioner to clarify the behaviour of an AI planner while solving
TCP. We define a set of answers to instances of the questions
described in Section 5 based on the domains that motivate
this paper. We focus on the tools to approach these questions
by analysing the properties of the model or the plan solution.
We use two plan solution examples obtained by combining a
contingent wrapper and a temporal planner (Carreno, Petil-
lot, and Petrick 2021).

Example 1 (Valve Manipulation): Figure 8 shows the plan
solution considering two goals: (valve closed wp32)
and (valve closed wp34).

Example 2 (Offshore Energy Domain): Figure 9 shows the
contingent plan solution for two goals: (inspected pB)
and (inspected pC).

Explaining Direct Queries. Causality can explain the need
of executing a sensing action δ early in the plan to support
the implementation of action a much later in the same plan.
In addition, causality can provide insights into the use of
action parameters (e.g., robot, sensor, actuator, etc.). We in-
troduce questions associated with the conditional elements
in our model. We use this Example 1 to answer instances of
questions Q1 and Q2.

Instance of Q1: Why did the planner use sense-valve in
the plan solution? . This question requires an analysis of the
causal structure of the plan, including both actions and sens-
ing actions (highlighted in red). The sensing actions provide
access to the value of state facts, and the appropriate course
of action might be quite different for each sensed value.
In this particular example, sensing the valve state is essen-
tial for goal completion. As such either (state on ?v) is
false and the goal is achieved, or the valve is open and the
goal is achieved through the close-bop action. However,
in some situations, sensing is used to determine the more

Time: (Action Name) [Duration]

0.00: (navigation auv base v1) [100.00]

100.01: (sense-valve auv camera1 v1) [30.00]

<BRANCH, 1, true, (state on v1)>

130.02: (close-bop auv v1) [50.00]

180.03: (navigation auv v1 surfc.3) [67.00]

247.04: (refuel auv surfc.3) [43.80]

290.85: (broadcast-data auv surfc.3) [10.00]

300.86: (navigation auv surfc.3 v2) [70.10]

370.97: (sense-valve auv camera1 v2) [30.00]

<BRANCH, 2, true, (state on v2)>

400.98: (close-bop auv v2) [50.00]

450.01: (navigation auv v2 base) [160.00]

610.02: (broadcast-data auv base) [10.00]

<BRANCH, 2, false, v2, (state on)>

400.98: (navigation auv v2 base) [260.00]

<BRANCH, 1, false, (state on v1)>

130.02: (navigation auv v1 v2) [280.00]

410.03: (sense-valve auv camera1 v2) [30.00]

<BRANCH, 2, true, (state on v2)>

440.04: (close-bop auv v2) [50.00]

490.05: (navigation auv v2 surfc.5) [140.00]

630.06: (refuel auv surfc.5) [42.00]

672.07: (broadcast-data auv surf.5) [10.00]

682.08: (navigation auv surf.5 base) [320.00]

(...)

Figure 8: Temporally-Contingent plan solution for the in-
spection and manipulation of the valves v1 and v2.

cost-effective route. Existing work on explanations for prob-
lems with uncertainty have assumed a policy plan structure,
e.g., (Amir and Amir 2018); however, we believe that the
structure of the branched plans might be exploited to sup-
port plan explanation. A starting point is in the exploitation
of visualisations for causal structures (Magnaguagno et al.
2017) and their extension for branching plans.

Instance of Q1: Why did the planner broadcast at sufc.3?.
For this domain one of the preconditions for manip-
ulation actions is the data acquired is small than
data capacity. Therefore the basis of explanation in this
example might be an analysis of the use of constrained re-
sources in the plan, e.g., (Dvořák and Barták 2010). The an-
swer to this question could be: “The AUV needs to commu-
nicate data to free up the data acquired before executing
another δ”. However, the reasoning to generate this response
is beyond the scope of the paper.

Instance of Q2: Why did the planner use action close-bop
for v1 after sense-valve?. The answer to this question is
attached to the set of possible states after a sensing action. If
the action happens just after a sensing action, the explain-
ability can be based on the branch’s information. For in-
stance, an answer to this question can say: “The AUV starts
close-bop v1 at 130.02 mins considering v1 state on”.
An opportunity indicated by this example is in better ap-
proaches for reasoning about and communicating the con-
tribution of a particular (sensing) action to achieving a goal
or knowledge gain, perhaps using structures similar to plan
property dependencies (Eifler et al. 2020).

Instance of Q2: Why did the planner use refuel at sufc.5
after sense-valve?. Another essential property of TCP
plan solutions is they can consider the effect of temporal
constraints using TILs. In the Valve Manipulation domain
the AUV needs to recharge during the mission. The query re-
lates to the refuel action at time 630.06 mins. The answer to
the question follow the same philosophy presented in (Fox,
Long, and Magazzeni 2017), and it can be: “The refuel en-
sures the AUV battery is above the threshold for the subse-
quent actions in the plan”. If we examine the sequence of
actions in BRANCH 2, this is the case when valve v1 was
closed. Therefore, the AUV does not need to consume bat-
tery in closing the valve or communicating data. This allows
AUV to move to valve v2 with enough battery to execute
the inspection. The question provides information about the
branch, therefore we can establish the reasoning comparing
the times the refuel action (highlighted in blue) is imple-
mented for each branch which is proportional to the battery
consumed.

Explaining Contrastive Queries. The contrastive property
(Miller 2018) is also considered for XAIP-TCP. (Fox, Long,
and Magazzeni 2017) describes the solution to these queries
can take into account the number of actions in the “optional”
plan (after the introduction of human variations) or the devi-
ation in the goals achieved as a consequence of the changes
introduced. However, here we present additional contrastive
questions associated to the analysis of an entire branch. Ex-
ample 1 is linked to Q3.

Instance of Q3: Why did the planner not refuel at sufc.4
after closing v2?. The AUV identifies the valve v1 is open
and needs to close it. The robot acquires data from the panel
that it needs to communicate. The AUV has to navigate to
the surface to execute the communication action. For this
solution, the solver reasons the AUV has to reach the sur-
face (to communicate data) and finds a solution that matches
with the time the SV is at sufc.3. The explanability for this
question can be based on existing approaches in XAIP, such
XAIP as a service (Cashmore et al. 2019). For example,
a foil can be generated with the added constraint of refu-
elling at sufc.4. The explanation is then based on the re-
sulting increase in the cost of the resulting plan branches.
An interesting possibility presented by the branched plan is
to use the different plan branches to provide comparisons,
e.g., comparing the locations of the AUV refuels in different
branches.

Explaining Unsolvability Queries. Unsolvability queries
for XAIP-TCPs analyse the failed attempt to implement ac-
tions in a given state. The solution to these questions can
consider model reconciliation properties (Sreedharan et al.
2019), in cases the action we want to implement prevents
the implementation of a goal. The action’s properties analy-
sis introduced by the validator VAL (Howey, Long, and Fox
2004) while evaluating the model, in cases, the current state
does not satisfy the action precondition. The following two
questions connect to Q4 and Example 1 and Example 2, re-
spectively.

Instance of Q4: Why can the planner not sense in advance?.

Time: (Action Name) [Duration]

0.00: (navigation husky1 pA pB Path1) [5.00]

5.01: (inspect-area husky1 pB) [10.00]

15.02: (position-camera husky1 camera1 Path1) [2.00]

17.03: (sense-path husky1 pB Path1) [3.00]

<BRANCH, 1, true, (path_free pB Path1)>

20.04: (navigation husky1 pB pC Path1) [8.00]

28.05: (inspect-area husky1 pC) [10.00]

<BRANCH, 1, false, (path_free pB Path1)>

20.04: (position-camera husky1 camera1 Path2) [2.00]

22.05: (sense-path husky1 pB Path2) [3.00]

<BRANCH, 2, true, (path_free pB Path2)>

25.06: (navigation husky1 pB pE Path2) [10.00]

35.07: (navigation husky1 pE pF Path2) [12.00]

47.08: (navigation husky1 pF pG Path2) [9.00]

58.09: (navigation husky1 pG pC Path2) [8.00]

67.01: (inspect-area husky1 pC) [10.00]

<BRANCH, 2, false, (path_free pB Path2)>

Figure 9: Temporally-Contingent plan solution for point in-
spection in an offshore energy simulator environment.

This question opens another set of interesting points around
explainability. It suggests the user’s model does not cap-
ture all of the constraints, and the solution could take inspi-
ration from model reconciliation approaches (Chakraborti
et al. 2017). For this particular problem, the sensing actions
have to be implemented at a specific position to identify a
single state (from a set of possibilities). Therefore, we can
approach the question saying: “The AUV needs to be po-
sitioned close to the valve to identify its state”. In general,
answering this question may require extending existing ap-
proaches to domains with temporal and numeric constraints,
which can support the application of sensing actions.

Instance of Q4: Why can the planner not navigate Husky1
to pC without sensing again at pB?. The plan solution to
this domain contains new reasoning associated with the sub-
plans, which must be explained. The sensing action is re-
peated every time the output from the action sense-path
is false. Separate actions are used to represent distinct oper-
ations, e.g., the camera needs to face a different direction.
Figure 9 shows the case where the maximum number of
paths that can be inputs or outputs to a point is two. The
explainability could follow the approach to queries: “Why is
this not a solution?” in (Sreedharan et al. 2020). The alter-
native case (where the sensing action at 22.05 mins is pre-
vented) leads to unsolvability.

Explaining Metric Queries. For temporally-contingent
problems, we consider plan metrics to analyse the quality
of the plan solution. The majority of temporal planners base
their performance analysis on the plan makespan. This is
difficult in contingent planning, where planners ideally opti-
mise the tree as a whole, leading to the higher cost incurred
on a particular branch to improve the quality of the overall
plan. Understanding the dependencies between the costs in
different branches of a plan could provide useful insights for
an explanation, e.g., examining the impact when sub-plans
have additional cost limits. As a starting point, we consider
comparisons amongst alternative branches. The following

question represents an instance of Q5 for Example 2.

Instance of Q5: Why is what the planner propose to sens-
ing Path1 first more efficient/cheap than sensing Path2?.
The explanation to this question is associated with the to-
tal navigation time for Husky1 in each case: if Husky1 takes
Path-1, time is 13 mins and for Path-2 the time is 44 mins.
This is an example of how the branches can provide foils,
which might form the basis for contrastive explanations. The
answer to this question can consider the plan metric, which
guides the plan solution optimisation.

Explaining Replanning Queries. Questions of this nature
are associated with planning execution. Visualisation tools
such as (Magnaguagno et al. 2017; Cashmore et al. 2019)
can be helpful to explain the system behaviour in multiple
replanning situations. (Fox, Long, and Magazzeni 2017) de-
scribes a way to explain replanning by applying filtering
over the set of preconditions required for an action. If all
preconditions are achieved, replanning is not needed. This
analysis is relevant to our work. However, we are also inter-
ested in explaining the best time to replan if the plan presents
conditional branches. An instance of Q6 associated with Ex-
ample 2 is described here.

Instance of Q6: Why does the planner need to replan if the
outcome of all sense-path actions is false?. The answer to
this question is attached to the knowledge acquired by im-
plementing the sensing action. In this example (see Figure
9), if Path-1 and Path-2 are not free the plan cannot be
completed. Therefore, the answer to the query should state
that none of the possible outputs of the sensing action be-
came available at the planning time. The replanning can be
caused due to the noise introduced by the sensory system
during plan execution which might prevent the acquisition
of the current path’s state. The reasoning around these ques-
tions should consider the knowledge updates required after
executing a δ. The answer to this question links to the run-
time plan execution as the state of the paths is known during
the plan implementation.

7 Conclusions
We have introduced Explainable Planning for Temporally-
Contingent Problems (XAIP-TCPs), as a contribution to the
Explainable AI (XAI) challenge. The approach was evalu-
ated on a new set of domains, motivated by real-world prob-
lems. We define a set of interesting questions from the tem-
poral and contingent planning point of view that covers (i)
temporal reasoning, such as timed initial literals and dead-
lines; (ii) resources, using numerical fluents; (iii) and contin-
gent branches, offering more powerful modelling of mission
scenarios. We provide an analysis of the main elements re-
quired to deliver effective explanations. We obtained initial
results that can lead to additional alternatives of reasoning
around plan outputs. The work provides the opportunity to
interact with multiple planning choices at the planning and
execution time considering the contingency component of
our problem solutions. Future work will explore ways to de-
fine a good metric for explanation that considers the main
characteristics of these problems.

Acknowledgments
This work was funded and supported by the ORCA Hub
(orcahub.org), under EPSRC grant EP/R026173/1.

References
Amir, D.; and Amir, O. 2018. HIGHLIGHTS: Summarizing
Agent Behaviors to People. In AAMAS.

Benton, J.; Coles, A. J.; and Coles, A. 2012. Temporal
Planning with Preferences and Time-Dependent Continuous
Costs. In ICAPS.

Bernardini, S.; Jovan, F.; Jiang, Z.; Watson, S.; Weightman,
A.; Moradi, P.; Richardson, T.; Sadeghian, R.; and Sareh, S.
2020. A Multi-Robot Platform for the Autonomous Opera-
tion and Maintenance of Offshore Wind Farms. In AAMAS,
1696–1700.

Bonet, B.; and Geffner, H. 2011. Planning under partial ob-
servability by classical replanning: Theory and experiments.
In IJCAI.

Carreno, Y.; Pairet, È.; Petillot, Y.; and Petrick, R. P. 2020a.
A decentralised strategy for heterogeneous auv missions via
goal distribution and temporal planning. In ICAPS, vol-
ume 30, 431–439.

Carreno, Y.; Pairet, È.; Petillot, Y.; and Petrick, R. P. 2020b.
Task Allocation Strategy for Heterogeneous Robot Teams in
Offshore Missions. In AAMAS, 222–230.

Carreno, Y.; Petillot, Y.; and Petrick, R. P. 2021. Compil-
ing Contingent Planning into Temporal Planning for Robust
AUV Deployments. In ICAPS Workshop on PlanRob.

Cashmore, M.; Collins, A.; Krarup, B.; Krivic, S.; Maga-
zzeni, D.; and Smith, D. 2019. Towards explainable AI plan-
ning as a service. In ICAPS Workshop on XAIP.

Chakraborti, T.; Sreedharan, S.; and Kambhampati, S. 2020.
The emerging landscape of explainable automated planning
& decision making. In IJCAI, 4803–4811.

Chakraborti, T.; Sreedharan, S.; Zhang, Y.; and Kambham-
pati, S. 2017. Plan explanations as model reconciliation:
Moving beyond explanation as soliloquy. In IJCAI.

Coles, A. J.; Coles, A.; Fox, M.; and Long, D. 2010.
Forward-Chaining Partial-Order Planning. In ICAPS, 42–
49.

Cresswell, S.; and Coddington, A. 2003. Planning with
timed literals and deadlines. In Workshop of the UK Plan-
SIG, 23–35.

Dvořák, F.; and Barták, R. 2010. AI Planning with Time and
Resource Constraints. In Proceedings of Znalosti.

Eifler, R.; Cashmore, M.; Hoffmann, J.; Magazzeni, D.; and
Steinmetz, M. 2020. A New Approach to Plan-Space Expla-
nation: Analyzing Plan-Property Dependencies in Oversub-
scription Planning. In AAAI, 9818–9826.

Fox, M.; and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. JAIR 20:
61–124.

Fox, M.; Long, D.; and Magazzeni, D. 2017. Explainable
planning. In IJCAI Workshop on XAI.
Hastie, H.; Lohan, K.; Chantler, M.; Robb, D. A.; Ra-
mamoorthy, S.; Petrick, R.; Vijayakumar, S.; and Lane, D.
2018. The ORCA Hub: Explainable Offshore Robotics
through Intelligent Interfaces. In HRI Workshop on Explain-
able Robotic Systems.
Hoffmann, J.; and Brafman, R. 2005. Contingent planning
via heuristic forward search with implicit belief states. In
ICAPS.
Howey, R.; Long, D.; and Fox, M. 2004. VAL: Automatic
plan validation, continuous effects and mixed initiative plan-
ning using PDDL. In IEEE International Conf. on Tools with
Artificial Intelligence, 294–301.
Kerschke, P.; Hoos, H. H.; Neumann, F.; and Trautmann, H.
2019. Automated algorithm selection: Survey and perspec-
tives. Evolutionary Computation 27(1): 3–45.
Magnaguagno, M. C.; Fraga Pereira, R.; Móre, M. D.; and
Meneguzzi, F. R. 2017. Web planner: A tool to develop clas-
sical planning domains and visualize heuristic state-space
search. In ICAPS Workshop on UIS.
Maurelli, F.; Carreras, M.; Salvi, J.; Lane, D.; Kyriakopou-
los, K.; Karras, G.; Fox, M.; Long, D.; Kormushev, P.; and
Caldwell, D. 2016. The PANDORA project: A success story
in AUV autonomy. In IEEE OCEANS – Shanghai.
McDermott, D.; Ghallab, M.; Howe, A.; Knoblock, C.;
Ram, A.; Veloso, M.; Weld, D.; and Wilkins, D. 1998.
PDDL – The Planning Domain Definition Language (Ver-
sion 1.2). Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control.
Miller, T. 2018. Contrastive explanation: A structural-model
approach. arXiv preprint arXiv:1811.03163 .
Muise, C.; Belle, V.; and McIlraith, S. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In AAAI, volume 28.
Petrick, R. P.; and Bacchus, F. 2002. A Knowledge-Based
Approach to Planning with Incomplete Information and
Sensing. In AIPS, 212–222.
Smith, D. E. 2012. Planning as an Iterative Process. In AAAI.
Sreedharan, S.; Chakraborti, T.; Muise, C.; Khazaeni, Y.;
and Kambhampati, S. 2020. –D3WA+–A Case Study of
XAIP in a Model Acquisition Task for Dialogue Planning.
In ICAPS, volume 30, 488–497.
Sreedharan, S.; Srivastava, S.; Smith, D.; and Kambhampati,
S. 2019. Why can’t you do that HAL? explaining unsolvabil-
ity of planning tasks. In IJCAI.
Zhao, E.; and Sukkerd, R. 2019. Interactive explanation for
planning-based systems: WIP abstract. In Proceedings of
the ICCPS, 322–323.

