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ABSTRACT

Vision-based activity recognition tasks are sensitive to environmental context and
lighting, making generalization across domains difficult. Models trained in con-
trolled settings can report high accuracy, but often fail under domain shift, where
it remains unclear whether predictions depend on causal foreground cues, spuri-
ous background signals, or shortcut learning tied to context rather than behavior.
Saliency methods offer a view of model focus, but have largely been confined
to qualitative visualization. We hypothesize that behavioral divergence between
models is proportional to divergence in their saliency embeddings. To examine
this, we introduce Saliency Attribution for Goal-grounded Evaluation (SAGE), a
modular framework that unifies heterogeneous datasets through category mapping
and balancing, generates controlled foreground and background variants, com-
putes saliency maps, and encodes them into tokenized representations suitable
for embedding and comparison. By disentangling foreground and background
saliency, the framework provides a diagnostic signal of how models attend to
causal versus spurious regions, complementing accuracy as a measure of general-
ization. We demonstrate feasibility on vision-based driver distraction detection,
an activity recognition task where distraction is inferred from driver activities
rather than objects, by creating a unified 10-class variant of the StateFarm and
100-Driver datasets that highlights the challenges of category mapping and back-
ground control. While full embedding-based evaluations are ongoing, the frame-
work separates foreground and background saliency, discretizes them into tokens,
and encodes them in a manner aligned with tokenized vision architectures such as
ViTs and VLMs. This design makes the framework scalable across vision-based
classification tasks where foreground-background disentanglement is critical, and
presents it as a diagnostic tool for analyzing behavioral divergence and robustness
under domain shift.

Keywords: Explainable AI, Vision-based Driver Distraction Detection (vDDD), SAGE, Saliency
Embeddings, Behavioral Divergence, Domain Shift, Generalization, Shortcut Learning, Vision–
Language Models (VLMs)

1 INTRODUCTION

Activity recognition in vision systems remains fragile under domain shift, where models trained in
controlled environments fail when deployed in settings with different lighting, context, or subject
distributions (Duan et al., 2023). A key uncertainty is whether predictions depend on causal ac-
tion cues (e.g., hand and torso dynamics) or spurious background signals (e.g., dashboard texture,
seat position) (Geirhos et al., 2020). Conventional saliency methods such as Grad-CAM (Selvaraju
et al., 2017) provide qualitative insights into model focus but lack a standardized representation for
comparison, limiting their use in diagnosing or quantifying behavioral divergence.

We introduce Saliency Attribution for Goal-grounded Evaluation (SAGE), a modular frame-
work that moves saliency from visualization to structured diagnostics. SAGE unifies heterogeneous
activity datasets through category mapping (Montoya et al., 2016; Wang et al., 2023), generates
controlled background variants (full, bbox, segmentation, bbox-guided segmentation), computes
normalized saliency maps across multiple CAM methods, and converts them into foreground- and
background-aware token descriptors. These tokens capture patch-level statistics (mass, centroid,
maxima, foreground fraction) over grids (e.g., 4×4, 8×8), enabling embeddings that align naturally
with patch-based architectures and multimodal encoders (Dosovitskiy et al., 2021).
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Driver Activity
Images

Saliency Extractor
(Grad-CAM, EigenCAM)

Tokenization
Foreground / Background

Evaluation &
Diagnostics

SAGE Reports
(CSV, JSON, Plots)

VLM Embeddings
(CLIP, BLIP)

Outputs: whole, fg, bg saliency
maps

Grid tokens (4×4,
8×8)

Metrics: generalization gap, divergence
scores, confusion matrices

Future work: embedding saliency
tokens in VLM space for divergence
analysis

Figure 1: Overview of the SAGE framework. The dashed box marks the current scope (SAGE v1.0):
saliency extraction, tokenization, and evaluation pipelines producing quantitative reports. The VLM
embeddings module is out of scope in current work and represents future work.

Our experimental study uses driver distraction detection as a representative domain, harmoniz-
ing the StateFarm dataset with the 100-Driver dataset into a ten-class schema. We benchmark
EfficientNet-B0 and lightweight CNNs across cross-domain settings, with models trained on one
dataset variant and evaluated on another. Results show asymmetric degradation: symmetric ges-
tures (talking left/right) and occlusion-heavy actions (reaching behind, makeup)
collapse disproportionately, while distinct actions (texting, safe driving) transfer more
reliably. Saliency mosaics and token statistics confirm that correct predictions align with fore-
ground cues, while errors diffuse into background regions. Variants that suppress background (SEG,
BBOXSEG) reduce shortcut reliance but do not eliminate failures, highlighting the persistent role of
symmetry, occlusion, and rare-class drift.

By discretizing saliency into reproducible token representations, SAGE complements accuracy
with a diagnostic lens: divergence between models can be attributed to whether they anchor on
causal or spurious regions. This design not only advances driver distraction detection but also pro-
vides a generalizable template for activity recognition tasks where foreground-background disentan-
glement is critical (Moayeri et al., 2022; Xiao et al., 2020; Fang et al., 2018). Figure 1 illustrates the
workflow spanning dataset unification, saliency computation, tokenization, and downstream analy-
sis.

2 RELATED WORK

Cross-dataset generalization. Cross-dataset generalization has been recognized as a critical re-
quirement for deploying vision-based driver distraction detection (vDDD) in real-world conditions.
Models trained on one dataset often degrade significantly when evaluated on another due to distribu-
tional shift. Duan et al. (2023) introduced a Score-Softmax classifier to enhance cross-dataset perfor-
mance in distracted driving detection, and Zandamela et al. (2022) emphasized out-of-distribution
(OOD) testing as a benchmark of robustness. While such works improve accuracy, they mainly
report what changes across domains rather than why, leaving open the question of which features
drive divergence.

Foreground-background sensitivity. Background has been argued to act as either noise or use-
ful context depending on the setting. Xiao et al. (2020) showed that removing background can
sometimes improve robustness, while Moayeri et al. (2022) demonstrated that discarding it indis-
criminately can harm performance, since not all background is spurious. These findings motivate
approaches that can disentangle causal contributions from foreground versus background rather than
treating the latter uniformly as noise.

Causal feature alignment. To address this challenge, Venkataramani et al. (2024) proposed
Causal Feature Alignment (CFA), explicitly aligning model representations with causal regions.
CFA cautions that indiscriminate background removal can degrade performance when background
carries causal information. However, while alignment is promising, systematic diagnostics to reveal
when models rely on causal versus spurious features across domains remain limited.

Saliency as explanation. Saliency-based explanations are widely used to analyze where models
focus. Early methods such as gradient saliency (Simonyan et al., 2014) laid the foundation, followed
by Grad-CAM (Selvaraju et al., 2017) and Grad-CAM++ (Chattopadhay et al., 2018), which became
de facto visualization tools in vDDD and beyond. These methods show whether robust models attend
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more to the driver foreground rather than background, but outputs are qualitative, layer-sensitive, and
difficult to compare across datasets.

Trustworthiness of saliency. The reliability of saliency methods has been repeatedly questioned.
Adebayo et al. (2018) revealed that many attribution techniques fail sanity checks, while Kindermans
et al. (2017) showed their sensitivity to small perturbations. More recently, Venkatesh et al. (2024)
argued that gradient-based saliency maps cannot be trusted as faithful indicators of model reasoning.
These critiques underscore the limitations of saliency as an explanatory tool, especially in robustness
evaluation.

Saliency in training. Beyond post-hoc visualization, some works attempt to integrate saliency
into training pipelines. Van Zyl et al. (2024) and Tempel et al. (2025) proposed attribution-guided
regularizers to steer models toward human-interpretable features, while Dey et al. (2021) inves-
tigated context-driven distraction detection with saliency emphasis. Despite these attempts, the
effectiveness of saliency-guided training remains inconsistent without causal grounding.

From human fixation to model saliency. Human saliency prediction has established standard-
ized datasets and metrics to benchmark computational models of visual attention (Judd et al., 2012;
Borji et al., 2013). These works define a rigorous pipeline, saliency as a concept, represented by
maps, evaluated via metrics, that has enabled reproducible comparisons. Model saliency, however,
differs fundamentally: it reflects neural network focus rather than human gaze. Borrowing the
benchmarking mindset while adapting it to model saliency remains unresolved.

Architectural trends. Advances in architectures extend saliency analysis beyond CNNs. Vi-
sion Transformers and vision-language models require new attribution techniques, with Zheng et al.
(2025) examining saliency in VLMs for safety-critical applications. These developments show that
semantic embeddings can enrich explanatory signals, but their integration into cross-dataset vDDD
analysis is still lacking.

3 FRAMEWORK

We introduce a modular pipeline for activity recognition that converts saliency maps into
foreground/background-aware token vectors and standardizes downstream diagnostics under a
declarative, reproducible workflow. The key contribution is the formulation and implementation
of saliency tokenization and analysis at scale.

Problem conceptualization: Let D = {(xi, yi)}Ni=1 with images xi ∈ RH×W×3 and labels
yi ∈ Y . A classifier fθ produces logits z = fθ(x) and ŷ = argmaxk zk. A saliency method
ℓ yields a map S(x; fθ, ℓ) ∈ RH×W . Foreground/background masks Mfg,Mbg are defined as in
Sec. Dataset preparation. We rectify and normalize saliency via

S̃ =
ϕReLU(S)∑

u,v ϕReLU(Su,v)
, ϕReLU(t) = max(0, t),

yielding a spatial probability distribution with
∑

S̃ = 1. Foreground and background saliency
masses are Afg =

∑
S̃⊙Mfg and Abg =

∑
S̃⊙Mbg. A patch grid G (e.g., P ×Q) defines per-cell

descriptors
tg =

[ ∑
(u,v)∈g

S̃u,v, meang(S̃), maxg(S̃), COMg(S̃), fgfracg
]
,

where fgfracg =
∑

(u,v)∈g Mfg

|g| . The set {tg}g∈G constitutes the saliency tokenization, stored verba-
tim for downstream embedding.

Dataset preparation: Cross-domain evaluation requires a unified label space. We harmonize
the State Farm Distracted Driver dataset (SF3D) (Montoya et al., 2016) and the 100-Driver dataset
(Wang et al., 2023) into a ten-class schema via a declarative mapping (Appendix 2). Many-to-
one merges preserve class balance through explicit weights. Foreground masks are acquired via
pluggable detectors: YOLOv8 (COCO-pretrained person) in this work, but extendable to SAM2
or VLM-based selectors. Four anchored variants are generated: FULL (unaltered frame), BBOX
(driver crop), SEG (segmented foreground), and BBOXSEG (bbox-guided segmentation). Each vari-
ant preserves original splits and produces aligned artifacts: cropped/masked RGBs, binary masks,
YOLO+VIA annotations, and per-split statistics. Figure 2 illustrates mosaics for SF3D and the
unified 100-driver-sf3d-nc10.

Training and evaluation: A declarative loader feeds a common training/evaluation stack across
26 torchvision CNNs. We benchmark five lightweight backbones DenseNet-121, EfficientNet-
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(a) SF3D mosaic (b) 100-Driver remapped (nc10)

Figure 2: Mosaics of the ten-class activity label space. Panel (a) shows the SF3D categories, while
panel (b) shows the corresponding remapped classes from the 100-Driver dataset. The side-by-side
view highlights semantic alignment and cross-dataset variability.

B0, ResNet-18, ResNet-50, and SqueezeNet-1.0 (224 × 224) motivated by cross-domain gen-
eralization studies (Wang et al., 2023; Duan et al., 2023), while an additional 21 models
(e.g., DenseNet-161/169/201, Inception-v3, MobileNet-v2/v3, VGG-11/13/16/19, ShuffleNet-v2,
ResNet-34/101/152, Wide-ResNet-50/101) can be enabled without code changes. All models use
ImageNet-pretrained weights, cross-entropy loss, batch size 32, and 100 epochs. Each run records
configuration files, seeds, TensorBoard logs, ROC curves (overall and per-class), confusion matrices
with FP/FN image lists, checkpoints (best and final), speed/performance metrics, and a timestamped
run directory encoding dataset and variant identifiers. Each dataset variant pair is thus treated as a
first-class dataset in the configuration, ensuring systematic coverage and reproducibility.

Cross-domain inference and evalaution: Models trained on source variants (D(a) →YU ) are
evaluated on target variants (D(b) → YU ), with predictions, confidences, and metrics exported as
CSV/JSON for downstream analysis. In practice, we consider three source variants from SF3D-
bbox (reduced background), seg (background removed), and bboxseg (background controlled), and
evaluate each trained model against multiple target variants from 100-Driver, namely bbox, seg,
bboxseg, and full. This design creates a structured 3×4 evaluation matrix in which each cell corre-
sponds to a distinct pairing of background treatment at training and testing. By traversing this grid,
it becomes possible to directly assess the consequences of background mismatches: when a model
trained with limited or no background is tested in a background-rich target, or conversely when a
background-reliant source model is evaluated on background-suppressed targets.

The purpose of this construction is not to exhaustively enumerate experiments but to provide a
principled lens on the role of background in generalization. Consistent structure across variants
enables attribution of performance changes to differences in background exposure rather than other
confounding factors. Evaluations capture both predictive performance (accuracy, F1, calibration)
and representational focus (saliency distributions over foreground and background regions), but the
essential methodological point is that the cross-domain grid enforces a controlled comparison. Each
row reflects a fixed training condition, while each column modulates the target’s background avail-
ability. This arrangement provides a compact yet expressive framework for diagnosing whether a
model’s decision boundary is anchored in causal foreground cues or entangled with spurious back-
ground context.

Confidence-stratified clustering: To ensure fair saliency comparison, we stratify images by
correctness and confidence. For each class c, correct and error sets are partitioned into four bins
via k-means on confidence scores. Clusters are stored with thumbnails and dashboards; saliency is
generated within clusters to align difficulty levels.

Saliency generation and analysis: We integrate ≈ 14 methods (Grad-CAM, Grad-CAM++,
EigenCAM, ScoreCAM, etc.) via python-grad-cam. Outputs are standardized by per-image
min–max scaling, ReLU+PDF normalization, and fg/bg masking to compute Afg, Abg and patch-
level statistics. For each image/method we emit arrays (whole, fg, bg, mask, tokens) plus
overlay PNGs. Token-level analysis computes fg/bg mass ratios, patch-wise KL between variants,
cluster-conditioned saliency stability, and rank correlations. Tokens are stored as CSV and .npy
for efficient reuse.

Reproducibility: All stages are declaratively configured (datasets, map-
pings, saliency methods, grids, layers) via YAML and CLI. Naming follows
logs/{stage}-{timestamp}/{model}-nc{num classes}-{dataset}-{variant}/,
with model fingerprints, code commits, and seeds recorded. Artifacts are joinable via stable indices
(image id, split, class, variant, method, grid).
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Table 1: Aggregated performance metrics of EfficientNet-B0 across dataset variants. Reported met-
rics: Accuracy (‘a‘), F1-score (‘f1‘), Precision (‘p‘), Recall (‘r‘) in percentages. Each row indicates
the dataset the model was trained on and the dataset it was evaluated on. Bold red values denote
global bests; underlined values denote per-block bests.

Variant (Train → Eval) a f1 p r Support

BBoxSeg (SF3D → 100-Driver) 20.91 13.41 18.71 20.91 5255
BBox (SF3D → 100-Driver) 20.33 12.94 18.06 20.33 5255
Seg (SF3D → 100-Driver) 20.93 13.34 18.56 20.93 5255
Full (SF3D → 100-Driver) 16.69 9.40 8.98 16.69 2834

BBoxSeg (100-Driver → SF3D) 12.91 9.64 14.12 12.91 1843
BBox (100-Driver → SF3D) 12.63 9.41 14.01 12.63 1843
Seg (100-Driver → SF3D) 12.79 9.54 14.02 12.79 1843
Full (100-Driver → SF3D) 11.23 8.12 13.41 11.23 1843

(a) efficientnet b0 trained on SF3D-bboxseg,
tested on 100-Driver.

(b) efficientnet b0 trained on SF3D-seg,
tested on 100-Driver.

Figure 3: Per-class confusion matrices with FP/FN overlays for EfficientNet-B0 variants trained on
SF3D and evaluated on 100-Driver (Cam2). Clear misclassification trends appear in symmetric and
rare classes.

Limitations: This work does not include token embeddings or benchmark scores. However,
the design explicitly enables both: {tg} are embeddable via visual or text prompts, and evaluators
already log the metadata needed for goal-conditioned alignment. Current results emphasize robust
visualization, normalized tokenization, and reproducible analysis across datasets and variants.

4 RESULTS

Class-wise generalization trends were further examined using confusion matrices with false positives
(FP) and false negatives (FN) highlighted. Representative EfficientNet-B0 models trained on SF3D
and evaluated on 100-Driver (and vice versa) are selected from the bbox, seg, and bboxseg
variants. Figures 3a–4b visualize the confusion matrices, revealing asymmetric misclassification
patterns and systematic class collapses under domain shift. Frequent activities with strong visual
cues (e.g., ‘safe driving’, ‘texting right’) show partial transferability, while classes with symmetric
gestures (e.g., ‘talking left/right’) or occlusion-heavy actions (e.g., ‘reaching behind’) exhibit severe
degradation.

The confusion matrices in Figures 3 and 4 demonstrate that domain shift does not uniformly
affect all classes. For instance, ‘texting right’ retains recall above 0.7 across settings, while ‘talking
left’ often collapses with recall below 0.1. Rare categories such as ‘makeup’ and ‘reaching behind’
exhibit both low recall and high false positives, especially when evaluated cross-domain. These
patterns indicate that model transfer is constrained not only by domain differences but also by intra-
class ambiguity and dataset imbalance.
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(a) efficientnet b0 trained on 100-Driver-
bbox, tested on SF3D.

(b) efficientnet b0 trained on 100-Driver-seg,
tested on SF3D.

Figure 4: Per-class confusion matrices with FP/FN overlays for EfficientNet-B0 variants trained on
100-Driver and evaluated on SF3D. Misclassifications reveal strong dataset-specific biases.

Figure 5: Representative k-means (k=4) confidence-stratified clusters, visualized as scatter, band,
and histogram plots.

Key Takeaways on Per-Class Errors and Background Role
• Error Concentration: Misclassifications cluster around overlapping or occluded gestures (reaching behind, hair/makeup,
talking left), with confusion strongest in bbox-only variants.

• FP–FN Trade-off: False positives dominate between visually similar classes (e.g., drinking vs. reaching behind), while false
negatives rise for rare actions when background context is removed.

• Background Influence: Full background aids separation of symmetric classes but encourages shortcuts; segmentation trims noise yet
suppresses subtle cues, with bboxseg emerging as the most balanced compromise.

Confidence-Stratified Clustering. To align saliency analysis with model reliability, we stratify
predictions into four confidence-based groups using k-means on softmax scores. As shown in Fig-
ure 5, correct predictions concentrate in high-confidence bins (≥0.8), while errors are more dis-
persed across mid-confidence ranges (0.4–0.6), indicating boundary-level uncertainty. Variants sup-
pressing background (SEG, BBOXSEG) exhibit clearer separation of correct and incorrect groups
than background-rich inputs (FULL, BBOX), reinforcing the diagnostic value of clustering.

Cluster Analysis Takeaways
• High-confidence clusters (≥0.8) align with correct predictions; errors dominate mid-confidence bins (0.4–0.6).
• False negatives cluster in uncertain regions, reflecting weak boundaries in overlapping activity classes.
• Background-suppressed variants improve separation, suggesting reduced reliance on spurious context.

Saliency Tokenization under Cross-Domain Shift (Grad-CAM). To complement performance
and clustering analyses, we analyze EfficientNet-B0 with Grad-CAM across three background vari-
ants: BBOX, SEG, and BBOXSEG. Results shows that class-specific mosaics for representative dif-
ficult/ambiguous classes where cross-domain transfer degrades (e.g., midline symmetry, hand/face
occlusions, rare actions). We use per-class tiles to align with the confusion and clustering diag-
noses. All saliency maps use ϕReLU-normalized Grad-CAM with precomputed foreground/back-
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c5 (correct) c5 (incorrect) c8 (correct) c8 (incorrect)

c9 (correct; rare) c9 (incorrect; rare) c7 (correct) c7 (incorrect)

Figure 6: SEG (Train SF3D-seg → Eval 100-Driver-seg). Removing background at both train and
eval reduces shortcut saliency (fewer dashboard/seat activations) and tightens focus on hands/face.
Remaining failures (right column) are dominated by occlusions and symmetric gestures consistent
with confusion matrices (Fig. 3) and mid-confidence clusters.

ground masks and decomposed into foreground/background using YOLOv8 segmentation masks,
then patchified into token grids (4×4, 8×8) (Sec. 3).

BBOX (SF3D→100-Driver). When trained and tested with bounding-box crops, saliency reveals
partial but noisy focus. Correct predictions (e.g., c5, c7, c8) localize on hands and torso, but error
cases diffuse across dashboards and side panels, suggesting reliance on spurious context. This cor-
relates with asymmetric confusion in Fig. 3 and the mid-confidence dispersion in clustering (Fig. 5).
In short, BBOX does not fully suppress background, leaving shortcut attributions that undermine
generalization.

BBOXSEG (SF3D→100-Driver). Joint use of bounding boxes with guided segmentation yields
cleaner, more class-consistent saliency. Foreground activations are tighter and better aligned with
causal regions (hands/face), while background leakage diminishes compared to BBOX. Rare ac-
tions (c9) still fragment under low data priors, but the overall reduction of spurious peaks supports
BBOXSEG as a more balanced trade-off. These mosaics confirm the quantitative gains in Table 1,
where BBOXSEG achieves best or near-best metrics across most settings.

SEG (SF3D→100-Driver). Foreground-only segmentation produces the sharpest saliency focus,
with hands and faces dominating the maps. Correct predictions cluster strongly in high confidence
(≥ 0.8), but errors for occluded or symmetric activities (c7, c8, c9) reveal fragmented saliency and
missed cues. Removing all background reduces shortcut reliance but also trims subtle contextual
signals that could disambiguate gestures, explaining both the improvement in robustness and the
persistent rare-class collapse. This shows why SEG variants perform best in recall but sometimes
lag in precision.

Saliency Class-Conditioned Insights (EffNet-B0, Grad-CAM)
(i) Causal vs. spurious focus: Correct predictions concentrate foreground saliency on driver hands/torso; errors exhibit diffuse background
peaks (dashboards, seats), mirroring mid-confidence clusters (Fig. 5). (ii) Background control: BBOXSEG and SEG attenuate shortcut
saliency relative to BBOX, improving class separation but not eliminating failures driven by occlusion/symmetry. (iii) Error taxonomy: (a)
Symmetric collapse (c7/c8): left/right talk or similar gestures flip; maps straddle midline. (b) Occlusion-driven misses (c5/c9): hands/ob-
jects hidden; saliency fragments across torso/seat. (c) Rare-class drift (c9): weak priors amplify spurious background. (iv) Tokenization
payoff: The observed fg/bg separation patterns motivate fg- and bg-token vectors; embedding these (Sec. 3) into VLM/vLLM spaces
enables divergence diagnostics beyond accuracy.

Tokenization analysis. The panel in Fig. 7 illustrates how saliency maps are converted into struc-
tured descriptors. The 4×4 grid captures coarse localization, showing that entire arm/torso patches
dominate in fg tokens with max values near 1.0. The 8×8 grid provides finer granularity: contigu-
ous patches around the hand cluster show high mean (≥ 0.7) and sharp maxima, while background
patches are scattered and low-intensity.

7
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Figure 7: Tokenization example (c0, correct). Grad-CAM map normalized with ϕReLU, decom-
posed into foreground (fg) and background (bg) using YOLOv8 masks, then patchified into 4×4
and 8×8 grids. Tokens encode per-patch mass, mean, max, centroid, and fg/bg fraction. Diamonds
mark centroids; greener cells carry higher saliency mass.

Foreground vs. background comparison confirms that fg tokens are compact and class-
discriminative, whereas bg tokens are noisy but occasionally spike, explaining residual shortcuts.
In downstream use, fg tokens provide causal evidence for activity classification, bg tokens flag po-
tential spurious cues, and whole-map tokens preserve global consistency. Embedding these token
vectors into VLM/vLLM spaces (Sec. 3) enables divergence analysis: stable fg token embeddings
indicate robust generalization, while unstable bg embeddings reveal shortcut reliance.

Per-Class Saliency (Class c7: talking-left). We compare class c7 saliency across BBOX,
BBOXSEG, and SEG variants using the same exemplar image (img 116). All panels were normal-
ized with ϕReLU Grad-CAM and decomposed into foreground/background with YOLOv8 masks.
Token statistics (4×4, 8×8) highlight distinct attribution profiles.

BBOX (SF3D → 100-Driver). Foreground saliency is high (mean ≈0.27, max ≈1.0), but
background tokens retain non-negligible activation (mean ≈0.11), particularly around seat/dash
regions:contentReference[oaicite:0]index=0. This explains why confusion matrices show midline
collapse between left/right talking classes: saliency COM drifts towards background tokens, rein-
forcing shortcut reliance.

BBOXSEG (SF3D → 100-Driver). Here, background suppression tightens the
saliency map: foreground tokens dominate with mean ≈0.27, background drops further
(≈0.11):contentReference[oaicite:1]index=1. 4×4 grid reveals compact central patches (idx
5,9,10) carrying ¿0.6 mean saliency, aligning with driver torso/face. This supports improved
separation seen in clustering (mid-confidence bins shrink).

SEG (SF3D → 100-Driver). Segmentation removes background almost entirely (fg mean ≈0.17,
bg mean ≈0.15), yet also trims subtle context:contentReference[oaicite:2]index=2. 8×8 tokens
reveal sparse activations with lower max values (≈0.35), fragmenting across patches instead of
forming a single COM. This mirrors performance drops for occluded/symmetric gestures: model
sees less spurious context, but also less discriminative signal.

Cross-variant tokenization. 4×4 tokens provide coarse localization (robust cluster-level anal-
ysis), while 8×8 tokens capture finer but noisier saliency dispersion. Foreground tokens stabilize
under BBOXSEG; SEG disperses them, weakening boundary confidence. These token embeddings
(fg/bg, 4×4 vs. 8×8) will be used downstream as inputs to VLM/vLLM divergence measures.

Class c7 (Talking-Left): Saliency Insights
(i) BBOX shows strong fg focus but residual bg leakage (dash/seat) drives midline confusions; (ii) BBOXSEG yields sharper fg attribution
with compact high-saliency patches reducing spurious bg reliance; (iii) SEG removes most bg but fg tokens fragment, with symmetric ges-
tures still collapsing; (iv) Tokenization confirms 4×4 grids capture stable coarse trends while 8×8 adds granularity yet noise, supporting
fg/bg divergence embeddings.

Scope note. For efficientnet b0 seg 190925 021131 we have only error mosaics at
present (index artifacts); we therefore restrict to qualitative trends and defer per-class token statistics
to future work scope. This does not affect the core claims (fg focus in correct; bg diffusion in errors)
consistently observed across other runs.

5 DISCUSSION AND FUTURE WORK

This work set out to move saliency from qualitative visualization toward standardized, embeddable
diagnostics. By decomposing Grad-CAM maps into foreground and background masses and further
tokenizing them into patch descriptors, we provide a structured signal of how models attend to causal
versus spurious regions. The analysis shows three recurring themes. (i) Performance degradation
is asymmetric across classes: under domain shift, symmetric gestures and occlusion-heavy actions
collapse disproportionately, while visually distinct activities transfer more reliably. (ii) Saliency ex-
poses diagnostic evidence beyond accuracy: correct predictions concentrate on hands and torso,
errors diffuse into dashboards and seats, and mid-confidence clusters reveal elevated background
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mass. (iii) Background control helps but is insufficient: segmentation and bboxseg variants reduce
shortcuts and stabilize token distributions, yet failures tied to symmetry, occlusion, and rare-class
drift persist. Foreground-background tokenization elevates these observations into a reproducible
representation: errors can be localized to token instabilities, and divergence between models can be
linked to causal versus spurious focus. The framework therefore complements accuracy with a di-
agnostic dimension directly aligned with generalization. Although our case study centered on driver
distraction detection, the implications extend to activity recognition broadly, where foreground cues
often compete with contextual correlates in shaping transfer performance.

Crucially, these findings reflect back on our central hypothesis: that behavioral divergence be-
tween models is proportional to divergence in their saliency embeddings. The evidence supports
this direction only partially. Foreground-background tokenization reveals consistent links between
saliency divergence and model reliability, yet residual errors from symmetry and occlusion indicate
that saliency embeddings alone cannot capture all behavioral variance. This critical gap reframes
the hypothesis not as a closed claim but as a working diagnostic lens-one that must be stress-tested
with embeddings in multimodal spaces and across broader domains.

Future Work. Several directions remain. (i) Embedding saliency tokens into multimodal encoders
(VLMs, vLLMs) to quantify model divergence in semantic space. (ii) Extending tokenization to
architectures with native patch structures (e.g., ViTs, hybrids). (iii) Leveraging token statistics for
training interventions such as saliency-guided augmentation or background dropout. (iv) Improving
fg/bg masks with stronger detectors or foundation models to reduce annotation bias. (v) Broadening
benchmarks beyond SF3D and 100-Driver to establish generality across activity recognition tasks.

6 CONCLUSION

We introduced Saliency Attribution for Goal-grounded Evaluation, a framework that converts raw
saliency into reproducible, tokenized diagnostics. By decomposing Grad-CAM maps into fore-
ground and background masses and encoding them as patch-level descriptors, the framework ex-
poses how domain shift drives asymmetric class collapse, mid-confidence background reliance, and
failures from symmetry or occlusion. The results support our central hypothesis that divergence
in saliency patterns tracks behavioral divergence between models, while also revealing limits where
saliency embeddings alone cannot resolve ambiguity. This establishes a principled lens that comple-
ments accuracy with interpretable diagnostics and opens the path toward embedding saliency tokens
in multimodal spaces to quantify and mitigate divergence in activity recognition.

LARGE LANGUAGE MODELS USAGE

This work used large language models (LLMs), including ChatGPT (OpenAI), SciSpace, and Gem-
ini, for writing polish, literature retrieval, initial research feasibility, research ideation, coding as-
sistance (formatting and reviews), and LATEX editing. All technical contributions and analyses were
performed by the authors.
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Table 2: Mapping of original 100-Driver labels to the unified ten-class schema and corresponding
SF3D labels.

Unified class Original 100-Driver label(s) SF3D label Human-readable description

c0 C1 Drive Safe c0,safe driving Normal Driving (C1)
c1 C7 Text Right c1,texting right Texting Right (C7)
c2 C5 Talk Right c2,talking phone right Phone Right (C5)
c3 C6 Text Left c3,texting left Texting Left (C6)
c4 C4 Talk Left c4,talking phone left Phone Left (C4)
c5 C18 Operate Radio c5,operating radio Operate Radio (C18)
c6 C16 Eat Left c6,drinking Drink (C16)
c7 C20 Reach Behind c7,reaching behind Reach Behind (C20)
c8 C8 Make Up c8,hair and makeup Make Up (C8)
c9 C22 Talk to Passenger c9,talking to passenger Talk Passenger (C22)
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A DATASET PREPARATION DETAILS

The State Farm Distracted Driver dataset (SF3D) (Montoya et al., 2016) and the 100-Driver dataset
(Wang et al., 2023) are unified into a ten-class schema through a declarative JSON mapping. For-
ward mappings associate original labels (e.g., C7 Text Right) with unified codes (e.g., c1),
while reverse mappings preserve provenance, and human-readable labels provide semantic clarity.
This mapping generalizes to any pair of datasets with partial overlap. An excerpt is shown below:

SEQUENTIAL CREATION PROCESS

Both datasets undergo the same reproducible workflow:
1. Label mapping: remap dataset labels into the unified schema using declarative JSON files.

For 100-Driver, this produces train/val/test splits, remapped indices, mosaics, and per-class
distributions.

2. Variant generation: run YOLOv8 segmentation to create bbox, seg, and
bboxseg forms, each emitting cropped RGBs, masks, annotations, and logs under
logs/annotate-<timestamp>.

3. Index regeneration: use regen loadertxt.sh to rebuild train/val/test indices, ensuring
splits remain consistent after filtering.

4. Configuration update: extend ddd-datasets.yml with dataset-IDs for each variant,
pointing to regenerated indices and directories.

5. Symlink creation: map timestamped directories to canonical variant names (e.g.,
sf3d-day-bydriver-bbox) for stability.

6. Summaries: verify mosaics, per-class plots, and summary.json files capturing counts,
fg/bg ratios, and error statistics.

DIRECTORY STRUCTURES

Figure 8 shows an abridged directory layout rendered using the dirtree package, closely mir-
roring the filesystem output of the tree command. SF3D uses timestamped annotation runs with
symlinks to canonical names, while 100-Driver is organized by day/night and camera.

100-DRIVER-SF3D-NC10 HIERARCHY

After remapping the original 22-class 100-Driver dataset into the ten-class SF3D schema,
the new dataset follows a reproducible directory layout. Each run is timestamped under
logs/annotate-<ddmmyy hhmmss> and contains annotation outputs, variants, metadata, and
split indices. Figure 9 shows the abridged hierarchy.
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data/
sf3d/

annotate-bbox-160925 171044/
sf3d-day-bydriver-bbox/
sf3d-day-bydriver-seg/
sf3d-day-bydriver-mask/
train/
val/
test/

sf3d-day-bydriver-bbox ->
annotate-bbox-160925 171044/sf3d-day-bydriver-bbox
sf3d-day-bydriver-seg ->
annotate-bbox-160925 171044/sf3d-day-bydriver-seg

100-driver/
day/

cam1/
cam2/
cam3/

night/...
splits/

train.txt
val.txt
test.txt

Figure 8: Abridged directory layout for SF3D and 100-driver-sf3d-nc10. The straight-line style
mirrors Unix tree output, left-aligned for readability.

PREPARATION SCRIPTS

The creation workflow relies on a small set of shell scripts. For SF3D and 100-Driver variants the
following commands are executed sequentially:

1. Annotation and segmentation:
bash scripts/anonflow.sf3d-day-bydriver.yolov8s-seg.sh
bash scripts/anonflow.sf3d-day-bydriver-bbox.yolov8s-seg.sh

These generate bbox, seg, and bboxseg variants under timestamped logs/annotate-*.
2. Symlink updates:

vi scripts/datasets/sf3d.symlinks.sh

Extend symlinks so canonical dataset-IDs point to the latest timestamped run.
3. Split regeneration:

bash scripts/regen_loadertxt.sh

Rebuild train/val/test indices to exclude filtered images and update the dataset configuration.
4. Dataset configuration: Edit data/ddd-datasets.yml to add or update entries for new

dataset variants, pointing to regenerated indices.

ORIGINAL 100-DRIVER LABELS

For reference, the original label space of the 100-Driver dataset is illustrated in Fig. 10. This mosaic
shows all native activity classes before remapping to the ten-class schema. In the main text , we
cross-reference this appendix to highlight the semantic reduction.

STORAGE FOOTPRINTS

The processed SF3D variants occupy about 14 GB, while 100-driver-sf3d-nc10 variants occupy
about 146 GB (90 GB day, 56 GB night). Each run directory includes lightweight summary.json
files, mosaics, and distribution plots to ensure reproducibility without duplicating raw data.
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logs/annotate-<ddmmyy hhmmss>/
100-driver-day-cam2-annotation/
100-driver-day-cam2-bbox/
100-driver-day-cam2-mask/
100-driver-day-cam2-seg/
100-driver-day-cam2-viz/
modelinfo.json
summary.json
train/

imgs list.csv
labels.csv
summary.json
summary.missed.json
train.csv

val/
imgs list.csv
labels.csv
summary.json
summary.missed.json
val.csv

test/
imgs list.csv
labels.csv
summary.json
summary.missed.json
test.csv

Figure 9: Custom dataset hierarchy for 100-driver-sf3d-nc10 (Cam2 example). Each run contains
annotation outputs, variants (bbox, seg, mask, viz), metadata files, and regenerated indices with CSV
summaries.

Figure 10: Original 100-Driver label space with day/night conditions and activity diversity, prior to
remapping into the ten-class schema.

REPRODUCIBILITY CONVENTIONS

All datasets and variants are declared in ddd-datasets.yml, indices are regenerated post-
filtering, and creation scripts emit standardized outputs under timestamped directories. Each run
records mosaics, per-class counts, and foreground-background ratios for auditing.
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B TRAINING SCRIPTS AND SCHEDULING

Training on each dataset variant is automated through reproducible shell scripts. These scripts loop
over the chosen architectures (DenseNet-121, EfficientNet-B0, ResNet-18, ResNet-50, SqueezeNet-
1.0), set common hyperparameters (ImageNet pretraining, 100 epochs, batch size 32, 10 output
classes, cross-entropy loss), and log outputs in timestamped directories under logs/. All scripts
invoke the same Python entry point (python -m src.train) with variant-specific dataset ar-
guments.

SF3D (BY-DRIVER PROTOCOL)
• train.loop.m174.sf3d-day-bydriver-pretrain.sh - baseline training on the

FULL dataset.
• train.loop.m174.sf3d-day-bydriver-bbox-pretrain.sh - training on

cropped bounding-box variants.
• train.loop.m174.sf3d-day-bydriver-seg-pretrain.sh - training on seg-

mented foreground masks.
• train.loop.m174.sf3d-day-bydriver-mask-pretrain.sh - training on bi-

nary mask representations.
• train.loop.m174.sf3d-day-bydriver-bboxseg-pretrain.sh - training on

bbox-guided segmentation variants.
• run.train.loop.m174.sf3d-day-bydriver-pretrain.sh - batch scheduler

that sequentially executes the above scripts, enabling all variants to be trained in one call.
Each script defines the dataset variant by setting dataset=$VARIANT (e.g.,

sf3d-day-bydriver-bbox) and iterates over the architecture list. For each model, it
constructs a unique output directory path of the form:

logs/train-CrossEntropyLoss_10-<timestamp>/
<arch>-bs<batch_size>-nc10-<dataset>-<timestamp>/

where checkpoints, logs, and metrics are stored. Log files are simultaneously streamed to disk using
tee, ensuring both console and persistent recording.

100-DRIVER-SF3D-NC10 (DAY/CAM2)
An equivalent set of scripts exists for the 100-driver-sf3d-nc10 dataset. The naming convention
mirrors the SF3D case, with 100-driver-day-cam2-sf3d-nc10 replacing the dataset iden-
tifier. These scripts support the same five architectures, hyperparameters, and logging conventions,
and include a batch runner to schedule all variants.

USAGE NOTES

Scripts can be executed individually when fine-tuning a specific dataset–variant pair, or invoked
through the batch runner to cover all variants in sequence. Epochs and batch size can be overridden
at runtime by passing arguments:

bash scripts/train.loop.m174.sf3d-day-bydriver-pretrain.sh 50 64

which would train for 50 epochs with batch size 64. Each run is reproducible and traceable through
the timestamped log directories.

EXTENSIBILITY

While the main experiments report results for five representative CNNs, the training loop is designed
to be fully generic. By editing the model list in the shell scripts, any of the following additional 21
torchvision models can be trained out-of-the-box under the same configuration:

Because the scripts pass the model name as an argument to the common training entry point, these
architectures integrate seamlessly with the same preprocessing, logging, and evaluation pipeline.
This makes the training framework both flexible and forward-compatible with new backbones added
to torchvision.
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Table 3: Additional torchvision models supported out-of-the-box by the training loop.

Family Models (input size)

DenseNet 161, 169, 201 (224 × 224)
Inception v3 (299 × 299)
MobileNet v2, v3-small, v3-large (224 × 224)
ResNet 34, 101, 152 (224 × 224)
Wide-ResNet 50 2, 101 2 (224 × 224)
ShuffleNet v2 x1 0 (224 × 224)
VGG 11, 11 bn, 13, 13 bn, 16, 16 bn, 19, 19 bn (224 × 224)
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