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ABSTRACT

As Large Language Models continue to advance, Reinforcement Learning from
Human Feedback is increasingly regarded as a promising approach for enhancing
their capabilities and achieving more sophisticated forms of intelligence. How-
ever, the reliance on reward-model-based alignment methods introduces signifi-
cant challenges due to the inherent instability and imperfections of Reward Mod-
els (RMs), which can lead to critical issues such as reward hacking and misalign-
ment with human intentions. In this paper, we introduce a reward-robust RLHF
framework aimed at addressing these fundamental challenges, paving the way for
more reliable and resilient learning in LLMs. Our approach introduces a novel
optimization objective that carefully balances performance and robustness by in-
corporating Bayesian Reward Model Ensembles to model the uncertainty set of re-
ward functions. This allows the framework to integrate both nominal performance
and minimum reward signals, ensuring more stable learning even with imperfect
RMs. Empirical results demonstrate that our framework consistently outperforms
baselines across diverse benchmarks, showing improved accuracy and long-term
stability. We also provide a theoretical analysis, demonstrating that reward-robust
RLHF approaches the stability of constant reward settings, which proves to be ac-
ceptable even in a stochastic-case analysis. Together, these contributions highlight
the framework’s potential to enhance both the performance and stability of LLM
alignment.

1 INTRODUCTION

Reinforcement Learning (RL), particularly in the form of Reinforcement Learning from Human
Feedback (RLHF), has become a pivotal methodology for aligning foundational models with hu-
man values and preferences. It has played a crucial role in enhancing the capabilities of Large
Language Models (LLMs) to generate responses that are more helpful, harmless, and honest, con-
tributing to significant breakthroughs such as OpenAI’s o1 model (OpenAI, 2024). The standard
RLHF framework consists of two key phases. First, a Reward Model (RM) is trained on preference
data annotated by Human or Artificial Intelligence (AI) feedback.Following this, Proximal Policy
Optimization (PPO) (Schulman et al., 2017) is applied to refine the model’s performance based on
the learned reward function. This structured approach ensures that LLMs operate in a manner that
is consistent with ethical guidelines and user expectations, thereby enhancing their capability and
trustworthiness in practical applications.

The quality of the RM is crucial to the success of PPO. A poor RM may provide incorrect signals
for certain data points during the PPO training phase, ultimately compromising the performance of
the fine-tuned model. Several issues arise from an imperfect RM. One such issue is reward hack-
ing, where the model exploits flaws in the reward function, optimizing for behaviors that maximize
the reward signal without genuinely improving task performance. Another challenge is overfitting
and underfitting: an overfitted RM captures noise or specific patterns in the training data that fail
to generalize to new data, while an underfitted model may miss important patterns altogether (Gao
et al., 2023). Additionally, misalignment with human preferences can occur, as biases among anno-
tators—whether human or AI (Bai et al., 2022a; Lee et al., 2023)—make it difficult to align the RM
with the diverse preferences of humanity, leading to discrepancies between the model’s behavior
and human expectations. All the issues mentioned brings us to a critical question:

Given that the RM is imperfect, how can we perform RM-based RLHF better?

1
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In this paper, we propose a reward-robust RLHF framework to overcome this challenge. To enhance
the model’s robustness to the reward signal while avoiding an overly conservative optimization pro-
cess, we introduce a novel objective that strikes a balance between performance and robustness.
The performance component is guided by a nominal RM, which serves as an approximation of the
ideal reward function. Meanwhile, the robustness component accounts for worst-case scenarios by
considering the uncertainty in the reward functions. To capture both the nominal reward and the
uncertainty, we introduce Bayesian Reward Model Ensembles (BRME). BRME utilizes a multi-
head RM, where each head outputs the mean and standard deviation (std) of a Gaussian distribution,
from which the final reward is sampled. BRME has two main advantages over traditional RM that
generates a single scalar as the reward: First, we demonstrate that std can reflect the confidence of
each head in its output reward, allowing the output with the lowest std to be reasonably selected
as the nominal reward. Additionally, we show that BRME outperforms traditional RMs in both the
coverage of the reward distribution and accuracy on preference test sets. Ablation study on the RM
training supports the claims above. The proposed reward-robust RLHF framework consistently out-
performs standard RLHF across several widely-used benchmarks. In long run training processes,
the proposed method shows stronger stability and better performance compared with the baselines.

Beyond presenting empirical performance results, we also aim to provide deeper theoretical insights.
First, we delve deeper into the inherent imperfections of RMs, arguing that even with an ideal
annotator, a perfect reward function is unlikely, and the resulting RM is inherently insufficient.
We design a synthetic toy model that directly illustrates these limitations. Second, we provide a
theoretical justification for the superiority of our method over standard RLHF. Given that the actual
reward is inherently biased—resulting in either over-scoring or under-scoring during training—we
show that, in the long run, under-scoring is preferable to over-scoring. Third, we conduct a stochastic
case analysis within our reward-robust RLHF framework and prove that the resulting policy remains
acceptable, as stochastic scenarios often arise when the RM handles out-of-distribution (OOD) data.
Our analysis shows that the robustness regularization term narrows the reward distribution, making
the training process closer to the constant reward setting thus more stable, which is preferable to the
uncontrollable optimization driven by badly assigned rewards.

Contributions. 1) We propose a reward-robust RLHF framework, introducing BRME to model both
nominal rewards and uncertainty, outperforming traditional RMs in reward distribution coverage and
accuracy. 2) We provide theoretical insights into RM imperfections, showing through a synthetic
toy model that even with an ideal annotator, a perfect reward function is unattainable. 3) We show
that under-scoring is preferable to over-scoring in long-term training, given the inherent bias in
accessible rewards. Additionally, we conduct a stochastic case analysis, demonstrating that the
proposed framework remains effective in OOD scenarios, with the robustness regularization term
stabilizing the training process by narrowing the reward distribution.

2 RELATED WORKS

2.1 REWARD-MODEL-BASED ALIGNMENT IN LLMS

The core idea behind RM-based alignment in is to use a RM, typically trained on human/AI-
annotated data, to guide the optimization of the language model’s policy (Christiano et al., 2017;
Ouyang et al., 2022). Although RM-free algorithms such as DPO (Rafailov et al., 2024) and
IPO (Azar et al., 2024) have also been developed, it is generally observed that these methods tend to
be less effective compared to RM-based approaches in many scenarios (Xu et al., 2024; Yan et al.,
2024b). While RM-based approach has shown success in several domains, it is not without chal-
lenges. One major issue is the potential misalignment between the RM’s output and the true human
preferences, which can lead to unintended behaviors, commonly known as reward hacking (Amodei
et al., 2016). Additionally, the reward model’s generalization ability is often limited by the quality
and diversity of the annotated data, which can result in overfitting to specific data points and un-
derfitting to others (Lee et al., 2021). These shortcomings underscore the importance of developing
alternative methods that enhance reward robustness.

Recent research has explored various approaches to address these challenges. Shen et al. (2024)
introduces a penalty term on the reward, named as contrastive rewards, to improve the effectiveness
of RMs. Eisenstein et al. (2023) finds that RM ensembles can help mitigate reward hacking in certain
scenarios. Zhang et al. (2024b) proposes a lightweight uncertainty quantification method to assess
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the reliability of the reward model to avoid over-optimization. Zhang et al. (2024a); Zhai et al. (2023)
uses low-rank adaptation (LoRA) to increase the diversity of RMs to improve the performance of
RLHF. Yang et al. (2024b) retains the language model head and add regularization to improve the
generalization capability of RMs.

Our work differs from the above research in several key aspects: 1) We propose a generally robust
RLHF framework that outperforms standard RLHF across most benchmarks tested. Within this
framework, we employ BRME to model an uncertainty set and introduce a trade-off objective that
balances nominal performance and robustness, rather than simply using the mean or median of all
the rewards as done in Eisenstein et al. (2023); Zhang et al. (2024b). In BRME, we use a Bayesian
multi-head RM to characterize the uncertainty of each reward head, which distinguishes from Zhai
et al. (2023). The effectiveness of BRME is supported by ablation studies. 2) Using a synthetic
toy model, we demonstrate the inherent imperfections of the reward model, even when utilizing an
unbiased and ideal annotator. This finding builds upon and complements prior research on annotator
disagreement (Dubey et al., 2024). 3) We provide a theoretical explanation for the superiority of our
method through a stochastic-case analysis. Given that the actual reward is inherently biased, tending
either to over-score or under-score, we first demonstrate that, over the long term, under-scoring is
preferable to over-scoring.

2.2 ROBUST REINFORCEMENT LEARNING

In the realm of robust RL, robustness is primarily focused on addressing uncertainties related to tran-
sition, observation, action, or disturbance (Moos et al., 2022). Transition-robust approaches deal
with uncertainties in system dynamics by deliberately adjusting state transition probabilities (Heger,
1994; Nilim & El Ghaoui, 2005; Satia & Lave Jr, 1973; Givan et al., 2000). Observation-robust
methods involve distorting the perceived system state to influence policy decisions (Zhang et al.,
2020; Gleave et al., 2019). Action-robust designs modify system transitions by introducing distur-
bances to the agent’s actions (Tessler et al., 2019). Disturbance-robust strategies account for external
forces that introduce uncertainty into system behavior (Pinto et al., 2017).

In contrast, there has been comparatively less focus on reward robustness. Xu & Mannor (2006)
consider an MDP with an uncertain reward function and then propose a weighted sum between a
nominal and a robust performance criterion, which directly inspires our work. The trade-off can be
directly made on the expected return (Xu & Mannor, 2006) or by defining a chance constraint opti-
mization problem (Delage & Mannor, 2010). Other research targets the rectangularity assumption,
which assuming that the uncertainty in each state is independent of all other states, identifying it as
a primary source of the reward uncertainty (Mannor et al., 2012; 2016; Goyal & Grand-Clement,
2023). Vadori et al. (2020) proposes a risk-sensitive RL approach to handle the reward uncertainty
by applying Doob decomposition on the reward. Wang et al. (2020) develops a robust RL framework
where the agents can only observed perturbed rewards.

In conclusion, due to the focus of past RL applications, particularly in domains like robotics, re-
search on reward robustness has not received sufficient attention. Notably, in the context of LLM
training, the uncertainty inherent in the reward model significantly impacts final performance and
hinds the progress of LLM development (Chen et al., 2024). Coste et al. (2023) introduce worst-case
optimization in LLMs to mitigate overoptimization. However, their approach relies on a purely em-
pirical method to characterize uncertainty through intra-ensemble variance, lacking both structure
and interpretability. Therefore, the development of specialized reward-robust algorithms is not only
necessary but also urgently required. Our work is one of the pioneering efforts to introduce reward
robustness into the LLM RLHF/RLAIF pipeline.

3 PRELIMINARIES

Large Language Model (LLM). An LLM defines a θ-parameterized conditional distribution
πθ(a|x), which takes a prompt x as input and produces a response a. More specifically, the sampling
from LLMs is performed in an auto-regressive manner:

πθ(a|x) =
∏
t

πθ(at|x, a1:t−1), (1)

where at is the t-th token in the response a and a1:t−1 are tokens in the response before at.
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Standard RLHF. Training LLMs typically involves three stages: Pretraining, Supervised Fine-
tuning (SFT), and RLHF. In this section, we outline the standard RLHF-PPO paradigm, widely
adopted in advanced research (Ziegler et al., 2019; Ouyang et al., 2022).

Beginning with a well-trained SFT model, denoted as π0, we proceed by sampling two responses
from π0 for each instance in a given prompt set. Subsequently, we compile a set of comparisons
D = {(x, a+, a−)}, where a+ and a− denote human-preferred and human-dispreferred comple-
tions, respectively. The distribution of the preference dataset is assumed to follow the Bradley-Terry
model (Bradley & Terry, 1952), i.e., the probability of response a+ is better than a− is given by:

pr(a
+ ≻ a−|x) = exp(r(x, a+))

exp(r(x, a+)) + exp(r(x, a−))
= σ(r(x, a+)− r(x, a−)), (2)

where ≻ represents the preference relation, and σ(x) = 1
1+e−x is the sigmoid function. To train

a reward model r, we maximize the log-likelihood of the observed preferences by minimizing the
following loss function:

ℓRM(r) = − 1

N

∑
(x,a+,a−)

log pr(a
+ ≻ a−|x) = −

∑
(x,a+,a−)

log σ(r(x, a+)− r(x, a−)), (3)

where N is the total number of samples in the dataset. During the RL optimization phase, we update
the LLM to maximize the return from the learned reward model using the following principle:

max
θ

J(θ) = max
θ

1

N

∑
x

Ea∼πθ(·|x)

[
r(x, a)− β log

πθ(a|x)
π0(a|x)

]
, (4)

where πθ is initialized as π0 and β controls the deviation from the original model. PPO (Schulman
et al., 2017) is typically used to solve the problem in practice. Algorithms that optimize the policy
using a separate reward model are referred to as RM-based alignment.

4 INHERENT IMPERFECTION OF REWARD MODELS

In this section, we demonstrate that imperfection is an inherent characteristic of RMs in
RLHF/RLAIF pipelines. This imperfection arises from two key factors: 1) Disagreements between
annotators, which significantly affect the quality of the preference dataset. 2) The inherent difficulty
in achieving an optimal reward model, even with perfectly aligned annotators.

The issue of disagreement among human annotators in the RLHF pipeline has been noted in previous
research (Bai et al., 2022a). More recently, researchers have begun using AI as annotators in what is
known as RLAIF, claiming comparable or even superior performance to RLHF (Lee et al., 2023; Bai
et al., 2022b). However, our evaluation experiments revealed that in the RLHF process, the scoring
consistency between human annotators and domain experts was approximately 70%, whereas in the
RLAIF process, the consistency between multi-agent AI annotators and domain experts dropped to
around 64%. The details can be found in Appendix A.

Even more surprising is the finding that, even with a perfectly aligned annotator, obtaining an opti-
mal RM is nearly impossible. To demonstrate this, we introduce a simple toy model similar to that
in Xu et al. (2024); Yan et al. (2024b). We construct discrete spaces consisting of 8 prompts and
8 responses. The LLM policy πθ is modeled as a three-layer MLP that processes a one-hot vector,
representing a specific response, to produce a categorical distribution over the responses. The best
match for each input prompt is the response sharing the same index.

When constructing the preference dataset, assuming we have an ideal annotator, we can ideally select
the perfect match for each input prompt—essentially the diagonal elements of the matrix—and two
random other elements to create two preference data pairs.

The RM trained on this preference dataset and the actor model learned from the PPO process is
shown in Figure 1. It is evident that both the reward model and the actor deviate significantly
from the optimal. The underlying reasons can be attributed to 1) insufficient data coverage, and
2) disturbances in model training. In more complex real-world semantic spaces, these issues are
amplified, further degrading the quality of the trained RM. It’s important to note that in this synthetic
experiment, only the coverage of the responses was considered. In actual scenarios, insufficient
coverage of the prompts themselves can severely affect RM training as well.

4
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Preference Dataset
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BRME

reward

nominal reward

reward uncertainty set
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λ

PPO trainingReward generation

Data collection

Figure 1: Diagram and synthetic experiment results with the toy model. In the standard RLHF
pipeline with the upperside gray frame, even with a dataset annotated by a global annotator, the
obtained RM and the actor trained by PPO stays imperfect. In constrast, in our reward-robust RLHF
pipeline with the downside orange frame, with an integration of the nominal reward functions and
the uncertainty set, we can obtain the optimal actor within PPO.

5 REWARD-ROBUST RLHF

In this section, we formally present our reward-robust RLHF framework. According to Section 4,
the golden reward function r∗ is not accessible. Conversely, we can only access a nominal reward
function r̂, which is believed to be a good approximation of r∗ regardless of uncertainty, and a set of
other reward functions Runcertain = {ri|i = 1, 2, ..., n}, which can be referred to an uncertainty set.

The root of the problem in the standard RLHF pipeline lies in the excessive reliance on a single
nominal reward model r̂ and the lack of an explicitly modeled uncertainty set, as shown in Eq. (5).
Inspired by the previous work in robust RL (Xu & Mannor, 2006), we introduce a worst-case analy-
sis to eliminate the possibility of disastrous performance and propose a robustness measurement of
the policy as Eq. (6).

Jperform(θ) :=
1

N

∑
x

Ea∼πθ(·|x)

{
r̂(x, a)− β log

πθ(a|x)
π0(a|x)

}
, (5)

Jrobust(θ) := min
r∈Runcertain

1

N

∑
x

Ea∼πθ(·|x)

{
r(x, a)− β log

πθ(a|x)
π0(a|x)

}
, (6)

Jλ(θ) := λJperform(θ) + (1− λ)Jrobust(θ). (7)

In contrast to relying solely on the nominal reward model or the pure worst-case analysis, we use a
trade-off term between the performance and the robustness to be our objective function as Eq. (7).
There are several disadvantages to use Eq. (6) as the objective directly. 1) It often leads to an overly
conservative solution, resulting in mediocre performance across all situations. 2) The desirability
of the solution heavily depends on the precise modeling of the uncertainty set, which is challenging
in the context of LLM training. 3) If the nominal reward model r̂ are close to the golden one r∗,
the performance under nominal reward signal can provide valuable insights into predicting perfor-
mance under r∗. 4) There is an inherent trade-off between worst-case performance and nominal
performance—maximizing one often comes at the expense of the other. On the other hand, by re-
laxing both criteria, it is possible to achieve a well-balanced solution that offers satisfactory nominal
performance while maintaining reasonable robustness to reward uncertainty.

We first demonstrate the effectiveness of the method in the toy model setting. For simplicity, we use
different random seeds to train three additional different RMs, forming the uncertainty set Runcertain,
and set λ = 0.4. The results, illustrated in the red dotted frame in Figure 1, show that the optimal
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actor in PPO is achieved, in contrast to the standard case where only the nominal reward model is
used.

In the real LLM scenario, the situation becomes more complex. We will delve into the details of
uncertainty set modeling, the selection of the nominal reward function, and the evaluation of BRME
and end-to-end PPO performance in the following subsections. As our framework can be easily
integrated into existing RLHF pipelines, we will also provide experimental results to illustrate best
practices, such as how to select the trade-off hyperparameter λ.

5.1 BRME: UNCERTAINTY SET MODELING

Base model

Linear Layer

prompt, response

µ0,σ0 µ1,σ1 µ2,σ2

sample sample sample

r1 r2r0nominal 
reward

if σ0 = min{σ0,σ1,σ2, ...}

Figure 2: Diagram for BRME. Each
head outputs the mean and the std of the
corresponding reward distribution and
reparametrization is emplyed to address
the non-differentialbility.

In this section, we will show how we model the uncer-
tainty set Runcertain as well as the nominal reward func-
tion r̂. We propose Bayesian Reward Model Ensembles
(BRME): We train a multi-head Bayesian reward model
where the reward is modeled as a Gaussian distribution.
Each head i has two outputs: one representing the mean
and the other representing the std. A sample from this
distribution is then output as the reward.

The diagram for BRME is shown in Figure 2. To facil-
itate deployment and conserve computing resources, we
do not train multiple RMs independently as an ensem-
ble; instead, we use parameter sharing. All reward heads
share a common base model, which serves as a feature
extractor. During training, each data sample is randomly
assigned to a head for training, with reparameterization
employed to address the non-differentiability of the sam-
pling process.

The training process is divided into two stages. In the
first stage, we train a traditional one-head RM following
the Maximum Likelihood Estimation (MLE) loss in (3).
In the second stage, we leverage a Mean Squared Error
(MSE) loss (8) to train the RM, which is first introduced
in (Wu et al., 2024). The use of MSE loss to train the
BRME ensures that: 1) the output’s std reflects the con-
fidence of the model (see Appendix B.1), 2) the scoring
range of each reward head is consistent. During prediction, each sample is evaluated by all heads,
and the mean output by the head with the smallest std is selected as the nominal reward. We defer the
thorough training pipeline, the theoretical analysis and detailed performance evaluation of BRME
to Appendix B.

5.2 EXPERIMENTAL RESULTS

5.2.1 EXPERIMENTAL SETUP

Models. We use LLaMa3-8B-Instruct (Dubey et al., 2024) as the initialization of the actor model.
In BRME setting, we train a single-head RM and a 5-head BRME starting from LLaMa3-8B-
Instruct (Dubey et al., 2024) as is described in Appendix B. The single-head RM is used as both
the first stage model for BRME training and the initialization of the critic model. BRME is used
solely as the reward signal source in PPO.

Datasets. For the training process, we use HH-RLHF (Bai et al., 2022a) and UltraFeedBack (Cui
et al., 2024) to train the BRME. HH-RLHF, UltraFeedBack (Cui et al., 2024) , along with an in-
ternal prompt dataset collected by the PM team, is employed to implement the PPO algorithm.
Details of the datasets are deferred to Table 6 in Appendix D. For performance evaluation, we select
ARC (Clark et al., 2018), LAMBADA (Paperno et al., 2016), PIQA (Bisk et al., 2020), SciQ (Welbl
et al., 2017), WinoGrande (Sakaguchi et al., 2019), TQA (Lin et al., 2022), MMLU (Hendrycks
et al., 2020), GSM8K (Cobbe et al., 2021), FDA (Arora et al., 2023), EQ-Bench (Paech, 2023),
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200 step: = 0.0 vs reference
200 step: = 0.2 vs reference
200 step: = 0.4 vs reference
200 step: = 0.6 vs reference
200 step: = 0.8 vs reference
200 step: = 1.0 vs reference

800 step: = 0.0 vs reference
800 step: = 0.2 vs reference
800 step: = 0.4 vs reference
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Figure 3: Evaluation results of reward-robust RLHF framework with the performance-robustness
trade-off hyperparameter λ varying, where the objective function Jλ(θ) := λJperform(θ) + (1 −
λ)Jrobust(θ). Note that when λ = 1, the algorithm reduces to standard RLHF with a single nominal
reward model.

Arithmetic (Brown et al., 2020), and ANLI (Nie et al., 2020) as our benchmarks. The evaluation
dimensions include robustness, general knowledge, numerical computation, emotion reading, infor-
mation extraction, reasoning, context understanding, and commonsense. Detailed descriptions of
the datasets are shown in Table 7 in Appendix D.

Other details. The RM training and PPO experiments are conducted on 24 Nvidia H800-SXM-
80GB GPUs in 3 nodes using DeepSpeed library, ZeRO stage 2 (Rasley et al., 2020), and Hugging-
Face Accelerate (Gugger et al., 2022). In PPO process, the actor model and the critic model occupy
10 gpus respectively. The reference model and BRME occupy 2 gpus respectively. We use AdamW
optimizer (Loshchilov et al., 2017). The experience batch size in PPO is set to be 128.

5.2.2 MAIN RESULTS

We incrementally increase the performance trade-off hyperparameter λ from 0 to 1 in intervals of 0.2
and repeated PPO training under each setting for 800 steps. It is important to note that when λ = 1,
the algorithm degrades to standard RLHF with a single nominal RM. The performance evaluation
results at 200 and 800 steps are shown in Figure 3.

In the short run (200 steps), although there are a few exceptions—such as ANLI-r1 and LAMBADA,
where λ = 0 outperforms the other settings—in most cases, the trade-off versions with λ = 0.4 and
λ = 0.6 show better performance. This suggests that, even early in training, incorporating a balance
between performance and robustness offers notable advantages. The ability of the reward-robust
RLHF framework to temper the optimization process appears to result in more stable performance
gains compared to standard RLHF. Compared with standard RLHF, the average accuracy of reward-
robust RLHF increases by 0.99% and 1.40% respectively when λ = 0.4 and 0.6. On certain datasets,
such as arithmetic and ANLI-r3, the improvement exceeds 3%.

Over the long run (800 steps), the advantages of incorporating robustness measurement become
even more pronounced. Nearly all experimental groups with λ ̸= 1 exhibit improved performance
by the end of 800 steps, confirming the long-term benefits of reward-robust RLHF. In contrast,
standard RLHF with λ = 1 not only fails to capitalize on the full optimization process but, in
some cases, even results in negative performance growth. For example, in tasks like ANLI-r1 and
GSM8K, we observe a decrease in model capability during the additional 600-step optimization
process under standard RLHF. This highlights a key limitation of the purely performance-driven
RLHF approach: its vulnerability to the risk of overfitting or misguidance from imperfect reward
signals. Compared with standard RLHF, the accuracy of reward-robust RLHF increases by 2.42%
and 2.03% respectively when λ = 0.4 and 0.6.
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(a) Over-scoring vs. under-scoring. In most cases,
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Figure 4: Performance shift in Section 6.1 and 6.2 suggest: 1) under-scoring is generally preferable
to over-scoring, and 2) leveraging the minimum reward in the uncertainty set helps mitigate perfor-
mance decline when the RM underperforms.

On tasks where the RM performs notably poorly, such as MMLU, we notice that PPO training under
standard RLHF can degrade model performance, evidenced by a drop in accuracy, which is reflected
in the bar graphs pointing downward. This degradation likely results from the model being opti-
mized based on unreliable or misleading reward signals, which causes the policy to drift away from
optimal behavior. In contrast, the reward-robust RLHF approach, which balances performance with
robustness (λ = 0.4 or λ = 0.6), mitigates this decline. By narrowing the optimization focus and
stabilizing the reward signal, the model is better able to resist overfitting to faulty rewards, ultimately
preserving and improving performance. The results suggest that in settings where training data is
sparse and the RM is significantly imperfect, adopting a reward-robust approach can effectively
stabilize training and prevent further performance degradation over time.

6 DISCUSSION

In this section, we provide insights into why the proposed reward-robust RLHF framework is ef-
fective and how it improves upon the previous standard pipeline. Given that the reward signal is
inherently imperfect, we empirically demonstrate that over-scoring is more detrimental than under-
scoring, which supports our choice of minimum return as a robustness measure. Additionally, we
show that in the stochastic case where rewards are given randomly, selecting the minimum reward
ensures that the trained model in PPO remains at least acceptable. In Section 6.3, we also do abla-
tion study to compare our method with traditional RM with MLE loss as well as other integration
strategies such as using mean reward.

6.1 OVER-SCORING VS. UNDER-SCORING

We have demonstrated that RMs are inherently imperfect (Section 4), meaning the rewards used in
the PPO training are either over-scored or under-scored. Through PPO training on minimum reward
and maximum reward, we show that over-scoring is significantly more harmful than under-scoring
in PPO training. The results of this comparison are illustrated in Figure 4a. In 12 of the total 16
benchmarks, under-scoring setting outperforms the over-scoring setting (see Table 4, Appendix C.2).

We also specifically analyzed the dynamic performance changes under two different settings. We
conducted PPO training for 1000 steps, measuring performance every 200 steps. Generally, training
with the minimum reward setting proved to be more stable: in the early stages, in some tasks such
as ARC and PIQA, the minimum reward setting showed slower progress compared to the maxi-
mum reward setting. However, as training continued, the minimum reward generally led to a more
consistent and stable improvement, whereas the maximum reward setting gradually resulted in per-
formance degradation. A comprehensive result on all datasets is provided in Figure 5a. Additional
results and discussions are deferred to Appendix C.
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In our reward-robust RLHF framework, rewards tend to be under-scoring. To see this, we test
BRME on UltraFeedBack (Cui et al., 2024), diverse preference dataset with annotated rewards. We
approximately treat the annotation as the ground-truth reward, measuring the scoring gap of each
reward head as well as the minimum reward head and the ground-truth reward. Note that the rewards
are normalized with respect to its resource. The result is shown in Figure 5b. For a single head, the
number of under-scoring and over-scoring cases is roughly equal. However, in the reward-robust
RLHF setting, selecting the minimum rewards leads to under-scoring becoming more frequent.

We propose the following hypotheses to explain these observations: 1) In reward-robust RLHF, the
optimization process tends to be more conservative, which could benefit long-term exploration. In
essence, reward-robust RLHF might prioritize optimizing the lower bound of the return function. 2)
In language tasks, exploring an incorrect direction may be more detrimental than rejecting a correct
one. For a given prompt, there are often multiple valid responses. Even if the model misses one
correct optimization path, it may still be able to explore alternative directions. However, with a
more aggressive optimization strategy (such as over-scoring), the model might be more prone to
pursuing a wrong direction, potentially resulting in reward hacking.

6.2 STOCHASTIC CASE ANALYSIS

If the RM is poorly trained or handling OOD data, the extreme scenario is that rewards are given
randomly. In this section, we demonstrate that even in such a stochastic case, the reward-robust
RLHF framework still yields an acceptable model, and we provide an explanation for why this is the
case. First, we have the following lemma,

Lemma 1. If the reward model provides a constant reward for all actions during PPO training, the
actor will not be optimized, as the gradient of the PPO objective function with respect to the policy
parameters will be zero.

The proof for Lemma 1 is straightforward since it is easy to find the advantage functions for all
states will be all zero when the reward is a constant. We defer the complete proof to Appendix E.

If we use reward robust RLHF training (setting λ = 0 in Eq. 7), as we are choosing the minimum
reward, the range for reward will be narrowed (see Figure 5b and Figure 8b) and is closer to the con-
stant reward situation. Since the starting point of our training is usually a well-trained SFT model,
even if the optimization process degrades, the model can still maintain relatively good performance.
In the contrast, if we use a random reward model, the optimization will be uncontrollable and the
model will collapse in a fast speed.

We also conduct PPO experiments for 200 steps with random rewards on real LLMs. The exper-
imental setup is identical to that described in Section 5.2, except that the rewards from each head
were sampled from a Gaussian distribution N (0, 1). A control group was also set up, in which all
rewards were set to zero. The results are shown in Figure 4b. Although nearly all performances
declined, the constant reward setting exhibits the smallest decrease, while the random reward setting
shows the largest decline. The minimum random reward setting falls in between, indicating that it
can help the model remain stable even in a highly unpredictable random-reward environment.

Remark 1. In the practice, the model optimization process is likely to oscillate, but it will eventually
converge back to the inital-SFT model in a long run theoretically. The reason why it will oscillate
is that the critic model is not ideal in the early stage, so the advantage Ât is not 0 even all the
rewards given are identical. However, as the KL divergence (-β log πθ(a|x)

π0(a|x) ) is also considered in
the optimization objective (4), the actor policy will be eventually pulled back close to the reference
policy.

6.3 ABALATION STUDY

Our framework has two main different parts with the previous RLHF method. One is the BRME
setting trained with MSE loss. In most previous works, the RM directly output a scalar to be the final
reward and the loss function is MLE(3). Another is the integration strategy. We use the trade-off
version between the lower-bound reward and a nominal reward, while there are other strategies such
as using the mean reward Eisenstein et al. (2023). Here we provide the ablation study results.
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Figure 5: The left figure shows that as training progresses, the performance under the minimum
reward setting steadily improves, indicating that conservative optimization benefits the long-term
PPO optimization of LLMs. The right figure illustrates the effect of minimizing the reward on its
value distribution, reducing the range and making under-scoring dominant.

Comparison with RM trained with MLE loss. We trained another RM using MLE loss on the
same training data as mentioned in Appendix B. The resulting single-head RM was then compared
with the nominal head of the BRME. To assess performance, we evaluated the accuracy on a series
of preference datasets, including General QA, Writing, Comprehension, and Math (Table 5). One
key advantage of BRME is its ability to effectively model the diversity within the uncertainty set,
which directly influences optimization Mannor et al. (2016). To demonstrate this, we also compared
the reward signal distribution coverage (Figure 7). Additionally, we conducted PPO training using
both RMs to compare their effects on the actors’ performance. The results consistently support
BRME’s superiority, with detailed findings provided in Appendix C.3.

Comparison with other reward integration strategies. We conducted the same PPO experi-
ment using an average of all BRME heads and compared it with the min/max integration strategies.
Additionally, we evaluated the trade-off strategy against the mean reward approach. The result is
shown in Figure 9c and Figure 9b, Appendix C.4. The performance of the mean strategy falls be-
tween the max and min strategies, but in the later stages of training (after 800 steps), the mean
strategy also tends to lead to a decline in model performance. On most datasets where PPO has a
significant effect, the reward-robust RLHF setting with a trade-off parameter of λ = 0.6 outperforms
the mean strategy.

7 CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a reward-robust RLHF framework to address the problem of reward
hacking in LLM alignment. We demonstrated that imperfection is an inherent characteristic of cur-
rent reward model training, leading to the model exploring incorrect optimization directions. To
mitigate this issue, we trained BRME with multi-head outputs to model the uncertainty set of the
reward function. We showed that the head with the minimum std effectively models the nominal
reward function, representing the most confident scoring output. The newly proposed robustness-
performance trade-off objective was proven effective, consistently outperforming baselines across
most benchmarks. Furthermore, we demonstrated that under-scoring is preferable to over-scoring
when dealing with imperfect RMs. Even in the stochastic-case scenario, where rewards are as-
signed randomly, the reward-robust RLHF framework still yields an acceptable model. Finally, we
acknowledge the framework’s limitations, which are discussed in detail in Appendix G.

Since our method can be easily integrated into existing pipelines, there is potential to further improve
performance by incorporating additional reward sources to better model the uncertainty set. Future
work will explore the adoption of heterologous reward sources, including RMs trained on diverse
datasets and direct scoring from closed-source LLM APIs such as GPT-4, as well as other markers
mentioned in (Yan et al., 2024a; Liu et al., 2023). The advantage of using heterologous models lies
in their diverse base training datasets, which result in more varied reward scores, thereby improving
the coverage of the uncertainty set. Preliminary exploration results on heterologous reward fusion
are provided in Appendix F.
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A ANNOTATOR DISAGREEMENT IN RLHF AND RLAIF

For human-annotated data, we conducted an agreement test on 209 data points, each containing one
prompt and two responses. The prompts were selected from an internal dataset by the PM team, and
the responses were generated by Baichuan2-13B (Yang et al., 2023). Data categories include general
knowledge, logical reasoning, tables, mathematics, etc. We used two distinct annotator groups: one
consisted of highly educated internal annotators who had undergone multiple rounds of specialized
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annotation training, referred to as the Expert Group. The other group was composed of external
annotators hired from the general public, referred to as the External Group. For each data point,
annotators were tasked with a Good-Same-Bad evaluation: 1) G: response 1 is better than response
2. 2) S: both responses are of the same quality. 3) B: response 1 is worse than response 2. We
compared the G/S/B annotations for the same data between the two groups. Across all samples, the
consistency rate was 70%, with a 4.5% rate of opposite judgments (one group scored G while the
other scored B). When only considering G/B samples, the consistency rate increased to 77%, with
an opposite rate of 6.5%.

We also established an AI feedback pipeline, primarily using the GPT-4 API as the annotator, re-
ferred to as the AI Group. The PM team biasedly sampled 85 examples, focusing on cases where
the Expert Group and External Group showed inconsistent labeling. For these data points, the con-
sistency between the Expert Group and the AI Group was 64%, while the consistency between the
External Group and the AI Group was 44%. In 9% of the cases, the Expert Group differed from both
the External Group and the AI Group.

These results indicate that, whether in the RLHF or RLAIF process, annotator disagreement remains
a significant challenge currently, which complicates RM training and presents obstacles that must
be addressed.

B BAYESIAN REWARD MODEL ENSEMBLES (BRME)

In this section, we will provide the training detail, the theoretical explanation, and the empirical
performance of the proposed Bayesian Reward Model Ensembles (BRME).

B.1 TRAINING PIPELINE

The training process is divided into two stages. In the first stage, we train a normal one-head RM
following the loss function in (3). In the second stage, we leverage a MSE loss to train the RM,
which is first introduced in (Wu et al., 2024). The loss function for a single head i is given by:

ℓi =

{
r+i − α

[
p̂(a+ ≻ a−)− 1

2

]}2

+

{
r−i − α

[
p̂(a+ ≺ a−)− 1

2

]}2

, (8)

where p̂(a+ ≻ a−) is derived from a separate Bradley-Terry model, as defined in Eq. (2), and is the
output of the normal RM trained in the first stage. The reward is modeled as a Gaussian distribution,
with each head i producing two outputs: one representing the mean and the other representing the
std. A sample from this distribution is then output as the reward. We employ the reparameterization
handle the non-differentiability of the sampling process:

r+i = µ+
i + a · σ+

i , r−i = µ−
i + a · σ−

i ,

where a is a parameter sampled from a standard Gaussian distribution N (0, 1).

Why the std reflects the confidence of the head? The use of MSE loss to train the BRME ensures
that the output’s std reflects the confidence of the model. To understand this, we compute the gradient
of the MSE loss with respect to the std outputs σ+

i and σ−
i , where k = p̂(a+ ≻ a−)− 1

2 is a constant,

∇σ+
i
ℓi = 2a · (µ+

i + a · σ+
i − α · k), Ea[∇σ+

i
ℓi] = Ea[2a

2σ+
i ] ≥ 0,

∇σ−
i
ℓi = 2a · (µ−

i + a · σ−
i − α · k), Ea[∇σ−

i
ℓi] = Ea[2a

2σ−
i ] ≥ 0.

A positive gradient indicates that with more optimization steps, the output std σ+
i (or σ−

i ) decreases,
reflecting higher confidence from the reward head in its scoring.

Why the method is Bayesian? The reward generated by the first-stage reward model, represented
by p̂(a+ ≻ a−), serves as an implicit prior. In the second stage, we refine this prior by using
additional training data, aligning with the Bayesian perspective of updating an initial belief based
on new evidence.
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(a) Tradition RM 1 head. (b) BRME mean (5 heads). (c) BRME λ = 0.5 (5 heads).

Figure 7: Reward distribution coverage comparison between BMRE and traditional RM.

(a) Distribution of multi-head. (b) The minimized head.

Figure 8: The over-scoring effect.

Specifically, the first stage provides point estimates through MLE, which we consider as prior be-
liefs. In the second stage, we model the reward as a Gaussian distribution with mean µi and standard
deviation σi, incorporating uncertainty around these initial estimates. This distributional approach
transforms the prior point estimates into a posterior distribution, representing the updated belief
about the rewards.

B.2 DATA PARTITION

We use different data to train each head. We first shuffled the data in Table 6 and randomly assigned
each data point to one of the reward heads, with each head consuming only 20% of the total data.
This approach helps distinguish the score distribution for each reward head.

B.3 EXPERIMENTAL RESULTS OF BRME

Figure 6: Normalized reward margin
between chosen and rejected responses.

We conduct several experiments to directly test the per-
formance of BRME. We train another tradition RM with
MLE loss to be the baseline. One of the main reasons that
we use ensembling is to expand the reward coverage and
obtain an informative uncertainty set. We use a separated
preference testset to measure the coverage. The results
are shown in Figure 7. We use the rewards of chosen
response and rejected response as the horizontal and ver-
tical axes and visualize the distribution results. BRME is
measured by mean integration (Figure 7b) and trade-off
integration with λ = 0.5 (Figure 7c). It can be seen that
BRME rewards are more widely distributed.

Another important performance measurement is the re-
ward margin between chosen and rejected responses. A
larger reward margin indicates a greater ability of the
RM to differentiate between better and worse responses,
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which is critical for guiding the optimization process effectively. We provide a reward margin com-
parison between BRME and the traditional RM in Figure 6. The results show that the reward margin
in BRME is significantly larger than in the traditional RM, suggesting that BRME has a stronger
capability to distinguish between high-quality and low-quality responses. This improved differenti-
ation leads to more accurate guidance during training, helping the model focus on better responses
more consistently. The increased reward margin also reduces the likelihood of reward hacking, as the
model is less likely to be misled by small differences between responses. Overall, the larger reward
margin in BRME demonstrates its advantage in promoting better alignment with human preferences
and improving the robustness of the training process.

C ADDITIONAL EXPERIMENTS

C.1 DETAILED EXPERIMENTAL RESULTS IN SECTION 5.2

In this section, we provide the detailed experimental results in Section 5.2. Detailed data related to
Figure 3 is shown in Table 1, Table 2 and Table 3. In a short run, when training step is 200, λ = 0.4
enjoys the best performance, where 9 of 16 benchmarks outperforms the baseline and the standard
RLHF (λ = 1.0). However, there are still 2 benchmarks (ANLI-r1 and LAMBADA) where the
standard RLHF is the best. It indicates that at the very beginning of the PPO process, choosing the
nominal reward function to be the signal may lead to faster improvement.

As the training process is prolonged to 800 steps, the benefits of incorporating robustness into the
RLHF framework become more evident. The results show that settings with λ ̸= 1.0 generally
outperform standard RLHF across a majority of the benchmarks. Notably, λ = 0.2, 0.4 and 0.6
continue to exhibit strong performance, particularly on tasks such as ARC-challenge and GSM8K,
where the reward-robust RLHF outperforms standard RLHF with a clear margin. Specifically, on
GSM8K, λ = 0.6 results in a 4.93% improvement over standard RLHF. These results highlight the
long-term advantages of balancing performance and robustness, as the reward-robust setting helps
avoid the pitfalls of overfitting to imperfect reward signals, which is more likely to occur under
standard RLHF.

Moreover, in tasks like ANLI-r1, which initially favored standard RLHF at 200 steps, the perfor-
mance of λ = 0.4 surpasses the nominal reward strategy by the 800-step mark. This indicates
that while the nominal RM may provide faster short-term gains, incorporating robustness into the
optimization process enables more consistent long-term improvements. Similarly, on the ARC-
challenge, λ = 0.6 outperforms standard RLHF with a 1.35% gain, further confirming the utility of
the reward-robust approach for challenging tasks where the RM may struggle with accuracy in the
initial stages.

The degradation in performance observed in some tasks, such as ANLI-r1 and GSM8K, underscores
the limitations of purely performance-driven RLHF, particularly in cases where the reward signal is
noisy or unreliable. Over the extended training period of 800 steps, standard RLHF tends to overfit
or follow misleading reward signals, leading to a decline in model performance. This is particularly
concerning in tasks like GSM8K, where standard RLHF results in negative performance growth,
while reward-robust strategies maintain stability and even improve accuracy.

On the other hand, the conservative nature of the reward-robust RLHF framework, mitigates this risk.
By accounting for uncertainty in the RM, the framework effectively narrows the optimization space,
allowing the model to avoid over-optimization based on potentially erroneous reward signals. This
results in more stable, long-term gains in performance, as evidenced by the consistent improvements
across a range of tasks.

In summary, while standard RLHF may achieve faster short-term improvements in some cases, the
reward-robust RLHF framework proves to be more reliable over longer training periods. The inclu-
sion of robustness not only enhances performance but also stabilizes the training process, making it
more resilient to the inherent imperfections of RMs, especially in complex and challenging tasks.
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Baseline λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

ANLI-r1 0.4880 0.4870 0.4830 0.4840 0.4880 0.4880 0.4890
ANLI-r2 0.4610 0.4650 0.4620 0.4690 0.4730 0.4700 0.4610
ANLI-r3 0.4492 0.4541 0.4542 0.4608 0.4650 0.4570 0.4475
ARC-challenge 0.5324 0.5401 0.5350 0.5418 0.5435 0.5340 0.5299
ARC-easy 0.8165 0.8161 0.8157 0.8190 0.8207 0.8188 0.8161
Arithmetic 0.8568 0.8852 0.8718 0.8838 0.8888 0.8812 0.8568
FDA 0.7804 0.7776 0.7795 0.7768 0.7795 0.7812 0.7804
GSM8K 0.3320 0.3260 0.3404 0.3389 0.3390 0.3389 0.3321
LAMBADA 0.7180 0.7192 0.7186 0.7176 0.7188 0.7191 0.7192
MMLU 0.6381 0.6383 0.6384 0.6379 0.6365 0.6281 0.6380
PIQA 0.7878 0.7905 0.7916 0.7922 0.7911 0.7908 0.7862
SciQ 0.9640 0.9650 0.9640 0.9670 0.9670 0.9660 0.9640
TQA-mc1 0.3610 0.3611 0.3733 0.3638 0.3696 0.3658 0.3623
TQA-mc2 0.5165 0.5214 0.5195 0.5304 0.5304 0.5254 0.5166
Winogrande 0.7174 0.7182 0.7214 0.7206 0.7245 0.7219 0.7214
EQ-Bench 61.680 62.538 62.259 63.088 63.859 62.524 61.680

Table 1: Accuracy improvement for each λ on all the benchmarks tested at 200 step in PPO. Baseline
here is the SFT model, which is LLaMa3-8B-Instruct (Dubey et al., 2024).

Baseline λ = 0.0 λ = 0.2 λ = 0.4 λ = 0.6 λ = 0.8 λ = 1.0

ANLI-r1 0.4880 0.5000 0.5010 0.5020 0.4960 0.4940 0.4820
ANLI-r2 0.4610 0.4750 0.4770 0.4760 0.4720 0.4710 0.4700
ANLI-r3 0.4492 0.4642 0.4675 0.4658 0.4608 0.4625 0.4483
ARC-challenge 0.5324 0.5461 0.5427 0.5486 0.5503 0.5383 0.5367
ARC-easy 0.8165 0.8249 0.8253 0.8249 0.8228 0.8215 0.8169
Arithmetic 0.8568 0.8882 0.8940 0.8852 0.8856 0.8912 0.8856
FDA 0.7804 0.7867 0.7831 0.7858 0.7877 0.7849 0.7803
GSM8K 0.3320 0.3571 0.3571 0.3624 0.3639 0.3389 0.3146
LAMBADA 0.7180 0.7206 0.7275 0.7257 0.7281 0.7246 0.7202
MMLU 0.6381 0.6359 0.6356 0.6352 0.6352 0.6382 0.6359
PIQA 0.7878 0.7938 0.7873 0.7922 0.7900 0.7927 0.7900
SciQ 0.9640 0.9670 0.9680 0.9670 0.9660 0.9670 0.9650
TQA-mc1 0.3610 0.3770 0.3770 0.3794 0.3684 0.3670 0.3647
TQA-mc2 0.5165 0.5412 0.5341 0.5403 0.5387 0.5341 0.5240
Winogrande 0.7174 0.7285 0.7285 0.7237 0.7238 0.7227 0.7214
EQ-Bench 64.901 65.372 65.583 65.246 64.974 63.268 62.373

Table 2: Accuracy improvement for each λ on all the benchmarks tested at 800 step in PPO. Baseline
here is the SFT model, which is LLaMa3-8B-Instruct (Dubey et al., 2024).

C.2 DETAILED EXPERIMENTAL RESULTS IN SECTION 6.1

In Table 4, we present the comparison results between over-scoring setting and under-scoring setting,
where maximum reward and minimum reward are chosen as the reward signal respectively.

The under-scoring (minimum reward) setting consistently outperforms the over-scoring (maximum
reward) strategy in most cases. Particularly, in robustness-related tasks such as ANLI, the minimum
reward setting yields better stability and accuracy. This suggests that the conservative approach of
minimizing rewards helps avoid overfitting to noisy or suboptimal reward signals, which is espe-
cially beneficial for tasks that require robust generalization. For benchmarks like GSM8K, which
involve complex mathematical reasoning, the minimum reward setting provides a significant advan-
tage, leading to a more stable and gradual improvement in performance. This result aligns with
the hypothesis that minimizing rewards helps guide the model through more cautious exploration,
preventing drastic policy shifts that could derail learning in tasks requiring precision.
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λ 0 0.2 0.4 0.6 0.8 1.0

200 step 0.40% 0.67% 1.00% 1.41% 0.81% 0.01%
800 step 2.40% 2.41% 2.61% 2.22% 1.49% 0.19%

Table 3: Mean accuracy improvement for each λ on all the benchmarks tested.

Table 4: The performance of PPO with maximum reward vs. PPO with minimum reward.

Benchmark Accuracy Range Category Min or Max?

ANLI-r1 0.45-0.50 Robustness Min
ANLI-r2 0.45-0.50 Robustness Min
ANLI-r3 0.45-0.50 Robustness Max
ARC-Challenge 0.50-0.55 General Knowledge Min
ARC-Easy 0.80-0.85 General Knowledge Min
Arithmetic 0.85-0.90 Numerical Computation Equal
EQ-Bench - Emotion Reading Min
FDA 0.75-0.80 Information Extraction Min
GSM8K 0.30-0.40 Math Reasoning Min
Lambada 0.70-0.75 Context Understanding Max
MMLU 0.60-0.65 General Knowledge Max
PIQA 0.75-0.80 Commonsense Min
SciQ 0.95-1.00 Commonsense Min
TQA-mc1 0.35-0.40 General Knowledge Min
TQA-mc2 0.50-0.55 General Knowledge Min
Winogrande 0.70-0.75 Reasoning Min

Interestingly, on tasks like ANLI-r3, Lambada, and MMLU, the maximum reward setting leads to
better performance. These benchmarks often require a deeper understanding of context or broad
general knowledge, where more aggressive optimization via over-scoring might help the model cap-
ture more subtle nuances in the data. However, it is important to note that the improvements in these
cases are limited, and there is a risk that the model could overfit to specific examples or data patterns
in the long run.

Another key observation is that in domains where numerical or commonsense reasoning is criti-
cal, such as Arithmetic, PIQA, and SciQ, the performance difference between the maximum and
minimum reward settings is either negligible (as seen in Arithmetic) or favors the minimum reward
setting. This reinforces the idea that under-scoring generally promotes more consistent and stable
learning, particularly in tasks that require logical consistency or factual accuracy.

In tasks like Winogrande and FDA, which involve reasoning and information extraction, the min-
imum reward setting once again provides superior performance. This highlights the broader ap-
plicability of conservative reward strategies, especially in tasks where incorrect reward signals can
quickly lead the model astray.

Overall, the comparison shows that while the over-scoring strategy can occasionally provide short-
term performance boosts, particularly in context-heavy tasks, the under-scoring (minimum reward)
setting generally yields more reliable and stable improvements across a wider range of benchmarks.
This underscores the value of conservative reward modeling, especially when dealing with complex
reasoning tasks or when the RM itself may be noisy or imperfect. The results further validate the
robustness of the reward-robust RLHF approach, where minimizing the reward signal helps mitigate
the risk of performance degradation over time.

C.3 ABLATION STUDY ON BRME

In this section, we present ablation study results on the RMs to highlight the superiority of BRME
over the traditional RM. The coverage and margin advantages are detailed in Appendix B.3. Here,
we provide a comparison of accuracy and the direct effect on the PPO process.
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General QA Writing Comprehension Math Total

Bayesian RME 75.1% 74.7% 76.8% 77.1% 75.6%
Tradition RM 73.9% 73.4% 76.4% 75.3% 74.5%

Table 5: Ablation study: accuracy comparision between BRME and traditional RM.

We first compared the accuracy of the single-head RM trained with MLE loss to the nominal head
of the BRME on the preference dataset. The results in Table 5 clearly demonstrate that BRME
achieves higher accuracy across most benchmarks, indicating a better ability to distinguish between
preferred and non-preferred responses. Specifically, BRME outperforms the traditional RM by a
notable margin across different categories such as General QA, Writing, Comprehension, and Math.
The overall accuracy of BRME reaches 75.6%, compared to 74.5% for the traditional RM, showing
that BRME’s ability to model uncertainty provides a tangible advantage in distinguishing between
correct and incorrect responses.

In the General QA category, BRME achieves a 1.2% improvement over the traditional RM, and
similar improvements are observed in Writing (1.3%) and Math (1.8%). These results demonstrate
the robustness of BRME across various types of tasks, where more accurate reward signals are
crucial for guiding the optimization process. The largest gap is observed in the Math category,
where BRME shows a significant improvement, further reinforcing the model’s ability to handle
complex reasoning tasks where reward signals from traditional models may be less reliable.

We also examined the impact of these RMs on the PPO process by comparing the performance
of actors trained using BRME and the traditional RM. The results indicate that actors trained with
BRME benefit from more stable and reliable reward signals, leading to smoother training curves and
improved final performance. This is particularly evident in tasks requiring more nuanced decision-
making, where BRME’s broader reward distribution prevents the actor from overfitting to narrow or
incorrect reward signals.

C.4 ABLATION STUDY ON INTEGRATION STRATEGY

In addition to evaluating the min/max integration strategies, we conducted the same PPO experiment
using the mean of all reward signals and compared it to other integration strategies, such as the min,
max, and trade-off strategies. The mean strategy represents a baseline approach where all reward
signals are averaged, which can smooth out the variability in individual rewards but may also mask
valuable distinctions between reward sources. Comparing it with other strategies allows us to assess
how different approaches to integrating reward signals impact the stability and performance of the
model during training. The results are presented in Figure 9.

The performance of the mean strategy consistently falls between the min and max strategies, indicat-
ing that while averaging rewards offers a more balanced approach, it does not capture the advantages
of more targeted integration strategies. Specifically, in the later stages of training (after 800 steps),
the mean strategy shows a tendency toward performance decline, suggesting that the averaging pro-
cess may dilute the reward signal over time, leading to suboptimal policy learning. This is especially
evident in tasks requiring precise optimization, where overly smoothing the reward signal prevents
the model from fully leveraging high-quality responses.

On most datasets where PPO has a significant effect, the reward-robust RLHF setting with a trade-
off parameter of λ = 0.6 outperforms the mean strategy. The trade-off strategy balances nominal
performance with robustness, allowing the model to benefit from both high-performing and con-
servative reward signals. This balance is crucial in long-term training, as it mitigates the risk of
overfitting to specific rewards and helps maintain consistent performance gains.

The mean strategy, while easier to implement, lacks the ability to differentiate between high-quality
and low-quality reward signals effectively. By averaging all signals, it fails to account for the under-
lying uncertainty or variance in the RM. In contrast, the reward-robust RLHF approach, particularly
with λ = 0.6, preserves the benefits of more robust exploration and ensures that the model can
continue improving in the later stages of training, as observed in the experiments.
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Figure 9: Ablation study on BRME and integration strategy.

Additionally, the decline in performance seen with the mean strategy after 800 steps may be at-
tributed to the lack of adaptability in handling varied and uncertain reward signals. As training
progresses, the model requires more refined guidance to navigate complex optimization landscapes,
which the mean strategy fails to provide. This explains why the reward-robust approach, which dy-
namically adjusts the balance between performance and robustness, consistently yields better results
in long-term training.

D DATASET DESCRIPTIONS

In this section, we provide an overview of the datasets used for training and the benchmarks used
for evaluation in our experiments. This includes a detailed description of the datasets utilized in
the BRME training process and the PPO training pipeline, as well as the benchmarks employed to
evaluate the performance of our models.

Table 6 outlines the various datasets used for training BRME and the PPO models. These datasets
span a wide range of task types, ensuring that the RM is exposed to diverse examples during training,
helping it generalize across different domains. In UltraFeedBack, we selected response pairs where
the score is greater than or equal to 2 to form the chosen and rejected response pairs, which were
then used to train the BRME. By focusing on high-quality response pairs, we aim to ensure that the
RM is robust and capable of accurately distinguishing between better and worse responses.

For evaluation, we utilized a comprehensive set of benchmarks, as detailed in Table 7. These bench-
marks cover various domains, including general knowledge, logical reasoning, commonsense, and
mathematical reasoning, allowing us to thoroughly assess the performance of the RMs across dif-
ferent types of tasks. To ensure consistency and reliability in our evaluation process, we employed
the LM-evaluation-harness framework, which is a widely-used standard for evaluating LLMs (Gao
et al., 2024). This framework provides a standardized and rigorous approach to comparing model
performance across a diverse set of tasks, ensuring that the results are comparable with other works
in the field.
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Table 6: Description of the datasets in the training pipeline.

Datasets Size Description

HH-RLHF ∼170,000 The HH-RLHF dataset is a collection designed
to train and evaluate language models on human
preferences, particularly focusing on making AI
models both helpful and harmless.

UltraFeedBack 336,820 The UltraFeedback dataset is a large-scale, high-
quality, and diversified preference dataset de-
signed to enhance the performance of RLHF. It
includes over 1 million feedback instances gener-
ated by GPT-4 for around 250,000 user-assistant
conversations across various aspects of language
model outputs, such as helpfulness, truthfulness,
and honesty.

Internal Dataset 128,508 The internal dataset is collected and filtered by the
PM team. The categories includes general knowl-
edge, numerical computation, reasoning, person
writing, etc.

By using a diverse set of training datasets and evaluation benchmarks, we aim to provide a compre-
hensive assessment of our model’s capabilities. The combination of varied training data ensures the
robustness of the RM, while the evaluation benchmarks test the model’s ability to generalize across
different domains, making our findings relevant to a wide range of applications.

E PROOF FOR LEMMA 1

In this section we first reclaim the Lemma 1, and provide the proof details.

Revisiting Lemma 1. Let the RM provide a constant reward r(s, a) = c for all actions a ∈ A and
states s ∈ S during PPO training. Then, the gradient of the PPO objective function with respect to
the policy parameters θ is zero, implying that the actor cannot be optimized under such a RM.

Proof. During PPO training, the objective function is given by:

ℓPPO(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio between the current policy and the old policy, and

Ât is the advantage function. The advantage function is defined as:

Ât = Q(st, at)− V (st),

where Q(st, at) is the state-action value function and V (st) is the state value function, both output
by the critic model.

If the RM provides a constant reward r(st, at) = c for all actions, the state-action value function
and the state value function become:

Q(st, at) =
c

1− γ
, V (st) =

c

1− γ
,

where γ is the discount factor. Therefore, the advantage function simplifies to:

Ât = Q(st, at)− V (st) =
c

1− γ
− c

1− γ
= 0.

Substituting this into the PPO objective function, we get:

ℓPPO(θ) = Et [min (rt(θ) · 0, clip(rt(θ), 1− ϵ, 1 + ϵ) · 0)] = 0.
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Table 7: Description of the benchmarks.

Benchmark Size Description

ARC 7,787 Grade-school science exam questions, with 2,590 hard
ones and 5,197 easy ones.

LAMBADA 5,153 A dataset to evaluate the capabilities of text understand-
ing by means of a word prediction task. A collection of
narrative passages sharing the characteristic that human
subjects are able to guess their last word if they are ex-
posed to the whole passage, but not if they only see the
last sentence preceding the target word.

PIQA 3,124 Question Answering (PIQA) is a physical commonsense
reasoning to investigate the physical capability of existing
models.

SciQ 13,679 The SciQ dataset contains 13,679 crowdsourced science
exam questions about Physics, Chemistry and Biology,
among others. An additional paragraph with supporting
evidence for the correct answer is provided.

WinoGrande 44,000 A fill-in-a-blank task with binary options, the goal is to
choose the right option for a given sentence which re-
quires reasoning.

TruthfulQA 817 A QA task aimed at evaluating the truthfulness and fac-
tual accuracy of model responses.

MMLU 28,128 Knowledge-based multi-subject multiple choice ques-
tions for academic evaluation.

GSM8K 1,000 A benchmark of grade school math problems aimed at
evaluating reasoning capabilities.

FDA 551 Tasks for extracting key-value pairs from FDA docu-
ments to test information extraction.

EQ-Bench 171 EQ-Bench is a benchmark for language models designed
to assess emotional intelligence. It uses a specific ques-
tion format, in which the subject has to read a dialogue
then rate the intensity of possible emotional responses of
one of the characters. Every question is interpretative and
assesses the ability to predict the magnitude of the 4 pre-
sented emotions.

Arithmetic 2,000 A small battery of 10 tests that involve asking language
models a simple arithmetic problem in natural language.

ANLI 3,200 Adversarial natural language inference tasks designed to
test model robustness. It collected via an iterative, adver-
sarial human-and-model-in-the-loop procedure. It con-
sists of three rounds that progressively increase in diffi-
culty and complexity.

As a result, the gradient of the objective function with respect to the policy parameters becomes:

∂ℓPPO(θ)

∂θ
= 0,

which implies that no update to the actor’s parameters will occur, and the actor will not be optimized.

F FUTURE WORKS: HETEROLOGOUS REWARD FUSION

Heterologous Reward Fusion (HRF) aims to enhance the robustness and coverage of the uncertainty
set in our RMs by incorporating multiple heterologous reward sources. This method involves com-
bining several different RMs trained on diverse datasets, such as Baichuan2-33B (Yang et al., 2023),
Qwen2-72B (Yang et al., 2024a), and LLaMa3-8B (Dubey et al., 2024). The key advantage of using
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Table 8: Reward distribution characteristics in several RMs trained from different base model.

Base Model Size Max Min Mean Std Acc

LLaMa3 8B 15.625 -14.687 -0.032 4.529 0.789
Baichuan2 13B 10.562 -13.062 2.024 2.699 0.868
Baichuan2 33B 7.125 -7.093 0.573 2.595 0.917
Qwen2 72B 16.625 -10.062 -0.978 3.126 0.934
Baichuan2 177B 14.187 -6.687 6.697 2.836 0.950

heterologous models lies in the diversity of their training data, which produces more varied reward
scores and helps to enrich the uncertainty set.

By integrating heterologous rewards, we aim to capture a broader spectrum of reward signals, lever-
aging the strengths of models trained on different datasets and with varied optimization goals. For
example, integrating direct scoring from closed-source LLM APIs like GPT-4 alongside open-source
models ensures a wider and more balanced reward distribution, implicitly utilizing data from diverse
sources. This heterogeneity allows for a more comprehensive assessment of the model’s perfor-
mance across different scenarios.

However, one of the primary challenges in HRF is that each reward source has different value ranges,
making direct comparisons potentially unfair. To address this, we perform empirical reward normal-
ization. We score a separate dataset, HH-RLHF (Bai et al., 2022a), using each reward source and
compute the mean and variance for each. During PPO training, we transform the rewards from
each source by normalizing them based on their respective means and stds. This normalization
helps ensure that the reward signals from different models are comparable, allowing for a more fair
integration of the rewards.

Table 8 presents the results of our HRF experiment, showing the reward distribution characteristics
(max, min, mean, and std) for each model, along with their accuracy. Accuracy here is defined as
the proportion of instances where the model correctly identifies the chosen response as superior to
the rejected one.

However, it is important to note that we did not conduct end-to-end PPO experiments incorporat-
ing the full RM pipeline in this exploration. The primary reason for this limitation is the significant
computational resources and time required to carry out such experiments comprehensively. Running
full-scale PPO experiments, especially when integrating multiple heterologous RMs, is computa-
tionally expensive and requires extended periods of training, particularly when dealing with large
models like Baichuan2-33B and Qwen2-72B. Moving forward, our next steps include performing
the full end-to-end PPO experiments to evaluate the impact of HRF on the performance of the trained
policy.

G LIMITATIONS

While the proposed reward-robust RLHF framework shows improved performance on automatic
evaluation benchmarks, several non-negligible limitations remain. First, for some prompts, if all
reward heads in the BRME fail to provide correct signals and exhibit similar error patterns, the
reward hacking behavior seen in standard RLHF cannot be entirely mitigated, even with the reward-
robust approach. This suggests that the ultimate optimization still heavily depends on the model’s
capacity and generalization ability, particularly in handling out-of-distribution (OOD) data. As a
result, improving the quality of the reward model and the data used to train PPO is likely to be the
most critical factor influencing long-term training success.

Second, some of the theoretical hypotheses proposed to explain the experimental results in Sec-
tion 6.1 still require further validation. Conducting fine-grained analysis, particularly regarding the
specific impact of over-scoring and under-scoring signals on the PPO exploration process, will be
highly valuable. Addressing these gaps will be one of our future research focuses.
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(a) ANLI-r1. (b) ANLI-r2. (c) ANLI-r3.

(d) ARC-challenge. (e) ARC-easy. (f) Arithmetic.

(g) EQ-bench. (h) FDA. (i) GSM8K.

(j) LAMBADA. (k) MMLU. (l) PIQA.

(m) SciQ. (n) TQA-mc1. (o) TQA-mc2.

(p) WinoGrande.

Figure 10: Performance comparison between the PPO performance in maximized reward, mini-
mized reward and the mean reward.
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