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Abstract

The task of Knowledge Graph Question An-
swering (KGQA) involves using information
stored in a knowledge graph (KG) to answer
questions by identifying the relation path be-
tween the subject entity and the answer. Tradi-
tional KGQA methods require extensive train-
ing data and are time-consuming. Recent ad-
vancements in Large Language Models (LLMs)
have shown potential in various tasks. However,
methods leveraging LLMs for KGQA face chal-
lenges such as inference errors and excessive
reliance on prompt design. To address these is-
sues, we propose the Self-VEQA Agent, which
utilizes two agents: a QA Agent for initial an-
swers based on KG and a Verification Agent
to iteratively refine these answers, improving
accuracy over time. Additionally, our model
features a memory mechanism that enables dy-
namic evolution. As the Self-VEQA Agent per-
forms tasks and accumulates experience, the
overall performance improves over time. Eval-
uated on two KGQA benchmarks, Self-VEQA
Agent outperforms most traditional and LLM-
based methods, demonstrating its effectiveness.

1 Introduction

KGQA task aims to respond to NLP questions us-
ing information stored in a knowledge graph (KG)
by discerning the relation path between the subject
entity and the answer. Traditional methods (He
etal., 2021; Jiang et al., 2022; Xu et al., 2019; Sax-
ena et al., 2020) for KGQA involve training models
on a substantial amount of training data specific
to a dataset to perform question-answering tasks.
However, these methods face challenges such as
high time costs and the need for extensive training
data.

Recently, LLMs have excelled across various
tasks (Anil et al., 2023; Bai et al., 2023; Touvron
et al., 2023), primarily attributed to their training

on extensive datasets and parameter scales reach-
ing billions to trillions. Many studies lean towards
leveraging prompt engineering with LLMs, as it
eliminates the need for fine-tuning while harness-
ing their inference capabilities to achieve satisfac-
tory performance.

Using LLMs without fine-tuning for KGQA
tasks mainly falls into two categories. One (Wu
et al., 2023; Kim et al., 2023; Guo et al., 2023)
involves retrieving relevant knowledge to serve
as external knowledge for the LLMs, essentially
knowledge augmentation, enabling the LLM to an-
swer questions. Methods based on knowledge aug-
mentation primarily utilize retrieved knowledge for
knowledge enhancement. However, the lengthy in-
put text provided to the LLM for inference has
compromised its ability to make accurate infer-
ences, resulting in reduced effectiveness and oc-
casional reasoning errors. The other (Taffa and
Usbeck, 2023; Madani et al., 2023) involves gener-
ating SPARQL statements using LLMs. However,
a significant issue arises due to insufficient under-
standing ability of LLM, resulting in formatting
issues with SPARQL or errors in parsing relation-
ship chains, leading to unsuccessful KG queries
or inability to find answers. Besides, both cate-
gories rely excessively on the design of prompts
and human experience.

To address the aforementioned challenges, we
have introduced Self-Verification Enhanced Ques-
tion Answering Agent (Self-VEQA Agent). In-
stead of filtering fact triples, our method only gen-
erate inference chains based on KG to address the
problem of lengthy tokens. Besides, our method
uses the concept of automatic self-verification to ad-
dress the inadequacies in LLM reasoning abilities.
Building upon a foundational LLM, our approach
employs two agents: QA Agent and Verification
Agent(Ver Agent).

QA Agent serves as a basic question answering
module. The Ver Agent then verifies the answers



3 ¢
o 1

1
What does:I> PLM. =) Hop Num:1

[jamaican]
people speak?

- Memory

True Relation Chain : Inference Chain
Q : what does [jamaican] people speak?

-

Memory'

Figure 1: The structure of Self-VEQA Agent.

provided by the QA Agent to resolve incorrect rea-
soning problems. The two agents iterate through
rounds of checking and adjusting answers until
reaching a final satisfactory result or the maximum
number of iterations is reached. This iterative pro-
cess improves the accuracy of answers over time.
Furthermore, our model has a memory mechanism,
which enables it to possess dynamic evolution capa-
bilities. This means that as the Self-VEQA Agent
continues to perform tasks and accumulate expe-
rience, the accuracy of the QA Agent improves
towards later stages of tasks.

Main contributions:

(1) We propose Self-VEQA Agent, which intro-
duces agents to KGQA task. Self-VEQA Agent
incorporates the Ver Agent to enhance the auton-
omy of the LLMs. This guidance from the Ver
Agent helps the QA Agent generate more accurate
answers.

(2) Self-VEQA Agent includes a memory mech-
anism that enables the model to evolve dynamically
over time. As the Self-VEQA Agent performs tasks
and gains experience, the QA Agent’s accuracy im-
proves progressively with each subsequent task.
Experiments demonstrate that possessing a mem-
ory mechanism enhances the performance of the
Self-VEQA Agent in subsequent tasks.

(3) Self-VEQA Agent, without the need for fine-
tuning, outperforms traditional methods and most
LLM-based approaches on the MetaQA and We-
bQSP datasets in KGQA task.

2 Related Work

2.1 PLM for Knowledge Graph Reasoning.

The KV-mem approach mainly adopts the idea of
Traditional Key-value Memory Neural Networks
(Xuet al., 2019), treating the answer-question pairs
as key-value pairs and training them accordingly.
This enables it to conduct interpretable reasoning
for complex questions. EmbedKGQA (Saxena
et al., 2020) utilizes knowledge graph embeddings
to answer multi-hop natural language questions by
training. Firstly, it learns the representation of the
knowledge graph in the embedding space. Then,
given a question, it learns a question embedding. Fi-
nally, it combines these embeddings to predict the
answer. UniKGQA (Jiang et al., 2022) integrates
retrieval and reasoning with a semantic matching
module leveraging a pre-trained language model
(PLM) for question-relation semantic matching.
While the mentioned methods have improved
performance in KGQA tasks, they come with high
time and resource costs for model training and have
stringent requirements on datasets. Additionally,



- S Where are the [
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TASK: Generate three kind of most reasonable inference chains by imitating the
provided examples. The number of relations should be 2. Here is the question:

where are the nato headquarters located?

Instruction: When you generate inference chain, pay more attention on the
examples. You must give me three different chains.

Examples: ['question:where is the nra headquarters located\n
inference_chain:organization.organization.headquarters,location.mailing_address.cit

ytown\n', 'question:where is the main headquarters of google\n

inference_chain:organization.organization.headquarters,location.mailing_address.cit

ytown\n']...

Note: Output only three inference chains which contains 2 relations following strictly
the output format: Inference chainl:[relation1,relation2] Inference chain2:
[relation3,relationd] Inference chain3:[relation5,relation6].

Inference chainl:[organization.organization.headquarters, location.mailing_address.citytown]
Inference chain2:[location.geographic_location.location, location.location.containedby]
Inference chain3:[organization.organization.headquarters, location.location.adjoins]

Search

Answerl: Brussels; Answer2: NO_ANSWER; Answer3: NO_ANSWER

Figure 2: An example of QA Agent.

the trained models tend to lack generalizability.

2.2 Reasoning with Large Language Models

Although initially designed for text generation,
LLM has demonstrated remarkable performance
when applied to other subfields of natural lan-
guage processing (Cheng et al., 2022). Particu-
larly, the reasoning capability of LLM has garnered
widespread attention in the field of artificial intelli-
gence research (Arora et al., 2022; Sun et al., 2022).
Some studies have explored LLM’s performance in
various reasoning skills, including arithmetic, logi-
cal, and commonsense reasoning. These outstand-
ing performances make LLM an ideal reasoning
tool for tasks in other domains (Clusmann et al.,
2023).

2.3 LLM Agents

The utilization of LLMs for real-world tasks has
emerged as an intriguing research area due to their
human-like intelligence. While some studies lever-
age their linguistic capabilities, exploring LLMs
as autonomous agents in specific scenarios offers
diverse and promising applications. This approach
aims to address issues like reliance on parame-
ter settings and lack of adaptability in traditional
agent-based simulations using rules or reinforce-

ment learning. For instance, (Park et al., 2023) pio-
neered an LLM-powered agent framework to simu-
late human behavior in interactive scenarios, high-
lighting LLMs’ potential to model complex social
interactions and decision-making. BabyAGI! is a
language model that interacts with a task list to au-
tomatically generate, prioritize, and execute tasks
based on predefined objectives. Auto-GPT? uses
GPT-4 to bridge Al "thinking" and autonomously
attempts to achieve specified objectives by execut-
ing commands, pushing the boundaries of Al capa-
bilities. In this paper, we adopt the agent concept
to enhance LLLM decision-making for improving
KGQA task performance.

3 Method

Self-VEQA Agent contains four modules: Hop Pre-
diction module, QA module, Verification module
and Memory module as shown in Figure 1.

3.1 Hop Prediction Module

Hop Prediction involves estimating the number of
hops needed to answer a question, guiding subse-
quent inference path prediction. Our work refers

"https://github.com/yoheinakajima/babyagi
2https://github.com/Significant—Gravitas/
AutoGPT
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What industry does [ ] operate in?

D

Task:Judge whether one of these chains [Integrated Inference Chainl: "Walmart-
>organization.organization.operating_income->NO_ANSWER', Integrated Inference Chain2: 'Walmart-
>organization.organization.headquarters->NO_ANSWER', Integrated Inference Chain3: 'Walmart-
>organization.organization_founder.organizations_founded->samuel walton'] can answer the question and
pick one of a kind answer as 'veri_answer' to return and set 'success' True. Otherwise, you need to provide
modification suggestions about how to revise it.

Question:{where are the nato headquarters located?}

Instruction:

You should utilize fact triples to help you select which inference chain is reasonable to answer the question.
sub KG: Here are fact triples used to help.{'Department store business.industry.companies Walmart',

'Walmart business.business_operation.industry Retail', 'Department store

business.business_operation.industry Walmart', 'Walmart organization.organization.sectors Retail'...}

Note:

Your response must in JSON format as described below :

" success ": "True or False" ,

" veri_answer ": "one kind answer" ,

won

" critique ": " critique ",

Different kinds of Answers are {NO_ANSWER, NO_ANSWER,samuel walton}

{"success": "False", "veri_answer":

, "critique": " The chains are not reasonable because

they do not directly lead to industry of what walmart does. The correct chain should pay

more attention on industry."}

Figure 3: An example of Ver Agent. The prompt here only shows the crucial part.

to the work of (Wu et al., 2023). This process is
framed as a classification task leveraging a Pre-
trained Language Models (PLM) and a simple lin-
ear classifier. Through providing the number of
hops, it will help QA Agent to determine infer-
ence chains more accurate. We fine-tune bert-base-
uncased (Devlin et al., 2018) and a linear classifier
on the training set of the datasets for hop prediction
of WebQSP.

In the formula, () represents the question; Vj,
represents the embedding of the question; hg rep-
resents the predicted number of hops.

Vo = PLM(Q) (D

hg = argmax P(h|Vg),h€1,2,.... H (2)
h

3.2 QA Module

Our method designs a QA Agent, which is responsi-
ble for generating candidate inference chains upon
knowledge graph. To empower the QA Agent to
generate more precise inference chains, few-shot
selects from Memory module which is initialized
by training set. And then based on candidate infer-
ence chains, we can obtain answers from knowl-
edge graph.

The generated candidate inference chains and
answers undergo verification by the Ver Agent. If
it can select a reasonable one from the n-chains,
the process ends. And the correct inference chain
will be stored in Memory module. Otherwise, QA
Agent will modify inference chains according to
the modification suggestion from Ver Agent. The
Memory module provides the QA Agent with ex-
perience, continuously enriching and improving its
accuracy through usage. This demonstrates the QA
Agent’s dynamic evolution capability, as its accu-
racy steadily improves with each completed task
and gained experience.

To delve deeper into the details in Figure 2, we
start by chunking the various parts of the QA Agent
prompt, which mainly composed of three parts:
Task, Instruction, Note, shows below:

Task part primarily aims to clearly convey to the
QA Agent what its main task is. Here in Figure 2
the number of hops refers to 2. The question, along
with its corresponding number of hops, is fed into
the QA Agent as external input.

For instruction part, here, examples are sourced
from the Memory module, with the training set
used for initialization purposes. And examples are
composed of question and inference chain. Further-
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Figure 4: Memory Module.

more, this setup demonstrates the model’s dynamic
evolution capability, as it continuously learns from
accumulated memory.

Note section imposes strict requirements on the
output format as well as the specific output criteria.
Then, the QA Agent generates n-inference chains.
Combined with the head entity, we can identify n-
candidate answers through searching the KG. Here
head entity can be obtained from datasets.

And then candidate inference chains and corre-
sponding answers will be combined together which
are integrated inference chains. Based on these, we
can derive n-integrated inference chains and sets of
answers. An example of integrated inference chain
is shown as Appendix A.1. These n-integrated in-
ference chains, along with the set of answers and
a relevant subKG related to the question will be
input into the Ver Agent for answer selection. Here,
the term "relevant subKG" refers to a subset of the
knowledge graph (KG) that specifically pertains
to the current question. This subset is determined
through similarity calculations 3 with the questions,
which help identify nodes and relationships within
the KG that are closely related to the query at hand.
By utilizing this relevant subKG, our method can
effectively narrow down the scope of information
needed for processing verification, thus reducing
the overall number of input tokens and enhancing
efficiency.

Complete prompt can be found in Appendix B.1.

3.3 Verification Module

To enhance the accuracy of answers that generated
by the QA Agent, we have designed a Ver Agent.

3https://huggingface.co/sentence—transformers/
all-MinilM-L6-v2

This agent primarily leverages the reasoning capa-
bilities of LLMs to assess the coherence of the pre-
viously generated integrated inference chains from
the preceding step. In other words, it determines
whether the generated chain can effectively answer
the given question. If it can, Ver Agent selects
the final answer. If not, it provides modification
suggestions explaining why it cannot answer, and
this modification suggestions are passed to the QA
Agent for regeneration. This process is repeated un-
til the Ver Agent assesses the reasonableness of the
answer or reach the maximum number of rounds.

To delve deeper into the details in Figure 3, we
start by chunking the various parts of the QA Agent
prompt, which mainly composed of three parts:
Task, Instruction, Note.

Task part primarily aims to clearly convey to the
Ver Agent what its main task is. Here, n-integrated
inference chains will be passed to the Ver Agent.

Instruction part specifies the detailed aspects of
the task and provides the reasoning basis for the
Ver Agent and represents the core of this agent’s
function.

Note section imposes strict requirements on the
output format as well as the specific output criteria.

If the Ver Agent deems any of these n-inference
chains as reasonable, it will output the answer. Oth-
erwise, it will generate revision suggestions and
send them back to the QA Agent to regenerate
inference chains. In this example, there are not
reasonable inference chains present, so Ver Agent
will give feedback about how to revise it.

A more specific example that interation between
Ver Agent and QA agent can be found in Appendix
A.2. Complete prompt can be found in Appendix
B.2.
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Table 1: The Performance of Self-VEQA Agent and Baselines on MetaQA and WebQSP. The best result in each block is in bold.

A refers to the performance decrease from two hops to three hops on MetaQA.

MetaQA 2-HOP  MetaQA 3-HOP A WebQSP
Type Methods etaQ etaQ ebQ
Hit@1 Hit@1 Hit@el Fl  Hit@l
KV-Mem 82.7 489 338 345 467
L EmbedKGQA 98.8 94.8 4.0 - 66.6
Traditional Method NSM 99.9 98.9 10 628 687
UniKGQA 99.0 99.1 0.1 702 751
ChatGPT 31.0 432 122 ; 61.2
StructGPT(ChatGPT) 97.3 87.0 -10.3 - 726
LLM-based Method
@ MEod  KnowledgeNavigator 99.5 95 45 - 83.5
Autonomous Agent Self-VEQA Agent 99.7 99.6 -0.1 70.5 82

3.4 Memory Module

Due to the transient memory mechanism of LL.Ms,
we propose Memory module shown as Figure 4 as
the storage space for their experiences.

Its primary function is to store inference chains
and questions validated as correct by the Ver Agent.
This accumulation enriches the Memory module,
serving as an experience repository for subsequent
few-shot selections by the QA Agent. Memory
module will be continuously updated with new data,
thus ensuring a continuous update process. As
Memory module accumulates and is continuously
updated with new data, the QA Agent’s capabilities
gradually improve over time.

4 Experiment

4.1 Dataset

We conducted evaluations on both representative
small- and large-scale graphs along with their cor-
responding KGQA datasets.

MetaQA: (Zhang et al., 2018) is a substantial
KGQA dataset in the movie domain, featuring a
knowledge graph with 43,000 entities, 9 relations,
and 135,000 triples. It includes 407,000 questions
requiring 1-hop to 3-hop reasoning from head enti-
ties. Each question consists of a head entity, a rela-
tion reasoning path, and answer entities. To evalu-
ate Self-VEQA Agent’s multi-hop reasoning capa-
bilities, we focus on the 2-hop and 3-hop datasets
within MetaQA for our experiments.

WebQSP: is a benchmark with a smaller set of
questions but a large-scale knowledge graph. It in-
cludes up to 2-hop questions on Freebase(Bollacker
et al., 2008), each with a topic entity, constraints,
inferential chains, and SPARQL queries to find an-
swers. We used the latest Freebase data dumps

from Google*, containing 3.12 billion triples as
of 2023. WebQSP has 4,737 questions, but we
excluded 11 without gold answers.

4.2 Evaluation Metric

Consistent with prior studies, we employ Hits@1
and F1 as the evaluation metrics. Hits@ 1 measures
the percentage of questions for which the top-1
predicted answer is accurate. Recognizing that
a question might have multiple correct answers,
F1 takes into account the coverage of all answers,
striking a balance between the precision and recall
of the predicted responses.

4.3 Baselines

To assess the effectiveness of Self-VEQA Agent,
we conduct a comparative analysis against a collec-
tion of established baseline models in the KGQA
field on WebQSP and MetaQA. These baselines
can be categorized into traditional methods, which
do not incorporate LLM, and LLM-based methods.
Traditional methods’ baselines include KV-Mem
(Xu et al., 2019), EmbedKGQA (Saxena et al.,
2020), NSM (He et al., 2021), UniKGQA (Jiang
et al., 2022). All of these baselines were evalu-
ated on both MetaQA and WebQSP. In addition,
we add StructGPT (Jiang et al., 2023) and Knowl-
edgeNavigator (Jiang et al., 2023) as the baseline
models for KGQA tasks leverage LLM. Both of
these frameworks rely on un-fine-tuned LL.M for
knowledge retrieval and question reasoning. The
current LLM-based approaches involve a one-time
prompt without a process for autonomous decision-
making.

*https://developers.google.com/freebase/data
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4.4 Implementation Details

We use the closed-source GPT-3.5-turbo model via
the OpenAl API. The temperature parameter is set
to 0.0 for reproducibility, with a context length of
4096 and a maximum of 2000 tokens per output
sequence. In all experiments, the maximum num-
ber of interactions between the QA Agent and Ver
Agent is set to 2.

4.5 Main Results

Table 1 shows the performance of Self-VEQA
Agent and baseline on KGQA datasets.

MetaQA 2-Hop dataset is relatively simple, so
both traditional methods and LLM-based methods
can achieve relatively optimal performance. Many
of them have reached 99+. Self-VEQA Agent out-
performs most traditional methods and LLM-based
methods.

However, it is worth noting that Self-VEQA
Agent’s performance on MetaQA 2-Hop questions
falls short compared to NSM. This is primarily be-
cause the MetaQA dataset comprises fewer than
300 template questions but includes over 100,000
training instances, enabling models to be exten-
sively trained, thus achieving relatively high per-
formance. However, our approach mainly relies on
LLMs and does not involve specific fine-tuning for
the particular downstream task.

From the experimental results, we can observe
that for most models, including traditional ones
and those based on LLMs, the performance on
the MetaQA dataset tends to decrease when tran-
sitioning from 2-hop to 3-hop questions. This is
primarily because, for the MetaQA dataset, cor-
rectly reasoning through 3-hop questions is more
challenging than 2-hop questions. The heightened
challenge stems from 3-hop questions, which entail
reasoning chains comprised of three relationships.
This complexity makes it more challenging to de-
duce the accurate sequence and relationships. For
LLM-based methods without fine-tuning, such as
KnowledgeNavigator, the performance tends to de-
crease as the number of hops increases. This is
because KnowledgeNavigator primarily relies on
knowledge enhancement methods. As the number
of hops increases, the necessary knowledge also
grows exponentially. Consequently, this amplifies
the difficulty of LLM-based reasoning, resulting in
a decline in performance compared to 2-hop ques-
tions. Unlike other methods that treat retrieval and
reasoning as separate stages, UniKGQA proposes a

unified model for both processes, effectively trans-
ferring relevant information from the retrieval stage
to the reasoning stage. Therefore, its performance
remains consistent even with three hops.

In contrast, our method shows almost no change
in performance on the MetaQA dataset when transi-
tioning from 2-hop to 3-hop questions. The reason
why our method’s performance on 3-hop questions
does not decrease significantly compared to 2-hop
questions is mainly due to the design of our ver-
ification agent, which validates the rationality of
generated reasoning chains and answers. Addition-
ally, with accumulated task experience, the error
rate of generated reasoning chains decreases over
time, leading to overall performance improvement.

Compared to MetaQA, the WebQSP dataset
presents more complex relationship chains and in-
cludes questions with constraints just as described
earlier. However, the maximum hop for questions
in this dataset is 2. Therefore, the main challenge
for this dataset lies in identifying the correct re-
lationship chains and corresponding constraints.
Our method outperforms traditional models by
a significant margin, primarily because the We-
bQSP dataset encompasses more template ques-
tions but includes less training instances compared
to MetaQA, and some relationship chains have
similar and diverse names, making it challenging
for traditional models to adequately learn. Com-
pared to methods based on LLMs, our approach
also achieves better performance than most models.
This is mainly because we not only simply utilize
internal knowledge from LLMs or simply input
relevant external knowledge but also propose two
agents to interact with each other, thereby enhanc-
ing performance.

However, our method lags behind Knowledge-
Navigator by approximately 1.5% in performance
on the WebQSP dataset. This is mainly because
KnowledgeNavigator employs knowledge enhance-
ment techniques, providing more accurate factual
triplets, which leads to better answers for con-
strained questions and thus slightly better overall
QA performance than ours. In contrast, our ap-
proach primarily relies on a Ver Agent to enhance
the accuracy of the QA Agent, leveraging its reason-
ing capability, but there is room for improvement
in addressing constrained questions.

4.6 Ablation Experiment

Here, we conducted an ablation study on Self-
VEQA Agent to assess the influence of the Ver



Table 2: Ablation experiment of Self-VEQA Agent on
MetaQA and WebQSP.

MQA 2-HOP MQA 3-HOP WebQSP

Models
Hit@1 Hit@]1 F1 Hit@1
Self-VEQA Agent 99.7 99.6 70.5 82
-mem module 99.0 99.4 70.2 79.9
-ver module 98.9 98.7 63.9 74.3

Table 3: The Influence of Interaction Rounds on WebQSP.

the Number of Rounds WebQSP
F1 Hit@1
Rounds=1 69.8 80.4
Rounds=2 70.5 82
Rounds=3 70.1 81.1
Rounds=4 69.8 80.4
Rounds=5 69.6 80.2

Agent and Memory module by removing each one
individually. Table 2 shows the results of the abla-
tion study, in which -ver module and -mem module
stand for removing verification module and remov-
ing Memory module. All these variants underper-
form the complete Self-VEQA Agent, which indi-
cates that the two strategies are both important for
enhancing KGQA performance. But -ver module
is more significant for Self-VEQA Agent. The Ver
Agent has a greater impact on the WebQSP dataset
compared to MetaQA, because the inference chains
in the WebQSP dataset are relatively challenging.
It is difficult to generate the correct inference chain
correctly on the first attempt.

4.7 Other Analysis

4.7.1 Interaction Rounds Analysis

We also analyzed the impact of setting different
numbers of interaction rounds between the QA
Agent and Ver Agent on the performance of the
Self-VEQA Agent. Experimental results indicate
that increasing the number of interaction rounds
does not lead to better performance. For the We-
bQSP dataset, the best performance was observed
when the round was set to 2. This is because for
problems with fewer hops, interacting twice is usu-
ally sufficient to obtain the correct result. Exces-
sive interaction rounds can instead lead to a de-
crease in performance. In this context, considering
the amount of data and the complexity of the two
datasets, WebQSP is representative, thus we exclu-
sively carry out this experiment using this dataset.

Table 4: The Impact of Inference Chain Quantity on WebQSP.

Inference Chain Quantity LQSP
F1 Hit@1
num=1 65.5 76.9
num=3 70.5 82
num=5 69.8 81.2
num=10 68.9 79.4

4.7.2 Inference Chain Quantity Analysis

We also analyzed the impact of setting different
numbers of inference chain generated by QA Agent.
The experimental results indicate that setting the
number of inference chains generated by QA to
3 achieves the best performance. Increasing the
number of generated chains, for example, gener-
ating five or ten, actually decreases the overall
task performance. This is because an excessive
number of generated inference chains introduces
too much noise when the Ver Agent makes ratio-
nal judgments, thereby impacting its performance.
Conversely, from the experimental results, it can
be observed that the fewer inference chains gener-
ated by the QA Agent, the poorer its performance.
Given the volume of data and the complexity of
the two datasets, we have selected WebQSP as our
representative dataset for this experiment.

5 Conclusion

This paper introduces the Self-VEQA Agent for
Knowledge Graph Question Answering, address-
ing limitations of traditional methods and re-
cent approaches involving large language models.
Our method generates inference chains to avoid
lengthy token issues and employs automatic self-
verification to enhance LLLM reasoning accuracy.
The Self-VEQA Agent, comprising a QA Agent
and a Verification Agent, iterates through verify-
ing and adjusting answers, leading to improved
accuracy. Additionally, the model features a mem-
ory mechanism for dynamic evolution, enhancing
performance over time.

Limitations

We validated the effectiveness of each module
through ablation experiments. However, there is
still room for improvement in the performance of
the Ver Agent. While we don’t have a mature solu-
tion yet, future work could focus on futher enhanc-
ing the Ver Agent’s performance. This could in-



volve using more advanced large language models
and further exploring their reasoning capabilities
to achieve better results.
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A Example Appendix

A.1 Example of Integrated Inference Chain

It is shown as Figure 5.

A.2 Example of Self-VEQA Agent

In cases where the QA Agent generates an incor-
rect inference chain, the Ver Agent plays a crucial
role in identifying and flagging the error as shown
in Figure 6. It provides reasons for considering
the inference chain incorrect. In this example, Ver
Agent points out instances where the second re-
lationship fails to explicitly indicate the ultimate
relationship necessary for answering the question.
Subsequently, the QA Agent is tasked with modify-
ing and correcting the relationship chain to ensure
accuracy.

B Prompt Appendix
B.1 Prompt of QA Agent

TASK: Generate three kind of most reasonable in-
ference chains by imitating the provided examples.
The number of relations should be {the number of
hops}. Here is the question: {question}

Instruction: When you generate inference chain,
pay more attention on the examples examples. You
must give me three different chains.

Examples: {examples}

Note: Output only three inference chains which
contains {the number of hops} relation following
strictly the output format:

Inference chainl [relation]l,relation2]

Inference chain2: [relation3,relation4]

Inference chain3:[relation5,relation6].

B.2 Prompt of Ver Agent

TASK: Judge whether one of these chains
{chain_list} can answer the question and pick one
of a kind answer as ’veri_answer’ to return and set
’success’ True.

Question: {question }

Instruction: Pay more attention on the inference
chains. You should utilize fact triples to help you
select which inference chain is reasonable to an-
swer the question. Pick one and put only answer in
”veri response” without any useless word such as
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‘and’, and just use semicolon to separate different
answers, otherwise directly set “success” false and
give reasons why the relation chains cannot answer
the question. There is no need to answer the ques-
tion utilizing your internal knowledge. But you can
judge whether the answer is correct to answer the
question utilizing your internal knowledge. Don’t
apology!

Note: Your response must in JSON format as
described below:

"success": "True or False",

"veri_answer": "one kind answer or answer it
utilizing KnowledgeGraph",

"critique": "critique",

Ensure the response can be parsed by Python
’json . loads’ , e.g.: no trailing commas, no single
quotes, all contents should be strings etc. Pay more
attention on the output format, which is important,
otherwise, it will influence latter work.

When you pick one kind of answers from dif-
ferent kinds of Answers, you should choose all
answers from only one kind you pick.

sub KG: Here are fact triples used to help.
{fact_triples}.

Different kinds of Answers: {answerl, answer2,
answer3}.
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