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Abstract

The task of Knowledge Graph Question An-001
swering (KGQA) involves using information002
stored in a knowledge graph (KG) to answer003
questions by identifying the relation path be-004
tween the subject entity and the answer. Tradi-005
tional KGQA methods require extensive train-006
ing data and are time-consuming. Recent ad-007
vancements in Large Language Models (LLMs)008
have shown potential in various tasks. However,009
methods leveraging LLMs for KGQA face chal-010
lenges such as inference errors and excessive011
reliance on prompt design. To address these is-012
sues, we propose the Self-VEQA Agent, which013
utilizes two agents: a QA Agent for initial an-014
swers based on KG and a Verification Agent015
to iteratively refine these answers, improving016
accuracy over time. Additionally, our model017
features a memory mechanism that enables dy-018
namic evolution. As the Self-VEQA Agent per-019
forms tasks and accumulates experience, the020
overall performance improves over time. Eval-021
uated on two KGQA benchmarks, Self-VEQA022
Agent outperforms most traditional and LLM-023
based methods, demonstrating its effectiveness.024

1 Introduction025

KGQA task aims to respond to NLP questions us-026

ing information stored in a knowledge graph (KG)027

by discerning the relation path between the subject028

entity and the answer. Traditional methods (He029

et al., 2021; Jiang et al., 2022; Xu et al., 2019; Sax-030

ena et al., 2020) for KGQA involve training models031

on a substantial amount of training data specific032

to a dataset to perform question-answering tasks.033

However, these methods face challenges such as034

high time costs and the need for extensive training035

data.036

Recently, LLMs have excelled across various037

tasks (Anil et al., 2023; Bai et al., 2023; Touvron038

et al., 2023), primarily attributed to their training039

on extensive datasets and parameter scales reach- 040

ing billions to trillions. Many studies lean towards 041

leveraging prompt engineering with LLMs, as it 042

eliminates the need for fine-tuning while harness- 043

ing their inference capabilities to achieve satisfac- 044

tory performance. 045

Using LLMs without fine-tuning for KGQA 046

tasks mainly falls into two categories. One (Wu 047

et al., 2023; Kim et al., 2023; Guo et al., 2023) 048

involves retrieving relevant knowledge to serve 049

as external knowledge for the LLMs, essentially 050

knowledge augmentation, enabling the LLM to an- 051

swer questions. Methods based on knowledge aug- 052

mentation primarily utilize retrieved knowledge for 053

knowledge enhancement. However, the lengthy in- 054

put text provided to the LLM for inference has 055

compromised its ability to make accurate infer- 056

ences, resulting in reduced effectiveness and oc- 057

casional reasoning errors. The other (Taffa and 058

Usbeck, 2023; Madani et al., 2023) involves gener- 059

ating SPARQL statements using LLMs. However, 060

a significant issue arises due to insufficient under- 061

standing ability of LLM, resulting in formatting 062

issues with SPARQL or errors in parsing relation- 063

ship chains, leading to unsuccessful KG queries 064

or inability to find answers. Besides, both cate- 065

gories rely excessively on the design of prompts 066

and human experience. 067

To address the aforementioned challenges, we 068

have introduced Self-Verification Enhanced Ques- 069

tion Answering Agent (Self-VEQA Agent). In- 070

stead of filtering fact triples, our method only gen- 071

erate inference chains based on KG to address the 072

problem of lengthy tokens. Besides, our method 073

uses the concept of automatic self-verification to ad- 074

dress the inadequacies in LLM reasoning abilities. 075

Building upon a foundational LLM, our approach 076

employs two agents: QA Agent and Verification 077

Agent(Ver Agent). 078

QA Agent serves as a basic question answering 079

module. The Ver Agent then verifies the answers 080
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Figure 1: The structure of Self-VEQA Agent.

provided by the QA Agent to resolve incorrect rea-081

soning problems. The two agents iterate through082

rounds of checking and adjusting answers until083

reaching a final satisfactory result or the maximum084

number of iterations is reached. This iterative pro-085

cess improves the accuracy of answers over time.086

Furthermore, our model has a memory mechanism,087

which enables it to possess dynamic evolution capa-088

bilities. This means that as the Self-VEQA Agent089

continues to perform tasks and accumulate expe-090

rience, the accuracy of the QA Agent improves091

towards later stages of tasks.092

Main contributions:093

(1) We propose Self-VEQA Agent, which intro-094

duces agents to KGQA task. Self-VEQA Agent095

incorporates the Ver Agent to enhance the auton-096

omy of the LLMs. This guidance from the Ver097

Agent helps the QA Agent generate more accurate098

answers.099

(2) Self-VEQA Agent includes a memory mech-100

anism that enables the model to evolve dynamically101

over time. As the Self-VEQA Agent performs tasks102

and gains experience, the QA Agent’s accuracy im-103

proves progressively with each subsequent task.104

Experiments demonstrate that possessing a mem-105

ory mechanism enhances the performance of the106

Self-VEQA Agent in subsequent tasks.107

(3) Self-VEQA Agent, without the need for fine- 108

tuning, outperforms traditional methods and most 109

LLM-based approaches on the MetaQA and We- 110

bQSP datasets in KGQA task. 111

2 Related Work 112

2.1 PLM for Knowledge Graph Reasoning. 113

The KV-mem approach mainly adopts the idea of 114

Traditional Key-value Memory Neural Networks 115

(Xu et al., 2019), treating the answer-question pairs 116

as key-value pairs and training them accordingly. 117

This enables it to conduct interpretable reasoning 118

for complex questions. EmbedKGQA (Saxena 119

et al., 2020) utilizes knowledge graph embeddings 120

to answer multi-hop natural language questions by 121

training. Firstly, it learns the representation of the 122

knowledge graph in the embedding space. Then, 123

given a question, it learns a question embedding. Fi- 124

nally, it combines these embeddings to predict the 125

answer. UniKGQA (Jiang et al., 2022) integrates 126

retrieval and reasoning with a semantic matching 127

module leveraging a pre-trained language model 128

(PLM) for question-relation semantic matching. 129

While the mentioned methods have improved 130

performance in KGQA tasks, they come with high 131

time and resource costs for model training and have 132

stringent requirements on datasets. Additionally, 133
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Figure 2: An example of QA Agent.

the trained models tend to lack generalizability.134

2.2 Reasoning with Large Language Models135

Although initially designed for text generation,136

LLM has demonstrated remarkable performance137

when applied to other subfields of natural lan-138

guage processing (Cheng et al., 2022). Particu-139

larly, the reasoning capability of LLM has garnered140

widespread attention in the field of artificial intelli-141

gence research (Arora et al., 2022; Sun et al., 2022).142

Some studies have explored LLM’s performance in143

various reasoning skills, including arithmetic, logi-144

cal, and commonsense reasoning. These outstand-145

ing performances make LLM an ideal reasoning146

tool for tasks in other domains (Clusmann et al.,147

2023).148

2.3 LLM Agents149

The utilization of LLMs for real-world tasks has150

emerged as an intriguing research area due to their151

human-like intelligence. While some studies lever-152

age their linguistic capabilities, exploring LLMs153

as autonomous agents in specific scenarios offers154

diverse and promising applications. This approach155

aims to address issues like reliance on parame-156

ter settings and lack of adaptability in traditional157

agent-based simulations using rules or reinforce-158

ment learning. For instance, (Park et al., 2023) pio- 159

neered an LLM-powered agent framework to simu- 160

late human behavior in interactive scenarios, high- 161

lighting LLMs’ potential to model complex social 162

interactions and decision-making. BabyAGI1 is a 163

language model that interacts with a task list to au- 164

tomatically generate, prioritize, and execute tasks 165

based on predefined objectives. Auto-GPT2 uses 166

GPT-4 to bridge AI "thinking" and autonomously 167

attempts to achieve specified objectives by execut- 168

ing commands, pushing the boundaries of AI capa- 169

bilities. In this paper, we adopt the agent concept 170

to enhance LLM decision-making for improving 171

KGQA task performance. 172

3 Method 173

Self-VEQA Agent contains four modules: Hop Pre- 174

diction module, QA module, Verification module 175

and Memory module as shown in Figure 1. 176

3.1 Hop Prediction Module 177

Hop Prediction involves estimating the number of 178

hops needed to answer a question, guiding subse- 179

quent inference path prediction. Our work refers 180

1https://github.com/yoheinakajima/babyagi
2https://github.com/Significant-Gravitas/

AutoGPT
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Figure 3: An example of Ver Agent. The prompt here only shows the crucial part.

to the work of (Wu et al., 2023). This process is181

framed as a classification task leveraging a Pre-182

trained Language Models (PLM) and a simple lin-183

ear classifier. Through providing the number of184

hops, it will help QA Agent to determine infer-185

ence chains more accurate. We fine-tune bert-base-186

uncased (Devlin et al., 2018) and a linear classifier187

on the training set of the datasets for hop prediction188

of WebQSP.189

In the formula, Q represents the question; VQ190

represents the embedding of the question; hQ rep-191

resents the predicted number of hops.192

VQ = PLM(Q) (1)193
194

hQ = argmax
h

P (h|VQ), h ∈ 1, 2, ...,H (2)195

3.2 QA Module196

Our method designs a QA Agent, which is responsi-197

ble for generating candidate inference chains upon198

knowledge graph. To empower the QA Agent to199

generate more precise inference chains, few-shot200

selects from Memory module which is initialized201

by training set. And then based on candidate infer-202

ence chains, we can obtain answers from knowl-203

edge graph.204

The generated candidate inference chains and 205

answers undergo verification by the Ver Agent. If 206

it can select a reasonable one from the n-chains, 207

the process ends. And the correct inference chain 208

will be stored in Memory module. Otherwise, QA 209

Agent will modify inference chains according to 210

the modification suggestion from Ver Agent. The 211

Memory module provides the QA Agent with ex- 212

perience, continuously enriching and improving its 213

accuracy through usage. This demonstrates the QA 214

Agent’s dynamic evolution capability, as its accu- 215

racy steadily improves with each completed task 216

and gained experience. 217

To delve deeper into the details in Figure 2, we 218

start by chunking the various parts of the QA Agent 219

prompt, which mainly composed of three parts: 220

Task, Instruction, Note, shows below: 221

Task part primarily aims to clearly convey to the 222

QA Agent what its main task is. Here in Figure 2 223

the number of hops refers to 2. The question, along 224

with its corresponding number of hops, is fed into 225

the QA Agent as external input. 226

For instruction part, here, examples are sourced 227

from the Memory module, with the training set 228

used for initialization purposes. And examples are 229

composed of question and inference chain. Further- 230
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Figure 4: Memory Module.

more, this setup demonstrates the model’s dynamic231

evolution capability, as it continuously learns from232

accumulated memory.233

Note section imposes strict requirements on the234

output format as well as the specific output criteria.235

Then, the QA Agent generates n-inference chains.236

Combined with the head entity, we can identify n-237

candidate answers through searching the KG. Here238

head entity can be obtained from datasets.239

And then candidate inference chains and corre-240

sponding answers will be combined together which241

are integrated inference chains. Based on these, we242

can derive n-integrated inference chains and sets of243

answers. An example of integrated inference chain244

is shown as Appendix A.1. These n-integrated in-245

ference chains, along with the set of answers and246

a relevant subKG related to the question will be247

input into the Ver Agent for answer selection. Here,248

the term "relevant subKG" refers to a subset of the249

knowledge graph (KG) that specifically pertains250

to the current question. This subset is determined251

through similarity calculations 3 with the questions,252

which help identify nodes and relationships within253

the KG that are closely related to the query at hand.254

By utilizing this relevant subKG, our method can255

effectively narrow down the scope of information256

needed for processing verification, thus reducing257

the overall number of input tokens and enhancing258

efficiency.259

Complete prompt can be found in Appendix B.1.260

3.3 Verification Module261

To enhance the accuracy of answers that generated262

by the QA Agent, we have designed a Ver Agent.263

3https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

This agent primarily leverages the reasoning capa- 264

bilities of LLMs to assess the coherence of the pre- 265

viously generated integrated inference chains from 266

the preceding step. In other words, it determines 267

whether the generated chain can effectively answer 268

the given question. If it can, Ver Agent selects 269

the final answer. If not, it provides modification 270

suggestions explaining why it cannot answer, and 271

this modification suggestions are passed to the QA 272

Agent for regeneration. This process is repeated un- 273

til the Ver Agent assesses the reasonableness of the 274

answer or reach the maximum number of rounds. 275

To delve deeper into the details in Figure 3, we 276

start by chunking the various parts of the QA Agent 277

prompt, which mainly composed of three parts: 278

Task, Instruction, Note. 279

Task part primarily aims to clearly convey to the 280

Ver Agent what its main task is. Here, n-integrated 281

inference chains will be passed to the Ver Agent. 282

Instruction part specifies the detailed aspects of 283

the task and provides the reasoning basis for the 284

Ver Agent and represents the core of this agent’s 285

function. 286

Note section imposes strict requirements on the 287

output format as well as the specific output criteria. 288

If the Ver Agent deems any of these n-inference 289

chains as reasonable, it will output the answer. Oth- 290

erwise, it will generate revision suggestions and 291

send them back to the QA Agent to regenerate 292

inference chains. In this example, there are not 293

reasonable inference chains present, so Ver Agent 294

will give feedback about how to revise it. 295

A more specific example that interation between 296

Ver Agent and QA agent can be found in Appendix 297

A.2. Complete prompt can be found in Appendix 298

B.2. 299
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Table 1: The Performance of Self-VEQA Agent and Baselines on MetaQA and WebQSP. The best result in each block is in bold.
∆ refers to the performance decrease from two hops to three hops on MetaQA.

Type Methods
MetaQA 2-HOP MetaQA 3-HOP ∆ WebQSP

Hit@1 Hit@1 Hit@1 F1 Hit@1

Traditional Method

KV-Mem 82.7 48.9 -33.8 34.5 46.7
EmbedKGQA 98.8 94.8 -4.0 - 66.6

NSM 99.9 98.9 -1.0 62.8 68.7
UniKGQA 99.0 99.1 +0.1 70.2 75.1

LLM-based Method

ChatGPT 31.0 43.2 -12.2 - 61.2
StructGPT(ChatGPT) 97.3 87.0 -10.3 - 72.6
KnowledgeNavigator 99.5 95 -4.5 - 83.5

Autonomous Agent Self-VEQA Agent 99.7 99.6 -0.1 70.5 82

3.4 Memory Module300

Due to the transient memory mechanism of LLMs,301

we propose Memory module shown as Figure 4 as302

the storage space for their experiences.303

Its primary function is to store inference chains304

and questions validated as correct by the Ver Agent.305

This accumulation enriches the Memory module,306

serving as an experience repository for subsequent307

few-shot selections by the QA Agent. Memory308

module will be continuously updated with new data,309

thus ensuring a continuous update process. As310

Memory module accumulates and is continuously311

updated with new data, the QA Agent’s capabilities312

gradually improve over time.313

4 Experiment314

4.1 Dataset315

We conducted evaluations on both representative316

small- and large-scale graphs along with their cor-317

responding KGQA datasets.318

MetaQA: (Zhang et al., 2018) is a substantial319

KGQA dataset in the movie domain, featuring a320

knowledge graph with 43,000 entities, 9 relations,321

and 135,000 triples. It includes 407,000 questions322

requiring 1-hop to 3-hop reasoning from head enti-323

ties. Each question consists of a head entity, a rela-324

tion reasoning path, and answer entities. To evalu-325

ate Self-VEQA Agent’s multi-hop reasoning capa-326

bilities, we focus on the 2-hop and 3-hop datasets327

within MetaQA for our experiments.328

WebQSP: is a benchmark with a smaller set of329

questions but a large-scale knowledge graph. It in-330

cludes up to 2-hop questions on Freebase(Bollacker331

et al., 2008), each with a topic entity, constraints,332

inferential chains, and SPARQL queries to find an-333

swers. We used the latest Freebase data dumps334

from Google4, containing 3.12 billion triples as 335

of 2023. WebQSP has 4,737 questions, but we 336

excluded 11 without gold answers. 337

4.2 Evaluation Metric 338

Consistent with prior studies, we employ Hits@1 339

and F1 as the evaluation metrics. Hits@1 measures 340

the percentage of questions for which the top-1 341

predicted answer is accurate. Recognizing that 342

a question might have multiple correct answers, 343

F1 takes into account the coverage of all answers, 344

striking a balance between the precision and recall 345

of the predicted responses. 346

4.3 Baselines 347

To assess the effectiveness of Self-VEQA Agent, 348

we conduct a comparative analysis against a collec- 349

tion of established baseline models in the KGQA 350

field on WebQSP and MetaQA. These baselines 351

can be categorized into traditional methods, which 352

do not incorporate LLM, and LLM-based methods. 353

Traditional methods’ baselines include KV-Mem 354

(Xu et al., 2019), EmbedKGQA (Saxena et al., 355

2020), NSM (He et al., 2021), UniKGQA (Jiang 356

et al., 2022). All of these baselines were evalu- 357

ated on both MetaQA and WebQSP. In addition, 358

we add StructGPT (Jiang et al., 2023) and Knowl- 359

edgeNavigator (Jiang et al., 2023) as the baseline 360

models for KGQA tasks leverage LLM. Both of 361

these frameworks rely on un-fine-tuned LLM for 362

knowledge retrieval and question reasoning. The 363

current LLM-based approaches involve a one-time 364

prompt without a process for autonomous decision- 365

making. 366

4https://developers.google.com/freebase/data
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4.4 Implementation Details367

We use the closed-source GPT-3.5-turbo model via368

the OpenAI API. The temperature parameter is set369

to 0.0 for reproducibility, with a context length of370

4096 and a maximum of 2000 tokens per output371

sequence. In all experiments, the maximum num-372

ber of interactions between the QA Agent and Ver373

Agent is set to 2.374

4.5 Main Results375

Table 1 shows the performance of Self-VEQA376

Agent and baseline on KGQA datasets.377

MetaQA 2-Hop dataset is relatively simple, so378

both traditional methods and LLM-based methods379

can achieve relatively optimal performance. Many380

of them have reached 99+. Self-VEQA Agent out-381

performs most traditional methods and LLM-based382

methods.383

However, it is worth noting that Self-VEQA384

Agent’s performance on MetaQA 2-Hop questions385

falls short compared to NSM. This is primarily be-386

cause the MetaQA dataset comprises fewer than387

300 template questions but includes over 100,000388

training instances, enabling models to be exten-389

sively trained, thus achieving relatively high per-390

formance. However, our approach mainly relies on391

LLMs and does not involve specific fine-tuning for392

the particular downstream task.393

From the experimental results, we can observe394

that for most models, including traditional ones395

and those based on LLMs, the performance on396

the MetaQA dataset tends to decrease when tran-397

sitioning from 2-hop to 3-hop questions. This is398

primarily because, for the MetaQA dataset, cor-399

rectly reasoning through 3-hop questions is more400

challenging than 2-hop questions. The heightened401

challenge stems from 3-hop questions, which entail402

reasoning chains comprised of three relationships.403

This complexity makes it more challenging to de-404

duce the accurate sequence and relationships. For405

LLM-based methods without fine-tuning, such as406

KnowledgeNavigator, the performance tends to de-407

crease as the number of hops increases. This is408

because KnowledgeNavigator primarily relies on409

knowledge enhancement methods. As the number410

of hops increases, the necessary knowledge also411

grows exponentially. Consequently, this amplifies412

the difficulty of LLM-based reasoning, resulting in413

a decline in performance compared to 2-hop ques-414

tions. Unlike other methods that treat retrieval and415

reasoning as separate stages, UniKGQA proposes a416

unified model for both processes, effectively trans- 417

ferring relevant information from the retrieval stage 418

to the reasoning stage. Therefore, its performance 419

remains consistent even with three hops. 420

In contrast, our method shows almost no change 421

in performance on the MetaQA dataset when transi- 422

tioning from 2-hop to 3-hop questions. The reason 423

why our method’s performance on 3-hop questions 424

does not decrease significantly compared to 2-hop 425

questions is mainly due to the design of our ver- 426

ification agent, which validates the rationality of 427

generated reasoning chains and answers. Addition- 428

ally, with accumulated task experience, the error 429

rate of generated reasoning chains decreases over 430

time, leading to overall performance improvement. 431

Compared to MetaQA, the WebQSP dataset 432

presents more complex relationship chains and in- 433

cludes questions with constraints just as described 434

earlier. However, the maximum hop for questions 435

in this dataset is 2. Therefore, the main challenge 436

for this dataset lies in identifying the correct re- 437

lationship chains and corresponding constraints. 438

Our method outperforms traditional models by 439

a significant margin, primarily because the We- 440

bQSP dataset encompasses more template ques- 441

tions but includes less training instances compared 442

to MetaQA, and some relationship chains have 443

similar and diverse names, making it challenging 444

for traditional models to adequately learn. Com- 445

pared to methods based on LLMs, our approach 446

also achieves better performance than most models. 447

This is mainly because we not only simply utilize 448

internal knowledge from LLMs or simply input 449

relevant external knowledge but also propose two 450

agents to interact with each other, thereby enhanc- 451

ing performance. 452

However, our method lags behind Knowledge- 453

Navigator by approximately 1.5% in performance 454

on the WebQSP dataset. This is mainly because 455

KnowledgeNavigator employs knowledge enhance- 456

ment techniques, providing more accurate factual 457

triplets, which leads to better answers for con- 458

strained questions and thus slightly better overall 459

QA performance than ours. In contrast, our ap- 460

proach primarily relies on a Ver Agent to enhance 461

the accuracy of the QA Agent, leveraging its reason- 462

ing capability, but there is room for improvement 463

in addressing constrained questions. 464

4.6 Ablation Experiment 465

Here, we conducted an ablation study on Self- 466

VEQA Agent to assess the influence of the Ver 467
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Table 2: Ablation experiment of Self-VEQA Agent on
MetaQA and WebQSP.

Models
MQA 2-HOP MQA 3-HOP WebQSP

Hit@1 Hit@1 F1 Hit@1

Self-VEQA Agent 99.7 99.6 70.5 82
-mem module 99.0 99.4 70.2 79.9
-ver module 98.9 98.7 63.9 74.3

Table 3: The Influence of Interaction Rounds on WebQSP.

the Number of Rounds
WebQSP

F1 Hit@1

Rounds=1 69.8 80.4
Rounds=2 70.5 82
Rounds=3 70.1 81.1
Rounds=4 69.8 80.4
Rounds=5 69.6 80.2

Agent and Memory module by removing each one468

individually. Table 2 shows the results of the abla-469

tion study, in which -ver module and -mem module470

stand for removing verification module and remov-471

ing Memory module. All these variants underper-472

form the complete Self-VEQA Agent, which indi-473

cates that the two strategies are both important for474

enhancing KGQA performance. But -ver module475

is more significant for Self-VEQA Agent. The Ver476

Agent has a greater impact on the WebQSP dataset477

compared to MetaQA, because the inference chains478

in the WebQSP dataset are relatively challenging.479

It is difficult to generate the correct inference chain480

correctly on the first attempt.481

4.7 Other Analysis482

4.7.1 Interaction Rounds Analysis483

We also analyzed the impact of setting different484

numbers of interaction rounds between the QA485

Agent and Ver Agent on the performance of the486

Self-VEQA Agent. Experimental results indicate487

that increasing the number of interaction rounds488

does not lead to better performance. For the We-489

bQSP dataset, the best performance was observed490

when the round was set to 2. This is because for491

problems with fewer hops, interacting twice is usu-492

ally sufficient to obtain the correct result. Exces-493

sive interaction rounds can instead lead to a de-494

crease in performance. In this context, considering495

the amount of data and the complexity of the two496

datasets, WebQSP is representative, thus we exclu-497

sively carry out this experiment using this dataset.498

Table 4: The Impact of Inference Chain Quantity on WebQSP.

Inference Chain Quantity
WebQSP

F1 Hit@1

num=1 65.5 76.9
num=3 70.5 82
num=5 69.8 81.2

num=10 68.9 79.4

4.7.2 Inference Chain Quantity Analysis 499

We also analyzed the impact of setting different 500

numbers of inference chain generated by QA Agent. 501

The experimental results indicate that setting the 502

number of inference chains generated by QA to 503

3 achieves the best performance. Increasing the 504

number of generated chains, for example, gener- 505

ating five or ten, actually decreases the overall 506

task performance. This is because an excessive 507

number of generated inference chains introduces 508

too much noise when the Ver Agent makes ratio- 509

nal judgments, thereby impacting its performance. 510

Conversely, from the experimental results, it can 511

be observed that the fewer inference chains gener- 512

ated by the QA Agent, the poorer its performance. 513

Given the volume of data and the complexity of 514

the two datasets, we have selected WebQSP as our 515

representative dataset for this experiment. 516

5 Conclusion 517

This paper introduces the Self-VEQA Agent for 518

Knowledge Graph Question Answering, address- 519

ing limitations of traditional methods and re- 520

cent approaches involving large language models. 521

Our method generates inference chains to avoid 522

lengthy token issues and employs automatic self- 523

verification to enhance LLM reasoning accuracy. 524

The Self-VEQA Agent, comprising a QA Agent 525

and a Verification Agent, iterates through verify- 526

ing and adjusting answers, leading to improved 527

accuracy. Additionally, the model features a mem- 528

ory mechanism for dynamic evolution, enhancing 529

performance over time. 530

Limitations 531

We validated the effectiveness of each module 532

through ablation experiments. However, there is 533

still room for improvement in the performance of 534

the Ver Agent. While we don’t have a mature solu- 535

tion yet, future work could focus on futher enhanc- 536

ing the Ver Agent’s performance. This could in- 537
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volve using more advanced large language models538

and further exploring their reasoning capabilities539

to achieve better results.540
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A Example Appendix650

A.1 Example of Integrated Inference Chain651

It is shown as Figure 5.652

A.2 Example of Self-VEQA Agent653

In cases where the QA Agent generates an incor-654

rect inference chain, the Ver Agent plays a crucial655

role in identifying and flagging the error as shown656

in Figure 6. It provides reasons for considering657

the inference chain incorrect. In this example, Ver658

Agent points out instances where the second re-659

lationship fails to explicitly indicate the ultimate660

relationship necessary for answering the question.661

Subsequently, the QA Agent is tasked with modify-662

ing and correcting the relationship chain to ensure663

accuracy.664

B Prompt Appendix665

B.1 Prompt of QA Agent666

TASK: Generate three kind of most reasonable in-667

ference chains by imitating the provided examples.668

The number of relations should be {the number of669

hops}. Here is the question:{question}670

Instruction: When you generate inference chain,671

pay more attention on the examples examples. You672

must give me three different chains.673

Examples: {examples}674

Note: Output only three inference chains which675

contains {the number of hops} relation following676

strictly the output format:677

Inference chain1 [relation1,relation2]678

Inference chain2: [relation3,relation4]679

Inference chain3:[relation5,relation6].680

B.2 Prompt of Ver Agent681

TASK: Judge whether one of these chains682

{chain_list} can answer the question and pick one683

of a kind answer as ’veri_answer’ to return and set684

’success’ True.685

Question:{question}686

Instruction: Pay more attention on the inference687

chains. You should utilize fact triples to help you688

select which inference chain is reasonable to an-689

swer the question. Pick one and put only answer in690

”veri response” without any useless word such as691

‘and’, and just use semicolon to separate different 692

answers, otherwise directly set “success” false and 693

give reasons why the relation chains cannot answer 694

the question. There is no need to answer the ques- 695

tion utilizing your internal knowledge. But you can 696

judge whether the answer is correct to answer the 697

question utilizing your internal knowledge. Don’t 698

apology! 699

Note: Your response must in JSON format as 700

described below: 701

"success": "True or False", 702

"veri_answer": "one kind answer or answer it 703

utilizing KnowledgeGraph", 704

"critique": "critique", 705

Ensure the response can be parsed by Python 706

’json . loads’ , e.g.: no trailing commas, no single 707

quotes, all contents should be strings etc. Pay more 708

attention on the output format, which is important, 709

otherwise, it will influence latter work. 710

When you pick one kind of answers from dif- 711

ferent kinds of Answers, you should choose all 712

answers from only one kind you pick. 713

sub KG: Here are fact triples used to help. 714

{fact_triples}. 715

Different kinds of Answers: {answer1, answer2, 716

answer3}. 717
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Figure 5: an example of integrated inference chain.

Figure 6: Ver Agent provide revision suggestion and QA Agent revises inference chain.
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