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Figure 1. We present in2IN, a diffusion model architecture capable of generating human-human motion interactions using general in-
teraction descriptions to model the inter-personal dynamics and specific individual descriptions to model the intra-personal dynamics.
Furthermore, we propose DualMDM, a motion composition method that is able to combine predictions made by an interaction model and
by a single-person motion prior, thus increasing the intra-personal diversity of human motion interactions.

Abstract

Generating human-human motion interactions condi-001
tioned on textual descriptions is a very useful application002
in many areas such as robotics, gaming, animation, and the003
metaverse. Alongside this utility also comes a great diffi-004
culty in modeling the highly dimensional inter-personal dy-005
namics. In addition, properly capturing the intra-personal006
diversity of interactions has a lot of challenges. Cur-007
rent methods generate interactions with limited diversity of008
intra-person dynamics due to the limitations of the avail-009
able datasets and conditioning strategies. For this, we intro-010
duce in2IN, a novel diffusion model for human-human mo-011
tion generation which is conditioned not only on the textual012
description of the overall interaction but also on the individ-013
ual descriptions of the actions performed by each person in-014
volved in the interaction. To train this model, we use a large015
language model to extend the InterHuman dataset with indi-016
vidual descriptions. As a result, in2IN achieves state-of-the-017
art performance in the InterHuman dataset. Furthermore,018

in order to increase the intra-personal diversity on the ex- 019
isting interaction datasets, we propose DualMDM, a model 020
composition technique that combines the motions gener- 021
ated with in2IN and the motions generated by a single- 022
person motion prior pre-trained on HumanML3D. As a re- 023
sult, DualMDM generates motions with higher individual 024
diversity and improves control over the intra-person dynam- 025
ics while maintaining inter-personal coherence. 026

1. Introduction 027

Human Motion Generation refers to creating synthetic hu- 028
man movements that closely mimic those performed by ac- 029
tual individuals. This field has experienced significant ad- 030
vancements alongside the general progress in generative AI 031
over recent years [56]. However, unlike other areas of gen- 032
erative AI, such as image and text generation, annotated 033
motion datasets are scarce due to the need for expensive 034
recording setups and actors. Controlling the generation 035
of a motion based on a given condition is extremely im- 036
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portant for applications such as video games or robotics.037
We can find many different condition types such as ac-038
tions [12, 16, 32, 41], audio [27, 43, 47, 55], or natural039
text [1, 12, 18–20, 25, 26, 33, 34, 40, 41, 48–51, 54]. In040
contrast to discrete conditioning means such as actions, uti-041
lizing text is advantageous due to its capacity to convey de-042
tailed descriptions of specific motions. Natural text allows043
for the specification of movements in different body parts,044
at varying velocities, and within diverse contexts or emo-045
tional states. Recent advancements with Large Language046
Models (LLMs) have underscored the potency of text as a047
versatile tool across various applications [10, 14, 42, 53].048

Generating realistic individual human motion condi-049
tioned on a textual description is a very challenging task due050
to the complexity of the intra-personal dynamics as well as051
the difficulty of aligning a textual description with a specific052
motion. Additionally, motion is rarely done in isolation in053
the real world. As an intelligent species, we adapt our mo-054
tions depending on several factors, such as the environment055
and other individuals that we might interact with [5, 13].056
Modeling such interactions is extremely difficult due to057
the intricacy of inter-personal dynamics [6, 21, 57]. More058
specifically, a single person might behave in many differ-059
ent ways under the same interaction. This individual di-060
versity can arise from variations in the joints trajectories,061
velocities, or even the action semantics. For example, two062
people can salute each other by waving the left or the right063
hand, slowly or quickly, or even bowing instead. Control-064
ling such intra-personal dynamics when generating human-065
human interactions is an important and underexplored ca-066
pability. Available annotated interaction datasets such as067
InterHuman [28] contain a significant amount of annotated068
interactions. However, neither of them [28, 36, 39] provides069
enough individual diversity nor detailed textual descriptions070
of the individual motions of the interaction. As a conse-071
quence, recent human-human interaction generation meth-072
ods [11, 28, 36, 39] tend to replicate the interactions from073
the training datasets, showing limited diversity in the in-074
dividual motions that encompass the interactions, and lack075
individual control capabilities. To address all these prob-076
lems, we could scale up by collecting bigger and more di-077
verse datasets. This work, instead, proposes a new method-078
ology that effectively exploits the individual diversity al-079
ready present in the available datasets to improve the per-080
formance and control when generating human-human inter-081
actions. More particularly, our main contributions1 are:082

• We propose in2IN, a novel diffusion model architecture083
that is not only conditioned on the overall interaction de-084
scription but also on the descriptions of the individual085
motion performed by each interactant, as illustrated in086
Fig. 1. To do so, we extend the InterHuman dataset [28]087

1The code, model checkpoints, and data will be publically released on:
censored

with LLM-generated textual descriptions of the individ- 088
ual human motions involved in the interaction. Our ap- 089
proach allows for a more precise interaction generation 090
and achieves state-of-the-art results on the InterHuman 091
dataset. 092

• We introduce a diffusion conditioning technique based 093
on the Classifier Free Guidance (CFG) [22] that allows 094
weighting independently the importance of each condi- 095
tion during the interaction generation. This enables a 096
higher control over the influence of individual and inter- 097
action descriptions on the sampling process. 098

• We propose DualMDM, a new motion composition tech- 099
nique to further increase the individual diversity and con- 100
trol. By combining our in2IN interaction model with a 101
single-person (individual) motion prior, we generate in- 102
teractions with more diverse intra-personal dynamics. 103

2. Related Work 104

2.1. Text-Driven Human Motion Generation 105

A review of recent literature [56] reveals significant 106
progress in this domain over the past two years, with a 107
plethora of methodologies being explored. The first set of 108
methodologies that have been explored is based on align- 109
ing the latent spaces of text and motion using the Kullback- 110
Leibler divergence loss [1, 18, 33, 40]. A decoder is trained 111
to convert the text latent representation into the correspond- 112
ing motion. The main limitation of these approaches is that 113
the scarcity of motion data might lead to latent space mis- 114
alignments and therefore semantic mismatches between the 115
text and the generated motion. 116

Based on the recent success of auto-regressive ap- 117
proaches in domains like language, with the advent of 118
LLMs [10, 14, 42, 53] powered by Transformers [44], new 119
approaches have emerged in the motion field [19, 25, 49, 120
54]. In these, motions are tokenized into discrete codes 121
from a learned codebook, and a Transformer architecture 122
is used to convert text tokens into motion tokens in an au- 123
toregressive manner. While these approaches generate more 124
realistic motions, they have some downsides. Firstly, while 125
tokenizing text is a relatively simple task, tokenizing motion 126
is not straightforward because there are no clear individual 127
logic units as can be the words or lemmas in a text. Addi- 128
tionally, due to the nature of auto-regressive models, they 129
cannot model bi-directional dependencies. MMM [34] and 130
MoMask [20] address this limitation using masked attention 131
in BERT [14] style. 132

Diffusion Models [23, 37] have emerged as the best op- 133
tion for many generative tasks [46], also achieving excel- 134
lent results in the text-to-motion field. FLAME [26] and 135
MotionDiffusion [51] employ a traditional diffusion model 136
with a Transformer as the noise predictor, achieving state- 137
of-the-art results. Instead of predicting the noise, MDM 138
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[41] predicts the fully denoised motion at each step. This139
strategy, typically called x0 reparametrization [7, 45], en-140
ables the use of kinematic loss functions, leading to better141
human motion generation. Other methods propose incorpo-142
rating physical constraints into the diffusion process [48],143
using latent diffusion models for speeding up the sampling144
[12], or leveraging retrieval-based methods [50]. Although145
the sequential multi-step nature of diffusion models during146
inference makes them very slow, it also empowers them to147
generate very realistic samples with high diversity [15] and148
fine-grained control capabilities. As a result, diffusion mod-149
els are very powerful for human interaction generation.150

2.2. Text-Driven Human Interaction Generation151

ComMDM [36] extends MDM’s capabilities to generate152
multi-human interactions. ComMDM is a cross-attention153
module integrated into specific layers of the denoisers in154
two frozen MDM models. This module processes the ac-155
tivations from the two models and adjusts them to foster156
interaction. In [39], a similar concept is employed but157
this time with two distinct models. Interaction modeling158
is achieved through a shared cross-attention module that159
connects both models, an architecture particularly suited160
for asymmetric interactions involving an actor and a re-161
ceiver. However, they observed that their method overfitted162
to the training dataset due to the lack of annotated inter-163
action datasets. Recently, InterHuman [28] was released,164
becoming the most extensive annotated dataset of human165
interactions up to date. The authors also propose a baseline166
method called InterGen, which is based on two coopera-167
tive denoisers with shared weights. Finally, MoMat-MoGen168
[11] extends the retrieval diffusion model proposed in [50]169
and adapts it to human interactions, becoming the current170
state of the art on InterHuman. In contrast to the previ-171
ous approaches, we propose a diffusion model (in2IN) that172
conditions the generation on both the general interaction de-173
scription and a fine-grained description providing more de-174
tails on the action performed by each individual involved175
in the interaction. This results in a model that generates176
adequate inter-personal dynamics and, at the same time, en-177
ables precise control on the intra-personal dynamics.178

2.3. Human Motion Composition179

The iterative paradigm underlying diffusion models pro-180
vides them the capability to combine data, such as multi-181
ple images or motions, in a harmonized way [4, 52]. In182
the realm of motion, the literature has traditionally differ-183
entiated between temporal and spatial composition. Tem-184
poral composition refers to combining multiple individual185
motions into a larger sequence [2, 8, 36], making smooth186
and realistic transitions among them emerge. On the other187
hand, spatial composition refers to combining multiple mo-188
tions to generate a new motion of the same length that com-189

bines certain elements of the original motions, such as the 190
actions, the trajectory, or joint-specific movements [3, 40]. 191
All of them share the same limitation though: they ap- 192
ply to single-person motion composition. In a more broad 193
sense, [36] proposed a generic model composition technique 194
to combine the sampling processes of two different diffu- 195
sion models, thus generating a harmonized motion. How- 196
ever, they used a fixed score-merging technique along the 197
whole denoising process, which we prove is a suboptimal 198
strategy in more complex scenarios like ours. Instead, we 199
propose a novel model composition technique (DualMDM) 200
that can combine 1) individual motions generated with a 201
prior pre-trained on a single-person motion dataset, and 2) 202
the interactive motions generated by a human-human inter- 203
action model like in2IN. The interactions generated with 204
DualMDM show higher diversity of intra-personal dynam- 205
ics while still maintaining the inter-personal coherence of 206
the overall interaction. 207

3. Method 208

In this section, we introduce our main methodological con- 209
tributions. First, in Sec. 3.1, we describe in2IN, our 210
proposed interaction-aware diffusion model conditioned on 211
both the interaction and the individual textual descriptions. 212
Then, we introduce the multi-weight CFG technique, which 213
increases the user control over the influence that each con- 214
dition has over the generation process. Finally, in Sec 3.2, 215
we discuss how our second contribution, DualMDM, can 216
increase the control and diversity of the intra-personal dy- 217
namics generated by pre-trained interaction models such as 218
in2IN. 219

3.1. in2IN: Interaction diffusion model 220

The architecture of our interaction diffusion model (in2IN) 221
is founded on the principle that interactions between two 222
persons exhibit a commutative property [28], denoted as 223
{xa, xb}, which is considered to be equivalent to {xb, xa}. 224
Building on this concept, we introduce a Transformer-based 225
diffusion model in a Siamese configuration [9]. Two copies 226
of the diffusion model are made, sharing parameters. Each 227
network is responsible for processing its respective noisy 228
motion inputs, xt

a and xt
b, and aims to produce the denoised 229

versions, x0
a and x0

b . We predict the x0 directly [7, 45] as 230
this allows us to use kinematic losses. Once the losses have 231
been calculated, the motion is noised back to xt−1 to be- 232
come the input of the next denoising iteration. 233

Similarly to [28, 39], our diffusion model architecture 234
(Fig. 2) has a multi-head self-attention module where it 235
learns the intra-personal dynamics of the motion, and a 236
multi-head cross-attention module that combines the self- 237
attention output with the motion of the other individual in 238
the interaction, thus modeling the inter-personal dynamics. 239
We also condition the generation with adaptative normal- 240
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Figure 2. in2IN diffusion model. Our proposed architecture consists of a Siamese Transformer that generates the denoised motion of each
individual in the interaction (x0

a and x0
b) . In the first stage, a self-attention layer models the intra-personal dependencies using the encoded

individual condition and noisy motion of each person (xt
a and xt

b). In the second stage, a cross-attention module models the inter-personal
dynamics using the encoded interaction description, the self-attention output, and the noisy motion from the other interacting person.

ization layers [30]. However, in contrast to previous ap-241
proaches, we introduce different conditions for the differ-242
ent attention modules. For the self-attention module, where243
only the individual motion matters, we provide the specific244
textual description of the individual motion as conditioning.245
On the other hand, in the cross-attention module, where the246
whole interaction is important, we provide the interaction247
textual description as conditioning. This allows for a more248
precise control of the intra- and inter-personal dynamics.249

Multi-Weight Classifier-Free Guidance. Our condi-250
tioning strategy for the diffusion model builds upon CFG,251
initially proposed by Ho et al. [22]. Generally, diffusion252
models have a significant dependency on CFG to gener-253
ate high-quality samples. However, incorporating multi-254
ple conditions using CFG is not trivial. We address this by255
employing distinct weighting strategies for each condition.256
The equation representing our model’s sampling function,257
denoted as Gs(x

t, t, c), is as follows:258

Gs

(
xt, t, c

)
= G

(
xt, t, ∅

)
+ wc ·

(
G
(
xt, t, c

)
−G

(
xt, t, ∅

))
+ wI ·

(
G
(
xt, t, cI

)
−G

(
xt, t, ∅

))
+ wi ·

(
G
(
xt, t, ci

)
−G

(
xt, t, ∅

))
,

(1)259

where G(xt, t, ∅) is the unconditional output of the260
model, and G(xt, t, c), G(xt, t, cI), and G(xt, t, ci) denote261
the model outputs conditioned on the whole conditioning262
c = {cI , ci}, only the interaction, and only the individual,263
respectively. The weights wc, wI , and wi ∈ R adjust the264
influence of each conditioned output relative to the uncon-265
ditional baseline. A notable limitation of this approach is266
the necessity to perform quadruple sampling from the de-267

noiser, as opposed to the dual sampling required in a con- 268
ventional CFG methodology. In exchange, this method al- 269
lows for more refined control over the generation process, 270
ensuring that the model can effectively capture and express 271
the nuances of both individual and interaction-specific con- 272
ditions. If a weight is set to 0, then that particular condi- 273
tioning is ignored during the generation process. 274

3.2. DualMDM: Model composition 275

In our second contribution, we propose a motion model 276
composition technique that allows us to combine interac- 277
tions generated by an interaction model with the motions 278
generated by an individual motion prior trained with a 279
single-person motion dataset. This method uses a single- 280
person human motion prior to provide the generated human- 281
human interactions with a higher diversity of intra-personal 282
dynamics. This model composition technique is built on top 283
of the method proposed in DiffusionBlending [36]: 284

Ga,b(xt, t, ca, cb) = Ga(xt, t, ca)

+ w · (Gb(xt, t, cb)−Ga(xt, t, ca)),
(2) 285

where w ∈ R is the blending weight, Ga(xt, t, ca) and 286
Gb(xt, t, cb) are the outputs of the diffusion models a and b, 287
respectively. Since the original proposal was made to com- 288
bine single-person diffusion models, we adapt the previous 289
formula to our scenario: 290

GI,i(xt, t, c) = GI(xt, t, c)

+ w · (Gi(xt, t, ci)−GI(xt, t, c)),
(3) 291

where GI(xt, t, c) is the output of the interaction diffu- 292
sion model and Gi(xt, t, ci) is the output of the individual 293
motion prior. By choosing w to be constant, authors from 294
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Figure 3. Different weights schedulers tested for DualMDM. Or-
anges: Exponential. Blues: Inverse Exponential. Greens: Con-
stant. Magenta: Linear.

[36] assumed that the optimal blending weight is the same295
along the whole sampling process. However, in line with296
[24], we argue that the optimal blending weight might vary297
along the denoising chain, depending on the particularities298
of each scenario. To account for this, we propose to replace299
the constant w with a weight scheduler w(t) that parameter-300
izes the blending weight used to combine the denoised mo-301
tion from both models, making it variable on the sampling302
phase (Fig. 3). As a generalization of the DiffusionBlend-303
ing technique, DualMDM is a more flexible and powerful304
strategy to combine two diffusion models.305

4. Experimental Evaluation306

4.1. Data307

Our experiments are conducted with the InterHuman [28]308
and HumanML3D [17] datasets. InterHuman is the largest309
annotated interaction dataset in which each motion is rep-310
resented as xi =

[
jpg, j

v
g , j

r, cf
]
, where xi, the i-th motion311

timestep, encompasses joint positions jpg ∈ R3Nj and ve-312

locities jvg ∈ R3Nj in the world frame, 6D representation313

of local rotations jr ∈ R6Nj in the root frame, and binary314
foot-ground contact features cf ∈ R4. N is the number315
of joints. In our case N = 22. As InterHuman does not316
provide individual textual descriptions of the motions per-317
taining to the interaction, we have automatically generated318
them using LLMs.319

InterHuman dataset is focused on providing a wide range320
of interactions rather than individual diversity in its mo-321
tions. We have trained an individual motion prior with322
the HumanML3D dataset, which contains a much wider323
range of annotated individual motions. For compatibility324
purposes, we converted the HumanML3D motion represen-325
tation to the one used in the InterHuman dataset. More326
details on the LLM-based generation of the individual de-327
scriptions and the implementation details of our individual328

motion prior can be found in the Supplementary Material. 329

4.2. Evaluation Metrics 330

We utilize the evaluation metrics proposed in [17]. R- 331
precision and Multimodal-Dist evaluate how semantically 332
close the generated motions are to the input prompts. The 333
FID score is used to measure the dissimilarity between the 334
distributions of generated motions and the actual ground 335
truth motions. Diversity is assessed to gauge the range of 336
variation within the generated motion distribution, while 337
MultiModality calculates the average variance for motions 338
generated from a single text prompt. To compute these met- 339
rics, we need encoders that align the text and motion latent 340
representation, which we borrow from [28]. 341

None of the previous evaluation metrics assesses the 342
alignment of the generated interactions with the individ- 343
ual descriptions. Due to the lack of ground-truth indi- 344
vidual annotations, we cannot train single-person motion 345
and text encoders for InterHuman. Therefore, we cannot 346
reliably assess the individual alignment with the R-Prec, 347
Multimodal-Dist, or FID metrics. We argue though that 348
the interaction metrics are not only sensitive to the global 349
quality of the interaction but also to the coherence of the 350
intra-personal dynamics with the interaction context. If an 351
interactant is kicking a ball, the salute to each other in- 352
teraction is not coherent, and the generated motion will 353
have low R-Prec. Thus, interaction metrics are indeed sen- 354
sitive to wrong intra-personal dynamics in an interaction. 355
What they do not capture are the intra-personal differences 356
promoted by the usage of distinct individual descriptions. 357
More specifically, the interaction generated with {cI=salute 358
to each other, ci1=ci2=wave right hand} will be different 359
from the one generated with the same set with ci2=bows 360
forward instead. However, these differences might come 1) 361
from the intrinsic diversity of the generative model, quan- 362
tified by the MultiModality metric (i.e., different ways of 363
waving right hand, and not bowing at all), or 2) from the 364
extrinsic diversity caused by differences in the individual 365
descriptions used, thus showing control capabilities over the 366
generated intra-personal dynamics. With the motivation of 367
quantifying the latter, we introduce a new evaluation metric 368
called Extrinsic Individual Diversity (EID). 369

Extrinsic Individual Diversity (EID). In order to assess 370
the extrinsic diversity of the model, we need to disentangle 371
it from the intrinsic one. To do so, we generate two empir- 372
ical distributions that will serve as a proxy for quantifying 373
the intrinsic diversity of 1) the ground-truth scenario, and 2) 374
a synthetic scenario where the individual descriptions are 375
randomly changed. In particular, for every set of interac- 376
tion and individual descriptions {cI, ci1 , ci2} in the dataset, 377
we proceed as follows: 1) we build DGT as the set of N 378
motions generated with {cI, ci1 , ci2}, and 2) we build Drand 379
as the set of N motions generated randomly replacing ci1 380
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and ci2 with other individual descriptions from the dataset.381
Then, we define the EID as the Wasserstein distance be-382
tween DGT and Drand. A higher distance means more in-383
fluence of the individual descriptions on the diversity of the384
generated motions, arguably leading to higher control on385
the intra-personal dynamics of the interaction. This metric386
can be combined with others such as the R-Precision and387
FID to analyze the trade-off between individual diversity388
and interaction quality and fidelity.389

In our experiments, we set N=32. To quantify the ad-390
ditional extrinsic diversity provided by the DualMDM tech-391
nique, we build DGT with in2IN and Drand with in2IN com-392
bined with the DualMDM.393

4.3. Implementation Details394

Our in2IN models consist of 8 consecutive multi-head at-395
tention layers with a latent dimension of 1024 and 8 heads.396
We utilize a frozen CLIP-ViTL/14 model [35] as our text397
encoder. We set the number of diffusion timesteps to 1,000398
and employ a cosine noise schedule [31]. During inference,399
we use DDIM sampling [38] with η = 0 and 50 timesteps,400
and our proposed multi-weight CFG variation. To enable401
the latter, 10% of the CLIP embeddings are randomly set to402
zero during training.403

All models have been trained using the AdamW op-404
timizer [29] with betas of (0.9, 0.999), weight decay of405
2 × 10−5, maximum learning rate of 10−4, and a cosine406
learning rate schedule with an initial 10-epoch linear warm-407
up period. They have been trained using the L2 loss and,408
thanks to the use of the x0 parameterization, kinematic409
losses have also been used. These include the foot con-410
tact and the velocity losses from the MDM framework [41],411
and the bone length, the masked joint distance map, and the412
relative orientation losses suggested in InterGen [28]. Ad-413
ditionally, we have used the kinematic loss scheduler from414
InterGen. All models have been trained for 2,000 epochs415
with a batch size of 64 with 16-bit mixed precision. Two416
Nvidia 3090 GPUs have been required for the span of 5417
days.418

DualMDM schedulers. We test these functions:419

constant, or w(t) = λ

linear, or w(t) = t/T

exponential, or w(t) = e−λ·(T−t),

inverse exponential, or w(t) = 1− e−λ·(T−t),

(4)420

where t is the actual denoising step, T is the total number421
of denoising steps, and λ is the parameter that determines422
the slope of our scheduler function. We visualize them in423
Fig. 3.424
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Figure 4. Comparison of R-Precision and FID for the different
weights on the Multi-Weight CFG tested in isolation. Each column
represents a different weight (wc, wI , wi). wc has been tested with
wI=wi=0. wI and wi have been tested with wc=1, and the other
weight set to 0.

4.4. Quantitative Analysis 425

4.4.1 in2IN: Interaction Generation 426

Tab. 1 shows the quantitative evaluation of our in2IN archi- 427
tecture with respect to the previously existing methods eval- 428
uated on the InterHuman dataset. It can be observed that 429
by using individual information we have been able to ob- 430
tain better results than all previous methods. As might rea- 431
sonably be anticipated, the additional information used only 432
by in2IN in form of LLM-generated individual descriptions 433
reduces the spectrum of valid motions fulfilling the interac- 434
tion description, which reflects as a lower MultiModality. 435

With respect to the Multi-Weight CFG, we evaluate the 436
isolated effect of each weight on the evaluation metrics in 437
Fig. 4. As can be observed, for weights wc and wI , 4 is the 438
best weight individually. On the other hand, for weight wi, 439
2 is the best weight. More than that turns into a decrement 440
in performance. We find the best combination with a grid 441
search in a validation subset: wc=3, wI=3, and wi=1. 442

4.4.2 DualMDM: Individual Diversity 443

In Tab. 2, the EID metric is compared with the R-Precision 444
and FID using different schedulers in our DualMDM 445
method. In general, we can observe that in all the sched- 446
ulers, the ones that assign more weight to the individual 447
model obtain higher individual diversity, in exchange for 448
a lower interaction quality. While a constant scheduler 449
with λ=0.25 seems to achieve good quantitative values, 450
we can observe that the exponential weight scheduler with 451
λ=0.00875 provides a better trade-off between individual 452
diversity and interaction quality. This is fundamental, as 453
we want to have high intra-personal diversity while keeping 454
the inter-personal coherence. We hypothesize that the good 455
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Methods
R Precision ↑

FID ↓ MM Dist ↓ Diversity → MModality ↑
Top 1 Top 2 Top 3

Ground Truth 0.452±.008 0.610±.009 0.701±.008 0.273±.007 3.755±.008 7.948±.064 -
TEMOS [33] 0.224±.010 0.316±.013 0.450±.018 17.375±.043 6.342±.015 6.939±.071 0.535±.014

T2M[17] 0.238±.012 0.325±.010 0.464±.014 13.769±.072 5.731±.013 7.046±.022 1.387±.076

MDM [41] 0.153±.012 0.260±.009 0.339±.012 9.167±.056 7.125±.018 7.602±.045 2.35±.080

ComMDM [36] 0.223±.009 0.334±.008 0.466±.010 7.069±.054 6.212±.021 7.244±.038 1.822±.052

InterGen [28] 0.371±.010 0.515±.012 0.624±.010 5.918±.079 5.108±.014 7.387±.029 2.141±.063

MoMat-MoGen [11] 0.449±.004 0.591±.003 0.666±.004 5.674±.085 3.790±.001 8.021±.035 1.295±.023

in2IN* 0.425±0.008 0.576±0.008 0.662±0.009 5.535±0.120 3.803±0.002 7.953±0.047 1.215±0.023

in2IN 0.455±0.004 0.611±0.005 0.687±0.005 5.177±0.103 3.790±0.002 7.940±0.030 1.061±0.038

Table 1. Comparison of our model (in2IN) to the state of the art in human-human interaction motion generation on the InterHuman dataset.
*in2IN model only using wI (conditioning only on the interaction during sampling). All evaluations have been executed 10 times to elude
the randomness of the generation ± indicates the 95% confidence interval. We highlight the best and the second best results.

Scheduler λ R Precision ↑ FID ↓ EID ↑
0.00 0.687±.005 5.177±.103 1.238±.011

0.25 0.577±.004 33.75±.293 1.516±.005

0.50 0.383±.006 91.99±.000 1.972±.018

0.75 0.218±.016 127.8±.691 2.188±.010

1.00 0.094±.004 130.4±.226 2.118±.010

0.0100 0.589±.006 19.76±.232 1.461±.007

0.00875 0.574±.003 22.86±.190 1.492±.006

0.0075 0.565±.007 26.20±.129 1.534±.013

0.00625 0.530±.013 31.23±.211 1.596±.009

0.0050 0.500±.007 39.36±.301 1.680±.004

0.0100 0.232±.006 114.3±.433 2.140±.013

0.0075 0.251±.004 111.1±.316 2.115±.008

0.0050 0.282±.006 106.8±.386 2.088±.009

- 0.235±.005 98.27±.528 2.118±.010

Table 2. Table comparing the Extrinsic Individual Diversity (EID)
and interaction metrics of different weight schedulers. Oranges:
Exponential. Blues: Inverse Exponential. Greens: Constant. Ma-
genta: Linear. Bold represents the best value for each scheduler.

trade-off acquired by the exponential schedule is due to the456
fact that the intra-relationships of the motion (provided by457
the individual motion prior) are much more important dur-458
ing the early stages of denoising. However, as the sampling459
advances, the inter-relationships of the motions interaction460
become more relevant. Also, when the individual model461
is used during the later stages of denoising, it deteriorates462
the denoised inter-personal dynamics. On the contrary, if463
the weight on this individual prior is gradually reduced, the464
interaction model is able to recover these dynamics in the465
later stages of the denoising. In Sec. 4.5, we validate some466
of these hypothesis by means of a qualitative analysis.467

4.5. Qualitative Analysis468

As depicted in Fig. 5 and Fig. 6, our in2IN model can gen-469
erate more realistic interactions aligned with the textual de-470
scription. Upon qualitative evaluation, our model consis-471
tently outperforms InterGen across various scenarios. Fig. 7472
illustrates the effect of the different weighting strategies for473
our DualMDM motion composition method. It can be ob-474

served how the exponential scheduler provides more co- 475
herent results, preserving the interaction semantics while 476
generating individual motions that match the individual de- 477
scriptions, yielding a superior fine-grained control. While a 478
constant scheduler might quantitatively provide decent re- 479
sults, the qualitative evaluation demonstrates the superior- 480
ity of the exponential scheduler. For the constant sched- 481
ulers, we notice that increasing the weight assigned to the 482
individual prior leads to a degradation of the inter-personal 483
dynamics, particularly concerning trajectories and orienta- 484
tions. As a limitation of the exponential scheduler, we can 485
observe that the λ value selected for each case is critical and 486
might not be the same for all compositions. The selection 487
of this value will depend on the specific characteristics of 488
the interaction and individual motions that we want to com- 489
bine. More visualizations supporting these observations can 490
be found in the Supplementary Material. 491

5. Conclusion 492

We presented in2IN, an interaction diffusion model that 493
leverages both interaction and individual textual descrip- 494
tions to generate better inter- and intra-personal dynamics 495
in the human-human motion interaction generation. With a 496
more precise conditioning, in2IN has become the new state 497
of the art in the InterHuman dataset. We also introduced 498
DualMDM, a motion model composition technique that in- 499
jects the single-person dynamics learned by a pre-trained 500
individual motion prior into the generated interactions. As 501
a result, combining in2IN with DualMDM provides better 502
control over the intra-personal dynamics of the interaction. 503

Limitations and Future work. One of our main rea- 504
sons to propose DualMDM is that the optimal strategy for 505
combining the outputs of the individual and the interaction 506
models change along the sampling process. However, we 507
observed in Sec. 4.5 that these dynamics vary as well de- 508
pending on the descriptions, or even on the stochasticity of 509
the generation itself. Future work includes exploring bet- 510
ter blending strategies for which the user does not need to 511
define any scheduler parameter. 512
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Figure 5. Interaction Description: The two guys meet, grip each other’s hand, and nod in agreement. The X-axis represents time.

Figure 6. Interaction Description: One person spots the other person on the street, lifts the right hand to greet, and the other person
glances towards one person. The X-axis represents time.

Figure 7. Interaction Description: Two persons are in an intense boxing match. Individual Description #1: An individual throws a kick
with his right leg. Individual Description #2: An individual is boxing. The X-axis represents time.
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