
Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Konstantin Mishchenko 1 Aaron Defazio 2

Abstract
We consider the problem of estimating the learn-
ing rate in adaptive methods, such as AdaGrad
and Adam. We propose Prodigy, an algorithm
that provably estimates the distance to the solu-
tion D, which is needed to set the learning rate
optimally. At its core, Prodigy is a modification
of the D-Adaptation method for learning-rate-free
learning. It improves upon the convergence rate
of D-Adaptation by a factor of O(

√
log(D/d0)),

where d0 is the initial estimate of D. We test
Prodigy on 12 common logistic-regression bench-
mark datasets, VGG11 and ResNet-50 training
on CIFAR10, ViT training on Imagenet, LSTM
training on IWSLT14, DLRM training on Criteo
dataset, VarNet on Knee MRI dataset, as well as
RoBERTa and GPT transformer training on Book-
Wiki. Our experimental results show that our
approach consistently outperforms D-Adaptation
and reaches test accuracy values close to that of
hand-tuned Adam.

1. Introduction
Optimization is an essential tool in modern machine learn-
ing, enabling efficient solutions to large-scale problems that
arise in various domains, such as computer vision, natu-
ral language processing, and reinforcement learning. One
of the key challenges is the selection of appropriate learn-
ing rates, which can significantly impact the convergence
speed and the quality of the final solution. Learning-rate tun-
ing has been particularly challenging in applications where
there are multiple agents that use their own optimizer. For
instance, when training Generative Adversarial Networks
(GANs) (Goodfellow et al., 2020), there are two neural net-
works with different architectures. In federated learning,
tuning is even more challenging (Khodak et al., 2021), since
there might be billions of devices (Kairouz et al., 2021),

1Samsung AI Center 2Fundamental AI Research Team,
Meta. Correspondence to: Konstantin Mishchenko <kon-
sta.mish@gmail.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

each optimizing their objective locally. Another example
is Neural Architecture Search (NAS) (Zoph & Le, 2017),
where the goal is to find the best neural network architecture
automatically by training a lot of networks and evaluating
them on a validation set. In such cases it becomes very
expensive to manually tune the learning rate.

Recently, parameter-free adaptive learning rate methods
(Orabona & Tommasi, 2017; Cutkosky & Orabona, 2018;
Zhang et al., 2022; Carmon & Hinder, 2022; Ivgi et al.,
2023) have gained considerable attention due to their ability
to automatically adjust learning rates based on the problem
structure and data characteristics. Among these, the D-
Adaptation method, introduced by Defazio & Mishchenko
(2023), has emerged as a promising practical approach for
learning-rate-free optimization.

For a convex objective function f , D-Adaptation works
by maintaining a lower bound on the initial distance to
solution D = ∥x0 − x∗∥, for any x∗ in the solution set of
the following problem:

min
x∈Rp

f(x).

In practice, the lower bound estimated by D-Adaptation
increases rapidly during the course of optimization, plateau-
ing to a value close to the true D. This D quantity is the
key unknown constant needed to set the learning rate for
adaptive optimization methods, forming the numerator of
the step size:

ηk =
D√∑k

i=0 ∥gi∥
2
, where D = ∥x0 − x∗∥, (1)

and the denominator is based on the AdaGrad step
size (Duchi et al., 2011; Streeter & McMahan, 2010; Ward
et al., 2019). The Gradient Descent form of D-Adaptation
simply plugs in the current lower bound at each step in place
of D. This simple approach can be applied to estimate the
step size in Adam (Kingma & Ba, 2015), which yields state-
of-the-art performance across a wide-range of deep learning
problems. Defazio & Mishchenko (2023) also show that
asymptotically, D-Adaptation is as fast as specifying the
step size using the true D (up to small constant factors).

Contributions

We summarize our contributions as follows:

1

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

• We present Prodigy, a modification of D-Adaptation
that improves its worst-case non-asymptotic conver-
gence rate.

• Through extensive experiments, we demonstrate that
Prodigy establishes a new state-of-the-art for learning
rate adaptation, outperforming D-Adaptation.

• We develop a lower complexity bound for methods
which grow the learning rate at most exponentially
fast. We show that this covers all methods that avoid
significant overshooting.

• Prodigy is highly practical. Our open-source imple-
mentation is already widely used for fine-tuning of
vision and language models, and is the recommended
optimizer for Hugging Face Diffusers DreamBooth
LoRA training.

2. Prodigy Approach
To understand how we can improve upon D-Adaptation, let
us take a closer look at some details of its analysis. Consider
Gradient Descent update

xk+1 = xk − ηkgk,

where gk is the sub-gradient used at iteration k. The stan-
dard analysis of AdaGrad with a constant numerator gives
the following error term:

AdaGrad error =
n∑

k=0

η2k∥gk∥2,

which is exactly why AdaGrad places
√∑k

i=0 ∥gi∥2 in
the step-size denominator in equation (1). However, when
setting the numerator adaptively with an estimate dk instead
of the unknown D, as done in D-Adaptation, we end up
with a different error term:

D-adaptation error =
n∑

k=0

d2kη
2
k∥gk∥2.

The theory of D-Adaptation handles this error term by upper
bounding by using the upper bound dk ≤ dn to get a similar
error term to that of AdaGrad. This upper bound, however,
is quite pessimistic since dn can be as large as D and dk
can be as small as d0. Therefore, replacing d2k with d2n can
introduce a multiplicative error of D2

d2
0

in this term.

In this paper, we take a different approach and instead handle
the error term using modified AdaGrad-like step sizes. Since
the error terms are now d2i ∥gi∥2 instead of ∥gi∥2, the new
adaptive step size should be

ηk =
d2k√∑k

i=0 d
2
i ∥gi∥2

.

Algorithm 1 Prodigy (GD version)
1: Input: d0 > 0, x0, G ≥ 0
2: for k = 0 to n do
3: gk ∈ ∂f(xk)
4: Choose weight ωk (default: ωk = 1)

5: ηk =
d2kωk√

d2kG
2 +

∑k
i=0 d

2
iω

2
i ∥gi∥

2

6: xk+1 = xk − ηkgk

7: d̂k+1 =

∑k
i=0 ηi⟨gi, x0 − xi⟩
∥xk+1 − x0∥

8: dk+1 = max(dk, d̂k+1)
9: end for

10: Return xn = 1∑n
k=0 d2

kωk

∑n
k=0 d

2
kωkxk

Algorithm 2 Prodigy (Dual Averaging version)
1: Input: d0 > 0, x0, G ≥ 0; s0 = 0 ∈ Rp

2: for k = 0 to n do
3: gk ∈ ∂f(xk)
4: sk+1 = sk + d2kgk

5: d̂k+1 =

∑k
i=0 d

2
i ⟨gi, x0 − xi⟩
∥sk+1∥

6: dk+1 = max(dk, d̂k+1)

7: γk+1 =
1√

d2k+1G
2 +

∑k
i=0 d

2
i ∥gi∥

2

8: xk+1 = x0 − γk+1sk+1

9: end for
10: Return xn = 1∑n

k=0 d2
k

∑n
k=0 d

2
kxk

This way, we can still control the error term of D-Adaptation
but the obtained step size is provably larger since dk is non-
decreasing:

d2k√∑k
i=0 d

2
i ∥gi∥2

≥ d2k√∑k
i=0 d

2
k∥gi∥2

=
dk√∑k

i=0 ∥gi∥2
.

Having larger step sizes while preserving the main error
term is the key reason why the new algorithms converge, as
we show below, with a faster rate.

Notice, however, that the methods might still be slow be-
cause the denominator in the step size might grow too large
over time. To remedy this, we introduce a modification
for the step size by placing an extra weight ωk next to the
gradients:

ηk =
d2kωk√∑k

i=0 d
2
iω

2
i ∥gi∥

2
.

In fact, the modified step size might even increase between
iterations, whereas the AdaGrad step size always decreases.

2

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

We will show that as long as ωk does not grow too quickly,
the worst-case convergence rate is almost the same.

To establish non-asymptotic theory, we also introduce in
our algorithms an extra term G2 in the denominator which
upper bound the gradient norm, in case such a bound exists.
We define it formally in the assumption below.
Assumption 1. We assume that the objective f is G-
Lipschitz, which implies that its gradients are bounded by
G: for any x ∈ Rp and g ∈ ∂f(x), it holds ∥g∥ ≤ G.

Algorithm 1 and Algorithm 2 give Gradient Descent and
the Dual Averaging variants of our new method. In contrast
to AdaGrad, they estimate the product of D and G in the
denominator, so we call the proposed technique Prodigy.
We give the following convergence result for Algorithm 1:
Theorem 1. Assume f is convex and G-Lipschitz. Given
any weights 1 ≤ ω0 ≤ · · · ≤ ωn, the functional gap of the
average iterate of Algorithm 1 converges as

f(xn)− f∗ ≤
√
2ωnDG

dn+1(2 + log(1 +
∑n

k=0 ω
2
k))√∑n

k=0 ωkd2k
,

(2)
where xn = 1∑n

k=0 d2
k

∑n
k=0 d

2
kxk is the weighted average

iterate.

Notice that we have the freedom to choose any non-
decreasing sequence ωk as long as the right-hand side is
decreasing. This allows us to put much more weight on the
recent gradients and get more reasonable step sizes. For
instance, we can choose ωk = kp, where p > 0 and since∑k

k=0 k
2p = O(k2p+2), it would result in an extra factor

of 1 + p in the numerator due to the log term. The denom-
inator, on the other hand, would increase as well, giving
us a trade-off that depends on the values of dk’s. We note
that weights ωk = k have appeared previously in Accele-
grad (Levy et al., 2018) and UniXGrad (Kavis et al., 2019),
which combine AdaGrad step sizes with momentum, and
ωk =

√
k weighting is used in the recent MADGRAD

method (Defazio & Jelassi, 2022).

To understand why this improves the convergence rate, con-
sider the following lemma, which we prove in the appendix.
The lemma presents an upper bound on the terms related to
the dk sequence in the right-hand side of equation 2.
Lemma 1. Let d0 ≤ d1 ≤ · · · ≤ dN be positive numbers
and assume N ≥ 2 log2+(

dN

d0
), where log2+(·) = 1 +

log2(·). Then,

min
t<N

dt+1√∑t
k=0 d

2
k

≤
4
√
log2+

(
dN

d0

)
√
N

.

In contrast to the bound in (Defazio & Mishchenko, 2023),
we bound dt+1√∑t

k=0 d2
k

instead of dt+1∑t
k=0 dk

. This is the rea-

son why the overall guarantee improves by a factor of√
log2(D/d0). For instance, if we set ωk = 1 for all k

and substitute the bound from Lemma 1, we get the conver-
gence rate

f(xt)− f∗ = O

(
GD log(n)

√
log2+(D/d0)√
n

)
.

where t ≤ n is chosen as the argmin from Lemma 1. Fur-
thermore, for arbitrary increasing positive weights, we get
the following guarantee by applying Lemma 1 directly to
the bound in Theorem 1:

f(xt)−f∗ = O

GD log(n)
√

log2+(
ωn+1D

d0
)

√
n

log

n∑
k=0

ω2
k

 .

Even though our theory does not guarantee that it is benefi-
cial to use increasing weights ωk, this result is, to the best
of our knowledge, new for AdaGrad-like methods. It allows
for a wide range of choices in ωk. For example, if we set
ωk = β−kp

2 with β2 < 1 and p < 1/3, then the method
is still guaranteed to converge at the rate of O

(
1

n(1−3p)/2

)
.

This is of particular interest when we study Adam-like meth-
ods, see Section 5 for a discussion.

The logarithmic term log(n) is, however, not necessary and
only arises due to the use of Gradient Descent update. The
Dual Averaging update of Algorithm 2, provides a tighter
guarantee as given in the next theorem.

Theorem 2. Let f be a convex and G-Lipschitz function.
For Algorithm 2, it holds that:

f(xt)− f∗ ≤ 4GD√
n

√
log2+

(D
d0

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

and log2+(·) = 1 +

log2(·).

Comparing this with the previous rate, the only difference is
the removal of a multiplicative log(n) factor. This improve-
ment, however, is mostly theoretical as Gradient Descent
typically performs better in practice than Dual Averaging.
We also note that we provide convergence results for Algo-
rithm 2 without extra weights ωk.

2.1. Smooth analysis

One appealing property of AdaGrad is that it is a universal
method, i.e., it works for both non-smooth and smooth
problems (Levy et al., 2018), and the same is also known
for DoG (Ivgi et al., 2023). Here, we show that Prodigy can
adapt to smoothness as well, and works if the gradients are
not bounded by G.

3

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Assumption 2. We say f is L-smooth if it holds for any
x ∈ Rp that

∥∇f(x)∥2 ≤ 2L(f(x)− f∗). (3)

We give the following result for Algorithm 1 when applied
to smooth objectives.

Theorem 3. Assume f is L-smooth, and set G = 0
and ω0 = · · · = ωn = 1 in Algorithm 1. Let xn =

1∑n
k=0 d2

k

∑n
k=0 d

2
kxk, then we get the following convergence

guarantee:

f(xt)− f∗ = O
(
log2+

(
D
d0

)
log22+

(
LD2

d0∥g0∥
)

n

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

.

Compared to the non-smooth O(1/
√
n) convergence rate,

the result in Theorem 3 offers a faster O(1/n) convergence
rate. This also affects the first logarithmic term, which
changes from

√
log2+(D/d0) to log2+(D/d0), reflecting

that n should be proportional to log2+(D/d0) in both cases.
There is, unfortunately, an extra log22+

(
LD2

d0∥g0∥
)

term in the
bound, which we believe to be an artifact of our analysis.

3. Lower Complexity Bounds for
Exponentially Bounded Algorithms

We can obtain an interesting class of algorithms, which
contains our two D-Adaptation variants, by restricting the
rate of growth.

Definition 1. An optimization algorithm is exponentially
bounded if there exists a constant d0, so that for any se-
quence of G-bounded gradients it returns a sequence of
iterates such that for all k:

∥xk − x0∥ ≤ 2kd0.

Theorem 4. D-Adaptation, DoG and Prodigy are exponen-
tially bounded.

A simple lower complexity bound can be established via a
simple 1-dimensional resisting oracle. The bound depends
on the ”scale” of the initial step of the algorithm, which is
the size of the initial step from x0 to x1. This initial step is

g0 ·d0/
√
G2 + ∥g0∥2 for D-Adaptation, and can be thought

of as an algorithm-agnostic measure of d0.

Our lower bound allows the resisting oracle to choose a
constant D after seeing x1, which is a much stronger oracle
than required for establishing a lower bound. Ideally, a
lower bound could be established where the constant D is
fixed but unknown to the algorithm, and the actual distance

to solution ∥x0 − x∗∥ ≤ D given by the oracle is allowed
to depend on the iterate sequence.

The primary consequence of this difference is that our con-
struction only tells us that hard problems exist for n small
relative to D/d0, of the scale n < log(D/d0). It remains
an open problem to show a more general lower bound for
larger n. This is in a sense a trivial consequence of the ex-
ponentially bounded property, but is actually representative
of the real behavior of the methods during the early steps of
the algorithm, where both n and dk actually are small. Any
more general lower bound must cover this case.

Our new D-Adaptation variants are optimal among expo-
nentially bounded algorithms for this complexity class:
Theorem 5. Consider any exponentially bounded algorithm
for minimizing a convex G-Lipschitz function starting from
x0, which has no knowledge of problem constants G and D.
There exists a fixed gradient oracle such that any sequence
of x1,..., xn, there exists a convex Lipschitz problem f with
G = 1 and ∥x0 − x∗∥ ≤ D for all minimizing points x∗,
consistent with the gradient oracle such that:

min
k≤n

f(xk)− f∗ ≥
DG

√
log2(D/x1)

2
√
n+ 1

.

Using the simple construction from Theorem 5, we show in
Appendix B that the class of exponentially bounded methods
(potentially with an exponent other than 2) covers all Gra-
dient Descent approaches that use an estimate of dk ≤ cD
for some constant c, and use a step size γk ≤ dk/G without
line-search or other additional queries. So the only way to
achieve a log log dependence on d0 is by using a method
that performs some queries that overshoot the standard D/G
step size by more than a fixed constant factor. Although
using larger step sizes is not problematic for Lipschitz func-
tions, it comes with the risk of causing training divergence
when applied to functions whose gradients are only locally
bounded by G, which is common in machine learning set-
tings.

Lower complexity bounds for the average regret in the more
general online learning setting also apply here. They are of
the form (Zhang et al., 2022):

1

n

n∑
k=0

⟨gk, xk − x∗⟩ = Ω

(
DG

√
log2(D/ϵ) + ϵ√

n

)
.

where ϵ is a “user-specified constant” playing a similar role
to x1. Bounds on the average regret directly bound function
value sub-optimality as

f(x̄)− f∗ ≤ 1

n+ 1

n∑
k=0

[f(xk)− f∗]

≤ 1

n+ 1

n∑
k=0

⟨gk, xk − x∗⟩ ,

4

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

where x̄ = 1
n+1

∑n
k=0 xk.

4. Related Work
In this section, we review the major classes of techniques
for optimizing convex Lipschitz functions with some level
of problem parameter independence.

The Polyak step size (Polyak, 1987) trades the knowledge
of D for f∗, achieving optimal convergence rate without
additional log factors. Stable convergence requires accurate
f∗ estimates. A restarting scheme converges within a mul-
tiplicative log factor of the optimal rate (Hazan & Kakade,
2019). There has been substantial recent research on modi-
fications of the Polyak step size to make it better suited to
machine learning tasks (Loizou et al., 2021; Gower et al.,
2021; Orvieto et al., 2022) but as of yet they have not seen
widespread adoption.

Normalized sub-gradient descent and AdaGrad have re-
ceived a lot of attention due to their universality (Grimmer,
2019; Levy et al., 2018). AdaGrad’s extensions with mo-
mentum have been studied by Levy et al. (2018) and Ene
et al. (2021).

Coin-betting (Orabona & Tommasi, 2017; McMahan &
Orabona, 2014; Cutkosky & Orabona, 2018; Zhang et al.,
2022; Orabona & Pál, 2021) is a family of approaches from
the online learning setting which are also applicable for
convex non-smooth optimization. They work by establish-
ing a relationship by duality between regret minimization
and wealth-maximization. Existing approaches for wealth-
maximization can then be mapped to algorithms for regret
minimization. Coin-betting approaches give convergence
rates for an equal-weighted average of the iterates of the
form:

f(x̄n)− f∗ = O

(
DG

√
log (1 +D/d0)√

n

)
.

Standard D-Adaptation obtains asymptotic rates without the
log factor, but was otherwise (theoretically) slower in finite
time, as it had a log(·) rather than a

√
log(·) dependence on

D/d0:

f(x̂n)− f∗ ≤
16DG log2+(D/d0)√

n
.

The Prodigy method closes the gap, giving the same sqrt-log
dependence as coin betting.

The DoG method (Ivgi et al., 2023), based on the bisection
approach of Carmon & Hinder (2022), is the only other
approach that we are aware of that estimates D in an online
fashion. DoG estimates D by r̄k:

r̄k = max
i≤k

∥xi − x0∥ .

Algorithm 3 Prodigy (Adam version)
1: Input: d0 > 0 (default 10−6), x0, β1 (default 0.9),

β2 (default 0.999), ϵ (default 10−8), γk (default 1 with
cosine annealing)

2: r0 = 0, s0 = 0, m0 = 0, v0 = 0
3: for k = 0 to n do
4: gk ∈ ∂f(xk)
5: mk+1 = β1mk + (1− β1)dkgk
6: vk+1 = β2vk + (1− β2)d

2
kg

2
k

7: rk+1 =
√
β2rk + (1−

√
β2)γkd

2
k⟨gk, x0 − xk⟩

8: sk+1 =
√
β2sk + (1−

√
β2)γkd

2
kgk

9: d̂k+1 =
rk+1

∥sk+1∥1
10: dk+1 = max(dk, d̂k+1)
11: xk+1 = xk − γkdkmk+1/(

√
vk+1 + dkϵ)

12: end for

Ivgi et al. (2023) use this quantity as a plug-in estimate for
the numerator of the step size, similar to D-Adaptation’s
approach. This approach can divergence in theory, but with
additional modifications to the step size, the ”tamed” T-DoG
method is shown to converge. It has a log+(D/d0) depen-
dence on the initial sub-optimally of the D estimate, so our
approach improves on this dependence by a

√
log+(D/do)

factor.

Malitsky & Mishchenko (2020) proposed AdGD, a method
for convex optimization that does not require any hyperpa-
rameters and has a rate that is at least as good as that of
the optimally tuned Gradient Descent. However, AdGD
requires the objective to be locally smooth, which hinders
its use in many practical problems. Latafat et al. (2023)
partially addressed this gap by proposing a proximal exten-
sion, but the case of non-smooth differentiable functions has
remained unstudied.

5. Deriving Adam-Like Step Sizes
To derive an Adam-like method, which should use an expo-
nential moving average for the step size, we want to approx-
imate Adam’s update of the exponential moving average of
squared gradients:

vk+1 = β2vk + (1− β2)g
2
k = (1− β2)

k∑
i=0

βk−i
2 g2i ,

where g2k is the coordinate-wise square of the gradient gk.
We can achieve this using exponential weights, ωk = β

−k/2
2 ,

which after substituting the definition of ηk give us the
following identity:

d4k
η2k

=
d2k
ω2
k

G2 + d2k∥gk∥2 +
k−1∑
i=0

βk−i
2 d2i ∥gi∥2.

5

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

0 200 400 600 800 1000

10

20

30

40

Ac
cu

ra
cy

 (%
)

Sensorless

DA D-Adapt (14.9 SE 0.66)
Prodigy DA (32.8 SE 0.74)
SGD D-Adapt (16.8 SE 0.60)
Prodigy SGD (41.0 SE 0.36)
DoG (41.9 SE 0.35)

0 200 400 600 800 1000

0

20

40

60

80

Aloi

DA D-Adapt (72.6 SE 0.03)
Prodigy DA (84.8 SE 0.01)
SGD D-Adapt (73.2 SE 0.03)
Prodigy SGD (85.5 SE 0.01)
DoG (78.8 SE 0.01)

0 200 400 600 800 1000

40

60

80

100

DNA

DA D-Adapt (88.2 SE 1.62)
Prodigy DA (99.1 SE 0.04)
SGD D-Adapt (90.1 SE 1.36)
Prodigy SGD (99.5 SE 0.03)
DoG (98.9 SE 0.15)

0 200 400 600 800 1000

20

40

60

Glass

DA D-Adapt (52.3 SE 1.93)
Prodigy DA (67.9 SE 0.21)
SGD D-Adapt (54.0 SE 2.07)
Prodigy SGD (67.8 SE 0.20)
DoG (67.6 SE 0.32)

0 200 400 600 800 1000

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Iris

DA D-Adapt (93.1 SE 0.39)
Prodigy DA (97.5 SE 0.09)
SGD D-Adapt (93.9 SE 0.36)
Prodigy SGD (98.1 SE 0.07)
DoG (97.3 SE 0.07)

0 200 400 600 800 1000

0

20

40

60

Letter

DA D-Adapt (68.2 SE 0.08)
Prodigy DA (72.8 SE 0.02)
SGD D-Adapt (68.8 SE 0.08)
Prodigy SGD (73.0 SE 0.01)
DoG (72.9 SE 0.02)

0 200 400 600 800 1000

20

40

60

80

Pendigits

DA D-Adapt (56.7 SE 0.99)
Prodigy DA (88.7 SE 0.24)
SGD D-Adapt (60.3 SE 0.93)
Prodigy SGD (90.9 SE 0.16)
DoG (84.4 SE 0.24)

0 200 400 600 800 1000

20

25

30

smallNORB

DA D-Adapt (22.2 SE 1.31)
Prodigy DA (26.9 SE 1.13)
SGD D-Adapt (22.4 SE 1.30)
Prodigy SGD (28.5 SE 1.11)
DoG (31.1 SE 0.88)

0 200 400 600 800 1000
Step

20

40

60

80

Ac
cu

ra
cy

 (%
)

USPS

DA D-Adapt (77.3 SE 0.75)
Prodigy DA (94.8 SE 0.07)
SGD D-Adapt (79.6 SE 0.66)
Prodigy SGD (95.4 SE 0.06)
DoG (92.4 SE 0.11)

0 200 400 600 800 1000
Step

40

60

80

Vehicle

DA D-Adapt (71.7 SE 0.65)
Prodigy DA (77.7 SE 0.10)
SGD D-Adapt (72.9 SE 0.46)
Prodigy SGD (79.0 SE 0.07)
DoG (79.1 SE 0.08)

0 200 400 600 800 1000
Step

20

40

60

Vowel

DA D-Adapt (64.7 SE 0.34)
Prodigy DA (71.8 SE 0.11)
SGD D-Adapt (65.1 SE 0.24)
Prodigy SGD (73.1 SE 0.03)
DoG (72.0 SE 0.11)

0 200 400 600 800 1000
Step

20

40

60

80

100

Wine

DA D-Adapt (98.2 SE 0.11)
Prodigy DA (100.0 SE 0.00)
SGD D-Adapt (98.5 SE 0.17)
Prodigy SGD (100.0 SE 0.00)
DoG (99.9 SE 0.07)

Figure 1. Convex multi-class classification problems. Error bars show a range of 1 standard error over 10 seeds.

This can be seen as computing an exponential moving av-
erage of dkgk rather than gk itself. In addition, in Ap-
pendix A.6, we provide a coordinate-wise version of Al-
gorithm 2 and study its convergence properties. Based on
the theory presented there, the denominator for d̂k+1 should
use the ℓ1 norm of the weighted gradient sum to estimate
the ℓ∞ distance to the solution D∞ = ∥x0 − x∗∥∞. Thus,
combining this insight with the design of Algorithm 1, we
obtain the following expression for the Adam estimate of
D∞:

d̂k+1 =

∑k
i=0 β

(k−i)/2
2 d2i ⟨gi, x0 − xi⟩

∥
∑k

i=0 β
(k−i)/2
2 d2i gi∥1

.

The update uses exponential moving average as well, al-
though it is more conservative as it uses

√
β2 instead of β2.

Note that there is an extra of (1− β2) in the update for vk,
which can be optionally compensated for by using the bias
correction discussed by Kingma & Ba (2015). These up-
date rules are summarized in Algorithm 3. This is the main
algorithm that we study numerically in the next section.

6. Experiments
We test our methods on convex logistic regression as well
as deep learning problems. The Prodigy method is used as
presented in Algorithm 3 in all deep learning experiments.

Logistic regression. For the convex setting, we ran a set
of classification experiments. For each dataset, we used the
multi-margin loss (Weston & Watkins, 1999), a multi-class
generalization of the hinge loss. This non-smooth loss re-
sults in bounded gradients, which is required by our theory.

We perform full-batch rather that stochastic optimization,
for two reasons. Firstly, it matches the assumptions of
our theory. Secondly, fast learning rate adaptation is more
crucial for full-batch optimization than stochastic optimiza-
tion as fewer total steps will be performed. Our convex
experiments use the theoretical variants Algorithm 1 and
Algorithm 2, but with G = 0 following standard practice.

We performed 1,000 steps for each dataset, using a random-
ized x0 and plot the results of 10 seeds. We ran both DA
and GD variants of each method. Each plot shows the accu-
racy of the average iterate for each method. Figure 1 shows
that our proposed algorithm greatly out-performs regular
D-Adaptation. Our weighted GD variant of D-Adaptation
is faster consistently across each dataset. Additionally, it
adapts faster than the DoG method (Ivgi et al., 2023) on 10
of the 12 problems.

CIFAR10. For neural network experiments1, we consider
training on CIFAR10 (Krizhevsky, 2009) with batch size
256, where D-Adapted Adam has a gap of a few percent
compared to the standard Adam. We use cosine annealing
with initial step size 1 for all Adam-based methods and ini-
tial step size 10−3 for Adam itself. The considered networks
are VGG11 (Simonyan & Zisserman, 2014) and ResNet-
50 (He et al., 2016)2. To simplify the experiment, we do not
use weight decay, so both networks slightly overfit and do
not reach high test accuracy values. All methods were run

1The PyTorch code of our optimizer is available at https:
//github.com/konstmish/prodigy

2VGG11 and ResNet-50 implementation along with the
data loaders were taken from https://github.com/
kuangliu/pytorch-cifar

6

https://github.com/konstmish/prodigy
https://github.com/konstmish/prodigy
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

0 10000 20000 30000 40000 50000 60000
Step

5

6

7

8

Te
st

 L
os

s

IWSLT14 (LSTM)

Adam (4.31 SE 0.003)
Prodigy (4.40 SE 0.005)
D-Adapt Adam (4.33 SE 0.003)

0 10000 20000 30000 40000 50000 60000
Step

5.0

7.5

10.0

12.5

Tr
ai

ni
ng

 L
os

s

IWSLT14 (LSTM)

Adam (4.27 SE 0.003)
Prodigy (3.83 SE 0.003)
D-Adapt Adam (4.03 SE 0.002)

5000 10000 15000 20000
Step

5.0

7.5

10.0

12.5

Te
st

 P
er

pl
ex

ity

BookWiki (RoBERTa)

Adam (3.97 SE 0.010)
D-Adapt Adam (3.96 SE 0.008)
Prodigy (3.96 SE 0.006)

0 5000 10000 15000 20000
Step

5

10

15

20

Tr
ai

ni
ng

 P
er

pl
ex

ity

BookWiki (RoBERTa)

Adam (4.24 SE 0.018)
D-Adapt Adam (4.26 SE 0.018)
Prodigy (4.23 SE 0.031)

0 10000 20000 30000 40000 50000 60000
Step

15

20

25

30

35

40

Te
st

 P
er

pl
ex

ity

BookWiki (GPT Transformer)

Adam (19.49 SE 0.012)
D-Adapt Adam (19.46 SE 0.019)
Prodigy (19.65 SE 0.026)

0 10000 20000 30000 40000 50000 60000
Step

20

40

60

80

100

Tr
ai

ni
ng

 P
er

pl
ex

ity

BookWiki (GPT Transformer)

Adam (20.19 SE 0.084)
D-Adapt Adam (20.16 SE 0.093)
Prodigy (20.13 SE 0.199)

0 20 40 60 80 100
Epoch

0.770

0.775

0.780

0.785

0.790

Te
st

 A
cc

ur
ac

y

Criteo Kaggle (DLRM)

Adam (0.7906 SE 0.00007)
D-Adapt Adam (0.7905 SE 0.00014)
Prodigy (0.7906 SE 0.00009)

0 20 40 60 80 100
Epoch

0.44

0.45

0.46

0.47

Tr
ai

n
lo

ss

Criteo Kaggle (DLRM)

Adam (0.4444 SE 0.00155)
D-Adapt Adam (0.4440 SE 0.00150)
Prodigy (0.4437 SE 0.00161)

0 10 20 30 40 50
Epoch

0.84

0.86

0.88

0.90

Te
st

 S
SI

M

fastMRI Knee

Adam (0.9103 SE 0.00032)
Prodigy (0.9108 SE 0.00058)
D-Adapt Adam (0.9105 SE 0.00057)

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

Tr
ai

n
lo

ss

fastMRI Knee

Adam (0.4281 SE 0.00021)
Prodigy (0.4278 SE 0.00055)
D-Adapt Adam (0.4276 SE 0.00028)

0 50 100 150 200 250 300
Epoch

40

50

60

70

Te
st

 A
cc

ur
ac

y
(%

)

ILSVRC 2012 ImageNet (Vision Transformer)

D-Adapt Adam (72.35% SE 0.07)
Adam (75.40% SE 0.07)
Prodigy (74.63% SE 0.21)

0 50 100 150 200 250 300
Epoch

0.000

0.005

0.010

0.015

Tr
ai

n
Lo

ss

ILSVRC 2012 ImageNet (Vision Transformer)

D-Adapt Adam (3.9e-03 SE 4.9e-06)
Adam (3.7e-03 SE 1.9e-05)
Prodigy (3.8e-03 SE 3.5e-05)

Figure 2. Adam-family experiments.

7

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

0 50 100 150 200
Epoch

50

60

70

80

90

Te
st

 a
cc

ur
ac

y

Adam
DoG
L-DoG
D-Adapt Adam
Prodigy

0 50 100 150 200
Epoch

10
−4

10
−3

10
−2

10
−1

10
0

Tr
ai

n
lo

ss

Adam
DoG
L-DoG
D-Adapt Adam
Prodigy

0 50 100 150 200

10
−5

10
−3

10
−1

10
1

DoG
D-Adapt Adam
Prodigy

0 50 100 150 200
Epoch

50

60

70

80

90

Te
st

 a
cc

ur
ac

y Adam
DoG
L-DoG
D-Adapt Adam
Prodigy

0 50 100 150 200
Epoch

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Tr
ai

n
lo

ss

Adam
DoG
L-DoG
D-Adapt Adam
Prodigy

0 50 100 150 200

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DoG
D-Adapt Adam
Prodigy

Figure 3. VGG11 (top) and ResNet-50 (bottom) training on CIFAR10. Left: test accuracy (%), middle: train loss, right: step sizes.
“Prodigy” is used as given in Algorithm 3. Prodigy estimates a larger step size than D-Adaptation, which helps it reach test accuracy closer
to Adam.

using same 8 random seeds.

We show the results in Figure 3. As we can see, this gap is
closed by Prodigy, which is achieved by the larger estimates
of the step size.

For DoG and L-DoG, we compute the polynomial-averaging
iterate and then report the best of the average and the last
iterate. We average with γ = 8, see (Ivgi et al., 2023) for
the details. While DoG produces larger step size estimate
than Prodigy (see the right column in Figure 3, this is coun-
terbalanced by the larger denominator in DoG. We also tried
to modify DoG to use Adam-like step sizes but our heuristic
modification diverged on this problem. We also observed
that among DoG and its layer-wise version, L-DoG, there is
no clear winner as the former performed better on VGG11
and the latter was better when training ResNet-50.

nanoGPT transformer. We also train a 6-layer trans-
former network from nanoGPT3 on the Shakespeare dataset.
For all methods, we use batch size 256, clip the gradients
to have norm not exceeding 1 and use float16 numbers. We
use AdamW with hyperparameters given in the repository,
i.e., β2 = 0.99, weight decay 0.1, step size 10−3, cosine
annealing with warmup over 100 steps. The same weight
decay value and cosine annealing is used for Prodigy and
D-Adapted Adam, except that the latter two methods use
step size 1. We accumulate minibatches of size 12 into a
batch of size 480. We tuned the weight decay for DoG and
L-DoG and found the value 10−4 to work well for this prob-
lem. We ran each method with 8 random seeds and report

3https://github.com/karpathy/nanoGPT

the average as well as one-standard-deviation confidence
intervals.

See Figure 4 for the results. In terms of the test loss, all
methods are roughly equivalent except that DoG and L-
DoG were slower to reach the best value of roughly 1.5.
For the train loss, Prodigy was on par with tuned AdamW
and slightly better than D-Adapted Adam. Surprisingly, the
estimated step size in Prodigy was very consistent across
the 8 random seeds.

6.1. Large-scale Adam experiments

To validate the performance on large-scale practical applica-
tions directly against D-Adaptation, we ran the subset of the
experiments from Defazio & Mishchenko (2023) that use
the Adam optimizer. Methods without coordinate adaptivity
are not competitive on these problems and so we exclude
SGD and DoG from these comparisons.

LSTM, RoBERTa, GPT, DLRM, VarNet. On the small-
est problem of LSTM training, Prodigy appears to converge
significantly faster in training loss and slightly overfits in test
loss compared to the baselines. For RoBERTa (Liu et al.,
2019) and GPT (Radford et al., 2019) training on Book-
Wiki, Prodigy matches the performance of the baseline with
only negligible differences. For the application problems,
DLRM (Naumov et al., 2019) on the Criteo Kaggle Display
Advertising dataset, and fastMRI VarNet (Zbontar et al.,
2018), Prodigy again closely matches the baselines.

8

https://github.com/karpathy/nanoGPT

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

0 2500 5000 7500 10000 12500 15000
Iteration

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Te
st

 lo
ss

AdamW
DoG
L-DoG
D-Adapt Adam
Prodigy

0 2500 5000 7500 10000 12500 15000
Iteration

0

1

2

3

4

Tr
ai

n
lo

ss

AdamW
DoG
L-DoG
D-Adapt Adam
Prodigy

0 2500 5000 7500 10000 12500 15000
Iteration

10
−5

10
−3

10
−1

10
1

S
te

ps
iz

e

AdamW
DoG
D-Adapt Adam
Prodigy

Figure 4. The test (left) and train (middle) loss curves as well as the estimated step size (right) when training a 6-layer nanoGPT
transformer.

ViT training. Defazio & Mishchenko (2023) present a
negative result for training vision transformer (Dosovitskiy
et al., 2021), where D-Adaptation significantly underper-
forms tuned Adam. We investigated this effect, and we were
able to reproduce this gap across a wide range of weight-
decay values, although this problem has high run-to-run
variance of 1-2% of test accuracy, which makes comparison
difficult. Using weight decay 0.05 instead of 0.1 signifi-
cantly improved performance of each variant, and so we
present results for both the baselines and Prodigy at that
value. We can see that Prodigy almost closes the gap be-
tween tuned Adam and D-Adaptation, giving a test accuracy
of 74.63% compared to 75.4% for Adam, and more than 2%
higher than D-Adaptation. See Figure 2 for the results.

7. Conclusion
We have presented Prodigy, a new method for learning-rate
adaptation that improves upon the adaptation rate of the
state-of-the-art D-Adaptation method. We proved conver-
gence of Prodigy on both non-smooth and smooth problems.
Prodigy was also shown to adapt faster than other known
methods across a range of experiments. A practical limita-
tion of our method is the increased memory requirement as
it needs to store vectors x0 and sk in addition to Adam’s
vectors mk and vk. To remedy this issue, one can compress
x0 and sk, for instance, by using lower precision data types,
especially since we only use these vectors to produce scalar
values for our dk estimates.

Impact Statement
This paper presents work whose goal is to improve the
training speed of existing Machine Learning models. We
believe the societal consequences of our work are minimal.

References
Carmon, Y. and Hinder, O. Making SGD parameter-free. In

Conference on Learning Theory. PMLR, 2022.

Cutkosky, A. and Orabona, F. Black-box reductions for

parameter-free online learning in banach spaces. In Pro-
ceedings of the 31st Conference On Learning Theory, Pro-
ceedings of Machine Learning Research. PMLR, 2018.

Defazio, A. and Jelassi, S. Adaptivity without compro-
mise: A momentumized, adaptive, dual averaged gradient
method for stochastic optimization. Journal of Machine
Learning Research, 23:1–34, 2022.

Defazio, A. and Mishchenko, K. Learning-rate-free learn-
ing by D-adaptation. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 7449–7479. PMLR, 23–29 Jul
2023.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(61), 2011.

Ene, A., Nguyen, H. L., and Vladu, A. Adaptive gradient
methods for constrained convex optimization and varia-
tional inequalities. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 35, pp. 7314–7321,
2021.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Gower, R. M., Defazio, A., and Rabbat, M. Stochastic
Polyak stepsize with a moving target. arXiv preprint
arXiv:2106.11851, 2021.

9

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Grimmer, B. Convergence rates for deterministic and
stochastic subgradient methods without Lipschitz con-
tinuity. SIAM Journal on Optimization, 29(2):1350–1365,
2019.

Hazan, E. and Kakade, S. M. Revisiting the Polyak step
size. arXiv preprint arXiv:1905.00313, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
2016.

Ivgi, M., Hinder, O., and Carmon, Y. DoG is SGD’s best
friend: A parameter-free dynamic step size schedule. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), Proceedings of the 40th Interna-
tional Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 14465–
14499. PMLR, 23–29 Jul 2023.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems in
federated learning. Foundations and Trends® in Machine
Learning, 14(1), 2021.

Kavis, A., Levy, K. Y., Bach, F., and Cevher, V. UniXGrad:
A universal, adaptive algorithm with optimal guarantees
for constrained optimization. Advances in neural infor-
mation processing systems, 32, 2019.

Khodak, M., Tu, R., Li, T., Li, L., Balcan, M.-F. F., Smith,
V., and Talwalkar, A. Federated hyperparameter tuning:
Challenges, baselines, and connections to weight-sharing.
Advances in Neural Information Processing Systems, 34:
19184–19197, 2021.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015. URL http://arxiv.
org/abs/1412.6980.

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, University of Toronto,
2009.

Latafat, P., Themelis, A., Stella, L., and Patrinos, P. Adap-
tive proximal algorithms for convex optimization under
local Lipschitz continuity of the gradient. arXiv preprint
arXiv:2301.04431, 2023.

Levy, K. Y., Yurtsever, A., and Cevher, V. Online adap-
tive methods, universality and acceleration. Advances in
neural information processing systems, 31, 2018.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692, 2019.

Loizou, N., Vaswani, S., Laradji, I., and Lacoste-Julien, S.
Stochastic Polyak step-size for SGD: An adaptive learn-
ing rate for fast convergence. In Proceedings of the 24th
International Conference on Artificial Intelligence and
Statistics (AISTATS), Proceedings of Machine Learning
Research. PMLR, 2021.

Malitsky, Y. and Mishchenko, K. Adaptive gradient de-
scent without descent. In III, H. D. and Singh, A. (eds.),
Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 6702–6712. PMLR, 13–18 Jul
2020.

McMahan, H. B. and Orabona, F. Unconstrained online lin-
ear learning in Hilbert spaces: Minimax algorithms and
normal approximations. In Proceedings of The 27th Con-
ference on Learning Theory, volume 35 of Proceedings
of Machine Learning Research. PMLR, 2014.

Naumov, M., Mudigere, D., Shi, H. M., Huang, J., Sundara-
man, N., Park, J., Wang, X., Gupta, U., Wu, C., Azzolini,
A. G., Dzhulgakov, D., Mallevich, A., Cherniavskii, I.,
Lu, Y., Krishnamoorthi, R., Yu, A., Kondratenko, V.,
Pereira, S., Chen, X., Chen, W., Rao, V., Jia, B., Xiong,
L., and Smelyanskiy, M. Deep learning recommendation
model for personalization and recommendation systems.
CoRR, 2019.

Orabona, F. and Pál, D. Parameter-free stochastic optimiza-
tion of variationally coherent functions, 2021.

Orabona, F. and Tommasi, T. Training deep networks with-
out learning rates through coin betting. In Advances
in Neural Information Processing Systems, volume 30,
2017.

Orvieto, A., Lacoste-Julien, S., and Loizou, N. Dynamics
of SGD with stochastic Polyak stepsizes: Truly adaptive
variants and convergence to exact solution. In Advances
in Neural Information Processing Systems (NeurIPS).
NeurIPS, 2022.

Polyak, B. T. Introduction to optimization. Optimization
Software, Inc., 1987.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever,
I. Improving language understanding by generative pre-
training. Technical report, OpenAI, 2019.

Simonyan, K. and Zisserman, A. Very deep convolu-
tional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Streeter, M. and McMahan, H. B. Less regret via online
conditioning. arXiv preprint arXiv:1002.4862, 2010.

10

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Ward, R., Wu, X., and Bottou, L. Adagrad stepsizes: sharp
convergence over nonconvex landscapes. In International
Conference on Machine Learning, 2019.

Weston, J. and Watkins, C. Support vector machines for
multi-class pattern recognition. pp. 219–224, 01 1999.

Zbontar, J., Knoll, F., Sriram, A., Muckley, M. J., Bruno,
M., Defazio, A., Parente, M., Geras, K. J., Katsnelson,
J., Chandarana, H., et al. fastMRI: An open dataset
and benchmarks for accelerated MRI. arXiv preprint
arXiv:1811.08839, 2018.

Zhang, Z., Cutkosky, A., and Paschalidis, I. C. PDE-based
optimal strategy for unconstrained online learning. In
Proceedings of the 39th International Conference on Ma-
chine Learning (ICML 2022), 2022.

Zoph, B. and Le, Q. Neural architecture search with
reinforcement learning. In International Conference
on Learning Representations, 2017. URL https://
openreview.net/forum?id=r1Ue8Hcxg.

11

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

A. Analysis of Prodigy
As a reminder, we use the notation log2+(a) = 1 + log2(a) to denote the logarithm that is lower bounded by 1 for any
a ≥ 1.

A.1. Useful propositions

Proposition 1 (Lemma A.2 in (Levy et al., 2018)). For any sequence of nonnegative real numbers a0, . . . , an√√√√ n∑
k=0

ai ≤
n∑

k=0

ak√∑k
i=0 ai

≤ 2

√√√√ n∑
k=0

ai. (4)

Proof. For completeness, we prove both statements here. Notice that for any α ∈ [0, 1], it holds 1 −
√
1− α ≤ α ≤

2(1−
√
1− α). Substituting α = ak∑k

i=0 ai
gives

1−
√
1− ak∑k

i=0 ai
≤ ak∑k

i=0 ai
≤ 2

1−
√
1− ak∑k

i=0 ai

 .

If we multiply all sides by
√∑k

i=0 ai, the inequality above becomes√√√√ k∑
i=0

ai −

√√√√k−1∑
i=0

ai ≤
ak√∑k
i=0 ai

≤ 2

√√√√ k∑

i=0

ai −

√√√√k−1∑
i=0

ai

 .

Summing over k = 0, . . . , n, we get the stated bound.

Proposition 2. For any sequence of nonnegative numbers a0, . . . , an and A > 0, it holds

n∑
k=0

ak

A+
∑k

i=0 ai
≤ log

(
A+

n∑
k=0

ak

)
− log(A). (5)

Proof. If ai = 0 for some i, we can simply ignore the corresponding summands, so let us assume that ai > 0 for all i. For
any t > 0 it holds 1/(1 + t) ≤ log(1 + 1/t). Substituting t = Sk/ak, where Sk = A+

∑k−1
i=0 ai for k > 0 and S0 = A,

we get
1

1 + Sk

ak

=
ak

ak + Sk
=

ak

A+
∑k

i=0 ai
≤ log(1 + ak/Sk) = log(Sk+1)− log(Sk).

Summing this over k from 0 to n, we get

n∑
k=0

ak

A+
∑k

i=0 ai
≤

n∑
k=0

(log(Sk+1)− log(Sk)) = log(Sn+1)− log(S0)

= log

(
A+

n∑
k=0

ak

)
− log(A).

This is exactly what we wanted to prove.

A.2. Proof of Lemma 1

Proof. Following the proof in (Ivgi et al., 2023), we define K =
⌈
log2

(
dN

d0

)⌉
and n =

⌊
N
K

⌋
. Consider a partitioning of the

sequence t ≤ N into half-open intervals Ik = [nk, n(k + 1)) for k = 0 to K − 1. We want to show that there is at least one
interval such that dk changes by at most a factor of 2 on that interval. We will use proof by contradiction.

12

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Suppose that for all intervals, dnk < 1
2dn(k+1). Then dk at least doubles in every interval, and so:

d0 <
1

2
dn <

1

4
d2n · · · <

1

2K
dnK <

1

2K
dN ,

which implies that dN/d0 > 2K and so K < log2 (dN/d0) which contradicts our definition K =
⌈
log2

(
dN

d0

)⌉
. Therefore,

there exists some k̂ such that dnk̂ ≥ 1
2dn(k̂+1). We can now proceed with proving the Lemma by considering the summation

over interval Ik̂ only:

min
t<N

dt+1√∑t
k=0 d

2
k

≤
dn(k̂+1)√∑n(k̂+1)−1
k=0 d2k

≤
dn(k̂+1)√∑n(k̂+1)−1

k=nk̂
d2k

≤
dn(k̂+1)√∑n(k̂+1)−1

k=nk̂
d2
nk̂

=
dn(k̂+1)√

nd2
nk̂

≤
dn(k̂+1)√
1
4nd

2
n(k̂+1)

=
2√
n
=

2√⌊
N
K

⌋
≤ 2√

N
K − 1

≤ 2√
N

log2(dN/d0)+1 − 1
=

2
√
log2+

(
dN

d0

)√
N − log2+

(
dN

d0

)
N≥2 log2+(

dN
d0

)

≤
4
√
log2+

(
dN

d0

)
√
N

.

A.3. GD analysis

Lemma 2. Assume that d0 ≤ D. Then, the estimate dk in Algorithm 1 satisfies dk ≤ D for all k.

Proof. By optimality of f∗, we have f(xk)− f∗ ≥ 0, so

0 ≤
n∑

k=0

ηk(f(xk)− f∗) ≤
n∑

k=0

ηk⟨gk, xk − x∗⟩ =
n∑

k=0

ηk⟨gk, x0 − x∗⟩+
n∑

k=0

ηk⟨gk, xk − x0⟩.

Collecting the gradients in the first sum together and using Cauchy-Schwarz inequality, we obtain

0 ≤
n∑

k=0

ηk(f(xk)− f∗) ≤ ⟨x0 − xn+1, x0 − x∗⟩+
n∑

k=0

ηk⟨gk, xk − x0⟩

≤ ∥x0 − xn+1∥∥x0 − x∗∥+
n∑

k=0

ηk⟨gk, xk − x0⟩. (6)

Using the definition of d̂n+1, this is equivalent to 0 ≤ (D− d̂n+1)∥x0 − xn+1∥, which implies d̂n+1 ≤ D. Therefore, since
d0 ≤ D, we can show by induction dn+1 ≤ D as well.

Lemma 3. The following inequality holds for the iterates of Algorithm 1:

∥xn+1 − x0∥ ≤ 2dn+1 +
1

2dn+1

n∑
k=0

η2k∥gk∥2.

13

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Proof. Let us rewrite d̂n+1 in a slightly different manner:

d̂n+1∥xn+1 − x0∥
def
=

n∑
k=0

⟨xk − xk+1, x0 − xk⟩

=

n∑
k=0

1

2

(
∥xk+1 − x0∥2 − ∥xk − xk+1∥2 − ∥xk − x0∥2

)
=

1

2
∥xn+1 − x0∥2 −

1

2

n∑
k=0

∥xk − xk+1∥2.

Combining this with the property d̂n+1 ≤ dn+1, we derive

1

2
∥xn+1 − x0∥2 −

1

2

n∑
k=0

∥xk − xk+1∥2 = d̂n+1 ∥xn+1 − x0∥ ≤ dn+1 ∥xn+1 − x0∥ .

Applying inequality 2αβ ≤ α2 + β2 with α2 = 2d2n+1 and β2 = 1
2∥xn+1 − x0∥2 and plugging-in the bound above, we

establish

2dn+1∥xn+1 − x0∥ = 2αβ ≤ α2 + β2 = 2d2n+1 +
1

2
∥xn+1 − x0∥2

≤ 2d2n+1 + dn+1∥xn+1 − x0∥+
1

2

n∑
k=0

∥xk − xk+1∥2.

Rearranging the terms, we obtain

dn+1∥xn+1 − x0∥ ≤ 2d2n+1 +
1

2

n∑
k=0

∥xk − xk+1∥2 = 2d2n+1 +
1

2

n∑
k=0

η2k∥gk∥2.

It remains to divide this inequality by dn+1 to get the desired claim.

Lemma 4. Assuming the weights ω0, . . . , ωn are positive, it holds for the iterates of Algorithm 1:

n∑
k=0

d4kω
2
k∥gk∥2

d2kG
2 +

∑k
i=0 d

2
iω

2
i ∥gi∥2

≤ d2n log

(
1 +

n∑
k=0

ω2
k

)
. (7)

Proof. The lemma follows straightforwardly from Proposition 2 by substituting ak =
d2
k

d2
n
ω2
k∥gk∥2 for k from 0 to n:

n∑
k=0

d4kω
2
k∥gk∥2

d2kG
2 +

∑k
i=0 d

2
iω

2
i ∥gi∥2

= d2n

n∑
k=0

d2
k

d2
n
ω2
k∥gk∥2

G2 +
∑k

i=0
d2
i

d2
k
ω2
i ∥gi∥2

dk≤dn

≤ d2n

n∑
k=0

d2
k

d2
n
ω2
k∥gk∥2

G2 +
∑k

i=0
d2
i

d2
n
ω2
i ∥gi∥2

(5)
≤ d2n

(
log

(
G2 +

n∑
k=0

d2k
d2n

ω2
k∥gk∥2

)
− log(G2)

)

≤ d2n log

(
1 +

n∑
k=0

ω2
k

)
,

where in the last step we used d2
k

d2
n
ω2
k∥gk∥2 ≤ ω2

kG
2.

Let us restate Theorem 1:

14

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Theorem 6 (Same as Theorem 1). Given any weights 1 ≤ ω0 ≤ · · · ≤ ωn, the functional gap of the average iterate of
Algorithm 1 converges as

f(xn)− f∗ ≤
√
2ωnDG

2dn+1 + dn+1 log(1 +
∑n

k=0 ω
2
k)√∑n

k=0 ωkd2k
.

Proof. The first steps in the proof follow the same lines as the theory in (Defazio & Mishchenko, 2023), but we still provide
them for completeness.

Firstly, let us continue developing the bound proved in the proof of Lemma 2:

n∑
k=0

ηk(f(xk)− f∗) ≤ ∥x0 − xn+1∥D +

n∑
k=0

ηk⟨gk, xk − x0⟩

= ∥x0 − xn+1∥D +

n∑
k=0

⟨xk − xk+1, xk − x0⟩

= ∥x0 − xn+1∥D +
1

2

n∑
k=0

[
∥xk − xk+1∥2 + ∥xk − x0∥2 − ∥xk+1 − x0∥2

]
≤ ∥x0 − xn+1∥D +

1

2

n∑
k=0

∥xk − xk+1∥2.

We upper bound the first term with the help of Lemma 3:

n∑
k=0

ηk(f(xk)− f∗) ≤ 2Ddn+1 +
D

2dn+1

n∑
k=0

η2k∥gk∥2 +
1

2

n∑
k=0

η2k∥gk∥2.

Since by Lemma 2, 1 ≤ D
dn+1

, we can simplify it to

n∑
k=0

ηk(f(xk)− f∗) ≤ 2Ddn+1 +
D

dn+1

n∑
k=0

η2k∥gk∥2

= 2Ddn+1 +
D

dn+1

n∑
k=0

d4kω
2
k

d2kG
2 +

∑k
i=0 d

2
iω

2
i ∥gi∥2

∥gk∥2

(7)
≤ 2Ddn+1 +

D

dn+1
d2n log

(
1 +

n∑
k=0

ω2
k

)
.

Using the convexity of f , we can apply Jensen’s inequality on the iterate xn to get

f(xn)− f∗ ≤ 1∑n
k=0 ηk

n∑
k=0

ηk(f(xk)− f∗) ≤
2Ddn+1 +

D
dn+1

d2n log(1 +
∑n

k=0 ω
2
k)∑n

k=0 ηk

≤ D
2dn+1 + dn+1 log(1 +

∑n
k=0 ω

2
k)∑n

k=0 ηk
. (8)

Notice that ∥gi∥ ≤ G and ωi ≤ ωn, so

ηk =
d2kωk√

d2kG
2 +

∑k
i=0 d

2
iω

2
i ∥gi∥

2
≥ d2kωk

G
√
d2k +

∑k
i=0 d

2
iω

2
i

≥ d2kωk

G
√
2ωn

√∑k
i=0 d

2
iωi

.

Summing over k from 0 to n gives

n∑
k=0

ηk ≥ 1√
2ωnG

n∑
k=0

d2kωk√∑k
i=0 d

2
iωi

(4)
≥ 1√

2ωnG

√√√√ n∑
k=0

d2kωk.

15

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Hence,

f(xn)− f∗
(8)
≤

√
2ωnDG

dn+1√∑n
k=0 d

2
kωk

(
2 + log

(
1 +

n∑
k=0

ω2
k

))
.

Corollary 1. Consider Algorithm 1 with n ≥ 2 log2

(
2D
d0

)
and define t = argmink≤n

dk√∑k
i=0 d2

i

. If we choose weights

ωk = 1, then it holds

f(xt)− f∗ ≤ 4
√
2DG

2 + log(n+ 2)√
n

√
log2

(
2D

d0

)
.

Proof. Substituting ωk in the bound of Theorem 1, we get for any n

f(xn)− f∗
(8)
≤

√
2DG

dn+1√∑n
k=0 d

2
k

log (n+ 2) .

If n ≥ 2 log2

(
2D
d0

)
, using the definition of t, the result of Lemma 1 and the property dn ≤ D, we obtain

f(xt)− f∗ ≤
√
2DGmin

k≤n

dk+1√∑k
i=0 d

2
i

(2 + log (n+ 2))

≤ 4
√
2DG

2 + log(n+ 2)√
n

√
log2

(
2D

d0

)
.

If, in contrast, n ≤ 2 log2

(
2D
d0

)
, then it trivially holds by convexity and Cauchy-Schwarz

f(xt)− f∗ ≤ f(x0)− f∗ ≤ ⟨g0, x0 − x∗⟩ ≤ ∥g0∥∥x0 − x∗∥ ≤ GD

Corollary 2. Choose any p ≥ 0 ans set the weights to be ωk = (k + 1)p. Then,

f(xn)− f∗ = O
(
DG(p+ 1)3/2 log(n+ 1)√

n+ 1

)
.

Proof. Since the sequence d0, d1, . . . is non-decreasing and upper bounded by D, there exists an index n̂ such that dk ≤ 2dn̂
for any k ≥ n̂. Moreover, we have for n ≥ 2(n̂+ 1)

n∑
k=n̂

ωk ≥ 1

p+ 1

(
(n+ 1)p+1 − (n̂+ 1)p+1

)
≥ 1

2(p+ 1)
(n+ 1)p+1

and
n∑

k=0

ω2
k =

n+1∑
k=1

k2p ≤
∫ n+2

2

x2pdx ≤ 1

2p+ 1
(n+ 2)2p+1 − 1 ≤ (n+ 2)2p+1 − 1.

Let us plug this into the bound of Theorem 1 for n ≥ 2(n̂+ 1):

f(xn)− f∗ ≤
√
2ωnDG

dn+1√∑n
k=0 d

2
kωk

(
2 + log

(
1 +

n∑
k=0

ω2
k

))

≤
2dn̂
√
2(n+ 1)pDG√

d2n̂
∑n

k=n̂ ωk

(2 + (2p+ 1) log(n+ 2))

≤ 4
√
p+ 1DG√
n+ 1

(2 + (2p+ 1) log(n+ 2)) = O
(
DG(p+ 1)3/2 log(n+ 1)√

n+ 1

)
,

which matches our claim.

16

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Notice that the bound in Corollary 2 does not depend on D/d0. This is only possible asymptotically for a large enough k
and a similar bound without weights was presented by Defazio & Mishchenko (2023).

A.4. GD smooth analysis

We will need the following technical result to show convergence on smooth functions.

Lemma 5. If numbers a > 1, b > 0 are such that a ≤ b(1 + log a), then it also holds a ≤ 2b(1 + log b).

Proof. Firstly, let us plug-in the upper bound into itself:

a ≤ b(1 + log a) ≤ b(1 + log(b(1 + log a))) = b(1 + log b+ log(1 + log a)).

Therefore, it is enough to show that log(1 + log a) ≤ 1 + log b. Notice that for any a > 1 it holds (1 + log a)2 ≤ 2a, so
1 + log a ≤ 2a

1+log a ≤ 2b and log(1 + log a) ≤ log(2b) < 1 + log b.

Theorem 7 (Same as Theorem 3). Assume f is L-smooth, and set G = 0 and ω0 = · · · = ωn = 1 in Algorithm 1. Then, we
get the following convergence guarantee:

f(xt)− f∗ = O
(
log2+

(
D
d0

)
log22+

(
LD2

d0∥g0∥
)

n

)
,

where we used xn = 1∑n
k=0 d2

k

∑n
k=0 d

2
kxk and t = argmink≤n

dk+1√∑k
i=0 d2

i

.

Proof. Recall that we have established the upper bound

n∑
k=0

ηk(f(xk)− f∗) ≤ 2Ddn+1 +
D

dn+1

n∑
k=0

η2k∥gk∥2

= 2Ddn+1 +
D

dn+1

n∑
k=0

d4k∑k
i=0 d

2
i ∥gi∥2

∥gk∥2.

Firstly, let us work on the right-hand side. Since we do not assume that ∥gk∥ is bounded in the smooth case, we keep the
gradients in the upper bound:

n∑
k=0

d4k∥gk∥2∑k
i=0 d

2
i ∥gi∥2

= d20 +

n∑
k=1

d4k∥gk∥2∑k
i=0 d

2
i ∥gi∥2

≤ d20 + d2n

n∑
k=1

d2k∥gk∥2∑k
i=0 d

2
i ∥gi∥2

(5)
≤ d20 + d2n log

(
d20∥g0∥2 +

n∑
k=1

d2k∥gk∥2
)
− log(d20∥g0∥2)

= d20 + d2n log
(
1 +

n∑
k=1

d2k∥gk∥2

d20∥g0∥2
)

= d20 + d2n log
(n∑
k=0

d2k∥gk∥2

d20∥g0∥2
)
.

Secondly, we shall work on the left-hand side of the first inequality. The smoothness assumption implies ∥gi∥2 ≤
2L(f(xi)− f∗), so

ηk =
d2k√∑k

i=0 d
2
i ∥gi∥

2
≥ d2k

√
2L
√∑k

i=0 d
2
i (f(xi)− f∗)

.

17

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Combining this lower bound with the first part of Proposition 1 with ak = d2k(f(xk)− f∗) gives

n∑
k=0

ηk(f(xk)− f∗) ≥
n∑

k=0

d2k(f(xk)− f∗)
√
2L
√∑k

i=0 d
2
i (f(xi)− f∗)

≥ 1√
2L

√√√√ n∑
k=0

d2k(f(xk)− f∗).

All together, the bounds above yield

1√
2L

√√√√ n∑
k=0

d2k(f(xk)− f∗) ≤ 2Ddn+1 +
D

dn+1
d20 +

D

dn+1
d2n log

(n∑
k=0

d2k∥gk∥2

d20∥g0∥2
)
.

Since D
dn+1

d20 ≤ D
dn+1

d2n ≤ D
dn+1

d2n+1 = Ddn+1, we have

1√
2L

√√√√ n∑
k=0

d2k(f(xk)− f∗) ≤ Ddn+1

(
3 + log

(n∑
k=0

d2k∥gk∥2

d20∥g0∥2
))

(3)
≤ Ddn+1

(
3 + log

(2L

d20∥g0∥2
n∑

k=0

d2k(f(xk)− f∗)
))

.

Denote Fn =
√

2L
d2
0∥g0∥2

∑n
k=0 d

2
k(f(xk)− f∗) and notice that the bounds above imply Fn ≥ 1. Then, we can rewrite the

last bound above as

d0∥g0∥
2L

Fn ≤ Ddn+1(3 + logF 2
n) = Ddn+1(3 + 2 logFn) < 3Ddn+1(1 + logFn).

Applying Lemma 5 with a = Fn and b = 6LDdn+1

d0∥g0∥ , we get

Fn ≤ 12LDdn+1

d0∥g0∥

(
1 + log

(6LDdn+1

d0∥g0∥

))
≤ 12LDdn+1

d0∥g0∥

(
1 + log

(6LD2

d0∥g0∥

))
.

Squaring both sides and rearranging yields

n∑
k=0

d2k(f(xk)− f∗) ≤ 72LD2d2n+1

(
1 + log

(6LD2

d0∥g0∥

))2
.

Now we can apply Jensen’s inequality:

f(xn)− f∗ ≤ 1∑n
k=0 d

2
k

n∑
k=0

d2k(f(xk)− f∗) ≤
d2n+1∑n
k=0 d

2
k

72LD2
(
1 + log

(6LD2

d0∥g0∥

))2
.

Taking the minimum of the right-hand side over n, we can replace the first ratio in the right-hand side with 4 log2+(D
2/d20) =

8 log2+(D
2/d0).

A.5. DA analysis

Lemma 6. Considering Algorithm 2, we have

∥sn+1∥ ≤ 2dn+1

γn+1
+

∑n
k=0 γkd

4
k∥gk∥2

2dn+1
.

Proof. When studying Dual Averaging, we need to introduce an extra sequence that lower bounds dn:

dn+1
def
=

γn+1 ∥sn+1∥2 −
∑n

k=0 γkd
4
k ∥gk∥

2

2∥sn+1∥
.

18

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Let us show that d̂n+1 ≥ dn+1 by comparing their numerators:

d̂n+1∥sn+1∥ =

n∑
k=0

d2k⟨gk, x0 − xk⟩ =
n∑

k=0

d2kγk⟨gk, sk⟩ =
n∑

k=0

γk⟨sk+1 − sk, sk⟩

=

n∑
k=0

γk
2

[
∥sk+1∥2 − ∥sk+1 − sk∥2 − ∥sk∥2

]
=

γn
2
∥sn+1∥2 +

1

2

n∑
k=0

(γk − γk+1)∥sk+1∥2 −
1

2

n∑
k=0

γkd
4
k∥gk∥2

γk≥γk+1

≥ γn+1

2
∥sn+1∥2 −

1

2

n∑
k=0

γkd
4
k∥gk∥2

= dn+1∥sn+1∥.

Using the definition of dn+1, and the property dn+1 ≤ d̂n+1 ≤ dn+1, we derive

γn+1

2
∥sn+1∥2 −

1

2

n∑
k=0

γkd
4
k ∥gk∥

2
= dn+1 ∥sn+1∥ ≤ dn+1 ∥sn+1∥ .

Using inequality 2αβ ≤ α2 + β2 with α2 =
2d2

n+1

γn+1
and β2 = γn+1

2 ∥sn+1∥2 and then the bound above, we establish

2dn+1∥sn+1∥ = 2αβ ≤ α2 + β2 =
2d2n+1

γn+1
+

γn+1

2
∥sn+1∥2

≤
2d2n+1

γn+1
+ dn+1∥sn+1∥+

1

2

n∑
k=0

γkd
4
k∥gk∥2.

Rearranging the terms, we obtain

dn+1∥sn+1∥ ≤
2d2n+1

γn+1
+

1

2

n∑
k=0

γkd
4
k∥gk∥2.

It remains to divide both sides by dn+1.

Lemma 7. The Dual Averaging algorithm (Algorithm 2) satisfies

n∑
k=0

d2k(f(xk)− f∗) ≤ (D − d̂n+1)∥sn+1∥. (9)

Proof. Summing inequality f(xk)− f∗ ≤ ⟨gk, xk − x∗⟩ with weights d2k, we get

n∑
k=0

d2k(f(xk)− f∗) ≤
n∑

k=0

d2k⟨gk, xk − x∗⟩ =
n∑

k=0

d2k⟨gk, x0 − x∗⟩+
n∑

k=0

d2k⟨gk, xk − x0⟩.

Using Cauchy-Schwarz on the first product in the right-hand side and then telescoping the second sum, we obtain

n∑
k=0

d2k(f(xk)− f∗) ≤ ∥sn+1∥∥x0 − x∗∥+
n∑

k=0

d2k⟨gk, xk − x0⟩

= ∥sn+1∥D − d̂n+1∥sn+1∥.

Next, we restate and prove Theorem 2:

19

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Theorem 8 (Same as Theorem 2). For Algorithm 2, it holds that:

f(xt)− f∗ ≤ 4GD√
n

√
log2

(2D
d0

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

.

Proof. Let us sum inequality d2k(f(xk)− f∗) ≥ 0 and then apply Lemma 7:

0 ≤
n∑

k=0

d2k(f(xk)− f∗)
(9)
≤ (D − d̂n+1)∥sn+1∥.

Clearly, this implies that d̂n+1 ≤ D, and by induction it follows that dn+1 ≤ D as well. Now let us upper bound the
functional values:

n∑
k=0

d2k(f(xk)− f∗)
(9)
≤ D∥sn+1∥ −

n∑
k=0

γkd
2
k⟨gk, sk⟩

= D∥sn+1∥ −
n∑

k=0

γk⟨sk+1 − sk, sk⟩

= D∥sn+1∥+
1

2

n∑
k=0

γk
(
∥sk+1 − sk∥2 + ∥sk∥2 − ∥sk+1∥2

)
= D∥sn+1∥+

1

2

n∑
k=0

γk∥sk+1 − sk∥2 +
1

2

n∑
k=0

(γk − γk−1)∥sk∥2 −
γn
2
∥sn+1∥2.

We can drop the last two terms since γk ≤ γk−1:

n∑
k=0

d2k(f(xk)− f∗) ≤ D∥sn+1∥+
1

2

n∑
k=0

γk∥sk+1 − sk∥2

= D∥sn+1∥+
1

2

n∑
k=0

γkd
4
k∥gk∥2.

The first term in the right-hand side is readily bounded by Lemma 6:

n∑
k=0

d2k(f(xk)− f∗) ≤ D∥sn+1∥+
1

2

n∑
k=0

γkd
4
k∥gk∥2

≤ 2Ddn+1

γn+1
+

D

2dn+1

n∑
k=0

γkd
4
k∥gk∥2 +

1

2

n∑
k=0

γkd
4
k∥gk∥2

dk≤dn≤dn+1

≤ 2Ddn+1

γn+1
+Ddn

n∑
k=0

γkd
2
k∥gk∥2.

20

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Algorithm 4 Prodigy (Coordinate-wise Dual Averaging version)
1: Input: d0 > 0, x0, G∞ ≥ 0; s0 = 0 ∈ Rp, 1 = (1, . . . , 1)⊤ ∈ Rp

2: for k = 0 to n do
3: gk ∈ ∂f(xk)
4: sk+1 = sk + d2kgk

5: d̂k+1 =

∑k
i=0 d

2
i ⟨gi, x0 − xi⟩
∥sk+1∥1

6: dk+1 = max(dk, d̂k+1)

7: a2k+1 = d2k+1G
2
∞1+

∑k
i=0 d

2
i g

2
i ▷ Coordinate-wise square

8: Ak+1 = diag(ak+1)
9: xk+1 = x0 −A−1

k+1sk+1

10: end for
11: Return xn = 1∑n

k=0 d2
k

∑n
k=0 d

2
kxk

Then, apply Proposition 1:

n∑
k=0

d2k(f(xk)− f∗) ≤
2D

γn+1
+Ddn

n∑
k=0

γkd
2
k∥gk∥2

=
2D

γn+1
+Ddn

n∑
k=0

1√
d2kG

2 +
∑k−1

i=0 d2i ∥gi∥2
d2k∥gk∥2

≤ 2D

γn+1
+Ddn

n∑
k=0

1√
d2k∥gk∥2 +

∑k−1
i=0 d2i ∥gi∥2

d2k∥gk∥2

(4)
≤ 2D

γn+1
+ 2Ddn

√√√√ n∑
k=0

d2k∥gk∥2.

Let us now bound each gradient norm using ∥gk∥ ≤ G:

n∑
k=0

d2k(f(xk)− f∗) ≤ 4Ddn+1

√√√√ n∑
k=0

d2k∥gk∥2 ≤ 4GDdn+1

√√√√ n∑
k=0

d2k.

Thus, we get the following convergence rate:

f(xt)− f∗ ≤
4GDdt+1

√∑t
k=0 d

2
k∑t

k=0 d
2
k

=
4GDdt+1√∑t

k=0 d
2
k

= min
t′<n

4GDdt′+1√∑t′

k=0 d
2
k

≤ 4GD√
n

√
log2+

(D
d0

)
.

A.6. Coordinate-wise Prodigy

Here we study Algorithm 4. The theory in this section follows closely the analysis in Section A.5. There are only a few
minor differences such as the use of weighted norms, which we define as ⟨x, y⟩A−1 = x⊤A−1y for any matrix A ≽ 0. In
addition, we use ℓ∞ norm for the distance term and for the gradients, see the assumption below.

Assumption 3. The gradients are upper bounded coordinate-wise: ∥gk∥∞ ≤ G∞.

We begin with the analogue of Lemma 6:

21

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Lemma 8. It holds for the iterates of Algorithm 4:

∥sn+1∥1 ≤ 2dn+1∥an+1∥1 +
1

2dn+1

n∑
k=0

d4k∥gk∥2A−1
k

.

Proof. As in the proof of Lemma 6, let us introduce an extra sequence dn:

dn+1
def
=

∥sn+1∥2A−1
n+1

−
∑n

k=0 d
4
k ∥gk∥

2
A−1

k

2∥sn+1∥1
.

The next step is to show that d̂n+1 ≥ dn+1 by comparing the numerators:

d̂n+1∥sn+1∥1 =

n∑
k=0

d2k⟨gk, x0 − xk⟩ =
n∑

k=0

d2k⟨gk, sk⟩A−1
k

=

n∑
k=0

⟨sk+1 − sk, sk⟩A−1
k

=

n∑
k=0

1

2

[
∥sk+1∥2A−1

k

− ∥sk+1 − sk∥2A−1
k

− ∥sk∥2A−1
k

]
=

1

2
∥sn+1∥2A−1

n
+

1

2

n∑
k=0

∥sk+1∥2A−1
k −A−1

k+1

− 1

2

n∑
k=0

d4k∥gk∥2A−1
k

A−1
k ≽A−1

k+1

≥ 1

2
∥sn+1∥2A−1

n+1

− 1

2

n∑
k=0

d4k∥gk∥2A−1
k

= dn+1∥sn+1∥1.

Using the definition of dn+1, and the property dn+1 ≤ d̂n+1 ≤ dn+1, we derive

1

2
∥sn+1∥2A−1

n+1
− 1

2

n∑
k=0

d4k ∥gk∥
2
A−1

k
= dn+1 ∥sn+1∥1 ≤ dn+1 ∥sn+1∥1 .

Using inequality 2αβ ≤ α2 + β2 with α2 = 2d2n+1a(n+1)i and β2 = 1
2a(n+1)i

s2(n+1)i for i = 1, . . . , p and then the bound
above, we establish

2dn+1∥sn+1∥1 =

p∑
i=1

dn+1|s(n+1)i| ≤
p∑

i=1

(
2d2n+1a(n+1)i +

1

2a(n+1)i
s2(n+1)i

)
= 2d2n+1∥an+1∥1 +

1

2
∥sn+1∥A−1

n+1

≤ 2d2n+1∥an+1∥1 + dn+1∥sn+1∥1 +
1

2

n∑
k=0

d4k∥gk∥2A−1
k

.

Rearranging the terms, we get

dn+1∥sn+1∥1 ≤ 2d2n+1∥an+1∥1 +
1

2

n∑
k=0

d4k∥gk∥2A−1
k

.

It remains to divide both sides by dn+1.

The next lemma is similar to Lemma 8 except that it uses ℓ∞ norm for the distance to a solution and ℓ1 norm for the
weighted gradient sum sn.
Lemma 9. The coordinate-wise version of Prodigy (Algorithm 4) satisfies

n∑
k=0

d2k(f(xk)− f∗) ≤ (D∞ − d̂n+1)∥sn+1∥1, (10)

where D∞ = ∥x0 − x∗∥∞.

22

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Proof. Summing inequality f(xk)− f∗ ≤ ⟨gk, xk − x∗⟩ with weights d2k, we get
n∑

k=0

d2k(f(xk)− f∗) ≤
n∑

k=0

d2k⟨gk, xk − x∗⟩ =
n∑

k=0

d2k⟨gk, x0 − x∗⟩+
n∑

k=0

d2k⟨gk, xk − x0⟩.

Using Hölder’s inequality on the first product in the right-hand side and then telescoping the second sum, we obtain
n∑

k=0

d2k(f(xk)− f∗) ≤ ∥sn+1∥1∥x0 − x∗∥∞ +

n∑
k=0

d2k⟨gk, xk − x0⟩

= ∥sn+1∥1D∞ − d̂n+1∥sn+1∥.

The use of ℓ1 norm for the term sn+1 above is motivated by the fact that it naturally arises in other parts of the theory.

Theorem 9. Algorithm 4 converges with the rate

f(xt)− f∗ ≤ 4pG∞D∞√
n

√
log2+

(D∞

d0

)
,

where t = argmink≤n
dk+1√∑k

i=0 d2
i

.

Proof. From Lemma 9, we get

0 ≤
n∑

k=0

d2k(f(xk)− f∗)
(10)
≤ (D∞ − d̂n+1)∥sn+1∥1,

so we can prove by induction that dn+1 ≤ D∞. Using the same bounds as before, we get for the average iterate
n∑

k=0

d2k(f(xk)− f∗) ≤ D∞∥sn+1∥1 −
n∑

k=0

d2k⟨gk, x0 − xk⟩

= D∞∥sn+1∥1 +
1

2

n∑
k=0

d4k∥gk∥2A−1
k

+
1

2

n∑
k=0

∥sk∥2A−1
k −A−1

k+1

− 1

2
∥sn+1∥2A−1

n+1

≤ D∞∥sn+1∥1 +
1

2

n∑
k=0

d4k∥gk∥2A−1
k

.

Let us plug in the bound from Lemma 8:
n∑

k=0

d2k(f(xk)− f∗) ≤ 2D∞dn+1∥an+1∥1 +
D∞

2dn+1

n∑
k=0

d4k∥gk∥2A−1
k

+
1

2

n∑
k=0

d4k∥gk∥2A−1
k

dn+1≤D∞
≤ 2D∞dn+1∥an+1∥1 +

D∞

dn+1

n∑
k=0

d4k∥gk∥2A−1
k

dk≤dn

≤ 2D∞dn+1∥an+1∥1 +
D∞

dn+1
d2n

n∑
k=0

d2k∥gk∥2A−1
k

.

We now apply Proposition 1, and use g2kj ≤ G2
∞:

n∑
k=0

d2k(f(xk)− f∗) ≤ 2D∞dn+1∥an+1∥1 +
D∞

dn+1
d2n

p∑
j=1

n∑
k=0

d2kg
2
kj√

d2kG
2
∞ +

∑k−1
i=0 d2i g

2
ij

≤ 2D∞dn+1∥an+1∥1 +
2D∞

dn+1
d2n

p∑
j=1

√√√√ n∑
k=0

d2kg
2
kj

≤ 4D∞dn+1pG∞

√√√√ n∑
k=0

d2k.

23

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

Using Lemma 1, we get the rate for t = argmint′≤n
dt′+1√∑t′

k=0 d2
k

:

f(xt)− f∗ ≤ 4pG∞D∞√
n

√
log2+

(D∞

d0

)
.

B. Lower Complexity Theory
Theorem 10. Consider any exponentially bounded algorithm for minimizing a convex G-Lipschitz function starting from
x0, which has no knowledge of problem constants G and D. There exists a fixed gradient oracle such that any sequence of
x1,..., xn, there exists a convex Lipschitz problem f with G = 1 and ∥x0 − x∗∥ ≤ D for all minimizing points x∗, consistent
with the gradient oracle such that:

min
k≤n

f(xk)− f∗ ≥
DG

√
log2(D/x1)

2
√
n+ 1

.

Proof. We consider the construction of a 1D oracle for this problem. Our oracle returns g0 = −1 and f(xk) = −xk for all
queries. Without loss of generality we assume that xk > 0 for all k ≥ 1, and G = 1.

For each step k ≥ 1 we define:
x∗ = 2n+1x1,

and thus D = |x0 − x∗| = 2k+1x1. and our construction uses the following function value and gradient sequence

f(x) = |x− x∗|+ x∗.

Note that for all query points x, the gradient is negative, and only the left arm of the absolute value function is seen by the
algorithm, so the function appears linear for all test points. Using this construction, we have:

min
k≤n

[f(xk)− f∗] = min
k≤n

(x∗ − xk)

= 2n+1x1 −max
k≤n

xk

≥ 2 · 2nx1 − 2nx1

= 2nx1

=
1

2
Dn.

Now note that: √
log2(Dn/x1) =

√
log2(2

n+1) =
√
n+ 1.

Combining these two results:

min
k≤n

f(xk)− f∗ ≥ 1

2
D =

1

2
DG =

1
2DG

√
log2(D/x1)√
n+ 1

.

Theorem 11. D-Adaptation, DoG and Prodigy are exponentially bounded.

Proof. Consider the D lower bound from D-Adaptation:

d̂n+1 =

∑n
k=0 dkγk ⟨gk, sk⟩

∥sn+1∥
,

24

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

with:

sn+1 =

n∑
k=0

dkgk.

Recall that
n∑

k=0

dkγk ⟨gk, sk⟩ ≤ γn+1 ∥sn+1∥2 .

Note also that γn+1 ≤ 1
G . So:

dn+1 ≤
1
G ∥sn+1∥2

∥sn+1∥
≤ 1

G

∥∥∥∥∥
n∑

k=0

dkgk

∥∥∥∥∥ ≤
n∑

k=0

dk.

So the sequence dn is upper bounded by the sequence:

an =

{∑n−1
k=0 ak n ≥ 1

d0 n = 0
.

This sequence has the following closed form:

an+1 = 2nd0 for n ≥ 1.

We can prove this by induction. The base case is by definition a1 = a0. Then

an+1 =

n∑
k=0

ak =

n−1∑
k=0

ak + an = an + an = 2an = 2nd0.

Note that for both the Dual Averaging form and the GD form we have, we have:

∥xn+1 − x0∥ ≤

∥∥∥∥∥ 1G
n∑

k=0

dkgk

∥∥∥∥∥ ≤
n∑

k=0

dk ≤ dn+1 ≤ 2nd0.

It follows that D-Adaptation is exponentially bounded. For Prodigy, note that:

γn+1 ≤ 1√
d2n+1G

2
=

1

dn+1G
.

Therefore

dn+1 ≤
1

dn+1G
∥sn+1∥2

∥sn+1∥
≤ 1

dn+1G

∥∥∥∥∥
n∑

k=0

d2kgk

∥∥∥∥∥
≤ 1

dn+1

n∑
k=0

d2k

≤ 1

dn+1

n∑
k=0

dkdn+1

=

n∑
k=0

dk.

The rest of the argument follows the D-Adaptation case, with:

∥xn+1 − x0∥ ≤

∥∥∥∥∥ 1

dnG

n∑
k=0

d2kgk

∥∥∥∥∥ ≤
n∑

k=0

dk ≤ dn+1 ≤ 2nd0.

25

Prodigy: An Expeditiously Adaptive Parameter-Free Learner

For DoG, recall the basic DoG step is gradient descent with step sizes:

γk =
r̄k√

G2 +
∑k

i=0 ∥gi∥
2
.

Using the triangle inequality we have:

∥xk+1 − x0∥ = ∥xk − γkgk − x0∥
≤ ∥xk − x0∥+ γk∥gk∥

≤ ∥xk − x0∥+
r̄k√
G2

∥gk∥

≤ ∥xk − x0∥+ r̄k

≤ 2r̄k.

Chaining gives the result.

Proposition 3. Suppose that dk ≤ cD and γk ≤ dk/G. then:

∥xk − x0∥ ≤ (2c+ 1)
n ∥x1 − x0∥ .

Proof. Without loss of generality assume that G = 1. Firstly, note that using the absolute value function as constructed in
Theorem 5, it’s clear that there is always exists a function with Dk ≤ 2 ∥xk − x∗∥ at step k consistent with the sequence of
gradients seen so far. Therefore, it must hold that

dk ≤ cDk ≤ 2c ∥xk − x0∥ .

We prove the result by induction. For the base case, trivially:

∥x1 − x0∥ ≤ (2c+ 1)
1 ∥x1 − x0∥ .

For the inductive case:

∥xk+1 − x0∥ = ∥xk − γkgk − x0∥
≤ ∥xk − x0∥+ γk∥gk∥

≤ ∥xk − x0∥+
cDk

G
∥gk∥

≤ ∥xk − x0∥+ cDk

≤ (2c+ 1) ∥xk − x0∥

≤ (2c+ 1)
n+1 ∥x1 − x0∥ .

26

