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ABSTRACT

Traditionally, data valuation is posed as a problem of equitably splitting the valida-
tion performance of a learning algorithm among the training data. As a result, the
calculated data values depend on many design choices of the underlying learning
algorithm. However, this dependence is undesirable for many use cases of data
valuation, such as setting priorities over different data sources in a data acquisition
process and informing pricing mechanisms in a data marketplace. In these scenar-
ios, data needs to be valued before the actual analysis and the choice of the learning
algorithm is still undetermined then. Another side-effect of the dependence is that
to assess the value of individual points, one needs to re-run the learning algorithm
with and without a point, which incurs a large computation burden.
This work leapfrogs over the current limits of data valuation methods by introducing
a new framework that can value training data in a way that is oblivious to the
downstream learning algorithm. Our main results are as follows. (1) We develop
a proxy for the validation performance associated with a training set based on a
non-conventional class-wise Wasserstein distance between the training and the
validation set. We show that the distance characterizes the upper bound of the
validation performance for any given model under certain Lipschitz conditions.
(2) We develop a novel method to value individual data based on the sensitivity
analysis of the class-wise Wasserstein distance. Importantly, these values can be
directly obtained for free from the output of off-the-shelf optimization solvers when
computing the distance. (3) We evaluate our new data valuation framework over
various use cases related to detecting low-quality data and show that, surprisingly,
the learning-agnostic feature of our framework enables a significant improvement
over the state-of-the-art performance while being orders of magnitude faster.

1 INTRODUCTION

Advances in machine learning (ML) crucially rely on the availability of large, relevant, and high-
quality datasets. However, real-world data sources often come in different sizes, relevance levels, and
qualities, differing in their value for an ML task. Hence, a fundamental question is how to quantify the
value of individual data sources. Data valuation has a wide range of use cases both within the domain
of ML and beyond. It can help practitioners enhance the model performance through prioritizing
high-value data sources (Ghorbani & Zou, 2019), and it allows one to make strategic and economic
decisions in data exchange (Scelta et al., 2019).

In the past literature (Ghorbani & Zou, 2019; Jia et al., 2019b; Kwon & Zou, 2021), data valuation is
posed as a problem of equitably splitting the validation performance of a given learning algorithm
among the training data. Formally, given a training dataset Dt = {zi}Ni=1, a validation dataset Dv , a
learning algorithm A, and a model performance metric PERF (e.g., classification accuracy), a utility
function is first defined over all subsets S ⊆ Dt of the training data: U(S) := PERF(A(S)). Then,
the objective of data valuation is to find a score vector s ∈ RN that represents the allocation to
each datapoint. For instance, one simple way to value a point zi is through leave-one-out (LOO)
error U(Dt)− U(Dt \ {zi}), i.e., the change of model performance when the point is excluded from
training. Most of the recent works have leveraged concepts originating from cooperative game theory
(CGT), such as the Shapley value (Ghorbani & Zou, 2019; Jia et al., 2019b), Banzhaf value (Wang
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& Jia, 2022), general semivalues (Kwon & Zou, 2021), and Least cores (Yan & Procaccia, 2021) to
value data. Like the LOO, all of these concepts are defined based on the utility function.

Since the utility function is defined w.r.t. a specific learning algorithm, the data values calculated from
the utility function also depend on the learning algorithm. In practice, there are many choice points
pertaining to a learning algorithm, such as the model to be trained, the type of learning algorithm,
as well as the hyperparameters. The detailed settings of the learning algorithms are often derived
from data analysis. However, in many critical applications of data valuation such as informing data
acquisition priorities and designing data pricing mechanism, data needs to be valued before the actual
analysis and the choice points of the learning algorithm are still undetermined at that time. This gap
presents a main hurdle for deploying existing data valuation schemes in the real world.

The reliance on learning algorithms also makes existing data valuation schemes difficult to scale
to large datasets. The exact evaluation of LOO error and CGT-based data value notions require
evaluating utility functions over different subsets and each evaluation entails retraining the model
on that subset: the number of retraining times is linear in the number of data points for the former,
and exponential for the latter. While existing works have proposed a variety of approximation
algorithms, scaling up the calculation of these notions to large datasets remains expensive. Further,
learning-algorithm-dependent approaches rely on the performance scores associated with models
trained on different subsets to determine the value of data; thus, they are susceptible to noise due to
training stochasticity when the learning algorithm is randomized (e.g., SGD) (Wang & Jia, 2022).

This work addresses these limitations by introducing a learning-agnostic data valuation (LAVA)
framework. LAVA is able to produce efficient and useful estimates of data value in a way that is
oblivious to downstream learning algorithms. Our technical contributions are listed as follows.

Proxy for validation performance. We propose a proxy for the validation performance associated
with a training set based on the non-conventional class-wise Wasserstein distance (Alvarez-Melis
& Fusi, 2020) between the training and the validation set. The hierarchically-defined Wasserstein
distance utilizes a hybrid Euclidean-Wasserstein cost function to compare the feature-label pairs across
datasets. We show that this distance characterizes the upper bound of the validation performance of
any given models under certain Lipschitz conditions.

Sensitivity-analysis-based data valuation. We develop a method to assess the value of an individual
training point by analyzing the sensitivity of the particular Wasserstein distance to the perturbations
on the corresponding probability mass. The values can be directly obtained for free from the output
of off-the-shelf optimization solvers once the Wasserstein distance is computed. As the Wasserstein
distance can be solved much more efficiently with entropy regularization (Cuturi, 2013), in our
experiments, we utilize the duals of the entropy-regularized program to approximate the sensitivity.
Remarkably, we show that the gap between two data values under the original non-regularized
Wasserstein distance can be recovered exactly from the solutions to the regularized program.

State-of-the-art performance for differentiating data quality. We evaluate LAVA over a wide
range of use cases, including detecting mislabeled data, backdoor attacks, poisoning attacks, noisy
features, and task-irrelevant data, in which some of these are first conducted in the data valuation
setting. Our results show that, surprisingly, the learning-agnostic feature of our framework enables a
significant performance improvement over existing methods, while being orders of magnitude faster.

2 MEASURING DATASET UTILITY VIA OPTIMAL TRANSPORT

In this section, we consider the problem of quantifying training data utility U(Dt) without the
knowledge of learning algorithms. Similar to most of the existing data valuation frameworks, we
assume access to a set of validation points Dv. Our idea is inspired by recent work on using the
hierarchically-defined Wasserstein distance to characterize the relatedness of two datasets (Alvarez-
Melis & Fusi, 2020). Our contribution here is to apply that particular Wasserstein distance to the data
valuation problem and provide a theoretical result that connects the distance to validation performance
of a model, which might be of independent interest.

2.1 OPTIMAL TRANSPORT-BASED DATASET DISTANCE

Background on Optimal Transport (OT). OT is a celebrated choice for measuring the discrepancy
between probability distributions (Villani, 2009). Compared to other notable dissimilarity measures
such as the Kullback-Leibler Divergence (Kullback & Leibler, 1951) or Maximum Mean Discrepan-
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cies (MMD) (Szekely et al., 2005), the mathematically well-defined OT distance has advantageous
analytical properties. For instance, OT is a distance metric, being computationally tractable and
computable from finite samples (Genevay et al., 2018; Feydy et al., 2019).

The Kantorovich formulation (Kantorovich, 1942) defines the OT problem as a Lin-
ear Program (LP). Given probability measures µt, µv over the space Z , the OT prob-
lem is defined as OT(µt, µv) := minπ∈Π(µt,µv)

∫
Z2 C(z, z′)dπ(z, z′) where Π(µt, µv) :={

π ∈ P(Z × Z) |
∫
Z π(z, z′)dz = µt,

∫
Z π(z, z′)dz′ = µv

}
denotes a collection of couplings be-

tween two distributions µt and µv and C : Z × Z → R+ is some symmetric positive cost func-
tion (with C(z, z) = 0), respectively. If C(z, z′) is the Euclidean distance between z and z′ ac-
cording to the distance metric d, then OT(µt, µv) is 2-Wasserstein distance, which we denote as
WC(µt, µv) = Wd(µt, µv) := OT(µt, µv). In this work, the notation OT and W are used inter-
changeably, with a slight difference that we use OT to emphasize various of its formulations while W
specifies on which distance metric it is computed.

Measuring Dataset Distance. We consider a multi-label setting where we denote ft : X → {0, 1}V ,
fv : X → {0, 1}V as the labeling functions for training and validation data, respectively, where V
is the number of different labels. Given the training set Dt = {(xi, ft(xi))}Ni=1 of size N , and the
validation set Dv = {(x′

i, fv(x
′
i))}Mi=1 of size M , one can construct discrete measures µt(x, y) :=

1
N

∑N
i=1 δ(xi,yi) and µv(x, y) :=

1
M

∑M
i=1 δ(x′

i,y
′
i)

, where δ is Dirac function. Consider that each
datapoint consists of a feature-label pair (xi, yi) ∈ X × Y . While the Euclidean distance naturally
provides the metric to measure distance between features, the distance between labels generally
lacks a definition. Consequently, we define conditional distributions µt(x|y) := µt(x)I[ft(x)=y]∫

µt(x)I[ft(x)=y]dx

and µv(x|y) := µv(x)I[fv(x)=y]∫
µv(x)I[fv(x)=y]dx

. Inspired by Alvarez-Melis & Fusi (2020), we measure the
distance between two labels in terms of the OT distance between the conditional distributions of
the features given each label. Formally, we adopt the following cost function between feature-
label pairs: C((xt, yt), (xv, yv)) := d(xt, xv) + cWd(µt(·|yt), µv(·|yv)), where c ≥ 0 is a weight
coefficient. We note that C is a distance metric since Wd is a valid distance metric. With the
definition of C, we propose to measure the distance between the training and validation sets using the
non-conventional, hierarchically-defined Wasserstein distance between the corresponding discrete
measures: WC (µt, µv) = minπ∈Π(µt,µv)

∫
Z2 C (z, z′) dπ (z, z′) .

Despite its usefulness and potentially broad applications, we note that it remains absent for existing
research to explore its theoretical properties or establish applications upon this notion. This work
aims to fill this gap by extending in both directions–novel analytical results are presented to provide
its theoretical justifications while an original computing framework is proposed that extends its
applications to a new scenario of datapoint valuation.

Computational Acceleration via Entropic Regularization. Solving the problem above scales
cubically with MN , which is prohibitive for large datasets. Entropy-regularized OT (entropy-OT)
becomes a prevailing choice for approximating OT distances as it allows for fastest-known algo-
rithms. Using the iterative Sinkhorn algorithm (Cuturi, 2013) with almost linear time complexity
and memory overhead, entropy-OT can be implemented on a large scale with parallel comput-
ing (Genevay et al., 2018; Feydy et al., 2019). Given a regularization parameter, ε > 0, entropy-OT
can be formulated as OTε(µt, µv) := minπ∈Π(µt,µv)

∫
Z2 C(z, z′)dπ(z, z′)+εH(π|µt⊗µv), where

H(π|µt ⊗ µv) =
∫
Z2 log

(
dπ

dµtdµv

)
dπ. As ε → 0, the dual solutions to the ε-entropy-OT converge

to its OT counterparts as long as the latter are unique (Nutz & Wiesel, 2021).

2.2 LOWER Class-Wise Wasserstein Distance ENTAILS BETTER VALIDATION PERFORMANCE

In this paper, we propose to use WC , a non-conventional, class-wise Wasserstein distance w.r.t. the
special distance function C defined in 2.1, as a learning-agnostic surrogate of validation performance
to measure the utility of training data. Note that while Wasserstein distances have been frequently used
to bound the learning performance change due to distribution drift (Courty et al., 2017; Damodaran
et al., 2018; Shen et al., 2018; Ge et al., 2021), this paper is the first to bound the performance change
by the hierarchically-defined Wasserstein distance with respect to the hybrid cost C.

Figure 1 provides an empirical justification for using this novel distance metric as a proxy, and
presents a relation between the class-wise Wasserstein distance and a model’s validation performance.
Each curve represents a certain dataset trained on a specific model to receive its performance. Since,
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each dataset is of different size and structure, their distances will be of different scale. Therefore, we
normalize the distances to the same scale to present the relation between the Wasserstein distance and
model performance, which shows that despite different datasets and models, with increased distance,
the validation performance decreases.

Figure 1: Normalized Wasserstein
distance vs. model performance on
different datasets and models.

The next theorem theoretically justifies using this Wasserstein
distance as a proxy for validation performance of a model.
With assumptions on Lipschitzness of the downstream model
as well as the labeling functions associated with the training and
validation sets (as explicated in Appendix A), we show that the
discrepancy between the training and validation performance of
a model is bounded by the hierarchically-defined Wasserstein
distance between the training and the validation datasets.

Theorem 1. We denote ft : X → {0, 1}V , fv : X → {0, 1}V
as the labeling functions for training and validation data, where
V is the number of different labels. Let f : X → [0, 1]V be
the model trained on training data. By definitions, we have that ∥f(·)∥, ∥ft(·)∥, ∥fv(·)∥ ≤ V . Let
µt, µv be the training and validation distributions, respectively, and let µt(·|y) and µv(·|y) be the
corresponding conditional distributions given label y. Assume that the model f is ϵ-Lipschitz and
the loss function L : {0, 1}V × [0, 1]V → R+ is k-Lipschitz in both inputs. Define cost function C
between (xv, yv) and (xt, yt) as C((xt, yt), (xv, yv)) := d(xt, xv)+cWd(µt(·|yt), µv(·|yv)), where
c is a constant. Under a certain cross-Lipschitzness assumption for ft and fv detailed in Appendix A,
we have Ex∼µv(x) [L(fv(x), f(x))] ≤ Ex∼µt(x) [L(ft(x), f(x))] + kϵWC(µt, µv) +O(kV ).

Proofs are deferred to Appendix A. The bound is interesting to interpret. The first term on the
right-hand side corresponds to the training performance. In practice, when a model with large enough
capacity is used, this term is small. The second one is the exact expression of the Wasserstein distance
that we propose to use as a proxy for validation performance. The last error term is due to possible
violation of the cross-Lipschitzness assumption for ft and fv. This term will be small if ft and fv
assign the same label to close features with high probability. If the last term is small enough, it is
possible to use the proposed Wasserstein distance as proxy for validation loss provided that f , ft and
fv verify the cross-Lipschitz assumptions. The bound resonates with the empirical observation in
Figure 1 that with lower distance between the training and the validation data, the validation loss of
the trained model decreases.

3 EFFICIENT VALUATION OF INDIVIDUAL DATAPOINTS

Note that the class-wise Wasserstein distance defined in the previous section can be used to measure
the utility for subsets of Dt. Given this utility function, one can potentially use existing CGT-based
notions such as the Shapley value to measure the contribution of individual points. However, even
approximating these notions requires evaluating the utility function on a large number of subsets,
which incurs large extra computation costs. In this section, we introduce a new approach to valuating
individual points. Remarkably, our values can be directly obtained for free from the output of
off-the-shelf optimization solvers once the proposed Wasserstein distance between the full training
and testing datasets is computed.

3.1 DATAPOINT VALUATION VIA PARAMETER SENSITIVITY

OT distance is known to be insensitive to small differences while also being not robust to large
deviations (Villani, 2021). This feature is naturally suitable for detecting abnormal datapoints—
disregarding normal variations in distances between clean data while being sensitive to abnormal
distances of outlying points. We propose to measure individual points’ contribution based on the
gradient of the OT distance to perturbations on the probability mass associated with each point.

Gradients are local information. However, unlike widely used influence functions that only hold for
infinitesimal perturbation (Koh & Liang, 2017), gradients for LP hold precisely in a local range and
still encode partial information beyond that range, making it capable of reliably predicting the change
to the OT distance due to adding or removing datapoints without the need of re-calculation. Also,
the gradients are directed information, revealing both positive and negative contributions for each
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datapoint and allowing one to perform ranking of datapoints based on the gradient values. Finally,
the OT distance always considers the collective effect of all datapoints in the dataset.

Leveraging the duality theorem for LP, we rewrite the original OT problem (introduced in 2.1) in
the equivalent form: OT(µt, µv) := max(f,g)∈C0(Z)2⟨f, µt⟩ + ⟨g, µv⟩, where C0(Z) is the set of
all continuous functions, f and g are the dual variables. Let π∗ and (f∗, g∗) be the corresponding
optimal solutions to the primal and dual problems. The Strong Duality Theorem indicates that
OT(π∗(µt, µv)) = OT(f∗, g∗), where the right-hand side is the distance parameterized by µt and
µv. From the Sensitivity Theorem (Bertsekas, 1997), we have that the gradient of the distance w.r.t.
the probability mass of datapoints in the two datasets can be expressed as follows: ∇µt

OT(f∗, g∗) =
(f∗)T , ∇µv

OT(f∗, g∗) = (g∗)T . Note that the original formulation in 2.1 is always redundant as
the constraint

∑N
i=1 µt(zi) =

∑M
i=1 µv(z

′
i) = 1 is already implied, rendering the dual solution to

be non-unique. To address this issue, we first remove any one of the constraints in Π(µt, µv) and
make the primal formulation non-degenerate. Then, we assign a value of zero to the dual variable
corresponding to that removed primal constraint.

When measuring the gradients of the OT distance w.r.t. the probability mass of a given datapoint in
each dataset, we calculate the calibrated gradient as

∂OT(µt, µv)

∂µt(zi)
= f∗

i −
∑

j∈{1,...N}\i

f∗
j

N − 1
,

∂OT(µt, µv)

∂µv(z′i)
= g∗i −

∑
j∈{1,...M}\i

g∗j
M − 1

, (1)

which represents the rate of change in the OT distance w.r.t the change of the probability mass of
a given datapoint along the direction ensuring the probability mass for all datapoints in the dataset
always sums up to one (explicitly enforcing the removed constraint). The value of calibrated gradients
is independent of the choice of selection during the constraint removal.

Datapoint valuation via calibrated gradients. The calibrated gradients predict how the OT distance
changes as more probability mass is shifted to a given datapoint. This can be interpreted as a measure
of the contribution of the datapoint to the OT distance. The contribution can be positive or negative,
suggesting shifting more probability mass to this datapoint would result in an increase or decrease of
the dataset distance, respectively. If we want a training set to match the distribution of the validation
dataset, then removing datapoints with large positive gradients while increasing datapoints with large
negative gradients can be expected to reduce their OT distance. As we will show later, the calibrated
gradients can provide a tool to detect abnormal or irrelevant data in various applications.

Radius for accurate predictions. The Linear Programming theories (Bertsimas & Tsitsiklis, 1997)
give that for each non-degenerate optimal solution, we are always able to perturb parameters on
the right-hand side of primal constraints (Π(µt, µv) in 2.1) in a small range without affecting the
optimal solution to the dual problem. When the perturbation goes beyond a certain range, the dual
solution becomes primal infeasible and the optimization problem needs to be solved again. Hence,
the calibrated gradients are local information and we would like to know the perturbation radius
such that the optimal dual solution remains unchanged—i.e., whether this range is large enough
such that the calibrated gradients can accurately predict the actual change to the OT distance. If the
perturbation goes beyond this range, the prediction may become inaccurate as the dual solution only
encodes partial information about the optimization.

In our evaluation, we find that this range is about 5% to 25% of the probability measure of the
datapoint (µ(·)(zi)) for perturbations in both directions and the pattern seems independent of the size
of the datasets. This range being less than the probability mass of a datapoint suggests that we are
only able to predict the change to the OT distance for removing/adding a datapoint to the dataset
approximately, though, the relative error is well acceptable (depicted in Figure 2).

3.2 PRECISE RECOVERY OF RANKING FOR DATA VALUES OBTAINED FROM ENTROPY-OT

Due to computational advantages of the entropy-OT (defined in Eq. 2.1), one needs to resort to the
solutions to entropy-OT to calculate data values. We quantify the deviation in the calibrated gradients
caused by the entropy regularizer. This analysis provides foundations on the potential impact of the
deviation on the applications built on these gradients.
Theorem 2. Let OT(µt, µv) and OTε(µt, µv) be the original formulation and entropy penalized
formulation (as defined in 2.1) for the OT problem between the empirical measures µt and µv
associated with the two datasets Dt and Dv, respectively, where |Dt| = N and |Dv| = M . Then,
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I.(a) II.(a) II.(b)I.(b)

Predicted Change Actual Change Relative Error Change Theoretically Accurate Prediction Range

Figure 2: Predicting the change to the OT distance for increasing/reducing the probability mass of a
point. The OT distance is calculated between two subsets of CIFAR-10. We examine the change to
the OT distance predicted by the calibrated gradients against the actual change. The results of two
datapoints are visualized for demonstration (I.(a)/(b) and II.(a)/(b) are analyzed on datapoint #1 and
#2, respectively). The probability mass of the datapoint is perturbed from −100% (removing the
datapoint) to 100% (duplicating the datapoint). I.(a) and II.(a): Predicted change on the OT distance
against the actual change. The predicted change demonstrated high consistency to the actual change
despite minor deviation for large perturbation. I.(b) and II.(b): Relative error for the prediction,
defined as (predicted_change - actual_change)/actual_change×100%. The color bar represents the
theoretical range of perturbation where the change in the OT distance can be accurately predicted.
The prediction holds approximately well beyond the range.

for any i ̸= j ̸= k ∈ {1, 2, . . . , N} and o ̸= p ̸= q ∈ {1, 2, . . . ,M}, the difference between the
calibrated gradients for two datapoints zi and zk in dataset Dt and the difference for z′p and z′q in
Dv can be calculated as

∂OT(µt, µv)

∂ µt(zi)
− ∂OT(µt, µv)

∂ µt(zk)
=

∂OTε(µt, µv)

∂ µt(zi)
− ∂OTε(µt, µv)

∂ µt(zk)
−ε· N

N − 1
·
(

1

(π∗
ε )kj

− 1

(π∗
ε )ij

)
, (2)

∂OT(µt, µv)

∂ µv(z′p)
−∂OT(µt, µv)

∂ µv(z′q)
=

∂OTε(µt, µv)

∂ µv(z′p)
−∂OTε(µt, µv)

∂ µv(z′q)
−ε· M

M − 1
·
(

1

(π∗
ε )qo

− 1

(π∗
ε )po

)
, (3)

where π∗
ε is the optimal primal solution to the entropy penalized OT problem defined in 2.1, zj is any

datapoint in Dt other than zi or zk, and z′o is any datapoint in Dv other than z′p or z′q .

The gradient difference on the left-hand side of (2) represents the groundtruth value difference between
two training points zi and zk as the values are calculated based on the original OT formulation. In
practice, for the sake of efficiency, one only solves the regularized formulation instead and, therefore,
this groundtruth difference cannot be obtained directly. Theorem 2 nevertheless indicates a very
interesting fact that one can calculate the groundtruth difference based on the solutions to the
regularized problem, because every term in the right-hand side only depends on the solutions to the
regularized problem. Particularly, the groundtruth value difference is equal to the value difference
produced by the regularized solutions plus some calibration terms that scale with ε (Nutz & Wiesel,
2021). This result indicates that while it is not possible to obtain individual groundtruth value by
solving the regularized problem, one can actually exactly recover the groundtruth value difference
based on the regularized solutions. In many applications of data valuation such as data selection, it
is the order of data values that matters (Kwon & Zou, 2021). For instance, to filter out low-quality
data, one would first rank the datapoints based on their values and then throw the points with lowest
values. In these applications, solving the entropy-regularized program is an ideal choice—which is
both efficient and recovers the exact ranking of datapoint values. Finally, note that Eq. 3 presents a
symmetric result for the calibrated gradients for validation data. In our experiments, we set ϵ = 0.1,
rendering the corresponding calibration terms to be negligible. As a result, we can directly use the
calibrated gradients solved by the regularized program to rank datapoint values.

4 EXPERIMENTS

In this section, we demonstrate the practical efficacy and efficiency of LAVA on various classification
datasets. We compare with nine baselines: (1) Influence functions (INF) (Koh & Liang, 2017),
which approximates the LOO error with first-order extrapolation; (2) TracIn-Clean (Pruthi et al.,
2020), which accumulates the loss change on validation data during training whenever the training
point of interest is sampled; (3) TracIn-Self (Pruthi et al., 2020), which is similar to TracIn-Clean
but accumulates the training loss changes; (4) KNN-Shapley (KNN-SV) (Jia et al., 2019a), which
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I.(b) III.(b) IV.(b)II.(b)
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Figure 3: Performance comparison between LAVA and baselines on various use cases. For I.(b), we
depict the Attack Accuracy, where lower value indicates more effective detection. For II.(b), we
depict the Attack Confidence, as lower confidence indicates better poison removal. For III.(b) and
IV.(b), we show the model test accuracy, where higher accuracy means effective data removal.

approximates the Shapley value using K-Nearest-Neighbor as a proxy model; and (5) Random, a
setting where we select a random subset from the target dataset. We also consider the popular data
valuation approaches: (6) Permutation Sampling-based Shapely value (Perm-SV) (Jia et al., 2019b),
(7) Least Cores (LC) (Yan & Procaccia, 2021), (8) TMC-Shapley (TMC-SV) and (9) G-Shapley
(G-SV) (Ghorbani & Zou, 2019). Baselines (6)-(9) are, however, computationally infeasible for the
scale of data that we study here. So we exclude them from the evaluation of efficacy in different
use cases. We also provide a detailed runtime comparison of all baselines. For all methods to be
compared, a validation set of 10, 000 samples is assumed. For our method, we first use the validation
data to train a deep neural network model PreActResNet18 (He et al., 2016) from scratch for feature
extraction. Then, from its output, we compute the class-wise Wasserstein distance and the calibrated
gradients for data valuation. Details about datasets, models, hyperparameter settings, and ablation
studies of the hyperparameters and validation sizes are provided in Appendix B.

We evaluate on five different use cases of data valuation: detecting backdoor attack, poisoning attack,
noisy features, mislabeled data, and irrelevant data. The first four are conventional tasks in the
literature and the last one is a new case. All of them have a common goal of identifying “low-quality”
training points. To achieve this goal, we rank datapoints in ascending order of their values and remove
some number of points with lowest data values. For each removal budget, we calculate the detection
rate, i.e., the percentage of the points that are truly bad within the removed points.

Backdoor Attack Detection. A popular technique of introducing backdoors to models is by injecting
maliciously constructed data into a training set (Zeng et al., 2021). At test time, any trained model
would misclassify inputs patched with a backdoor trigger as the adversarially-desired target class. In
the main text, we consider the Trojan Square attack, a popular attack algorithm (Liu et al., 2017),
which injects training points that contain a backdoor trigger and are relabeled as a target class. The
evaluation of other types of backdoor attacks can be found in Appendix B. To simulate this attack, we
select the target attack class Airplane and poison 2500 (5%) samples of the total CIFAR-10 training
set (50k) with a square trigger. In Figure 3 I.(a), we compare the detection rates of different data
valuation methods. LAVA and TracIn-Clean outperform the others by a large margin. In particular, for
LAVA, the first 20% of the points that it removes contain at least 80% of the poisoned data. We also
evaluate whether the model trained after the removal still suffers from the backdoor vulnerability. To
perform this evaluation, we calculate the attack accuracy, i.e., the accuracy of the model trained on
the remaining points to predict backdoored examples as the target label. A successful data removal
would yield a lower attack accuracy. Figure 3 I.(b) shows that our method already takes effect in the
early stages, whereas other baselines can start defending from the attack only after removing over
13, 000 samples. The efficacy of LAVA is in part attributable to inspection of distances between both
features and labels. The backdoored training samples that are poisoned to the target class will be
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“unnatural” in that class, i.e., they have a large feature distance from the original samples in the target
class. While the poisoned examples contain a small feature perturbation compared to the natural
examples from some other classes, their label distance to them is large because their labels are altered.

Poisoning Attack Detection. Poisoning attacks are similar to backdoor attacks in the sense that
they both inject adversarial points into the training set to manipulate the prediction of certain test
examples. However, poisoning attacks are considered unable to control test examples. We consider
a popular attack termed “feature-collision” attack (Shafahi et al., 2018), where we select a target
sample from the Cat class test set and blend the selected image with the chosen target class training
samples, Frog in our case. In this attack, we do not modify labels and blend the Cat image only into
50 (0.1%) samples of Frog, which makes this attack especially hard to detect. During inference time,
we expect the attacked model to consistently classify the chosen Cat as a Frog. In Figure 3 II.(a), we
observe that LAVA outperforms all baselines and achieves an 80% detection rate by removing only
11k samples, which is around 60% fewer samples than the highest baseline. Figure 3 II.(b) shows
that by removing data according to LAVA ranking, the target model has reduced the confidence of
predicting the target Cat sample as a Frog to below 40%. Our technique leverages the fact that the
features from a different class are mixed with the features of the poisoned class, which increases the
feature distance between the poisoned and non-poisoned Frog examples.

Noisy Feature Detection. While adding small Gaussian noises to training samples may benefit
model robustness (Rusak et al., 2020), strong noise, such as due to sensor failure, can significantly
affect the model performance. We add strong white noise to 25% of all CIFAR-10 dataset without
changing any labels. Our method performs extremely well as shown in Figure 3 III.(a) and detects
all 12,500 noisy samples by inspecting less than 15,000 samples. This explains the sudden drop of
the model’s accuracy at the removal budget of 15,000 samples in Figure 3 III.(b): the model starts
throwing away only clean samples from that point. LAVA performs well in this scenario since the
strong noise increases the feature distance significantly.

Figure 4: Left: Heatmap of inter-class distance of CIFAR-10.
Right: Examples of irrelevant data. The detection rates of
first 500 inspected images are 94% and 46% for Deer-Truck,
Cat-Dog, respectively.

Mislabeled Data Detection. Due to
the prevalence of human labeling er-
rors (Karimi et al., 2020), it is cru-
cial to detect mislabeled samples. We
shuffle labels of 25% samples in the
CIFAR-10 dataset to random classes.
Unlike backdoor and poisoning at-
tacks, this case is especially harder to
detect since wrong samples are spread
out throughout classes instead of all
placed inside a target class. However,
as shown in Figure 3 IV.(a), LAVA’s
detection rate outperforms other base-
lines and the model performance is maintained even after 20k of removed data (Figure IV.(b)).

Irrelevant Data Detection. Often the collected datasets through web scraping have irrelevant samples
in given classes (Northcutt et al., 2021; Tsipras et al., 2020), e.g., in a class of Glasses, we might have
both water glass and eyeglasses due to lack of proper inspection or class meaning specification. This
case is different from the mislabeled data scenario, in which case the training features are all relevant
to the task. Since the irrelevant examples are highly likely to have completely different features than
the desired class representation, LAVA is expected to detect these examples. We design an experiment
where we remove all images of one specific class from the classification output but split them equally
to the other remaining classes as irrelevant images. As shown in Figure 4, the detection result over a
class varies based on the distance between that class and the class from which irrelevant images are
drawn. For instance, when Deer images are placed into the Truck class, we can detect almost 94% of
all Deer images within first 500 removed images. On the other hand, when we place Cat images into
dog class, our detection rate drops to 45% within the top 500.

Computational Efficiency. So far, we have focused on the method’s performance without considering
the actual runtime. We compare the runtime-performance tradeoff on the CIFAR-10 example of 2000
samples with 10% backdoor data, a scale in which every baseline can be executed in a reasonable
time. As shown in Figure 5, our method achieves a significant improvement in efficiency while being
able to detect bad data more effectively.
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Dependence on Validation Data Size. For current experiments, we have assumed the validation
set of size 10K. Such a scale of data is not hard to acquire, as one can get high-quality data from
crowdsourcing platforms, such as Amazon Mechanical Turk for $12 per each 1K samples (AWS,
2019). While our method achieves remarkable performance when using 10K validation data, we
perform ablation study on much smaller sets (Appendix B.2.1), where LAVA, notably, can still
outperform other baselines. As an example on mislabeled data detection, our method with 2K
validation data achieves 80% detection rate at data removal budget of 25K (Fig. 9), whereas the best
performing baseline achieves such a performance with 5 times bigger validation data, 10K (Fig. 3
IV.(a)). Furthermore, even on a tiny validation set of size 500, LAVA consistently outperforms all
the baselines with the same validation size (Fig. 11). This shows that our method remains effective
performance for various sizes of validation data.

5 RELATED WORK

Figure 5: Runtime v.s. Detection Error compari-
son between LAVA and baselines on inspecting
2000 samples from CIFAR-10 with 10% back-
door data.

Existing data valuation methods include LOO and
influence function (Koh & Liang, 2017), the Shap-
ley value (Jia et al., 2019b; Ghorbani & Zou, 2019;
Wang & Jia, 2023), the Banzhaf value (Wang &
Jia, 2022), Least Cores (Yan & Procaccia, 2021),
Beta Shapley (Kwon & Zou, 2021), and reinforce-
ment learning-based method (Yoon et al., 2020).
However, they all assume the knowledge of the
underlying learning algorithms and suffer large
computational complexity. The work of Jia et al.
(2019a) has proposed to use K-Nearest Neighbor
Classifier as a default proxy model to perform data
valuation. While it can be thought of as a learning-
agnostic data valuation method, it is not as effective and efficient as our method in distinguishing
data quality. Xu et al. (2021) propose to use the volume to measure the utility of a dataset. Volume is
agnostic to learning algorithms and easy to calculate because is defined simply as the square root
of the trace of feature matrix inner product. However, the sole dependence on features makes it
incapable of detecting bad data caused by labeling errors. Moreover, to evaluate the contribution of
individual points, the authors propose to resort to the Shapley value, which would still be expensive
for large datasets.

6 DISCUSSION AND OUTLOOK

This paper describes a learning-agnostic data valuation framework. In particular, in contrast to
existing methods which typically adopt model validation performance as the utility function, we
approximate the utility of a dataset based on its class-wise Wasserstein distance to a given validation
set and provide theoretical justification for this approximation. Furthermore, we propose to use the
calibrated gradients of the OT distance to value individual datapoints, which can be obtained for free
if one uses an off-the-shelf solver to calculate the Wasserstein distance. Importantly, we have tested on
various datasets, and our LAVA framework can significantly improve the state-of-the-art performance
of using data valuation methods to detect bad data while being substantially more efficient. Due to the
stochasticity of ML and the inherent tolerance to noise, it is often challenging to identify low-quality
data by inspecting their influence on model performance scores. The take-away from our empirical
study is that despite being extensively adopted in the past, low-quality data detection through model
performance changes is actually suboptimal; lifting the dependence of data valuation on the actual
learning process provides a better pathway to distinguish data quality.

Despite the performance and efficiency improvement, our work still has some limitations. As a result,
it opens up many new investigation venues: (1) How to further lift the dependence on validation
data? While a validation set representative of the downstream learning task is a common assumption
in the ML literature, it may or may not be available during data exchange. (2) Our design could be
vulnerable to existing poisons that directly or indirectly minimize the similarity to clean data (Huang
et al., 2021; Pan et al., 2022). Further investigation into robust data valuation would be intriguing. (3)
Our current method does not have enough flexibility for tasks that aim for goals beyond accuracy,
e.g., fairness. Folding other learning goals in is an exciting direction. (4) Customizing the framework
to natural language data is also of practical interest.
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APPENDIX A RESTATEMENT OF THEOREMS AND FULL PROOFS

In this section, we will restate our main results and give full proofs.

A.1 SUMMARY OF NOTATIONS

Let µt, µv be the training distribution and validation distribution, respectively. We denote ft :
X → {0, 1}V , fv : X → {0, 1}V as the labeling functions for training and validation data, where
V is the number of different labels. We can then denote the joint distribution of random data-
label pairs (x, ft(x))x∼µt(x) and (x, fv(x))x∼µv(x) as µft

t and µfv
v , respectively, which are the

same notations as µt and µv but made with explicit dependence on ft and fv for clarity. The
distributions of (ft(x))x∼µt(x), (fv(x))x∼µv(x) are denoted as µft , µfv , respectively. Besides, we
define conditional distributions µt(x|y) := µt(x)I[ft(x)=y]∫

µt(x)I[ft(x)=y]dx
and µv(x|y) := µv(x)I[fv(x)=y]∫

µv(x)I[fv(x)=y]dx
.

Let f : X → [0, 1]V be the model trained on training data and L : {0, 1}V × [0, 1]V → R+ be the
loss function. We denote π ∈ Π(µ1, µ2) as a coupling between a pair of distributions µ1, µ2 and
d : X × X → R as a distance metric function.

The 1-Wasserstein distance with respect to distance function d between two distributions µ1, µ2

is defined as Wd(µ1, µ2) := infπ∈Π(µ1,µ2) E
(x,y)∼π

[d(x, y)]. More generally, the 1-Wasserstein

distance with respect to cost function C is defined as WC(µ1, µ2) := infπ∈Π(µ1,µ2) E
(x,y)∼π

[C(x, y)].

A.2 STATEMENT OF ASSUMPTIONS

To prove Theorem 1, we need the concept of probabilistic cross-Lipschitzness, which assumes that
two labeling functions should produce consistent labels with high probability on two close instances.
Definition 3 (Probabilistic Cross-Lipschitzness). Two labeling functions ft : X → {0, 1}V and
fv : X → {0, 1}V are (ϵ, δ)-probabilistic cross-Lipschitz w.r.t. a joint distribution π over X × X if
for all ϵ > 0:

P(x1,x2)∼π[∥ft(x1)− fv(x2)∥ > ϵd(x1, x2)] ≤ δ. (4)

Intuitively, given labeling functions ft, fv and a coupling π, we can bound the probability of finding
pairs of training and validation instances labelled differently in a (1/ϵ)-ball with respect to π.

Our Assumptions. Assuming that f is an ϵ-Lipschitz function. Given a metric function d(·, ·), we
define a cost function C between (xt, yt) and (xv, yv) as

C((xt, yt), (xv, yv)) := d(xt, xv) + cWd(µt(·|yt), µv(·|yv)), (5)

where c is a constant. Let π∗
x,y be the coupling between µft

t , µfv
v such that

π∗
x,y := arg inf

π∈Π(µ
ft
t ,µfv

v )

E((xt,yt),(xv,yv))∼π[C((xt, yt), (xv, yv))]. (6)

We define two couplings π∗ and π̃∗ between µt(x), µv(x) as follows:

π∗(xt, xv) :=

∫
Y

∫
Y
π∗
x,y((xt, yt), (xv, yv)) dytdyv. (7)

For π̃∗, we first need to define a coupling between µft , µfv :

π∗
y(yt, yv) :=

∫
X

∫
X
π∗
x,y((xt, yt), (xv, yv)) dxtdxv (8)
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and another coupling between µft
t , µfv

v :

π̃∗
x,y((xt, yt), (xv, yv)) := π∗

y(yt, yv)µt(xt|yt)µv(xv|yv). (9)

Finally, π̃∗ is constructed as follows:

π̃∗(xt, xv) :=

∫
Y

∫
Y
π∗
y(yt, yv)µt(xt|yt)µv(xv|yv) dytdyv. (10)

It is easy to see that all joint distributions defined above are couplings between the corresponding
distribution pairs.

We assume that ft, fv are (ϵtv, δtv)-probabilistic cross-Lipschitz with respect to π̃∗ in metric d.
Additionally, we assume that ϵtv/ϵ ≤ c and the loss function L is k-Lipschitz in both inputs. Besides,
from their definitions above, we have that ∥f(x)∥, ∥ft(x)∥, ∥fv(x)∥ ≤ V .

The assumption of probabilistic cross-Lipschitzness would be violated only when the underlying
coupling assigns large probability to pairs of training-validation features that are close enough (within
1/ϵtv-ball) but labeled differently. However, π̃∗ is generally not such a coupling. Note that π∗ is
the optimal coupling between training and validation distributions that minimizes a cost function C
pertaining to both feature and label space. Hence, π∗

y(yt, yv), the marginal distribution of π∗ over the
training and validation label space, tends to assign high probability to those label pairs that agree.
On the other hand, π̃∗

x,y can be thought of as a coupling that first generates training-validation labels
from π∗

y and then generates the features in each dataset conditioning on the corresponding labels.
Hence, the marginal distribution π̃∗ of training-validation feature pairs generated by π̃∗

x,y would
assign high likelihood to those features with the same labels. So, conceptually, the probabilistic
cross-Lipschitzness assumption should be easily satisfied by π̃∗.

A.3 DETAILED PROOF

Theorem 1 (restated). Given the above assumptions, we have

Ex∼µv(x) [L(fv(x), f(x))] ≤ Ex∼µt(x) [L(ft(x), f(x))] + kϵWC(µ
ft
t , µfv

v ) + 2kV δtv. (11)

Proof.

Ex∼µv(x)[L(fv(x), f(x))] (12)

= Ex∼µv(x)[L(fv(x), f(x))]− Ex∼µt(x)[L(ft(x), f(x))] + Ex∼µt(x)[L(ft(x), f(x))] (13)

≤ Ex∼µt(x)[L(ft(x), f(x))] +
∣∣Ex∼µv(x)[L(fv(x), f(x))]− Ex∼µt(x)[L(ft(x), f(x))]

∣∣ . (14)

We bound
∣∣Ex∼µv(x) [L(fv(x), f(x))]− Ex∼µt(x) [L(ft(x), f(x))]

∣∣ as follows:

∣∣Ex∼µv(x) [L(fv(x), f(x))]− Ex∼µt(x) [L(ft(x), f(x))]
∣∣ (15)

=

∣∣∣∣∫
X2

[L(fv(xv), f(xv))− L(ft(xt), f(xt))] dπ
∗(xt, xv)

∣∣∣∣ (16)

=

∣∣∣∣∫
X2

[L(fv(xv), f(xv))− L(fv(xv), f(xt)) + L(fv(xv), f(xt))− L(ft(xt), f(xt))] dπ
∗(xt, xv)

∣∣∣∣
(17)

≤
∫
X2

|L(fv(xv), f(xv))− L(fv(xv), f(xt))| dπ∗(xt, xv)︸ ︷︷ ︸
U1

(18)

+

∫
X2

|L(fv(xv), f(xt))− L(ft(xt), f(xt))| dπ∗(xt, xv)︸ ︷︷ ︸
U2

, (19)

where the last inequality is due to triangle inequality.
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Now, we bound U1 and U2 separately. For U1, we have

U1 ≤ k

∫
X 2

∥f(xv)− f(xt)∥ dπ∗(xt, xv) (20)

≤ kϵ

∫
X 2

d(xt, xv) dπ
∗(xt, xv), (21)

where both inequalities are due to Lipschitzness of L and f .

In order to bound U2, we first recall that π∗
y(yt, yv) =

∫
X
∫
X π∗

x,y((xt, yt), (xv, yv)) dxtdxv and
π̃∗
x,y((xt, yt), (xv, yv)) := π∗

y(yt, yv)µt(xt|yt)µv(xv|yv):
Observe that

U2 =

∫
X 2

∫
Y2

|L(fv(xv), f(xt))− L(ft(xt), f(xt))| dπ∗
x,y((xt, yt), (xv, yv)) (22)

=

∫
Y2

∫
X 2

|L(yv, f(xt))− L(yt, f(xt))| dπ∗
x,y((xt, yt), (xv, yv)) (23)

≤ k

∫
Y2

∫
X 2

∥yv − yt∥ dπ∗
x,y((xt, yt), (xv, yv)) (24)

= k

∫
Y2

∥yv − yt∥ dπ∗
y(yt, yv), (25)

where the second equality is due to a condition that if yt ̸= ft(xt) or yv ̸= fv(xv), then
π∗
x,y((xt, yt), (xv, yv)) = 0.

Now we can bound U2 as follows:

U2 ≤ k

∫
Y2

∥yv − yt∥ dπ∗
y(yt, yv) (26)

= k

∫
X 2

∫
Y2

∥yv − yt∥ dπ̃∗
x,y((xt, yt), (xv, yv)) (27)

= k

∫
Y2

∫
X 2

∥fv(xv)− ft(xt)∥ dπ̃∗
x,y((xt, yt), (xv, yv)), (28)

where the last step holds since if yt ̸= ft(xt) or yv ̸= fv(xv) then π̃∗
x,y((xt, yt), (xv, yv)) = 0.

Define the region A = {(xt, xv) : ∥fv(xv)− ft(xt)∥ < ϵtvd(xt, xv)}, then

k

∫
Y2

∫
X 2

∥fv(xv)− ft(xt)∥ dπ̃∗
x,y((xt, yt), (xv, yv)) (29)

= k

∫
Y2

∫
X 2\A

∥fv(xv)− ft(xt)∥ dπ̃∗
x,y((xt, yt), (xv, yv)) (30)

+ k

∫
Y2

∫
A

∥fv(xv)− ft(xt)∥ dπ̃∗
x,y((xt, yt), (xv, yv)) (31)

≤ k

∫
Y2

∫
X 2\A

2V dπ̃∗
x,y((xt, yt), (xv, yv)) (32)

+ k

∫
Y2

∫
A

∥fv(xv)− ft(xt)∥ dπ̃∗
x,y((xt, yt), (xv, yv)). (33)

Let’s define f̃t(xt) = ft(xt) and f̃v(xv) = fv(xv) if (xt, xv) ∈ A, and f̃t(xt) = f̃v(xv) = 0

otherwise (note that ∥f̃v(xv) − f̃t(xt)∥ ≤ ϵtvd(xt, xv) for all (xt, xv) ∈ X 2), then we can bound
the second term as follows:
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k

∫
Y2

∫
A

∥fv(xv)− ft(xt)∥ dπ̃∗
x,y((xt, yt), (xv, yv)) (34)

≤ k

∫
Y2

dπ∗
y(yt, yv)

∫
A

∥fv(xv)− ft(xt)∥ dµt(xt|yt)dµv(xv|yv) (35)

= k

∫
Y2

dπ∗
y(yt, yv)

∫
X 2

∥∥∥f̃v(xv)− f̃t(xt)
∥∥∥ dµt(xt|yt)dµv(xv|yv) (36)

= k

∫
Y2

dπ∗
y(yt, yv)

∥∥∥Exv∼µv(·|yv)[f̃v(xv)]− Ext∼µv(·|yt)[f̃t(xt)]
∥∥∥ (37)

≤ kϵtv

∫
Y2

dπ∗
y(yt, yv)Wd(µt(·|yt), µv(·|yv)). (38)

Inequality (38) is a consequence of the duality form of the Kantorovich-Rubinstein theorem (Villani
(2021), Chapter 1).

Combining two parts, we have

U2 ≤ k

∫
Y2

∫
X 2\A

2V dπ̃∗
x,y((xt, yt), (xv, yv)) (39)

+ kδtv

∫
Y2

dπ∗
y(yt, yv)Wd(µt(·|yt), µv(·|yv)) (40)

≤ 2kV δtv + kϵtv

∫
Y2

dπ∗
y(yt, yv)Wd(µt(·|yt), µv(·|yv)), (41)

where the last step is due to the probabilistic cross-Lipschitzness of ft, fv with respect to π̃∗
x,y .

Now, combining the bound for U1 and U2, we have

Ex∼µv(x)[L(fv(x), f(x))]− Ex∼µt(x)[L(ft(x), f(x))] (42)

≤ kϵ

∫
X 2

d(xt, xv)dπ(xt, xv) + 2kV δtv + kϵtv

∫
Y2

dπ∗
y(yt, yv)Wd(µt(·|yt), µv(·|yv)) (43)

= k

∫
(X×Y)2

[ϵd(xt, xv) + ϵtvWd(µt(·|yt), µv(·|yv))] dπ∗
x,y((xt, yt), (xv, yv)) + 2kV δtv (44)

≤ k

∫
(X×Y)2

[ϵd(xt, xv) + cϵWd(µt(·|yt), µv(·|yv))] dπ∗
x,y((xt, yt), (xv, yv)) + 2kV δtv (45)

= kϵEπ∗
x,y

[C((xt, yt), (xv, yv))] + 2kV δtv (46)

= kϵWC(µ
ft
t , µfv

v ) + 2kV δtv, (47)

where the last step is due to the definition of π∗
x,y . This leads to the final conclusion.

Theorem 5 (restated). Let OT(µt, µv) and OTε(µt, µv) be the original formulation and entropy
penalized formulation (as defined in Subsection 2.1) for the OT problem between the empirical
measures µt and µv associated with the two data sets Dt and Dv, respectively. Then, for any
i ̸= j ̸= k ∈ {1, 2, ...N} and o ̸= p ̸= q ∈ {1, 2, ...M}, the difference between the calibrated
gradients for two datapoints zi and zk in dataset Dt and the difference for z′p and z′q in Dv can be
calculated as

∂OT(µt, µv)

∂ µt(zi)
− ∂OT(µt, µv)

∂ µt(zk)
=

∂OTε(µt, µv)

∂ µt(zi)
− ∂OTε(µt, µv)

∂ µt(zk)
− ε · N

N − 1
·
(

1

(π∗
ε )kj

− 1

(π∗
ε )ij

)
,

∂OT(µt, µv)

∂ µv(z′p)
− ∂OT(µt, µv)

∂ µv(z′q)
=

∂OTε(µt, µv)

∂ µv(z′p)
− ∂OTε(µt, µv)

∂ µv(z′q)
− ε · M

M − 1
·
(

1

(π∗
ε )oq

− 1

(π∗
ε )op

)
,

where π∗
ε is the optimal primal solution to the entropy penalized OT problem, zj is any datapoint in

Dt other than zi or zk, z′o is any datapoint in Dv other than z′p or z′q , |Dt| = N , and |Dv| = M .
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Proof. Let L(π, f, g) and Lε(πε, fε, gε) be the Lagrangian functions for original formulation and
entropy penalized formulation between the datasets Dt and Dv , respectively, which can be written as

L(π, f, g) = ⟨π, c⟩+
N∑
i=1

fi · (π′
i · IN − ai) +

M∑
j=1

gj · (I ′M · πj − bj),

Lε(πε, fε, gε) = ⟨πε, c⟩+ ε ·
N∑
i=1

M∑
j=1

log
(πε)ij

µt(zi) · µv(zj)
+

N∑
i=1

(fε)i · [(πε)
′
i · IM − µt(zi))]

+

M∑
j=1

(gε)j · [I ′N · (πε)j − µv(zj)],

where cN×M is the cost matrix consisting of distances between N datapoints in Dt and M datapoints
in Dv, IN = (1, 1, ...1) ∈ RN×1 and I ′M = (1, 1, ...1)T ∈ R1×M , π and (f, g) denote the primal
and dual variables, and π′

i and πj denote the ith row and jth column in matrix π, respectively.

The first-order necessary condition for optima in Lagrangian Multiplier Theorem

gives that
∇Lπ(π

∗, f∗, g∗) = 0 and ∇(Lε)π((πε)
∗, (fε)

∗, (gε)
∗) = 0,

where π∗ and (f∗, g∗) denote the optimal solutions to the primal and dual problems, respectively.
Thus, for any i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . ,M}, we have

∇Lπ(π
∗, f∗, g∗)ij = cij + f∗

i + g∗j = 0,

∇(Lε)π(π
∗
ε , f

∗
ε , g

∗
ε )ij = cij + ε · 1

(π∗
ε )ij

+ (fε)
∗
i + (gε)

∗
j = 0.

Subtracting, we have

[f∗
i − (fε)

∗
i ] +

[
g∗j − (gε)

∗
j

]
− ε · 1

(π∗
ε )ij

= 0.

Then, for ∀k ̸= i ∈ {1, 2, ...N}, we have

[f∗
k − (fε)

∗
k] +

[
g∗j − (gε)

∗
j

]
− ε · 1

(π∗
ε )kj

= 0.

Subtracting and reorganizing, we get

[(fε)
∗
i − (fε)

∗
k] = (f∗

i − f∗
k )− ε ·

[
1

(π∗
ε )ij

− 1

(π∗
ε )kj

]
.

From the definition of the calibrated gradients in Eq.1, we have

∂OT(µt, µv)

∂µt(zi)
− ∂OT(µt, µv)

∂µt(zk)
=

N

N − 1
(f∗

i − f∗
k ) ,

∂OTε(µt, µv)

∂µt(zi)
− ∂OTε(µt, µv)

∂µt(zk)
=

N

N − 1
[(fε)

∗
i − (fε)

∗
k] .

Finally, subtracting and reorganizing, we have

∂OTε(µt, µv)

∂µt(zi)
− ∂OTε(µt, µv)

∂µt(zk)
=

∂OT(µt, µv)

∂µt(zi)
− ∂OT(µt, µv)

∂µt(zk)
− ε · N

N − 1
·
[

1

(π∗
ε )ij

− 1

(π∗
ε )kj

]
.

The proof for the second part of the Theorem is similar.

∂OTε(µt, µv)

∂µv(z′p)
− ∂OTε(µt, µv)

∂µv(z′q)
=

∂OT(µt, µv)

∂µv(z′p)
− ∂OT(µt, µv)

∂µv(z′q)
− ε · M

M − 1
·
[

1

(π∗
ε )op

− 1

(π∗
ε )oq

]
.

Then the proof is complete.
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APPENDIX B ADDITIONAL EXPERIMENTAL RESULTS

B.1 EVALUATING DATA VALUATION USE CASES ON DIVERSE DATASETS

(a) (b)

Figure 6: (a) Blend backdoor attack de-
tection on GTSRB dataset. Comparison
with baselines. (b) Noisy feature detec-
tion on the digit MNIST dataset. Com-
parison with baselines.

In the main text, we have focused our evaluation on
CIFAR-10. Here, we provide experiments to show ef-
fectiveness of LAVA on diverse datasets for detecting bad
data.

Backdoor Attack Detection. We evaluate another type
of backdoor attack (Section 4), which is the Hello Kitty
blending attack (Blend) (Chen et al., 2017) that mixes the
target class sample with the Hello Kitty image, as illus-
trated in Figure 8 (B). We attack the German Traffic Sign
dataset (GTSRB) on the target class 6 by poisoning 1764
(5%) samples of the whole dataset. Our method achieves
the highest detection rate, as shown in Figure 6(a). In
particular, the 5000 points with lowest data values contain
all poisoned data based on the LAVA data values, while
the second best method on this task, KNN-SV, can cover
all poisoned examples with around 11,000 samples. Our
algorithm performs especially well for this attack, since
the label of poisoned data is changed to the target class
and the patching trigger is large. Both the label and feature
changes contribute to the increase of the OT distance and
thus ease the detection.

Noisy Feature Detection. Here, we show the usage of
LAVA on the MNIST dataset where 25% of the whole
dataset is contaminated by feature noise. Our method still
outperforms all the baselines by detecting all noisy data
within first 14,000 samples, which is 5,000 less than the
best baseline would require, which is shown in Figure 6(b).

Figure 7: Visualization of irrelevant data
detection within the CIFAR100 dataset.
The left column is one example of the
target class and the images on the right
columns are selected irrelevant data in the
corresponding classes detected by LAVA.

Irrelevant Data. We perform another irrelevant data
detection experiment and focus on the CIFAR100 dataset.
In Figure 7, we illustrate some of the irrelevant samples
detected by LAVA. Intuitively, irrelevant data in the class
should be easily detected by LAVA, since the images are
far from the representative of the class and increasing the
probability mass associated with these images leads to
larger distributional distance to the clean validation data.

B.2 ABLATION STUDY

We perform an ablation study on validation size and on
the hyperparameters in our method, where we provide
insights on the impact of setting changes. We use the
mislabeled detection use case and the CIFAR-10 dataset
as an example setting for the ablation study.

B.2.1 VALIDATION SIZE

Figure 8: Visualization of each backdoor
attack: A) Trojan-SQ attack. B) Blend
attack. C) Trojan-WM attack.

For all the experiments in the main text, we use the validation set of size 10,000. Naturally, we want
to examine the effect of the size of the validation set on the detection rate of mislabeled data. In
Figure 9 (c), we illustrate the performance on the detection rate with smaller validation data sizes:
200, 500, 2, 000, and 5, 000. We observe that even reducing the validation set by half to 5, 000 can
largely maintain the detection rate performance. Small validation sets (200, 500, 2, 000) degrade the
detection rate by more than 50%. Despite the performance degradation, our detection performance
with these small validation sizes is in fact comparable with the baselines in Figure 3 IV.(a) that
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(a) (b) (c)

Figure 9: (a) Comparison between different feature weights on the performance of mislabeled data in
CIFAR-10. (b) Comparison between different label weights on the performance of mislabeled data
in CIFAR-10. (c) Comparison between different validation sizes on inspecting 50k samples from
CIFAR-10 with 25% mislabeled data.

leverage the full validation size of 10, 000. Additionally, when restricting LAVA and other baselines
to validation set of 500 samples, our method is better than the best baseline for detecting mislabeled
data in the 50k CIFAR-10 samples with 25% being mislabeled as shown in Figure 11.

B.2.2 FEATURE WEIGHT

Figure 10: Comparison be-
tween different feature embed-
der architectures on inspecting
50k samples from CIFAR-10
with 25% mislabeled data.

Figure 11: Detection rate
by various methods on misla-
beled CIFAR-10 using valida-
tion size of 500.

Recall the class-wise Wasserstein distance is defined with respect
to the following distance metric: C((xt, yt), (xv, yv)) = d(xt, xv)+
cWd(µt(·|yt), µv(·|yv)). Actually, one can change the relative
weight between feature distance d(xt, xv) and the label distance
Wd(µt(·|yt), µv(·|yv)). Here, we show the effect of upweighting
the feature distance, while keeping the label weight at 1 and the
results are illustrated in Figure 9 (a). As we are moving away from
uniform weight, the performance on detection rate is decreasing
with larger feature weights. With feature weight of 100, our method
performs similarly as the random detector. Indeed, as we increase
weight on the features, the weight on the label distance is decreased.
As the weight reaches 100, our method performs similarly as the
feature embedder without knowing label information and hence,
the mislabeled detection performance is comparable to the random
baseline.

B.2.3 LABEL WEIGHT

Next, we shift focus to label weight. We examine the effect of
upweighting the label distance, while keeping the feature weight at
1. In Figure 9 (b), as the label weight increases, the detection rate
performance deteriorates. When we increase the label distance, the
feature information becomes neglected, which is not as effective as
the balanced weights between feature and label distances.

B.2.4 FEATURE EMBEDDER

We use feature embedder to extract features for the feature distance
part in our method. We train the feature embedder on the accessible
validation set until the convergence on the train accuracy. Different
architectures of the embedder might be sensitive to different aspects
of the input and thus result in different feature output. Nevertheless,
as we observe in Figure 10, the detection performance associated
with different model architectures of feature embedder is similar.
Hence, in practice, one can flexibly choose the feature embedder to
be used in tandem with our method as long as it has large enough
capacity. Furthermore, we note that that these feature embedders
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(a) (b) (c) (d)

Backdoor Detection (5%) Poison Detection (0.1%) Noisy Features (25%) Noisy Labels (25%)

Figure 14: Detection performance comparison between LAVA and the model trained on validation
data of size 500 on various use cases in CIFAR-10.

(a) (b) (c) (d)

Backdoor Detection (5%) Poison Detection (0.1%) Noisy Features (25%) Noisy Labels (25%)

Figure 15: Detection performance comparison between LAVA and the model trained on validation
data of size 10, 000 on various use cases in CIFAR-10.

have not learned the clean distribution from the validation data, e.g.
in CIFAR-10 the model trained on 10K validation data achieves
only around 65% accuracy on 50K clean datapoints and the model
trained on 500 validation data achieves around 25% accuraracy. We
additionally show in Figure 14,15 that our method significantly out-
performs the PreActResNet18 model trained directly on validation
data of size 500 and 10K in detecting bad data, which clearly dis-
tinguishes LAVA from simple feature embedders.

B.3 BALANCING UNBALANCED DATASET
Figure 12: Comparison of
various methods on rebalanc-
ing an unbalanced dataset on
CIFAR-10 with the class Frog
being unbalanced.

Figure 13: Comparison of var-
ious methods on reducing a
dataset size based on valuation
of datapoints on CIFAR-10.

Although machine leaning practitioners might be using clean data
for training a model, the dataset can be often unbalanced which can
lead to model performance degradation (Thai-Nghe et al., 2009).
To recover higher model accuracy, we can rebalance unbalanced
datasets by removing points that cause such disproportion. We
showcase how LAVA effectively rebalance the dataset by removing
points with poor values and keeping points with best values. We
consider a CIFAR-10 dataset with a class Frog being unbalanced and
containing 5, 000 samples while other classes have only half as much
(i.e. 2, 500 samples). In Figure 12, we demonstrate the effectiveness
of LAVA valuation which not only reduces the dataset by removing
poor value points but also improves the model accuracy. While at the
same time other valuation methods were not able to steadily increase
the model accuracy and quickly downgraded the model performance,
which in turn shows an even stronger effectiveness of our method.

B.4 REDUCING TRAINING SET SIZE

With the growing size of the training dataset, the computation cost
and memory overhead naturally increase which might deem impos-
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sible for some practitioners with limited resources to train a model. Therefore, the ability to reduce
the training dataset size (Sener & Savarese, 2018) will free up some computation burden and thus
allow ones with limited resources to fully appreciate the model training process. Motivated by the
given challenge, we want to leverage our data valuation method to significantly decrease the training
dataset size while maintaining the model performance. Similarly as in the previous section, the idea
is to keep a subset of datapoints with best values and remove poor valued ones. To demonstrate the
effectiveness of our LAVA’s valuation, we perform such a task on a clean CIFAR-10 dataset with
2, 500 samples from each class and compare with other data valuation methods. As presented in
Figure 13, it is demonstrated that the performance is well maintained even with smaller subsets of
the original dataset. Remarkably, even reducing a clean training set (25,000 samples) by 15% based
on our method’s valuation, the performance can still stay relatively high while outperforming other
valuation baselines.

B.5 DATA SUMMARIZATION

Figure 16: Comparison of var-
ious methods on data summa-
rization based on valuation of
datapoints on CIFAR-10.

Figure 17: Near-linear time
complexity of LAVA shown on
CIFAR-10.

With growing dataset sizes, grows the space needed to store data.
Thus, the buyer often would like to decrease the dataset to minimize
resources but to retain the performance. Unlike reducing training
set size as provided in Section B.4, in this experiment, we will
select a smaller, representative subset of the whole dataset that can
maintain good performance. To measure the performance of each
subset, we measure the validation performance of the model trained
on that subset subtracted by the validation performance of the model
trained on a random subset of the same size, the experiment which
is performed in Kwon & Zou (2021). In Figure 16we can observe
that our method can select a small subset that performs better than
the subsets chosen by the baseline methods most of the time.

B.6 SCALABILITY EXPERIMENT

In the main paper, we have demonstrated time complexity compar-
ison between LAVA and other valuation methods. We have reported
runtime comparisons only for 2,000 test samples as this is the scale
existing methods can solve in a not excessively long time (within a
day). It showcases the advantageous computing efficiency that the
proposed approach enjoys over other methods. We further want to
emphasize the computational efficiency of LAVA and demonstrate
computation efficiency on a larger scale dataset (100,000 samples)
with higher dimensions, ImageNet-100. Additionally, we evaluate
other baselines which are able to finish within a day of computation to highlight the advantage of our
method as presented in Table 1. Moreover, we highlight the near-linear time complexity of LAVA on
CIFAR-10, which shows practical computation efficiency of our method as shown in Figure 17.

B.7 GENERALIZATION TO OTHER TYPES OF BACKDOOR ATTACKS

Figure 18: Detection rate of
various backdoor attacks by
LAVA.

As we have provided the results of the Trojan square attack (Trojan-
SQ) (Liu et al., 2017) in Section 4, we now apply LAVA to other back-
door attacks, which are Hello Kitty blending attack (Blend) (Chen
et al., 2017) and Trojan watermark attack (Trojan-WM) (Liu et al.,
2017), and evaluate the efficacy of our method in detecting different
types of backdoor attacks. We simulate these attacks by selecting
the target class Airplane and poisoning 2, 500 (5%) samples of the
CIFAR-10 dataset of size 50, 000. The backdoor trigger adopted in
each attack is portrayed in Figure 8. In Figure 18, we observe that
our method can achieve superior detection performance on all the at-
tacks considered. The reason is that despite the difference in trigger
pattern, all of these attacks modify both the label and the feature of a
poisoned image and thus result in the deviation of our distributional
distance that is defined over the product space of feature and label.
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B.8 IMPLICATIONS OF THE PROPOSED DATA VALUATION
METHOD TO REAL-WORLD DATA MARKETPLACES

Method Time
LAVA 1 hr 54 min
KNN-SV 4 hr 21 min
TracIn-Clean 7 hr 50 min
TracIn-Self 7 hr 51 min

Table 1: Comparison of runtime be-
tween various methods needed to
valuate ImageNet-100.

One concern in the real-world data marketplace is that data
is freely replicable. However, replicates of data introduce no
new information and therefore the prior work has argued that a
data utility function should be robust to direct data copying (Xu
et al., 2021). One advantage of using the class-wise Wasserstein
distance to measure data utility is that it is robust to duplication.
Our method by its natural distributional formulation will ignore
duplicates sets. As shown in Table 3, although we have repeated
the set even five times more than the original source set, the
distance remains the same. Additionally, with small noise
changes in the features, the distance metric is barely affected. Another concern in the real-world
marketplace is that one might find a single data that has highest contribution and duplicate it to
maximize the profit. However, again due to the nature of our distributional formulation, duplicating a
single point multiple times would increase the distance between the training and the validation set
due to the imbalance in training distribution caused by copying that point.

B.9 DETAILED EXPERIMENTAL SETTINGS

Datasets and Models. Table 2 summarizes the details of the dataset, the models, as well as their
licenses adopted in our experiments.

Hardware. A server with an NVIDIA Tesla P100-PCIE-16GB graphic card is used as the hardware
platform in this work.

Software.
Dataset OT Dist

Size Direct Near
5000 195.64 +0.98

2× 5000 +0.00 +0.98
3× 5000 +0.00 +0.98
4× 5000 +0.00 +0.98

4.5× 5000 +0.07 +0.98
5× 5000 +0.00 +0.98

Table 3: Class-wise Wasserstein
distance behavior under dataset di-
rect duplication and its near dupli-
cates.

For our implementation, we use PyTorch for the main frame-
work (Paszke et al., 2019), assisted by three main libraries,
which are otdd (optimal transport calculation setup with
datasets) (Alvarez-Melis & Fusi, 2020), geomloss (actual
optimal transport calculation) (Feydy et al., 2019), and numpy
(tool for array routines) (Harris et al., 2020).
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Table 2: Summary of datasets and models and their licenses used for experimental evaluation. (Note:
“Detail” column implicitly refers to training data, unless explicitly noted.)

Experiment
Type Dataset License Model License Train/

Valid Size Detail

Wasserstein vs STL10 Not Applicable GoogLeNet MIT 5K/8K 0%, 2%, 5%, 10%, 15% Mislabeled
Model
Performance (Fig 1) CIFAR10 MIT ResNet18 MIT 50K/10K 0%, 2%, 5%, 10%, 15% Mislabeled

CIFAR100 MIT ResNet50 MIT 50K/10K 0%, 2%, 5%, 10%, 15% Mislabeled

Backdoor:
Trojan Sq (Fig 3) CIFAR10 MIT ResNet18 MIT 50K/10K 5% Poisoned

Poisoning:
Collision (Fig 3) CIFAR10 MIT ResNet18 MIT 50K/10K 0.1% Poisoned

Noisy Feature (Fig 3) CIFAR10 MIT ResNet18 MIT 50K/10K 25% Noisy Data

Noisy Labels (Fig 3) CIFAR10 MIT ResNet18 MIT 50K/10K 25% Noisy Data

Irrelevant Data (Fig 4) CIFAR10 MIT PreAct-
ResNet18 MIT 50K/10K 1 Target Class Spread

Into 9 Other Classes

Runtime
VS Perf (Fig 5) CIFAR10 MIT ResNet18 MIT 2K/1K 10% Backdoors

Backdoor:
Blend (Fig 6) GTSRB CC0 1.0 PreAct-

ResNet18 MIT 35888/
12360 5% Poisoned

Noisy Feature (Fig 6) MNIST CCA-
SA 3.0

PreAct-
ResNet18 MIT 60K/10K 25% Noisy Data

Time Complexity (Table 1) ImageNet
-100 Not Applicable ResNet50 MIT 100K/10K 25% Mislabeled

10 Classes

Irrelevant Data (Fig 7) CIFAR100 MIT PreAct-
ResNet34 MIT 50K/10K 1 Target Class Spread

Into 99 Other Classes

Noisy Label (Fig 10) CIFAR10 MIT PreAct-
ResNet18 MIT 50K/10K 25% Noisy Label

VGG16 CC
BY 4.0

ResNet18 MIT

Noisy Label (Fig 9) CIFAR10 MIT PreAct-
ResNet18 MIT 50K/10K Different Feature

Weights 1,5,10,100
Different Label
Weights 1,10,50,100

50K/10K
50K/5K
50K/2K
50K/0.5K
50K/0.2K

Different Validation
Sizes

Backdoor: Blend,
Trojan, SQ-WM (Fig 18) CIFAR10 MIT Not Applicable Not Applicable 50K/10K Visualization of Attacks

Detection Rate of LAVA

Data Duplication (Table 3) Not Applicable Not Applicable Not Applicable Not Applicable 5K/5K Duplication of
Training Set

Dataset Reduction (Fig 13) CIFAR10 MIT PreAct-
ResNet18 MIT 25K/10K 2.5K Samples From Each Class

Data Summarization (Fig 16) CIFAR10 MIT PreAct-
ResNet18 MIT 25K/10K 2.5K Samples From Each Class

Unbalanced Dataset (Fig 12) CIFAR10 MIT PreAct-
ResNet18 MIT 27.5K/10K 5K Samples From Class Frog

2.5K Samples From Other Classes

Time Complexity (Fig 17) CIFAR10 MIT PreAct-
ResNet18 MIT 50K/10K 5K From Each Class
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