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Abstract
The spread of COVID-19 revealed that transmission risk patterns are not homogenous across different cities and communities,
and various heterogeneous features can influence the spread trajectories. Hence, for predictive pandemic monitoring, it is
essential to explore latent heterogeneous features in cities and communities that distinguish their specific pandemic spread
trajectories. To this end, this study creates a network embedding model capturing cross-county visitation networks, as well
as heterogeneous features related to population activities, human mobility, socio-demographic features, disease attribute, and
social interaction to uncover clusters of counties in the USA based on their pandemic spread transmission trajectories. We
collected and computed location intelligence features from 2787 counties from March 3 to June 29, 2020 (initial wave).
Second, we constructed a human visitation network, which incorporated county features as node attributes, and visits between
counties as network edges. Our attributed network embeddings approach integrates both typological characteristics of the
cross-county visitation network, as well as heterogeneous features.We conducted clustering analysis on the attributed network
embeddings to reveal four archetypes of spread risk trajectories corresponding to four clusters of counties. Subsequently, we
identified four features—population density, GDP, minority status, and POI visits—as important features underlying the
distinctive transmission risk patterns among the archetypes. The attributed network embedding approach and the findings
identify and explain the non-homogenous pandemic risk trajectories across counties for predictive pandemic monitoring. The
study also contributes to data-driven and deep learning-based approaches for pandemic analytics to complement the standard
epidemiological models for policy analysis in pandemics.
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1 Introduction

COVID-19 exposed the complexity of pandemic transmis-
sion trajectories [1]. One aspect of such complexity is the
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heterogeneity of spread trajectories in different cities and
communities [2]. The heterogeneity of pandemic spread risk
is rooted in differences in attributes of cities and communi-
ties in termsof urban characteristics, population activities and
mobility, socio-demographics, and social interactions [3–6].
Hence, in order to predictively monitor pandemic spread tra-
jectories in devising effective non-pharmaceutical policies,
it is essential to understand and distinguish cities and com-
munities based on their pandemic transmission trajectories
and the underlying influencing features. Such capability can-
not be achieved using the existing standard epidemiological
models [7]; however, machine learning-based techniques [8]
can provide insight into transmission trajectories. In particu-
lar, network analytic techniques have shown great potential
in revealing spatial–temporal dynamics of the pandemic due
to their capability of capturing spatial interactions as well as
heterogeneous features of spatial areas [9].
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To this end, in this study, we used attributed network
embedding that captures spatial interactions amongUScoun-
ties, as well as counties’ heterogeneous features related to
population activities, human mobility, socio-demographic
attributes, disease attributes, and social interaction features
in clustering counties based on pandemic transmission risks.
We used various datasets related to the first wave of the pan-
demic in the USA (March–June 2022) in creating and testing
the model. The attributed network embedding technique
captured both typological characteristics of a cross-county
movement network, aswell as county-level features related to
population activities, human mobility, socio-demographics,
disease attributes, and social interactions. Then the counties
were clustered and grouped weekly based on the results of
attributednetwork embeddings.The stable patterns presented
by each archetype reveal the heterogeneity of the pandemic
spread risk across clusters of counties.

The paper unfolds as follows: We first explain the county-
level features considered in this study based on the review of
the extant literature related to factors influencing COVID-19
spread risks. Then a description of the dataset and methods
is provided. The subsequent sections present the results of
the analysis and major findings related to clusters of counties
and the underlying features that distinguish transmission risk
trajectories across the clusters of counties.

2 Features influencing the spread
of COVID-19

Various features influence the transmission risks of COVID-
19 pandemic in a city or county. The basic reproduction
number, R0, is a fundamental metric that gauges the num-
ber of new infections caused by a single infected individual
in a fully susceptible population and in the absence of inter-
ventions [10, 11]. R0 has been used as an important parameter
to assess the potential for disease invasion and persistence in
many studies (e.g., [12, 13]). However, as Shaw andKennedy
[14] pointed out, the reproductive number alone neither could
explain future dynamics of the epidemic, nor proved pre-
dictive enough to estimate the scale of an epidemic. This
argument inspired researchers to consider other factors and
features when assessing the spread risk of COVID-19.

Apart from disease-related features, socioeconomic fea-
tures became one of the main research foci because of the
disproportionate number of confirmed cases across differ-
ent subpopulations [15]. For example, Maiti, Zhang [16]
confirmed the strong positive association between the fac-
tors such as crime and income with the cases of COVID-19.
Kashem, Baker [17] highlighted an influential role of social
vulnerability, which is reflected by household characteris-
tics and race/ethnicity, in COVID-19 prevalence. Mansour,
Al Kindi [18] found population aged 65 and greater and

health variables were statistically significant determinants of
COVID-19 incident rates and varied geographically. Saadat,
Rawtani [19] found that members of households of larger
size would have greater chance of infection because a larger
number of family members means a larger contact network.

In addition to disease-related features and socio-
demographics, pandemic spread is influenced by population
activities and social interactions. Several features, including
social distancing [20–22], visits to points of interest [23–25],
trip distance [26], and interpersonal contact density [27, 28],
have been shown to have statistically significant relationships
with the COVID-19 spread risk.

In addition to local population activities, researchers also
have pointed out that long-distance population movement
has driven the spread of COVID-19 during the initial wave
[29]. There have been several studies examining the effect
of human mobility across regions on the transmission risk
of COVID-19 from various spatial scales. For example,
Murano, Ueno [30] examined the impact of restricted domes-
tic travel via public transportation network on transmission
ofCOVID-19 infection; Lai, Ruktanonchai [31] used popula-
tion movement data derived from mobile phones to measure
the intensity and timing of global travel, and built a trans-
mission model to simulate COVID-19 spread; Fan, Lee [32]
utilized Facebook cross-county population colocation data
to examine the relationship between population colocation
and travel reduction and the spatial–temporal transmission
risk of COVID-19 in the USA. Hence, in addition to county-
level features, it is also important to capture the cross-county
movement networks in examining trajectories of COVID-19
across clusters of counties at the national level.

Actually, the cross-countymovement network can be con-
structed as a spatial network, with counties connected by
population flow between them. The structural characteristics
of the mobility network also affect the spread risk. For exam-
ple, areas which have more connections with other areas via
population movement are more likely to suffer from higher
infection rates. Network topology, which describes the way
nodes connect with each other, is one of the most commonly
used metrics to capture network structure. The topological
characteristics could bemapped by a low-dimensional vector
representation, which is called network embedding [33, 34].
Network embeddings can well preserve network proximity,
which could benefit various network analysis task, such as
node classification, link prediction, and network clustering
[35–38]. For spatial networks, network embeddings incor-
porate spatial dependence to boost house price prediction
[39] and extract structural information from the road net-
work [40]. In a similar way, network embedding could be
potentially helpful to capture the structural information of
the spatial network constructed by cross-county movement
networks.
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While the effects of individual county-level features and
cross-county movements on COVID-19 spread risk has been
studied separately [41, 42], only a limited number of stud-
ies have harnessed the capability of graph deep learning
models to capture the intertwined county-level features and
cross-county spatial networks simultaneously in examining
pandemic spread risk. For example, Ramchandani, Fan [6]
proposed a deep learning-based DeepCOVIDNet model to
forecast the range of increase in COVID-19 infected cases
in future days and to compute equidimensional representa-
tions of multivariate time series and multivariate spatial time
series data. The proposed model can take in a large number
of heterogeneous county-level features and learn complex
interactions between these features. However, one limitation
for this study is that the proposed model cannot be well inter-
preted due to its complexity. In other words, there is currently
no suitable method to determine which exact census tract
features interact with which exact disease-related features,
which provides the opportunity for this study.

The transmission trajectory patterns ofCOVID-19 in com-
munities are complex and are affected by interactions among
various heterogeneous features. At the county scale, features
related to disease attributes, socioeconomic characteristics,
and population activities are closely intertwined and strongly
interact with each other, which results in a complicated and
nonlinear influence toward the spread pattern of COVID-19.
At the national scale, cross-county population movements
connect different areas and shape them into a spatial network,
which brings into focus the complex network-related effect
of the pandemic. Taking these nonlinear interactions into
consideration, we created an attributed network embedding
model based on a cross-countymovement network acrossUS
counties and examined several heterogeneous county-level
attributes to classify US counties based on their pandemic
transmission risks and also to reveal the important features
that shape the distinct trajectories in each county archetype.

3 Data and features

3.1 Study area

In this study, from March 3 through June 29, 2020, we col-
lected features of 2787 counties in the continentalUSA. In the
USA, the first confirmed COVID-19 case occurred on Jan-
uary 19, 2020, in Snohomish County, Washington, followed
by the rapid spread of the virus across the country. The USA
became the new epicenter of the disease as it surpassed Italy
in terms of confirmed cases on March 24, 2020 [43]. As of
June 29, 2020, there had been a total of 2,268,753 confirmed
cases (25.2% of global cases) and 119,761 deaths (25.5%
of global deaths) in the USA alone [44]. To decrease the
contact and thus the transmission rate of COVID-19, many

states implemented state- or local-level stay-at-home policies
as well as the closure of nonessential services starting mid-
March 2020. The period of analysis in this study focuses on
the first wave and initial outbreak of the pandemic. Different
studies highlighted the significance of this initial period for
disrupting pandemic trajectories [2, 32]. Data-driven mod-
els can be impactful in predictive pandemic monitoring and
policy formulation during this stage of pandemics. Thus, our
study focused on the initial outbreak stage of the pandemic.

3.2 Datasets

In this study, we examined 15 features related to social
demographics, population activities, human mobility, social
interaction, and disease attributes. The 15 features serve as
a basis for dividing counties into distinct archetypes and for
inferring COVID-19 spread risks. Table 1 shows the charac-
teristics and sources of these features.

3.2.1 Features related to social demographics

3.2.1.1 Population density (PD) Population density of each
county is calculated by dividing population square miles.
Previous works have proven that PD is an important factor
influencing the spread of an epidemic [45]. PD was calcu-
lated based on the county-level Social Vulnerability Index of
2018 published by the US Centers for Disease Control and
Prevention (US CDC) [46].

3.2.1.2 Gross domestic product (GDP) Previous works have
shown that GDP could be a vulnerability index for COVID-
19. Counties with higher GDP usually have a more robust
economy and better health systems compared with counties
with lower GDP [47]. We used the 2018 county-level GDP
published by the US Department of Commerce [48].

3.2.1.3 Overall COVID-19 community vulnerability index
(CCVI) This study incorporates the county-levelCCVI devel-
oped by Surgo Foundation based on CDC data [49], which
comprises six social and demographic features determined
by previous studies to affect the spread of COVID-19 with
equal weights. CCVI is a composite score that reflects the
extent of a county’s vulnerability to COVID-19.

• Socioeconomic status. It is a feature accounting for a
population’s education, income, and occupation. Surgo
Foundation developed this feature based on the CDC’s
SocialVulnerability Index,which accounts for populations
below the poverty line, unemployed, and without a high
school diploma.

• Household composition and disability. Surgo Foundation
developed this feature based on the CDC’s Social Vulner-
ability Index. This feature accounts for populations aged
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Table 1 Collected features for the data-driven model

Datasets Features Characteristics Sources

Social
demo-
graphic

Population
density (PD)

Constant
feature

US Centers
for Disease
Control and
Prevention

Gross domestic
product
(GDP)

Constant
feature

US
Department
of
Commerce

Overall
COVID-19
community
vulnerability
index (CCVI)

Socioeco-
nomic status

Household
composition
and disability
Minority status
and language
Housing type
and trans-
portation
Epidemiologic
factors
Healthcare
system factors

Constant
feature

Surgo
Foundation

Population
activities

Point-of-
interest visits

(POI Visits)

Time-
dependent
feature

SafeGraph

Urban activity
index (UAI)
Work
Social
Home
Traffic

Time-
dependent
feature

Mapbox

Social
distancing
index (SDI)

Time-
dependent
feature

SafeGraph

Venables
distance (VD)

Time-
dependent
feature

Mapbox

Human
mobility

Shelter-in-place
index (SIP)

Time-
dependent
feature

Spectus

County
mobility
index (CMI)

Time-
dependent
feature

Spectus

Colocation
degree
centrality
(CDC)

Time-
dependent
feature

Meta

Social
interaction

Social connect-
edness index
(SCI)

Constant
feature

Meta

Table 1 (continued)

Datasets Features Characteristics Sources

Disease
attribute

Reproduction
number (R0)

Time-
dependent
feature

US Centers
for Disease
Control and
Prevention

65 or older, populations aged 17 or younger, populations
older than 5 years of agewith a disability, and single-parent
households.

• Minority status and language. This feature accounts for
minority and populations who speak English less thanwell
based on CDC’s Social Vulnerability Index.

• Housing type and transportation. Based on CDC’s Social
Vulnerability Index, this feature accounts for the popula-
tion’s housing types, such as multi-unit structures, mobile
homes, and crowded housing. It also accounts for popula-
tionswithout vehicles and thosewho live in group quarters.

• Epidemiologic factors. Developed by Surgo Foundation
in response to COVID-19, this feature accounts for pop-
ulations with underlying conditions (e.g., cardiovascular,
respiratory, immunocompromised, obesity, and diabetes)
that are vulnerable to COVID-19.

• Healthcare system factors. Developed by Surgo Founda-
tion for COVID-19, this factor accounts for poor health
system capacity, strength, and preparedness.

3.2.2 Features related to population activities

3.2.2.1 Points-of-interest visits POI data provided by Safe-
Graph was used to examine population visits to POIs.
SafeGraph aggregates POI data from diverse sources (e.g.,
third-party data partners, such asmobile application develop-
ers) and removes private identity information to anonymize
the data. The POI data included basic information of a POI,
such as the location name, address, latitude, longitude, brand,
and business category. In this paper, we used the total num-
ber of visits by week to each POI in Weekly Pattern Version
2 to examine population visits to POI across 2787 counties
in the USA [50]. Furthermore, to remove the influence of
disparate numbers of POIs in each county, we used the per-
centage change based on baseline POI visits of the first week,
the week of March 3, 2020.

3.2.2.2 Urban activity index Mapbox data was used to
calculate the UAI. Mapbox data provides contact activ-
ity metrics in pre-defined tiles (measuring about 100 by
100 meters square) in 4-hour temporal resolution [26]. We
classified tiles into four categories. We then calculated an
aggregated contact activity metric in those tiles to reveal four
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urban activities on a larger scale: social activity, traffic activ-
ity, home activity, and work activity.

• Social tiles.We classified tiles as social tiles in areas where
at least one POI in SafeGraph is located.

• Traffic tiles. Traffic tiles includes tiles incorporating roads.
• Home tiles. Home tiles include residential buildings or
have device information from 7 p.m. to 3 a.m.

• Work tiles. Work tiles show no activity in the evening.

3.2.2.3 Social distancing index Social distancing metrics
developed by SafeGraph were used to calculate the SDI of
each county [51]. The SDI was calculated by dividing the
number of cell phoneswithin a household by the total number
of devices within a county. Also, we used the percentage
change based on the SDI of the first week to remove the
potential influence of disparate numbers of devices in each
county.

3.2.2.4 Venables distance (VD) of population activities
Venables distance captures the concentration of population
activities within a certain spatial unit. In this study we set the
spatial unit as each county, and divided each county into cells
with resolution of 2 km × 2 km. Higher level of Venables
distance indicates that the population activities are denser
within the counties, which may increase the transmission
risk of diseases. Venables distance is formally defined as (1.

DV (t) =
∑

i< j si (t)s j (t)di j
∑

i< j si (t)s j (t)
(1)

where si (t) and s j (t) are the daily average activity intensities
in cells i and j , respectively, and di j is the distance between
the two cells. We used Mapbox digital telemetry data as a
proxy of population activities s(t), which are basically aggre-
gated cell phone data. In this way, we calculated DV for each
day and county, and then calculated the percentage change
based on the values of the first.

3.2.3 Features related to humanmobility

3.2.3.1 Shelter-in-place index SIP provided by Spectus was
used as the feature of population mobility within counties
[52]. Spectus calculated the percentage of users in each
county who moved less than 330 feet from home at a daily
basis as the SIP.

3.2.3.2 County mobility index CMI provided by Spectus
was used as the feature of populationmobilitywithin counties
[52]. The CMI of each county is the median of aggregated
movements of each user in a day in the county. For example,
a CMI of 5 for a county represents that the median user in
that county travels 105 m (100 km).

3.2.3.3 Colocationdegree centrality Facebook county-level
colocation maps were used to calculate the colocation degree
centrality (CDC) of each county [32]. Colocation measures
the probability that two individuals from two given places
are found in the same location at the same time. For each
pair of the counties, we calculated the colocation probabil-
ities. Then we constructed an undirected weighted spatial
network using counties as nodes, and nodes are linked if
the colocation between the two are non-zero. The colocation
probabilities serve as weights of the network. We calculated
weighted colocation degree centrality as the feature reflect-
ing the extent of physical contacts across counties incurred by
travels. Higher colocation degree centrality of a county indi-
cates people in this county have more intense social contacts
with people from other counties due to their travels. Thus,
higher colocation degree usually increases the disease trans-
mission risk. Since the colocation data is provides at aweekly
basis, we used theweighted degree centrality of the first week
during studied period as the baseline, and calculated the per-
centage change of the colocation degree centrality.

3.2.4 Features related to social interaction

The county-level social connectedness index (SCI) provided
by Facebook is used to account for social network struc-
tures affecting epidemic transmissions [53]. The SCI for two
counties is calculated according to (2.

SCIi , j = FB_Connectionsi , j
FB_Usersi × FB_Users j

(2)

We can find from (2 that SCI of counties i (FB_Usersi )
and j (FB_Users j ) is determined based on the number of
Facebook connections (i.e., friends in Facebook) between
two counties divided by the number of Facebook users in
two counties. The SCI, therefore, reflects the strength of
social connection between two counties. Then we mapped
a fully connected network based on the SCI. The nodes in
the network are counties, and edge weights are SCIs between
counties. Finally, we calculated the weighted degree central-
ity of each county as the SCI feature.

3.2.5 Features related to disease attribute

The reproduction number (R0) is an attribute of infectious
diseases which estimates the number of secondary cases
infected by the first case [54].We calculated the reproduction
number of COVID-19 according to (3 based on a simple epi-
demic transmission model [6]. The model assumes that one
case would infect R0 cases after a time interval τ . Then i(0)
infected cases at the time step 0 will lead to i(t) = i(0)Rt/τ
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number of infected cases at time step t.

R0 = eK τ (3)

where K = (ln i(t) − ln i(0))/t , and we used i = 5.1 days
for COVID-19 [55]. Furthermore, we used the percentage
changes of R0 with respect to the first week as the feature
inputted in the model.

4 Methods andmodel specification

The attribute network embedding model created in this study
has two main components: (1) county-level features (node
features); and (2) cross-county movement network (spatial
network topology). Figure 1 illustrates the components of the
model. The attribute matrix was obtained in the first step and
was calculated into the attribute similarity matrix. Second,
a spatial network structure was constructed based on cross-
county movements and was then expressed as an adjacency
matrix. Third, the accelerated attributed network embedding
(AANE) algorithm was adopted to capture the typological
features as well as node attributes. Next, clustering anal-
ysis was performed on the attributed network embeddings
every week. During this period, clustering results were com-
puted, and counties with the same clustering tendencies were
merged into archetypes. Finally, Kruskal–Wallis and Dunn’s
tests were conducted to explore the archetype differences and
expose features underlying distinct transmission risk patterns
across archetypes.

4.1 Constructing cross-countymovement network

In this step, a cross-countymovement networkwas generated
as the spatial network in the attributed network embed-
ding model. The location and movement information were
obtained from SafeGraph, Inc., a location intelligence data
company that builds and maintains accurate point-of-interest
data and store locations for the USA. The dataset con-
tains POI attributes, including POI IDs, location names, and
addresses.All POIs are labeledwithFederal InformationPro-
cessing System (FIPS) Codes for States and Counties, which
uniquely identify geographic areas. In this paper, we used
information of weekly POI visits across 2787 counties from
March 3 to June 29, 2020. in the USA. The movements were
aggregated at the county level to construct an undirected and
weighted network that represented the sum of visit flows
among counties. In this network, nodes are the centroid of
each county and links are visitations between counties for
one week. The weights of links capture the number of visits.
The network is defined as (4).

G = (V , E , W ) (4)

where V represents all the counties and E represents all the
population flows between pairs of counties. The edgeweights
W correspond to the counts of flows between two counties.
For each individual trip on edge, the weight is incremented
by 1.

4.2 Accelerated attributed network embedding

Network embedding maps the topological structure of each
node into a low-dimensional vector representation, preserv-
ing the original network proximity [56]. It has been shown
that network embedding could benefit various tasks, such
as node classification [35, 36] and network clustering [37,
38]. Given the characteristics of the cross-county movement
network, which is large scale with a large number of nodes
and high-dimensional features, we adopted the Accelerated
Attributed Network Embedding algorithm to extract the low-
dimensional representation of the network and county-level
disease-spread features.

The AANE algorithm, which is potentially helpful in
learning a better embedding representation, was developed
by [57] to enable joint learning process to get attributed
embeddings. The basic idea ofAANE is to represent nodes as
continuous vectors based on the decomposition of attribute
affinity matrix and the penalty of embedding difference
between connected nodes [57].

Let G = (V , E , W ) be a network, where V and E
are sets of nodes and edges, and ωi jεW corresponds to
edge ei j and reflects similarity between two nodes. Moti-
vated by orthogonal similarity diagonalization theory of real
symmetric matrixes, the AANE algorithm decomposes the
semi-definite symmetric matrix A into the following form: A
= H ∧HT , whereH is an orthogonal matrix and ∧ is a diag-
onal matrix [58]. Furthermore, AANE defines a new matrix
B, whose elements are the square roots of the elements in ∧,
then:

A = H�HT = HB2HT = HBHT HBHT

= (HBHT )(HBHT )T = UUT (5)

AANE uses cosine function to calculate the similarity
matrix of nodes S, which is a semi-definite symmetric matrix
[59]. Based on the above analysis, we can have:

S = QQT (6)

Also, AANE considers that nodes with more similar topo-
logical structures or those connected by higher weights are
more likely to have similar vector representations [59]. Thus,
the objective function corresponding to the optimization
problem is given below:

L = S − QQT 2
F + λ

∑
ωi j qi − q2j (7)
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Fig. 1 Illustration of analytical framework

where λ is a balance parameter. Because the objective func-
tion has a specially designed structure that enables it to be
optimized in an efficient and distributedmanner, AANE adds
a copy Z = Q and the above function can be changed as fol-
lows [58]:

L =
∑

Si − qi Z
2
2 + λ

∑
ωi j qi − z2i

+ ρ

2

∑
(qi − zi + u2i 2 − u2i 2) (8)

where λ is a balance parameter, ρ is a penalty parameter,
and uiεRl(i = 1, 2, . . . , n) is the scaled dual variable. The
alternating directions method of multipliers is used to solve
this problem [58]. By taking the derivatives of qi and zi , the
iterative formulas can be obtained as follows:

qt+1
i =

(

2si Z
t + λ

∑ ωi j ztj
qti − ztj2

)

+ ρ(zti − uti )P
−1 (9)

P = 2
(
Zt)T Zt +

(

λ
ωi j

qti − ztj2 + ρ

)

I (10)

zt+1
i =

(

2si Q
t+1 + λ

∑ ωi j q
t+1
j

zti − qt+1
j 2

)

+ ρ
(
qt+1
i + uti

)
L−1

(11)

L = 2
(
Qt+1

)T
Qt+1 +

(

λ
ωi j q

t+1
j

zti − qt+1
j 2 + ρ

)

I (12)

where AT means the transpose of A, A−1 means the inverse
of A and t means the tth iteration.

In this study, AANE embeds the adjacency matrix (cross-
county human visitation network) and attributed similar-
ity matrix (county-level standardized features) jointly for
county’s COVID-19 spread risk representation with the set-
ting of 256 dimensions of embeddings.

4.3 Clustering analysis

4.3.1 Optimal number of clusters

After implementing AANE embedding, we need to deter-
mine the level of similarity among counties or called optimal
number of clusters. In this study, we performed two clus-
tering methods, K-means and Gaussian mixture, to divide
county-level COVID-19 spread risk patterns into clusters
where inter-cluster similarities areminimizedwhile the intra-
cluster similarities are maximized.

K-means is an iterative method which minimizes the
within-class sum of squares for a given number of clusters
[60]. The algorithm starts with an initial guess for K clus-
ter centers (u1, u2, u3, . . . , uk). Then, each observation is
placed in the cluster to which it is closest, i.e., find the mass
center with the closest Euclidean distance for each cluster
center.

labeli = argmin
1 ≤ j ≤ k

xi − μ j (13)

Next, the cluster centers are updated as the average in the
cluster.

μ j = 1
∣
∣c j

∣
∣

∑

iεc j

xi (14)

Then, the above steps are repeated until the cluster centers
no longer move.

As one of the most commonly used clustering algorithms,
K-means has the features of simplicity, good understanding,
and fast operation speed; however, the initial K value has to
be specified manually at the beginning.
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Gaussian mixture model (GMM) is a probabilistic clus-
tering method that calculates the probability that n points
are softly assigned to K clusters. GMM assumes that all
data points are generated by combining k mixed multivariate
Gaussian distributions into a mixture distribution.

p(x) =
k∑

i=1

αi · p
(

x |μi ,
∑

i

)

(15)

where p
(
x |μi ,

∑
i

)
is the probability density function of

a n-dimensional random vector x that follows a Gaussian
distribution.

p(x) = 1

(2π)
n
2
∣
∣∑

∣
∣
1
2

e− 1
2 (x−μ)T

∑−1(x−μ) (16)

where μ is a n-dimensional mean vector,
∑

is n ×n covari-
ance matrix.

Therefore, μi and
∑

i in (15 are the parameters of the ith
Gaussian mixture component, and αi > 0 is the correspond-
ing mixture coefficient.

k∑

i=1

αi = 1 (17)

Then, the process of GMM is to derive the parameters of
each mixture component (i.e., the mean vector μ, the covari-
ance matrix

∑
, and the mixture coefficient α) by a certain

parameter estimation method for a predetermined the num-
ber of clusters K . Each multivariate Gaussian distribution
component corresponds to one of the clusters.

According to [61], it is rare in practice that the number of
clustersK is known at the beginning of the experiments. One
possibility of identifying the most suitable number of clus-
ters is the average silhouette method. The method calculates
how well each object lies within its cluster using the index of
silhouette score. The silhouette score measures the degree of
confidence in the clustering assignment of a particular obser-
vation i, with well-clustered observations having values near
1 and poorly clustered observations having values near − 1.
The optimal number of clusters K is the one that maximizes
the average silhouette score over a range of possible values
for K . For observation i, it is defined as

S(i) = bi − ai
max(bi , ai )

(18)

where ai is the average distance between i and all other obser-
vations in the same cluster, and bi is the average distance
between i and the observations in the nearest neighboring

cluster, i.e.,

bi = min
Ckει\C(i)

∑

jεCk

dist(i , j)

n(Ck)
(19)

where C(i) is the cluster containing observation i, dist(i, j)
is the distance between observations i and j, and n(C) is the
cardinality of cluster C.

In this study, we used K-means and Gaussian mixture to
perform clustering test on the weekly datasets. Finally, the
best K value represented by the maximum silhouette score,
which was averaged over all weeks, was selected as the opti-
mal number of clusters.

4.3.2 Optimal clustering method

Further, we need to determine the optimal clustering model
for underlying the optimal clustering pattern of county-level
COVID-19 spread risk.

A variety of stability measures, including average propor-
tion of non-overlap (APN), average distance (AD), average
distance between means (ADM), and figure of merit (FOM),
aiming at validating the results of a clustering analysis and
determining which algorithm performs best have been pro-
posed by [62]. The stability measures compare the results
from clustering based on the full data to clustering based
on removing each column, one at a time. These measures
work especially well if the data are highly correlated, which
is often the case in high-resolution human mobility data. In
all cases, the average is taken over all the deleted columns,
and all measures should be minimized [63].

4.3.2.1 Average proportion of non-overlap (APN) The APN
measures the average proportion of observations not placed
in the same cluster by clustering based on the full data and
clustering based on the data with a single column removed.
Let Ci , 0 represent the cluster containing observation i using
the original clustering and Ci , l represent the cluster contain-
ing observation i where the clustering is based on the dataset
with column l removed. Then, APN is defined as

APN (K ) = 1

MN

N∑

i=1

M∑

l=1

(

1 − n(Ci , l ∩ Ci , 0)

n(Ci , 0)

)

(20)

The APN is in the interval [0, 1] with values close to 0
corresponding with highly consistent clustering results.

4.3.2.2 Average distance (AD) The AD computes the aver-
age distance between observations placed in the same cluster
by clustering based on the full data and clustering based on
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the data with a single column removed. It is defined as

AD(K ) = 1

MN

N∑

i=1

M∑

l=1

1

n(Ci , 0)n(Ci , l)
⎡

⎣
∑

i∈Ci , 0, j∈Ci , j

dist(i , j)

⎤

⎦ (21)

The AD has a value between 0 and ∞ and smaller values
are preferred.

4.3.2.3 Average distance betweenmeans (ADM) The ADM
computes the average distance between cluster centers for
observations placed in the same cluster by clustering based
on the full data and clustering based on the data with a single
column removed. It is defined as

ADM(K ) = 1

MN

N∑

i=1

M∑

l=1

dist(xCi , l , xCi , 0) (22)

where xCi , 0 is the mean of the observations in the cluster
which contain observation i and xCi , l is similarly defined.
It also has a value between 0 and ∞ and smaller values are
preferred.

4.3.2.4 Figure of merit (FOM) The FOM measures the aver-
age intra-cluster variance of the observations in the deleted
column, where the clustering is based on the remaining sam-
ples. This estimates the mean error using predictions based
on the cluster averages. For a particular left-out column l, the
FOM is

FOM(l, K ) =
√
√
√
√ 1

N

K∑

k=1

∑

i∈Ck (l)

dist
(
xi , l , xCk (l)

)
(23)

where xi , l is the value of the ith observation in the lth col-
umn in clusterCk(l) and xCk (l) is the average of clusterCk(l).
FOMhas a value between 0 and∞with smaller values equal-
ing better performance.

4.4 Archetype difference detection

Kruskal–Wallis and Dunn’s tests were performed each week
based on weekly datasets from March 3 to June 29, 2020
(17 weeks in total). Each county would be assigned to a spe-
cific cluster each week and thus assembled into a temporal
distribution of clusters over the 17 weeks. Next, counties
with same temporal distributed clusters were merged into
archetypes to explore dynamicalCOVID-19 spread risks over
the entire period. Then, we used Kruskal–Wallis test and
Dunn’s tests to explore the differences of spread risks among

Table 2 Statistics of average silhouette scores of the two clustering
methods

Number of
clusters

Average silhouette score
of K-means

Average silhouette
score of Gaussian
mixture

2 0.4810 0.4569

3 0.4420 0.4341

4 0.4682 0.4613

5 0.4312 0.4137

6 0.4123 0.3932

archetypes combined from clusters. The two methods were
used sequentially, in which Kruskal–Wallis test was used to
explore whether the features statistically differ among the
archetypes, while Dunn’s test was used to detect in which
archetypes the features had significant differences.

4.4.1 Kruskal–Wallis (KW) test

The KW test explores the null hypothesis that the population
median of all of the groups is equal, which is a nonparametric
alternative to the one-way ANOVA test when we have two
or more independent groups [64]. As the p-value is less than
the significance level 0.05, we can conclude that there are
significant differences between the clusters. In KW test, all
the data are pooled and ranked from smallest (1) to largest
(N), then the sums of ranks in each subgroup are added up,
and the probability is calculated. The statistic H is

H = 12

N (N + 1)

∑ R2
i

ni
− 3(N + 1) (24)

whereN is the total number, ni is the number in the ith group,
and Ri is the total sum of ranks in the ith group.

4.4.2 Dunn’s test

Once KW test finds a significant difference among two or
more groups, the Dunn’s test can be used to pinpoint sig-
nificant features. Dunn’s test is a post hoc nonparametric
test (i.e., it is run after an KW test). The Dunn index is the
ratio of the smallest distance between observations not in the
same cluster to the largest intra-cluster distance [61], which
is computed as

D(c) =
min

Ck , Cl ∈ C , Ck �= Cl

(
min

i ∈ Ck , j ∈ Cl
dist(i , j)

)

max
Cm ∈ C

diam(Cm )

(25)
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Table 3 Statistics of stability
measures of the two clustering
methods

Measures Average APN Average AD Average ADM Average FOM

K-means 0.4590 3.3216 2.1179 2.3863

Gaussian mixtures 0.4658 3.5093 2.1979 2.3929

Table 4 Features of similar distribution among clustered counties

Week starting
date

Features of similar
distribution among
clustered counties

Statistics p-value

2020–03–10 R0 3.895 0.2731

2020–03–17 R0 0.000 1.0000

UAI home 5.592 0.1333

2020–03–24 R0 0.298 0.9604

2020–05–26 UAI home 4.360 0.2252

2020–06–02 UAI home 7.137 0.0677

2020–06–09 UAI home 6.330 0.0966

2020–06–16 UAI home 4.717 0.1937

where diam(Cm)) is the maximum distance between obser-
vations in cluster Cm . The Dunn index has a value between
0 and ∞ and should be maximized.

5 Results

5.1 Clustering analysis

Since cross-county movement network had temporal varia-
tions,we constructed the networks for eachweek fromMarch
3 to June 29, 2020. The nodes of each network are counties in
the USA, and the edges represent the visits between counties.
Since a higher volume of visits represents closer connection
between the counties, the number of visits between counties
are used to calculate the weights of the edge. County-level
features were regarded as node attributes. Then, the AANE
algorithm was applied to all weekly networks. Combining
both topological structure and node attributes, this algorithm
represented each node in the network as a 256-dimensional
vector. UMAP was used to reduce the dimension of the
attributed embeddings as a two-dimensional vector for visu-
alization purpose.

This study performed cluster analysis to the nodes of
weekly networks to classify counties based on their pandemic
spread risk patterns. Considering the data size, interpretabil-
ity of clusters and their computational efficiency, we selected
K-means and Gaussian mixture models to cluster the nodes.
To decide the most optimal number of clusters, we examined
clustering the nodes into 2, 3, 4, 5, and 6 clusters using the
two methods. Silhouette score was calculated to show the

best number of clusters for both methods. Since the cluster
analysiswas performed on the nodes ofweekly humanmove-
ment network, this study calculated the average of silhouette
scores during these weeks. Table 2 presents the number of
clusters, cluster methods and the corresponding average sil-
houette scores. It can be seen that when clustering the nodes
into two clusters using K-means method, highest average sil-
houette score is achieved as 0.4810. However, the silhouette
score is not the only criterion when deciding on the cluster
number. Clustering the nodes in two clusters could be too
broad and lack the require interpretability to inform about
differences in pandemic risk trajectories needed for policy
formulation. Accordingly, we chose the number of clusters as
four, which gives the second highest average silhouette score
(0.4682) when using K-means method and the highest score
(0.4613) when usingGaussianmixturemethod. Compared to
two clusters, four clusters could reduce the information loss
caused by over-generalization, which helps maintain more
elaborateddetails. Thedecision to use four clusterswas there-
fore based on consideration of both validity measures and the
context of the study.

When setting the number of clusters to four, the average
silhouette score of K-means (0.4682) is slightly higher than
that of Gaussian mixture method (0.4613). To further deter-
mine the cluster method, a stability test was performed. This
study used four measures, including APN, AD, ADM, and
FOM, for each week and then calculated the averages. The
results demonstrated that K-means outperformed Gaussian
mixtures, as given in Table 3. Thus, clusters produced by
K-means method were selected for further analysis.

The visualizations of the clusters are shown in Fig. 2, from
which one can see that the clusters arewell separated.We also
specified the representative county (Brazos County in Texas)
to describe the features and pandemic risk trajectories within
each cluster. Brazos County located in the cluster orange in
the first four weeks (fromMarch 3 to March 30), and then, it
moves to cluster red in the following twoweeks (fromMarch
31 to April 13) and cluster green in the seventh week (from
April 14 to April 20). Next, Brazos Countymoves back to the
cluster orange until the last week (fromApril 2 to June 29) in
this study. It can be observed that even the same county may
locate in different clusters during different weeks as the pan-
demic unfolds. The temporal variations in the clustering of
counties are due to response to non-pharmaceutical policies
and the spike in the number of cases as the disease spread
during the first wave.
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Fig. 2 Visualization of the 4 clusters for 17 weeks from March 3 to June 29, 2020. Brazos County in Texas located in different clusters during
different weeks as the pandemic unfolds
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Fig. 3 Temporal tendencies of county-level COVID-19 spread risk in archetypes. The left half is the initial archetypes and the right half is the
merged archetypes

To take the temporal effects into consideration, we listed
all clusters of counties during the 17-week period then
merged the counties with the exact same tendencies into
archetypes. Ten archetypes were identified from this step
and the top 5 archetypes were shown in the left part of
Fig. 3. Then, the archetypes with less than 20 counties were
removed to avoid potential contingence and increase result
robustness. The remaining archetypes are shown on the right
side of Fig. 3. Since archetype 1 and archetype 4 have only
slight differences, they were merged. Taking the archetype
0 as an example, it comprises 505 counties, which indicates
that these counties have similar characteristics in terms of
COVID-19 risk transmission dynamics over the 17-week
time span. In the first three weeks (from March 3 to March
23), these counties located in the same cluster. Next, in the
following 11weeks (fromMarch 24 to June 8), the 505 coun-
ties moved to another cluster. In the last three weeks (from
June 9 to June 29), they returned to the original cluster. The
counties which were included in the top 4 archetypes are
shown in Fig. 4.

5.2 Feature importance analysis

Since each archetype represents a distinct pattern of COVID-
19 transmission risk in communities, finding the most
prominent features that differentiate archetypes from each
other is essential. To this end, we adopted the Kruskal–Wal-
lis and Dunn’s test to all the county-level features, as well as
the number of weekly new infection cases recorded by the
CDC. The Kruskal–Wallis test was used to detect if features
are statistically significant different among the archetypes.
Table 4 lists the statistically nonsignificant results. It can
be seen that only R0 and urban activity index (home) are
not significantly different from other archetypes during some
weeks, while for other features, the archetype differences of
which all exist. TheKruskal–Wallis test only detects the exis-
tence of archetype differences, while the Dunn’s test could
specify which archetypes features are different. Thus, to fur-
ther examine the features which could be different across
archetypes, the Dunn’s test was performed.
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Fig. 4 Spatial distribution of the counties that were included in the top 4 archetypes

Fig. 5 Distribution of new infected COVID-19 cases per 100 k population among the four archetypes during the 17 weeks

Figure 5 shows the boxplot of new infected COVID-19
cases per 100 k population among the four archetypes dur-
ing the 17 weeks. In terms of new cases, the four archetypes
showdistinct characteristics that distinguish themselves from
each other from both the growing tendency and deviation.
During the first three weeks, all the archetypes had very
few new cases; During the following six weeks, a rise of
new cases per 100 k population were observed from all the
archetypes, while variations within each archetype were also
observed. Archetype 0 and archetype 3 have smaller within-
archetype variation, which means the new cases within
counties falling in these two archetypes had a similar pattern.

Yet for archetype 2 and archetype 3, the within-archetype
variation turned to be more significant. The variation in
the new cases is especially high in archetype 3. During the
remaining eight weeks, the general patterns started to split.
Archetypes 0 and 1 still observed fast growth of new infected
cases, while archetypes 2 and 3 kept a rather low level of
newly infected cases. From the perspective of within-group
variation, archetype 2 and archetype 3 both have high vari-
ation, which means counties in these archetypes had less
consistent COVID spread patterns although they have sim-
ilarities in features. Based on the two analysis dimensions,
the results reveal four different COVID-19 spread patterns in
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Fig. 6 Distribution of population
density across the four
archetypes

Fig. 7 Distribution of gross
domestic product across the four
archetypes

communities: (1) counties with high and consistent increase,
(2) counties with a high number of cases with fluctuating
increase, (3) counties with mild and consistent increase, and
(4) counties with mild and fluctuating increase.

After identifying the spread patternwithin each archetype,
we performed a Kruskal–Wallis test for all the county-level
features and found only R0 and urban activity index (home)
were not significantly different among the archetypes during
several weeks, while for other features, differences in fea-
tures across archetypes exist. Subsequently, Dunn’s test was
performed on the significantly different features to detect
from which archetype features were different. Accordingly,

we could find archetype differences in terms of their county-
level features.

From the Dunn’s test, we identified four features, includ-
ing population density, gross domestic product (GDP),
minority status and language, and POI visits, which exhibit
significant differences across all the four archetypes. Since
these features in different archetypes are distinct from each
other, they can be used to best describe the characteristics
of counties in each archetype. The high-increase archetype
(marked as red and orange in Figs. 6, 7, 8, and 9) is char-
acterized as higher population density, higher GDP, greater
number of POI visits, and larger percentage of minorities.
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Fig. 8 Distribution of minority
status and language across the
four archetypes

Fig. 9 Distribution of POI visits across the four archetypes during the 17 weeks

This archetype showed a typical transmission risk pattern:
highly developed economic centers with dense population
increased the chance of interpersonal contact in such areas,
which increased the number of new cases. The higher number
of new cases in turn worsened the transmission trend. From
the perspective of humanmovement activities, the percentage
change of number of POI visits in red and orange archetypes
is apparently higher than the other two archetypes, indicating
that POI visits can be an important risk factor when consid-
ering COVID-19 spread. This observation is consistent with
the insights of [32] and [65]. Counties in archetype 2 and
archetype 3 are characterized as mild increase areas, and
that may relate to the lack of high-risk factor. Population
in these counties are not as dense as those in archetype 0

and archetype 1, and lower GDPmay indicate less economic
activity, which reduced the spread chances of COVID-19
via interpersonal contact. Since studies have confirmed that
points of interest can be hotspots of disease transmission
[5], and super-spreaders of the virus [66] are more likely
to present at some of the POIs, smaller number of POI vis-
its may help avoid radical increase of new COVID-19 cases.
Moreover, different socio-demographic groups are more bal-
anced in archetype 2 and archetype 3, which contributes to
the ability of populations to follow protective actions (such
as staying at home) that would decrease the number of cases.

Further comparisons were made between the archetypes
with similar growth tendency to examine the different fea-
tures between the archetypes. Although themedians of newly
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Fig. 10 Distribution of healthcare
system factors across the four
archetypes

Fig. 11 Distribution of reproduction number (R0) across the four archetypes during the 17 weeks

infected cases in archetype 0 and archetype 1 are both high,
archetype 1 has amuch larger within-cluster variation, which
means counties in this archetype had less consistent new case
growth tendency. Archetype difference detection shows that
the variation of healthcare system factors (one sub-feature
in the overall COVID-19 Community Vulnerability Index)
of counties in archetype 1 is significantly larger than that in
archetype 0, which differentiates the two archetypes from
each other (see Fig. 10). The results show that a high while
inconsistent archetype also has varied healthcare system vul-
nerability level. This influence may be explained by the
COVID-19 test capacity or the capacity of taking care of the
infected and preventing larger-scale infection.Countieswith-
out that capacity would have high but inconsistent patterns
of new case growth. The feature that distinguishes archetype

2 and archetype 3, is the reproduction number (R0). The per-
centage change of R0 has more deviation in archetype 2 than
that in archetype 3 (see Fig. 11). In other words, the mild but
inconsistent archetype has inconsistent R0 change tendency.

6 Concluding remarks

Pandemic risk trajectories are not homogenous among all
cities and communities. Various features could influence the
differences in pandemic trajectories. The heterogeneity of
pandemic spread trajectories motivated this study to explore
different of COVID-19 spread trajectories in the 2787 coun-
ties in the USA during the first pandemic wave and also to
uncover the county-level features that contribute distinctive
pandemic spread trajectories across different clusters.
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The study and findings have multiple important contribu-
tions: first, the findings expose four main COVID-19 spread
trajectory patterns in the USA which signify the importance
of recognizing the heterogeneity in pandemic risk trajecto-
ries of different areas for predictive pandemic monitoring
and policy formulation. Formulating national one-size-fits-
all policies for all counties which follow different spread
trajectorieswould not yield the desired pandemic control out-
comes. Public health officials, county health department offi-
cials, and policymakers can account for differences among
different counties based on their heterogeneous features and
formulate place-based policies consistent with population
activity, cross-county movement, and socio-demographic
and disease-related features. These features can be proac-
tively monitored as trigger indicators for initiating or halting
policies given the spread trajectory of the pandemic. For
example, counties with high GDP, dense population, larger
proportion of minorities, and more active population activi-
tiesmay be at risk of rapid increase of new cases. By adopting
the methodological framework proposed in this study, pol-
icymakers could become aware of the transmission risk in
a timely manner and then use the data as a reference for
dynamically adjusting COVID-19-related public policies.

Second, the attributed network embedding model con-
tributes to advancing artificial intelligence and machine
learning techniques for data-driven pandemic management.
Attributed network embeddings were calculated to inte-
grate both typological characteristics of the human visitation
network and place-based features. The model captures sev-
eral heterogeneous features related to population activity,
mobility, socio-demographic, economic, and disease-related
attributes and their nonlinear interactions, as well as the
cross-countymovement network characteristics, all of which
contribute to the spread trajectories of the pandemic. Such
complex feature interactions cannot be fully captured using
the existing models. Clustering analysis performed on the
attributed network embeddings uncovered four archetypes of
spread risk patterns, and four features—population density,
gross domestic product, minority status and language, and
number of POI visits—that contribute to distinctive trans-
mission risk archetypes across the USA.
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