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Abstract

A diffuser in the Fourier space of an imaging system can encode 3D fluorescence intensity informa-
tion in a single-shot 2D measurement, which is then recovered by a compressed sensing algorithm.
Typically, the diffusers used in such systems are either off-the-shelf, heuristically designed, or merit
function driven. In this work we use a differentiable forward model of single-shot 3D microscopy
in conjunction with an invertible and differentiable reconstruction algorithm, ISTA-Net+, to jointly
optimize both the diffuser surface shape and the reconstruction parameters. By choosing a differen-
tiable and invertible reconstruction method, we enable the use of memory-efficient backpropagation
to trade off storage with a reasonable increase in compute time, in order to fit an unrolled network
containing a large-scale 3D volume into a single GPU’s memory. We validate our method on 2D and
3D single-shot imaging, where our learned diffuser demonstrates improved reconstruction quality
compared to previous heuristic designs.

1 Introduction
Single-shot 3D imaging aims to use optical elements to encode 3D information into a 2D measurement, then recovers
the 3D information computationally. Previously, in our Fourier DiffuserScope [1], we used random multi-focal lenslets
(RML) as a diffuser in the Fourier space for single-shot 3D imaging. Here, we describe a physics-based learning method
for designing diffusers that optimize performance across both hardware and software.

Our physics-based learning pipeline (Fig. 1) aims to jointly optimize the diffuser design (surface height of a
refractive phase plate) and the reconstruction algorithm parameters. The optical simulator takes as input the current
diffuser surface parameters, Θ, and outputs the microscope point spread function (PSF) corresponding to each depth
plane. A noise-free 2D measurement is generated using each plane’s PSF in a convolutional forward model. Noise is
then added and the noisy, simulated measurement is fed into an ISTA-Net+ [2, 3] reconstruction network with learnable
parameters, Φ. A loss function is applied to the reconstructed volume, and optical system and reconstruction parameters
(Θ and Φ, respectively) are jointly updated using gradient-based updates in a memory-efficient manner.

2 Forward Model
Our RML diffuser (see Fig. 1) consists of a number of plano-convex lenslets of varying focal lengths. The learnable

parameters are each lenslet’s lateral position coordinates and radius, Θi = {xi, yi, ri}. Compared to a parameterization
using a pixel-wise surface height [4, 5], our diffuser model dramatically reduces the number of learnable parameters,
thus preventing overfitting and decreasing the amount of data required for training. Compared to a Gaussian diffuser [6],
contour-shape diffuser [7] or a Zernike polynomial based phase mask [8], our lenslets-based surface focuses light to
sharp points, providing higher signal-to-noise ratio (SNR) and frequency coverage over a wide depth range [1, 9, 10].

Next, we describe our imaging model for encoding 3D information into a single 2D frame. Based on the Fourier
DiffuserScope setup [1], we use a differentiable forward model followed by a differentiable noise model to generate
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noisy, simulated measurements. The configuration of the optical system is shown in the inset in Fig. 1. The system
begins with an objective lens and a tube lens, as in a traditional fluorescence microscope. Because the Fourier plane of
the objective resides inside the objective tube, we use a relay lens to form a 4f system together with the tube lens and
place the diffuser at the relayed Fourier plane. The sensor is behind the diffuser at a distance equal to the average focal
length of the lenslets. We model our optical system using wave-optics propagation, as described below.

The 3D volume is divided into a stack of 2D slices of finite thickness in depth. Assuming our system is laterally
shift-invariant, we only need one PSF from each depth layer to fully characterize the system response. From an on-axis
point source at each depth, we calculate the spherical wavefront at the objective back focal plane, then multiply it by
the apodization pupil function. The wavefront at the pupil is demagnified by the relay system and passes through the
diffuser. The diffuser is modeled as a pure phase mask with phase delay φ = exp

[
i 2πλ (nr − 1)T

]
, with refractive

index, nr, and surface thickness, T(Θ), embedding Θ in the forward model. The electric field after the diffuser is
then digitally propagated to the sensor via angular spectrum method [11]. The intensity images at the sensor from all
the depth layers form a PSF stack, hz=1,...,Z , where hz represents the simulated PSF at depth z and there are in total
Z = 11 depth layers. The simulated measurement is modeled as the sum of all the lateral 2D convolutions (denoted by
[x,y]
∗ ) of object slices and PSFs, one for each depth:

y =
∑
z hz

[x,y]
∗ vz = Av, (1)

where, y is the noise-free intensity image, vz is the object intensity at depth z. v represents the entire 3D volume and A
is a matrix with columns containing the PSF stack, used to write our forward model in compact matrix form.

To model noise, we approximate the expected light levels at 30k photons per fluorescent bead [4], with a Poisson
distribution and negligible read noise. Since the sampling of the Poisson distribution is not differentiable with respect to
its input, we use the Gaussian approximation of shot noise based on the Central Limit Theorem, giving a noise model
that is differentiable with respect to the diffuser parameters. This noisy, simulated measurement, ynoisy, is used in our
reconstruction algorithm.
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Figure 1: Overview of our physics-based learning pipeline. First, we simulate the point spread function (PSF) stack
of the optical system with learnable diffuser parameters, Θ. The PSF stack is convolved with a 3D training volume
and noise is added producing a noisy, simulated measurement. The ISTA-Net+ reconstruction network with learnable
parameters, Φ, takes in the PSF stack and measurement and outputs a reconstructed volume which is fed into a loss
function. The loss is backpropagated through the pipeline to update both the diffuser’s and the reconstruction network’s
sets of learnable parameters, Θ and Φ. The inset depicts our diffuser-based single-shot 3D microscopy setup.

3 Physics-based Reconstruction
Our reconstruction algorithm aims to solve the following sparsity-constrained inverse problem:

v̂ = min
v
‖y −Av‖22 + λ‖G(v)‖1, (2)

where λ is a regularization parameter and G(·) is a transform that sparsifies the 3D volume. Traditional iterative
optimization algorithms - for example, Fast Iterative Shrinkage-Threshold Algorithm (FISTA) [2] can be used to
solve this problem, but suffer from slow computation time (due to the large number of iterations required) and require
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extensive hand-tuning of tuning variables and proximal operators. Deep network based reconstruction methods are
significantly faster than iterative optimization, but lack an understanding of the physical system [3, 12]. Consequently,
more training data is needed in order to achieve sufficient generalization at test time.

Here we apply a physics-based ISTA-Net+ [3] of 10 unrolls, each consisting of a gradient step followed by a
proximal step, as shown in Fig. A.1 (a). The learnable parameter set, Φ, includes the regularization parameter λ, the
sparsifying transform G(·) and its left inverse G̃(·), as in Φ = {λ,G, G̃}. The loss function driving the training of the
pipeline is:

L =
1

M

M∑
m=1

‖v̂(N)
m − vm‖22 + γ‖G̃(G(vm))− vm‖22, (3)

where M is the number of training examples per batch, γ is a tuning parameter, subscript m denotes the m-th training
example, superscript N denotes the total number of unrolls, the first term penalizes the `2 reconstruction error between
the ground truth and reconstruction and the second term encourages G̃(·) to be the left inverse of G(·).

By including the forward model in the reconstruction algorithm, physics-based approaches help minimize training
data requirements and prevent overfitting. Additionally, due to the fact the forward model is a function of the diffuser’s
parameters, Θ, derivatives of the loss can be taken with respect to Θ. We treat both update steps of this algorithm as
forward Euler steps, allowing for inversion through backward Euler steps with a fixed point method. This enables the
use of memory-efficient learning techniques (see Sec. 3.1) [13–15].

3.1 Memory-efficient Backpropagation

Backpropagation is used to calculate the gradient of a single output with respect to multiple learnable variables
of a system, with relatively low time complexity, by using a large amount of memory to store the full computational
graph during the forward pass. Due to the 3D nature of our problem, GPU memory is at a premium. Therefore, we use
memory-efficient backpropagation techniques to fit our problem in memory with a reasonable increase of compute
time, allowing for calculating the necessary gradients from a series of unrolls while only having to fit a single unroll in
memory. The primary memory-efficient backpropagation technique used is forward checkpointing based [16] but the
model is also compatible with reverse checkpointing [14] as shown in Fig. A.1 (b).
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Figure 2: (a) Simulated 3D training volume with randomly placed fluorescent beads. (b) When the beads are constrained
to a single depth plane, the learned random multi-focal lenslets (RML) consists of one dominating lens, as expected. (c)
When the beads are constrained to two depth planes, the learned RML contains two lenses, each focusing at one depth
plane. Maximum intensity projections show the reconstructed test volumes match well with ground truth.

4 Results
The optical system parameters are in Appendix B. Training was performed on 200 simulated volumes (see Appendix

C). Testing was performed on 40 volumes generated in the same fashion as the training set. The model and training
pipeline are written in Pytorch and training was performed on a NVIDIA RTX 3090 GPU.

We first perform two ’sanity checks’ to show that the pipeline functions as expected, by optimizing the RML for
two imaging scenarios where a reasonable guess of the ideal RML is known. We use a small volume at 1/15 the size of
our experimental system to speed up computation time. In the first scenario, all beads are constrained to the center
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depth plane of the volume. This simplifies the problem to 2D imaging; hence, a single lenslet focused at that depth
should be ideal. As seen in Fig. 2 (b), the optimized RML does contain a single, dominant lenslet, though there are
additional features, likely due to the non-convexity of the problem. In the second scenario, the beads are constrained
to 2 depth planes at opposite ends of the volume. In this scenario, a RML with two lenslets, each focusing at one of
the depth planes, is expected. As seen in Fig. 2 (c), the result does show two lenslets that dominate the RML. In both
scenarios, the learned RML matches our intuition, and the reconstruction of the testing volume matches well with the
ground truth. We conclude that the pipeline is functioning sufficiently and move to more complex imaging scenarios.

Next, we compare our learned RML and algorithm to a heuristically-designed RML with unlearned algorithms
in Fig. 3. In our training data, we use beads of 1 µm and 2 µm diameter, randomly spaced in a 3D volume of
500 × 500 × 50 µm3 with 5 µm axial steps. To achieve 1 µm lateral resolution over a 50 µm depth range, from first
principles derivation [1], we need 3.2 lenslets in each direction, the square of which rounds up to 11 lenslets. Hence, the
heuristic designed diffuser contains 11 randomly-located lenslets of varying focal length, focusing at uniformly-spaced
depth planes. For the learned design, since we cannot take derivatives of the loss function with respect to the number of
lenslets, we instead optimize the number of lenslets by starting with more than necessary and allowing them to merge
and exit the pupil during the learning process. In experiments, the number of lenslets in the learned RML is consistent
for each imaging scenario regardless of the initialized number, demonstrating robustness of the pipeline. The learned
surface in Fig. 3 contains 8 lenslets; the lower number of lenslets increases the numerical aperture of each lenslet,
collecting more photons per focus point and boosting SNR under our Gaussian-approximated shot noise model. For
the case of the unlearned algorithm, we used an L1 proximal step with ISTA reconstructions ran until convergence.
This runs ∼30x slower than our proposed reconstruction network while achieving worse normalized mean square error
(NMSE). Note that to reduce memory requirements and training time, the scale of this simulated system is 1/4 of our
experimental system.
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Figure 3: Comparing results of our learned random microlenslet (RML) design to that of an unlearned heuristic design.
The first row labeled Heuristic depicts (from left to right) the heuristic RML surface height map containing 11 lenslets,
the reconstructed volume using heuristic RML and ISTA ran to convergence (∼3000 iterations), the ground truth
volume, and the focal length distribution of the lenslets in the heuristic RML. The second row labeled Learned depicts
(from left to right) the learned RML surface height map containing 8 lenslets, the reconstruction volume using the
learned RML and learned reconstruction algorithm (see A.1), point spread functions at several depth planes, and the
focal length distribution of the lenslets in the learned RML.

5 Conclusion
We demonstrated improved reconstruction speed and improved image reconstruction quality for Fourier Diffuser-

Scope single-shot 3D microscopy by designing an optical element (a diffuser) that jointly optimizes the experimental
setup and reconstruction algorithm via end-to-end learning. This data-driven approach directly optimizes the recon-
struction loss and provides better insights into design for a non-traditional optical system where the first principles are
limited.

4



References
[1] F. L. Liu, G. Kuo, N. Antipa, K. Yanny, and L. Waller, “Fourier DiffuserScope: single-shot 3D Fourier light field

microscopy with a diffuser,” Opt. Express, vol. 28, pp. 28969–28986, sep 2020.

[2] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems,”
Society for Industrial and Applied Mathematics Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, 2009.

[3] J. Zhang and B. Ghanem, “ISTA-Net: Interpretable Optimization-Inspired Deep Network for Image Compressive
Sensing,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
pp. 1828–1837, 2018.

[4] E. Nehme, D. Freedman, R. Gordon, B. Ferdman, L. E. Weiss, O. Alalouf, T. Naor, R. Orange, T. Michaeli, and
Y. Shechtman, “DeepSTORM3D: dense 3D localization microscopy and PSF design by deep learning,” Nature
Methods, vol. 17, no. 7, pp. 734–740, 2020.

[5] C. A. Metzler, H. Ikoma, Y. Peng, and G. Wetzstein, “Deep Optics for Single-shot High-dynamic-range Imaging,”
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1372–
1382, 2020.

[6] N. Antipa, G. Kuo, R. Heckel, B. Mildenhall, E. Bostan, R. Ng, and L. Waller, “DiffuserCam: lensless single-
exposure 3D imaging,” Optica, vol. 5, pp. 1–9, jan 2018.

[7] V. Boominathan, J. Adams, J. Robinson, and A. Veeraraghavan, “PhlatCam: Designed phase-mask based thin
lensless camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

[8] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W. Heidrich, F. Heide, and G. Wetzstein, “End-to-end
Optimization of Optics and Image Processing for Achromatic Extended Depth of Field and Super-resolution
Imaging,” ACM Trans. Graph. (SIGGRAPH), 2018.

[9] G. Kuo, F. L. Liu, I. Grossrubatscher, R. Ng, and L. Waller, “On-chip fluorescence microscopy with a random
microlens diffuser,” Optics Express, vol. 28, pp. 8384–8399, mar 2020.

[10] K. Yanny, N. Antipa, W. Liberti, S. Dehaeck, K. Monakhova, F. L. Liu, K. Shen, R. Ng, and L. Waller, “Minis-
cope3D: optimized single-shot miniature 3D fluorescence microscopy,” Light: Science Applications, vol. 9, no. 1,
p. 171, 2020.

[11] J. W. Goodman, Introduction to Fourier optics. Roberts and Company Publishers, 2005.

[12] K. Monakhova, J. Yurtsever, G. Kuo, N. Antipa, K. Yanny, and L. Waller, “Learned reconstructions for practical
mask-based lensless imaging,” Opt. Express, vol. 27, pp. 28075–28090, sep 2019.

[13] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J. H. Jacobsen, “Invertible Residual Networks,” in
36th International Conference on Machine Learning, ICML 2019, vol. 2019-June, pp. 894–910, 2019.

[14] M. Kellman, K. Zhang, E. Markley, J. Tamir, E. Bostan, M. Lustig, and L. Waller, “Memory-Efficient Learning
for Large-Scale Computational Imaging,” IEEE Transactions on Computational Imaging, vol. 6, pp. 1403–1414, 3
2020.

[15] M. Kellman, E. Bostan, M. Chen, and L. Waller, “Data-Driven Design for Fourier Ptychographic Microscopy,”
in 2019 IEEE International Conference on Computational Photography, ICCP 2019, Institute of Electrical and
Electronics Engineers Inc., 5 2019.

[16] A. Griewank and A. Walther, “Algorithm 799: Revolve: An implementation of checkpointing for the reverse or
adjoint mode of computational differentiation,” ACM Trans. Math. Softw., vol. 26, p. 19–45, Mar. 2000.

5



Appendix
A Physics-based network architecture
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Figure A.1: Physics-based reconstruction algorithm. (a) Our reconstruction network uses ISTA-Net+ with N unrolled
iterations of ISTA, each including a gradient step followed by a proximal step. The proximal step consists of a learned
nonlinear sparsifying transform G, soft thresholding, and a learned left inverse of the sparsifying transform G̃. (b)
Reverse checkpointing based memory-efficient backpropagation calculates the nth layer’s gradients in three steps: 1)
recompute the layer’s input from output. 2) recompute the layer’s auto-differentiation graph. 3) recompute the gradients.

B Optical Setup
The optical system contains a 20× 0.8 NA objective lens, a tube lens with focal length of 180mm, a relay lens

with focal length of 48mm, and a RML with average focal length of 15.6mm, giving an overall system magnification
of 6.5×.

C Training Data Generation

The size of the imaging volume is 500× 500× 50 µm3 consisting of 11 depth layers in 5 µm steps. The model
was trained on simulated volumes consisting of 200 volumes of 750× 750× 11 voxels containing beads of 1 and 2
micron diameters. The beads were simulated using Gaussians with full width at half maximum (FWHM) equal to the
desired bead size. The distribution of the peak intensity of the beads is uniform from .8 to 1.2. The volumes are then
multiplied by the desired photon emission level at training time to achieve the desired SNR. We also allow the density
of the fluorescent beads to vary across training volumes.
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