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ABSTRACT

With the qualitative extension of embedding representation and the method of ex-
plicit model construction, neural networks may achieve the rigour of symbolic
level logic reasoning without training data, raising the question of where the limit
of the scaling law for logical reasoning lies, i.e., whether data-driven machine
learning systems can achieve the same level by increasing training data and train-
ing time. We show two methodological limitations that prevent supervised deep
learning from reaching the symbolic-level syllogistic reasoning, a foundational
subset of logical reasoning: (1) training data can not distinguish all 24 types of
valid syllogistic reasoning; (2) end-to-end mapping from premises to conclusion
introduces contradictory training targets between neural components for pattern
recognition and logical reasoning. Taking the Euler Net as a representative super-
vised neural network, we experimentally illustrate that the limitations are com-
mon to all image-input supervised networks. We further challenge the most recent
ChatGPTs (GPT-5-nano and GPT-5) to determine the satisfiability of syllogistic
statements in four surface forms (patterns): words, double words, simple sym-
bols, and long random symbols, showing that surface forms affect the reasoning
performance and that ChatGPT GPT-5 may reach 100% accuracy but still provide
incorrect explanations. As empirical training processes are stopped after achiev-
ing 100% accuracy, we conclude that supervised machine learning systems may
follow scaling laws but will not attain the rigour of symbolic logical reasoning.

1 INTRODUCTION

The historical success of neural networks, particularly LLMs, has been witnessed in various ap-
plications, such as human-like communication (Biever, [2023), playing games (Silver et al., 2017}
Schrittwieser et al., [2020), predicting gene structures (Abramson et al., [2024), and solving math-
ematical tasks (Davies et al., 2021} [Trinh et al., |2024). By increasing the amount of training data
and training time (Kaplan et al.,|2020; Bahri et al., 2024)) and breaking complex tasks into multiple
steps (Creswell et al.| [2022; |Wei et al., 2023 Lightman et al.| |2023), data-driven machine learning
systems may steadily enhance their reasoning capabilities. However, their reasoning abilities are
still limited, even for simple logical reasoning (Biever, 2023)), for example, the syllogistic reasoning
system (Eisape et al.,|2024; |[Lampinen et al., 2024; |Kim et al., | 2025)), where the reasoning process is
primitive and cannot be broken into multiple steps. Recently, by promoting vector embeddings into
spheres and introducing the method of reasoning through explicit model construction and inspec-
tion (Johnson-Laird & Byrnel [1991; Knauff et al., [2003; |Goodwin & Johnson-Laird, 2005; Knauff,
2009), Sphere Neural Networks (SphNN) successfully go out of the paradigm of data-driven ma-
chine learning and achieve the rigour of symbolic syllogistic reasoning (Dong et al., |2024; [2025).
This is not surprising, as RNNs are Turing complete (Nowak et al., 2023} [Strobl et al., 2024) and
SphNN is a special RNN. However, this raises the question of whether data-driven machine learning
systems can reach (or be infinitely close to) the same performance by increasing the amount of train-
ing data and training time. Here, we report two methodological limitations that prevent them from
achieving symbolic-level syllogistic reasoning; thus, they will not achieve symbolic-level logical
reasoning, as syllogistic reasoning is the foundation and a subset of logical reasoning (Khemlani &
Johnson-Laird, 2012; Malpass & Marforil 2017).
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This paper is structured as follows: Section [2]introduces the criterion of symbolic-level syllogistic
reasoning. Section [3|surveys supervised neural syllogistic reasoning, recent assessments of LLMs in
syllogistic reasoning, neural logical proving, and ends with our research question. Sectiond]presents
two limitations that prevent all data-driven machine learning systems from reaching symbolic-level
syllogistic reasoning: (1) Training data cannot distinguish every valid type of syllogistic reason-
ing; (2) End-to-end mapping introduces contradictory targets between neural components of pattern
recognition and logical reasoning. Using Euler Net as a representative image-input supervised neural
network for syllogistic reasoning, section [5|shows that composition tables cannot distinguish syllo-
gistic reasonings with the same premises but different conclusions, and what kinds of unintended
inputs an end-to-end mapping process will generate. With recent GPT-5-nano and GPT-5, we ex-
perimentally demonstrate their unstable performances in syllogistic reasoning across four surface
forms: words, double words, simple symbols, and random symbols. Experiments with Euler Net
and two GPT versions convergently show that they follow the Scaling Law in increasing syllogistic
reasoning performances, but can not achieve the symbolic level. Section [6]concludes the work and
lists several research directions.

2  SYLLOGISTIC REASONING: THE ORIGIN OF LOGICAL REASONING

The central notion of logical reasoning, from the origin of logic research in history till now, is the
notion of “following from”, or more formally, “logical consequence from the premises” — what
can we know from the premises? Syllogistic reasoning, developed by Aristotle over 2,000 years
ago, is the start of the history of logical reasoning. From syllogistic reasoning, logicians developed
propositional logic in the Medieval period and first-order logic later (Malpass & Marfori, [2017).

Aristotelian syllogistic reasoning is a deduction with the form of two premises and one conclusion.
A syllogistic deduction only contains three terms (X, Y, and Z) and four possible relations: (1) uni-
versal affirmative: all X are Y'; (2) particular affirmative: some X are Y; (3) universal negative:
no X are Y'; (4) particular negative: some X are not Y. Let two premises be some lawyers are
presidents and no presidents are scientists, the conclusion and its negation will be some lawyers
are not scientists and all lawyers are scientists, as shown in Figure[I{e). The four relations can be
interpreted through set relations in Euler diagrams, shown in Figure [T[a-d). For example, some X
are Y can be interpreted as the relation “set X (Ox) intersects with set Y (Oy)”, which corresponds
to three possible diagrammatic relations: (1) Ox partially overlaps with Oy, (2) Ox contains Oy,
(3) Oy contains Ox. We can merge the three possible relations into one relation: Ox does not dis-
connect from Oy, “D(Ox, Oy ), as shown in Figure c). Formally, we define Ox disconnecting
from Oy as that there is no O that is part of Ox and Oy.

D(Ox,0y) £ 30zP(0z,0x) ANP(Oz,Oy)

We can define syllogistic relations through the primitive diagrammatic relation P (Smith}|1996) and
establish a one-to-one mapping (<) between syllogistic and diagrammatic relations as follows.

o “all X are Y < “Circle Ox is part of Circle Oy”, P(Ox, Oy);

» “some X are Y” < “Circle Ox does not disconnect from Circle Oy, -D(Ox, Oy );
* “no X are Y & “Circle Ox disconnects from Circle Oy, D(Ox, Oy );

* “some X are not Y < “Circle Ox is not part of Circle Oy, =P(Ox, Oy ).

A syllogistic reasoning can be satisfiable, unsatisfiable, valid, or invalid. Being satisfiable means
there is a case in which both the premises and the conclusion are true. Being valid means the con-
clusion is true in every case its premises are true (Jeffrey,|1981). For a valid reasoning, the negation
of its conclusion is unsatisfiable; for an invalid reasoning, the negation of its conclusion is satisfi-
able. Diagrammatically, syllogistic reasoning is satisfiable, if and only if we can construct an Euler
diagram, e.g., three circles satisfying the diagrammatic relations of the premises and conclusion;
otherwise, this reasoning will be unsatisfiable. In Figure[Ig), we successfully constructed an Euler
diagram of the premises and the conclusion some lawyers are not scientists, so this reasoning is saz-
isfiable. But, we cannot construct an Euler diagram of the premises and the conclusion all lawyers
are scientists, so this conclusion is unsatisfiable, and therefore, its negation is valid.

If we allow two terms in premises to change positions and fix the order of terms in the conclusion
statement, there will be 256 different forms of Aristotelian syllogistic reasoning, among which 24
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Figure 1: (a-d) Four syllogistic relations and their spatial relations; (e) from the two premises, the
logical conclusion is some lawyers are scientists, its negation is all lawyers are scientists; (f) spatial
statements of the syllogistic statements; (g) no sphere configuration satisfies the premises and the
conclusion P(lawyers, scientists); there is a sphere configuration that satisfies the premises and the
conclusion —P(lawyers, scientists)

types (listed in Table 2]in the Appendix) are valid (Khemlani & Johnson-Laird, 2012). A reasoning
network reaches the rigour of syllogistic reasoning, if it can correctly determine for sure any valid
syllogistic reasoning and construct counter-examples for invalid ones. This criterion also applies to
neural networks in reasoning with out-of-distribution data (unintended inputs).

3 STATE OF THE ART AND RESEARCH QUESTIONS

As a basic logical deduction, syllogistic reasoning is straightforward for symbolic methods (Vuk-
mirovic et al [2019; Bentkamp et al.l [2021). However, developing neural syllogistic models is
extremely challenging, to the extent that it was regarded as utopian a decade ago (Khemlani &
Johnson-Laird, 2012). The first supervised deep learning for syllogistic reasoning, Euler Net, did
not appear until 2018 (Wang et al.l 2018)), which mapped premises to conclusions, achieving 99.8%
accuracy on the benchmark dataset. The large family of data-driven neural networks, Large Lan-
guage Models (LLMs), can be applied for logical reasoning (Dong & Ma, |2025; |Lin et al.l 20255 L1
et al., 2025), e.g., Goedel-Prover (Lin et al) [2025), the Self-play LLM Theorem Provers (Dong &
Ma, |2025). However, in these systems, the correctness of formal states is not determined by LLMs,
but by humans or symbolic provers, such as Isabelle, LEAN.

The method of Chain-of-Thought (CoT) (Wei et al.| 2023} [Li et al.l 2025)) is a strategy to improve
the reasoning performance of neural networks by breaking a task into several intermediate steps,
which does not affect the performance of single-step reasoning. Several studies have explored the
syllogistic reasoning (as single-step reasoning) performance of LLMs. [Eisape et al.|(2024])) evaluated
PalLM 2 family LLMs (Google} 2023) and Llama 2 family LLMs (Touvron et al., 2023), showing
that PaLM 2-Small achieved the best accuracy about 75%, better than PalLM 2-Large, which does
not strictly follow the Scaling Law. [Lampinen et al.| (2024) evaluated PaLM 2 LLMs and GPT-
3.5 (OpenAll 2023), concluding that LLMs may achieve above-chance performances in familiar
situations but exhibit numerous imperfections in abstract reasoning, including syllogism. Wysocka
et al.| (2025) examined Mistral LLMs (Jiang et al., 2023} Mistral, 2023), Gemma LLMs (Gemma
& Googlel 2024), Llama-3 LLMs (MetaAll 2024)), and BioMistral LLMs (Labrak et al., [2024)),
with conclusions that zero-shot LLMs achieved an average accuracy between 70% on generalised
modus ponens and 23% on disjunctive syllogism, and both zero- and few-shot LLMs are sensitive to
surface-level lexical variations. Thus, they are far from achieving the reliability required for high-
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Figure 2: Data-driven machine learning systems for syllogistic reasoning. (a) Supervised deep learn-
ing using image inputs, e.g., Euler Net; (b) the composition table that generates training data. Each
row and each column are two premises, the intersection cell is the conclusion; (c) a GPT architecture
for syllogistic reasoning with symbolic inputs; (d) the attention mechanism of transformers. @, K,
and V' form a statistical combination table.

stakes biomedical applications, let alone attaining the rigour of symbolic-level reasoning. |Dong
et al.| (2025) evaluated GPT-3.5-turbo and GPT-4 in determining the validity of all types of classic
syllogistic reasoning in three lexical forms: (1) meaningful words, (2) simple symbols, and (3) long
random symbols, showing that ChatGPT (GPT-3.5-turbo) reached the best performance (correct
decision and explanation) of 46.9% using statements with simple symbols, and ChatGPT (GPT-40)
reached the best performance of 82.4% with long random symbols.

Considering (1) the scaling law (Kaplan et al., [2020; Bahri et al.| 2024)), (2) the huge training costs
(in terms of data, GPUs, and training time) of LLMs, (3) the Turing Completeness of recurrent
neural nets (SIE, [1995; Nowak et al.l [2023)), and (4) Sphere Neural Networks (Dong et al., [2025)),
our research question can be stated as follows: Can data-driven neural networks reach or be infinitely
close to this level if the amount of training data increases to infinity? A negative answer will lead to
the conclusion that supervised neural networks cannot reach the symbolic level of logical reasoning,
because syllogistic reasoning is the foundation of logical reasoning.

4 METHODOLOGICAL DEFICITS OF DATA-DRIVEN MACHINE LEARNING

In this section, we disclose two methodological deficits that are introduced inevitably by utilising
training data, which prevent data-driven neural networks from achieving the symbolic level of syl-
logistic reasoning. Our analysis will start with Euler Net, the only supervised neural network that
reaches 99.8% accuracy for syllogistic reasoning, and extend our conclusions to Transformer archi-
tectures and LLMs.

4.1 TRAINING DATA CANNOT DISTINGUISH EACH VALID TYPE OF SYLLOGISTIC REASONING

Inspired by the structure of the human visual cortex, Wang et al.|(2018};[2020) developed Euler Net,
whose inputs are two images, each consisting of two coloured circles with a set-theoretic relation,
as illustrated in Figure 2fa). Colours of circles distinguish three terms in syllogistic reasoning.
The common colour in the two input images is the mid-term. Two Siamese networks encode each
input image into a latent vector. The output of Euler Net is a vector representing the set-theoretic
relation(s) between the subject and the predicate. The mapping from two premises to conclusions is
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Figure 3: The combination table establishes associations between inputs (premises) and output (con-
clusion). Premises of Some ... are (not) ... occupy three columns or rows. The cell with the green
boundary hosts 5 valid types of syllogistic reasoning.

enumerated in the combination table, where conclusions are symbolised as a vector, as illustrated in
Figure [2(b). The training data takes the form of ((image, image), vector). The benchmark dataset
consists of 96000 pieces of data. They are generated by the combination table as shown in Figure[3]
Euler Net achieved 99.8% accuracy on the testing dataset. As shown in Figure 3] the two syllogistic
premises some ... are ... and some ... are not ... occupy three rows and columns. Nine table cells
contain various syllogistic conclusions. This follows the fact that training data cannot separate each
valid type of syllogistic reasoning. This produces the phenomenon that Euler Net demonstrates close
100% accuracy in the benchmark datasets, but, its performance in determining the correctness for
each valid syllogistic reasoning ranges from 50% to 100%, as listed in Table [3]in the experiment.
This is the first deficit: through mapping syllogistic premises to conclusions in the form of set-
theoretic diagrams, we will not have training data that distinguishes each valid syllogistic reasoning.

4.2 END-TO-END LEARNING INTRODUCES CONTRADICTORY TRAINING TARGETS

The architecture of image-input supervised

(]
neural networks is an end-to-end pipeline from (, 5
a pattern recognition component to a reason- \) N output| B
ing component. The pattern recognition com- 0.0051 é
ponent recognises Objf.:CtS in input images. The Reasoning 0.9906 *g
reasoning component integrates recognised ob- M j0.0153 g
jects in the two input images into one model O - 00051 £
and predicts the relation between target objects %

from the model. A well-trained deep-learning
pattern recognition system can recognise an ob-
ject from its parts, which is a desired feature in Figure 4: Euler Net may inject blue and red circles
Computer Vision (He et al.|[2022)) — Siamese ar-  into the inputs and predict “blue contains red”.
chitecture was used to recover frames in video

recognition (Gupta et al., 2023)), and can recover the whole image of the next frame, given the cur-
rent image and only 5% of the image of the next frame. However, logical deduction is to identify
information implicitly in the premises (Simon, 2019); thus, injecting new objects into the premises is
not allowed. This is the second deficit: an end-to-end pipeline that maps the premises to the conclu-
sion introduces contradictory training targets between the neural components of pattern recognition
and logical reasoning — the pattern recognition component may inject new objects that do not exist
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in the input images, and the reasoning component can neither stop nor notice this. For example,
the Siamese networks (pattern recognition components) of Euler Net may inject red and blue circles
into the input images, causing the reasoning component to output [0.0051,0.9906, 0.0153, 0.0051],
which means “blue circle contains red circle”, while the input images have only two single

, as shown in Figure 4]

4.3 EXTENDING TO TRANSFORMERS AND LLMS

Any data-driven neural network that suffers from one of the two deficits will not achieve the sym-
bolic level performance in syllogistic reasoning. Here, we extend our analysis to Transformers and
Transformer-based LLMs, showing they cannot have perfect training data to distinguish each valid
type of syllogistic reasoning (deficit 1); in Experiment 3, we demonstrate LLMs’ reasoning perfor-
mances are affected by lexical patterns (deficit 2).

The basic function LLMs is to complete sentences. For example, given all A are B and all B are C.
Therefore, ____, a well-trained LLM will complete all A are C, as illustrated in Figure |ch). This is
a well-known type (BARBARA) of syllogistic reasoning. Another valid type (BARBARI) has the
same premise but a different conclusion (we list all valid types and their names of syllogistic reason-
ing in the Appendix [B): some A are C. LLMs are data-driven neural networks whose training data
have both types. The centre learning component is the Multihead Attention mechanism (Vaswani
et al.|[2017), as illustrated in Figure Ekd). The learnable weight matrices W, Wy, W, automatically
learn associations among concepts in linguistic corpora and represent them as a Key-Query-Value
table structure: Keys and Queries are organised as rows and columns of a table, and the Values are
the cells (Raschkal 2024, pp.70-72). Compared to other data-driven neural networks, such as RNNs
and LSTMs, Transformers can establish long-distance associations (Qin et al., [2023)), but this does
not enable them to distinguish each valid type of syllogistic reasoning.

5 EXPERIMENTS

Achieving symbolic-level | jsossossososooioiioooooos .
logical reasoning requires
neural networks to make

O e [ yes _)@
Ta ¢ O over?
decisions for sure with- - @

out using symbolic provers.
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. . 1 2
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examine whether increas- expected output OO
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‘Compute expected 10,0,0,1]

ing training data will al- ouput vt T
low Euler Net (Wang et al.|

2018; [2020) to improve

its performance infinitely Figure 5: The architecture of Super Euler Net.

close to the symbolic level.

In the setting of Euler Net, all image inputs are circles, therefore, the correct outputs of syllogistic
reasoning can be computed. We extend Euler Net into Super Euler Net (SupEN) that can automat-
ically identify incorrect output of Euler Net and create new training data, as illustrated in Figure [5}
SupEN randomly generates images, and checks whether the output of Euler Net is correct (that
is, the binary cross-entropy loss between the network output and the correct output is less than a
threshold). If not, a new piece of input-output pair for training will be created. The main procedure
is outlined in Algorithm I] (in the Appendix [A).

5.1 EXPERIMENT 1

The aim: The pattern recognition component of Euler Net may automatically recognise the whole
from the parts (Figure [d). If we introduce a new class unintended inputs for all the parts, we check
whether increasing training data can exhaust the parts.

Setting of the experiment We define a new output vector [0, 0, 0, 0] representing unintended inputs
and train SupEN to classify single-circled inputs into [0, 0, 0, 0] till it reaches 100% accuracy. In the
end, SupEN can perform syllogistic reasoning for regular inputs and classify single-circle inputs as
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Figure 6: (a) Super Euler Net may automatically complete half circle into full circle (with the output
[0.0002,0.9317,0.0003, 0]). As we decrease the length of the arc to 120°, 60°, and 0°, it decreases
this value accordingly. (b) Super Euler Net may automatically ignore the half circle and only take
one green circle as input (with the output [0.0001, 0.0029, 0.0009, 0.0002]). As we increase the
length of the arc to 240°, 300°, and 360°, it increases this value accordingly.

unintended. Then, we create a new dataset, in which one input image consists of a green circle and
a half red circle, and the other image consists of a half blue circle and a green circle.

Experiment results Experiments show that sometimes SupEN completes the two half circles into
two whole circles, and concludes [0, 1,0, 0] the blue circle contains the red circle, as shown in
Figure [6(a). In this case, if we decrease the arc length of the two half circles, the confidence value
flagging the blue circle contains the red circle will decrease, as shown in input images and outputs
from Figure [6(a) to (b). Sometimes, SupEN simplified one green circle and a half circle into one
green circle (half circles are neglected) and concludes the inputs are unintended [0, 0, 0, 0], as shown
in Figure |§Kc). In this case, if we increase the arc length of the two half circles, the confidence value
flagging the blue circle contains the red circle will increase correspondingly, as shown in input
images and outputs from Figure[§[c) to (d). This, however, will automatically create another kind of
unintended pattern: one green circle and a partial circle with (180° 4+ 360°)/2 = 270°. This loop
will never end.

Conclusion Training data can not exhaust unintended inputs, for new training data generates new
unintended inputs. Thus, SupEN will not reach symbolic-level reasoning if we do not restrict inputs.

5.2 EXPERIMENT 2

The aim If we restrict all inputs to be intended (either two complete circles or one single circle)
and repeatedly increase training data, we check whether SupEN will increase performance and be
infinitely close to the symbolic level.

Setting of the experiment As SupNN can automatically identify reasoning errors and generate
new training data, we let it repeatedly switch between searching for new training data and training
using new training data. In the search procedure, the central point and the radius of a circle are
random, with two restrictions as follows: (1) circles are fully inside the boundary of an image; (2)
the minimum radius is 0.1. We allow all possible combinations between two circles. Following
these criteria, SupEN creates a new testing data set D;.
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In the training stage, SupEN creates a training data D that consists of newly created training data
D, and original training data Ds, Dy = D1 U D, as shown in Figure For example, D; is a newly
created dataset with one-circle images. The size of Dy is 9 times larger than that of D; .

Tesing with random dataset Different from

the standard deep learning paradigm, in which O Q ‘ @ @ ‘ m

testing data and training data shall have the
same distribution (Goyal & Bengiol [2022), we

need to evaluate whether SupEN can reach (or Q Q ‘ @ @ ‘ m
Dy D,

be infinitely close to) 100% accuracy for new
testing data. Thus, in this experiment, the test-
ing data are randomly generated. We let SupEN
loop 20 times through the searching-training Figure 7: D is a newly created dataset; Ds is ran-
process to improve its reasoning performance' domly selected from the standard training dataset.

Experiment result Being tested with 100
randomly generated testing data, SupEN
reaches 56.0%, before the loop (This Su-
PEN corresponds to a well-trained Euler
Net). Through repeated training of newly
created datasets, the accuracy improves
steadily and reaches a peak value of 97.8%
after the 19-th iteration, as illustrated in
Figure 8] The increase of accuracy sup-
port the law of scaling. The oscillation
is because we randomly search instead of 207 _e— Accuracy

searching with gradual descent operations. —e— Smoothed Accuracy

804

Accuracy
5 3

0
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Tesing with data covering all valid the number of iteration

types of syllogistic reasoning Reach-

ing symbolic-level syllogistic reasoning re-  Figure 8: The accuracy of SupEN at each iteration
quires to reach or be infinitely close to with newly generated training data.

100% accuracy for each valid type of syl-

logistic reasoning. Thus, we created another testing dataset covering all 24 valid types as follows:
We group equivalent syllogistic statements into the same group, for example, no x are y and no y are
x are in the same group. This reduces 24 valid syllogism types into 14 groups. For each group, we
created 500 different premises by extracting hypernym relations from WordNet-3.0 (Miller, |1995).
For each premise, we deduce its valid logical conclusion and its negation, totalling 14000 syllo-
gism reasoning tasks. In the hypernym structure, elementary_particle.n.0l is a descendent of natu-
ral_object.n.0l and artifact.n.0l is not a descendent of natural_object.n.01. So, we create the valid
syllogistic reasoning and its negation, as shown below. We use the pre-processing tool of the original
Euler Net to transform premises into coloured circles, and conclusions into vectors.

Experiment result. We  fed th? new  qall elementary_particle.n.0I are natural_object.n.01.
dataset to a well-trained SupEN (with 19-  no artifact.n.01 are natural_object.n.01.

th loop of improvements). It works very  no elementary_particle.n.01 are artifact.n.0l.
well if a task falls into a valid syllogis- ] )
tic structure: For 8 syllogistic structures, all elementary_particle.n.0l are natural_object.n.0l.

it reaches 100% accuracy, namely, BAR-  $0me artifact.n.01 are natural_object.n.0l.

BARA, CELARENT, CESARE, DARA-  some elementary_particle.n.0l are artifact.n.Ol.

PTI, CALEMES, CAMESTRES, FELAPTON, and FESAPO. Accuracies of the remaining 16 types
range from 50% to 83.3%. The overall accuracy is 76%, as shown in Table [3|(in the Appendix |C)).
This performance is consistent with [Eisape et al| (2024)’s evaluation with PaLM 2 and Llama 2
family LLMs — the best performance was achieved by PaLM 2-Small with accuracy about 75%,
better than PaLLM 2-Large. These results suggest that the reasoning performance may not be in-
finitely close to the symbolic level solely by increasing training data and training time (in terms of
the number of loops).
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Table 1: Syllogistic reasoning performance of OpenAl GPT-5-nano and GPT-5. ‘v'EXPL’ for cor-
rect explanation, ‘X H’ for hallucinative explanation. The ‘#correct decision-X H’ column means a
correct decision with a wrong explanation; the ‘#wrong decision-v'EXPL’ column means a wrong
decision with a correct explanation.

#correct decision #wrong decision

version surface form v EXPL XH vEXPL XH  #simple acc
GPT-5-nano words 160 (62.5%) 90 5 1 97.7%
double words 230 (89.4%) 22 4 0 98.4%

simple symbols 226 (88.3%) 24 6 0 97.7%

long random symbols 222 (86.7%) 25 9 0 96.5%

GPT-5 words 239 (934%) 16 I 0 99.6%
double words 234 (91.4%) 21 1 0 99.6%

simple symbols 236 (92.2%) 15 5 0 98.0%

long random symbols 231 (90.2%) 25 0 0 100.0%

5.3 EXPERIMENT 3

The aim We evaluate two versions of the most recent Open AI GPTs, GPT-5 and GPT-5-nano,
in syllogistic reasoning, to examine whether the scaling law may guarantee the performance to
reach (or be infinitely close to) the symbolic-level. Concretely, we examine whether surface lexical
patterns can affect their reasoning performance (deficit 2).

Setting of the experiment We follow the method in (Dong et al., 2025) that used syllogistic state-
ments with four surface lexical patterns: (1) meaningful words, e.g. Socrates, (2) doublele words,
e.g. City_Socrates, (3) simple symbols, e.g. S, and (4) long random symbols, e.g. VnWKvqgcBsEhI,
to determine the satisfiability of all 256 types of classic Aristotelian syllogistic reasoning. The moti-
vation for introducing the new pattern of double words is to enable the meaning of words to support
reasoning, while reducing the bias inherent in single words.

Evaluation metrics We use two evaluation metrics: (1) the normal metrics in terms of accuracy
(the #simple acc column in Table [I); (2) the metrics of reaching symbolic-level logical reason-
ing, namely, a response is correct if both the decision and the explanation are correct (the #correct
decision-v'EXPL column in Table[T).

Results The experiment’s results, measured in normal metrics, range from 97.7% to 100.0%, con-
firming the high performance of both OpenAI’'s GPT-5-nano and GPT-5 in syllogistic reasoning.
Meanwhile, eight experiments show that surface lexical patterns can affect reasoning performance,
and each version made at least 15 correct decisions with incorrect explanations. Being fed with
double-word statements, GPT-5-nano achieved 89.4% correct decisions with correct explanations,
better than using other forms. With single-word statements, GPT-5 achieved 93.4% correct deci-
sions with correct explanations, better than using other forms. In particular, GPT-5 achieved 100%
correct decisions with long random symbols, but 25 correct decisions were supported by wrong
explanations. As 100% accuracy is the maximum performance guided by the scaling law, usually
accompanied by the stop of training, reaching symbolic-level performance will be beyond this limit.

6 CONCLUSION AND OUTLOOKS

Considering the simple forms of syllogistic reasoning, we may assume that deep neural networks can
easily solve them. Recent evaluations of neural syllogistic reasoning have focused on linguistic-input
neural networks, e.g., LLMs, and explored their internal mechanisms, with the implicit conclusion
that they do not reach the symbolic level of syllogistic reasoning. Complementarily, we identify
two methodological limitations that prevent supervised neural networks from achieving symbolic-
level syllogistic reasoning, although their performance may improve. Our work focuses on the
training data and their surface forms — a precondition that all supervised neural networks encounter,
suggesting the need to seek alternative neural representations, methods, and architectures to achieve
more cost-effective, high-performance, and interpretable neural logical reasoning.
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A THE MAIN PROCEDURE OF SUPER EULER NET

Algorithm 1: Automatic generating new training data

Input: Euler Net: EN;

The maximum size of unintended data set: maxSize;

The timer: Timer;
The maximum time: maxTime;

The threshold to be unintended: Threshold
Output: A new training data: newData

newData < 0;
DataSize + 0;
Timer < set_timer();

while DataSize <maxSize A Timer < maxTime do
Input + randomly_generate_one_input ()
ENOutput +—output_of_network (EN, Input);
Output < compute_correct_output (Input)
if Loss(ENOutput, Output) > Threshold then
newData < newData U {(Input, Output)}

DataSize < DataSize + 1

return newData

B THE LIST OF 24 VALID TYPES OF SYLLOGISTIC REASONING

Table 2: List of all 24 valid syllogisms, each having a name whose vowels indicate types of moods,
e.g., vowels in ‘CELARENT"’ indicates universal negative (E), universal affirmative (A), and uni-

versal negative (E).

Num Name Premise Conclusion
1 BARBARA all X are Y, all Y are Z all X are Z
2 BARBARI all X areY,allY are Z some X are Z
3 CELARENT noYis Z,all X are Y no Xis 2
4 CESARE noZisY,all X areY no X is Z
5 CALEMES al ZareY,noY is X no X is 2
6 CAMESTRES all ZareY,no XisY no X is 2
7 DARII allY are 7, some X are Y some X are Z
8 DATISI allY are Z, some Y are X some X are Z
9 DARAPTI allY are X, all Y are Z some X are Z
10 DISAMIS some Y are Z, all Y are X some X are Z
11 DIMATIS some Z are Y, all Y are X some X are Z
12 BAROCO all ZisY, some X are not Y some X are not Z
13 CESARO noZisY,all X areY some X are not Z
14 CAMESTROS all X areY,noY is Z some X are not Z
15 CELARONT noXisY,all ZareY some X are not Z
16 CALEMOS al ZareY,noYis X some X are not Z
17 BOCARDO some Y are not Z, allY are X some X are not Z
18 BAMALIP allY are X, all Z are Y some X are Z
19 FERIO some X areY,noY is Z some X are not Z
20 FESTINO some X are Y, no ZisY some X are not Z
21 FERISON some Y are X,noY is Z some X are not Z
22 FRESISON some Y are X, no Zis Y some X are not Z
23 FELAPTON allY are X,noY is Z some X are not Z
24 FESAPO allYare X,noZisY some X are not Z
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C REASONING PERFORMANCES OF EULER NET AFTER 20 TIMES LOOP

Table 3: Performances of SupEN (after 19 loops of improvements) for each valid type of syllogistic

reasoning.
Valid Type Accuracy | Valid Type Accuracy | Valid Type Accuracy
BARBARA 100% BARBARI 50% BAROCO 66.7%
BAMALIP 50% BOCARDO 75% CALEMES 100%
CAMESTROS 50% CELARENT 100% CESARO 50%
CALEMO 50% CESARE 100% CELARONT 50%
DARAPTI 100% DARII 75% DISAMIS 75%
FESAPO 100% DATISI 75% DIMATIS 75%
FELAPTON 100% FERIO 83.3% FERISON 83.3%
CAMESTRES 100% FRESISON 83.3% FESTINO 83.3%

D CODE AND DATA

https://anonymous.4open.science/r/EN_GPT5-1051/README.md
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