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ABSTRACT

Diversity plays a significant role in many problems, such as ensemble learning,
reinforcement learning, and combinatorial optimization. How to define the diver-
sity measure is a longstanding problem. Many methods rely on expert experience
to define a proper behavior space and then obtain the diversity measure, which is,
however, challenging in many scenarios. In this paper, we propose the problem
of learning a behavior space from human feedback and present a general method
called Diversity from Human Feedback (DivHF) to solve it. DivHF learns a be-
havior descriptor consistent with human preference by querying human feedback.
The learned behavior descriptor can be combined with any distance measure to
define a diversity measure. We demonstrate the effectiveness of DivHF by inte-
grating it with the Quality-Diversity optimization algorithm MAP-Elites and con-
ducting experiments on the QDax suite. The results show that DivHF learns a
behavior space that aligns better with human requirements compared to direct
data-driven approaches and leads to more diverse solutions under human prefer-
ence. Our contributions include formulating the problem, proposing the DivHF
method, and demonstrating its effectiveness through experiments.

1 INTRODUCTION

Maintaining the diversity of a set of solutions is of great importance across a wide range of scenar-
ios, such as reinforcement learning (RL) (Lehman & Stanley, 2011; Conti et al., 2018; Eysenbach
et al., 2018; Parker-Holder et al., 2020; Chalumeau et al., 2023a; Wu et al., 2023; Yao et al., 2023),
ensemble learning (Brown et al., 2005; Zhou, 2012; Gomes et al., 2017; An et al., 2021; He et al.,
2023), and combinatorial optimization (Do et al., 2022; Nikfarjam et al., 2022). For example, di-
versity is a key requirement in open-ended learning (Maley, 1999; Standish, 2003; Liu et al., 2021);
in level generation tasks of RL, the generated levels should be diverse to improve the robustness
of the trained policy (Jiang et al., 2021b;a; Fontaine et al., 2021; Bhatt et al., 2022; Parker-Holder
et al., 2022; Zhang et al., 2023); in ensemble learning, base learners should be diverse to make the
ensemble learner perform well (Tumer & Ghosh, 1995; Brown et al., 2005; Sheikh et al., 2022).
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Diversity optimization is a general and important problem of machine learning (Brown et al., 2005).
A lot of diversity optimization algorithms have been proposed to obtain a set of diverse solutions
for various scenarios (Pugh et al., 2016; Eysenbach et al., 2018; Fu et al., 2023). In general, most of
the algorithms can be abstracted into three steps: 1) mapping the solutions (and the corresponding
data collected during the evaluation of the solutions) into a latent feature space that can reflect
the features of the solutions, 2) defining the diversity measure by combining the features and a
distance (or similarity) metric, 3) obtaining a set of diverse solutions under the diversity measure.
Among these steps, how to define the diversity measure is a longstanding problem (Maley, 1999;
Kistemaker & Whiteson, 2011; Parker-Holder et al., 2020; Grillotti & Cully, 2022a). Since there are
various methods for distance measure (e.g., ℓ2 distance and cosine similarity), the core of diversity
definition lies in the definition of feature space. In this paper, we consider the application of diversity
in RL and refer to the feature space as the behavior space following prior works (Pugh et al., 2016;
Fontaine et al., 2020; Chalumeau et al., 2023a).

There are currently two main categories of methods for defining behavior space. One is to obtain
the behavior space directly from the data themselves (Eysenbach et al., 2018; Grillotti & Cully,
2022a), i.e., totally data-driven approaches. However, without considering human requirements, the
learned behavior spaces are usually far away from the ones required by humans. The other is to
require an expert to define the behavior space directly (Lehman & Stanley, 2011; Mouret & Clune,
2015; Nilsson & Cully, 2021; Fontaine & Nikolaidis, 2021). However, in many scenarios, even
experts find it challenging to provide an appropriate behavioral metric, e.g., Real-Time Strategy
(RTS) games like StarCraft (Vinyals et al., 2017) and Multi-player Online Battle Arena (MOBA)
games like Dota (Berner et al., 2019).

Despite the inability to accurately describe the behavior space within humans’ minds and even pro-
vide an accurate definition, humans often have the ability to express a preference based on their
internal behavior space, i.e., they can tell which two solutions are more similar and which two are
more diverse. For instance, in cooperative games between humans and AI, human players can pro-
vide feedback on which two agent partners exhibit similar behaviors (thus making humans feel bored
and uninterested) and which two demonstrate diverse behaviors (thus creating a sense of excitement
and intrigue).

In this paper, we propose the problem formulation of How to learn a behavior space from human
feedback for the first time. Then, we propose a general method Diversity from Human Feedback
(DivHF) to solve the problem. DivHF learns the behavior space by querying the human preference
and learning a model called behavior descriptor that is consistent with human preference. Then,
we can combine the learned behavior descriptor with any distance measure to obtain the diversity
measure, and use an arbitrary diversity optimization algorithm to obtain a set of diverse solutions
based on it.

Our proposed method DivHF is general, which can cooperate with arbitrary diversity optimization
algorithms. As an instantiation, we apply DivHF to Quality-Diversity (QD) optimization algorithms,
which aim to find a diverse set of high-quality solutions of a problem and have many successful
applications in RL. In particular, we conduct experiments with a representative QD algorithm MAP-
Elites (ME) (Mouret & Clune, 2015; Cully et al., 2015) on the popular QDax suite (Lim et al., 2023;
Chalumeau et al., 2023b). The results demonstrate that the behavior space learned by DivHF is much
more consistent with human requirements than the one learned directly from the data themselves
without human feedback (i.e., Auto-encoder), and the final solutions obtained by the algorithm are
more diverse under human preference. The effectiveness of DivHF is further verified by illustration
of the learned behavior space and hyper-parameter sensitivity analysis.

Our contributions are as follows:

• We formulate the problem of obtaining diversity from human feedback.

• We propose a general method, diversity from human feedback (DivHF), to solve the prob-
lem.

• Experimental results show that DivHF can learn the accurate behavior descriptor from hu-
man feedback and help the diversity optimization algorithms to obtain solutions that are
diverse under human preference.

2



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

2 PRELIMINARIES

We focus on the diversity optimization algorithms, which can be abstracted into two parts: mapping
the solutions {θi}Ni=1 (and the data {τi}Ni=1 collected during the evaluation of the solutions) into
behavior vectors {dϕ(θi, τi)}Ni=1 by a behavior descriptor dϕ(·, ·) parameterized by ϕ, and then
optimizing the diversity Div({dϕ(θi, τi)}Ni=1) in the behavior space. For convenience, we use x to
denote the pair (θ, τ ) of a solution θ and its corresponding evaluation data τ .

Considering the human requirements, for two pairs of solutions (x1,x2) and (x3,x4), we denote
(x1,x2) ≻ (x3,x4) if and only if (x1,x2) is more similar than (x3,x4) under human preference.

3 RELATED WORK

Diversity Optimization. Most diversity optimization algorithms can be viewed as optimizing the
diversity metrics in a latent space, e.g., behavior space. The mapping from the solutions to the
behavior is the common process of the algorithms, which is critical and determines whether the
algorithms can generate a set of diverse solutions that meet human requirements.

Take a popular family of diversity optimization algorithms, i.e., QD algorithms (Mouret & Clune,
2015; Cully et al., 2015; Lehman & Stanley, 2011; Chatzilygeroudis et al., 2021) as examples,
which aim to generate a set of high-quality and diverse solutions. Given a fitness function f to
be maximized and an expert-defined behavior descriptor d, the goal of QD is to generate a set of
solutions that cover the space of behavior descriptors and have high fitness values.

ME (Mouret & Clune, 2015; Cully et al., 2015), the most well-known QD algorithm, maintains an
archive by discretizing the behavior space into M cells {Si}Mi=1 and storing at most one solution
in each cell. ME aims to fill the cells with high-quality solutions. Thus, the goal of ME is to
maximize the QD-Score

∑M
i=1 f(θi), where θi represents the solution contained within the cell

Si, i.e., d(θi) ∈ Si. If a cell Si does not contain a solution θi, then f(θi) is considered as 0. For
simplicity, the fitness value f(·) is assumed (or converted) to be non-negative to prevent the solutions
from decreasing the QD-Score. As a type of evolutionary algorithm, the main process of ME is to
select parent solutions from the archive, generate offspring solutions through variation operators,
evaluate the offspring solutions, and update the archive.

Behavior Space of Diversity Optimization. According to the way the behavior space is defined,
the algorithms can be usually categorized into two types. The first type is to obtain the behavior
space directly from the data themselves. For example, AURORA (Cully, 2019; Grillotti & Cully,
2022a) uses auto-encoder to learn the behavior space in an unsupervised manner from raw sensory
data; RUDA (Grillotti & Cully, 2022b) considers the relevance of the solutions in downstream tasks,
varying the distance metric to generate more relevant solutions; Many skill discovery methods (e.g.,
DIAYN (Eysenbach et al., 2018) and DADS (Sharma et al., 2020)) sample several diverse behaviors
from a behavior space, and train a behavior-conditioned policy to maximize the mutual information
between the behaviors and the trajectories of the policy. However, as these type of methods do not
consider the human requirements of diversity, the obtained diversity is usually far away from the
one required by human, making them less useful in many practical and complex scenarios.

The second type considers the requirements of humans by requiring an expert to define the behavior
space directly. For example, given an expert-defined behavior space, ME (Mouret & Clune, 2015;
Cully et al., 2015) and NSLC (Lehman & Stanley, 2011) find a set of diverse solutions that cover
the behavior space. In robotic training, in order to train a set of policies that help recover quickly
from damage, the experts use the touchdown time of feet as the behavior descriptor and use ME
to obtain a set of solutions with varying frequency of feet usage (Cully et al., 2015; Nilsson &
Cully, 2021; Chalumeau et al., 2023a). Interactive Constrained ME (Alvarez et al., 2019; 2022)
enables the human designer to flexibly change the feature dimensions (i.e., behavior space) for
content generation. However, in many scenarios, it is hard to define a proper behavior space, even
for the experts.

Learning from Human Feedback. Preference-based RL is proposed to provide human-preferred
objectives to RL agents (Wirth et al., 2017; Christiano et al., 2017; Casper et al., 2023). In this

3



2nd Workshop on Agent Learning in Open-Endedness (ALOE) at NeurIPS 2023

approach, humans are asked to provide their preferences regarding pairs of agents’ historical trajec-
tories. By using human feedback, a reward model is learned and utilized to provide learning signals
to the agents. Preference-based RL offers an effective means to learn from human intentions, rather
than relying solely on explicitly designed rewards. Its effectiveness has been demonstrated in various
domains, such as robotics control (Zhang et al., 2019) and chatbots (Stiennon et al., 2020; Ouyang
et al., 2022). Notably, reinforcement learning from human feedback (RLHF) has emerged as a key
strategy for fine-tuning large language models (Open-AI, 2023; Google, 2023).

In this work, we investigate the important question for the first time: How to define a proper behavior
space for diversity optimization? Note that defining a proper behavior space directly is difficult even
for an expert in many scenarios. Inspired by RLHF, we propose the DivHF method to solve this
problem by learning the behavior space and optimizing the diversity from human feedback. Unlike
RLHF, DivHF considers finding the diversity measure rather than a reward function (or reward
bonus (Hussonnois et al., 2023)). DivHF asks the human to determine which pair of policies is
more diverse, rather than which policy is preferred. DivHF predicts the behaviors of solutions to be
used by diversity optimization algorithms, rather than the rewards of state-action pairs.

4 DIVHF

4.1 PROBLEM FORMULATION

In this paper, we explore the following problem: How to obtain a set of diverse solutions based
on human preference? This problem is common and natural since humans often find it challenging
to define a proper behavior space or assign exact behavior values. Instead, it is much easier for
humans to distinguish which two solutions are the most similar and which two are the most diverse
from a set of solutions, which is expressed through human feedback. This feedback reflects their
preference for the diversity. If we can learn a behavior descriptor to establish a behavior space,
we can easily define similarity (or distance) using various measures such as cosine similarity or
Euclidean distance, and obtain a set of diverse solutions based on the learned behavior descriptor
by any diversity optimization algorithms. Therefore, our main objective is to efficiently address the
problem of How to learn a behavior descriptor from human feedback?.

To be more clear, given the data {xi}Ni=1, we ask for the human preference. If the human thinks
(x1,x2) is more similar than (x3,x4), then we want the similarity between dϕ(x1) and dϕ(x2) to
be larger than that between dϕ(x3) and dϕ(x4), to be consistent with the human preference.

4.2 OVERALL METHOD

We propose the DivHF method to learn the behavior descriptor and optimize the diversity from
human feedback. The main idea is to select some data to query for human preference and train a
model of behavior descriptor that is consistent with human preference. As shown in Figure 1, the
main process of DivHF can be summarized as follows.

1. Select some solutions (along with the corresponding evaluation data, e.g., trajectories) as
examples to query human preference (red arrows).

2. Train a behavior descriptor model to extract the behaviors of solutions according to the
human preference data (yellow arrows).

3. Optimize the solutions based on the learned behavior descriptor by using an arbitrary di-
versity optimization algorithm (blue arrows).

4.3 DATA COLLECTION: QUERY THE HUMAN PREFERENCE

Considering the requirements of diversity optimization algorithms, a behavior descriptor model
takes the solutions and/or the evaluation data as input features, and the behavior predictions as
outputs. The model should be designed according to the structure of features. For example, if the
evaluation data are trajectories of reinforcement learning, we can use bidirectional stacked Long
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997; Dyer et al., 2015) as the model.
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Figure 1: The workflow of DivHF.

To train the model, we need to select some solutions and their evaluation data to query human pref-
erence. DivHF takes a set of three solutions (x1,x2,x3) as a query, and lets the human determine
which two are the most similar and which two are the most diverse. If we take only two solutions as
a query, the human will be required to tell their exact similarity value, which is hard for the human.
If we take too many solutions as a query, it will take more time for the human to determine.

4.4 TRAINING THE BEHAVIOR DESCRIPTOR

With the human preference data, we want to train the model that can give behaviors that are con-
sistent with human preference by a loss function and an optimizer. As shown in Figure 2, given a
piece of human preference, we want to maximize the similarity of the behaviors of the most sim-
ilar solutions and minimize the similarity of the behaviors of the most diverse ones according to
the human preference. Given a similarity metric sim(·, ·), we can predict the pair-wise similarity
sim(dϕ(xi),dϕ(xj)). Assuming, without loss of generality, that (x1,x2) is the most similar and
(x1,x3) is the most diverse, then sim(dϕ(x1),dϕ(x2)) and sim(dϕ(x1),dϕ(x3))) should be max-
imized and minimized, respectively. Thus, a simple loss function is to optimize the corresponding
similarity metric simultaneously:

L(ϕ) =
∑

(x1,x2,x3)∈D

sim(dϕ(x1),dϕ(x3))− sim(dϕ(x1),dϕ(x2)). (1)

However, since the preferences given by humans are relative, optimizing the proportion is better,
which can eliminate the effects of scaling.

Another way is to use the Bradley-Terry model (Bradley & Terry, 1952), which is similar to
prior works in RLHF (Christiano et al., 2017; Ibarz et al., 2018; Lee et al., 2021) and usually
called InfoNCE loss (van den Oord et al., 2018). For a piece of preference data (x1,x2,x3),
we can calculate the predicted behavior {dϕ(xi)}3i=1. Then, we can predict the similarities
{sim(dϕ(xi),dϕ(xj))}i,j∈{1,2,3},i̸=j of the pairs {(xi,xj)}i,j∈{1,2,3},i̸=j . We can consider
sim(dϕ(xi),dϕ(xj)) as the underlying factor that reflects the human preference between (xi,xj)
and other pairs. We assume that the human preferences are influenced by the power of these factors.
Consequently, we can forecast the probability of preference by applying the soft-max function to the
respective underlying factors:

Pϕ[(xi,xj) ≻ (xi,xk)] =
exp(λsim(dϕ(xi),dϕ(xj)))

exp(λsim(dϕ(xi),dϕ(xj))) + exp(λsim(dϕ(xi),dϕ(xk)))
,
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Figure 2: The training process of DivHF.

where (xi,xj) ≻ (xi,xk) denotes that (xi,xj) is more similar than (xi,xk), and λ is the temper-
ature that adjusts the discrimination between positive and negative samples. The goal is to learn dϕ

that minimizes the cross-entropy between the predictions and the human preferences:

L(ϕ) = −
∑

(x1,x2,x3)∈D

logPϕ[(x1,x2) ≻ (x1,x3)], (2)

where we assume, without loss of generality, that (x1,x2) is the most similar and (x1,x3) is the
most diverse. Note that we only use the most similar pair and the most diverse pair, as they are easier
to determine by humans.

5 EXPERIMENTS

To examine the performance of DivHF, we conduct experiments on the popular QDax domain (Lim
et al., 2023; Chalumeau et al., 2023b), including HalfCheetah, Walker2D, Ant, and Humanoid. The
goal of the tasks is to generate a set of robotic policies that are diverse in the frequency of the usage
of each foot, in order to enable the robot to recover quickly from damage. We collect 25k trajectories
offline to train the behavior descriptor model. For convenience, we define an oracle behavior space
for each task, i.e., the fraction of time each foot touches the ground. We also use a synthetic oracle
whose preferences exactly reflect the similarity of the oracle behaviors. That is, when the method
queries for a preference, we immediately reply which two trajectories have the most similar oracle
behaviors and which two have the most diverse ones.

In our experiments, we use a bidirectional two-layer-stacked LSTM (Hochreiter & Schmidhuber,
1997; Dyer et al., 2015) followed by a two-layer MLP to extract the feature from the temporal
trajectory data, where the feature sizes of LSTM layers are all 512, and the hidden layer size of
MLP layers is 32. We use the cosine similarity as the similarity metric. The dimension of the
learned space is the same as the oracle behavior space.

To evaluate the effectiveness of DivHF, we compare the following methods. DivHF: The proposed
method that uses cross-entropy in Eq. (2) as the loss function. DivHF w/o CE: The same as DivHF,
except that it uses simple loss in Eq. (1) as the loss function. DivHF w/o BT: The same as DivHF,
except that it uses simple LSTM as the model. DivHF-Vanilla: The same as DivHF, except that it
uses simple loss in Eq. (1) as the loss function and simple LSTM as the model. Auto-encoder: The
method that concatenates a decoder after the behavior descriptor model and learns the behavior space
directly by self-supervision without human preference. Oracle: The oracle behavior descriptor
itself.

After training, all the behavior description methods are in conjunction with ME (Mouret & Clune,
2015; Cully et al., 2015) to generate a set of diverse solutions. Specifically, we use the learned
mapping instead of the expert-defined behavior mapping to obtain the behaviors of the solutions in
the ME framework.

The experiments aim to answer the following two Research Questions (RQs): 1) Whether the learned
behavior descriptors are consistent with human preferences? 2) When applied to diversity optimiza-
tion algorithms (e.g., QD algorithms), whether the solutions are diverse under human preference?
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5.1 RQ1: WHETHER THE LEARNED BEHAVIOR DESCRIPTORS ARE CONSISTENT WITH
HUMAN PREFERENCES?

We first train the models with the human preference data and use the following metrics to evaluate
whether the behavior descriptors learned by different methods are consistent with human preference.

• Most Similar Accuracy: The accuracy of selecting the most similar pair in each triple of
data, which is calculated by the proportion of making correct selections.

• Most Diverse Accuracy: The accuracy of selecting the most diverse pair in each triple of
data.

• Preference Accuracy: The accuracy of selecting the most similar pair and the most diverse
pair in each triple of data at a time. Note that as there are three pairs in each triple of data,
selecting the most similar pair and the most diverse pair correctly also implies predicting
the preference of three pairs correctly.

• Pair-wise Accuracy: The accuracy of predicting the preference of two pairs, i.e., whether
one pair is more diverse than the other under human preference, in each triple of data.

The results are shown in Figure 3. The accuracy of all variants of DivHF is better than Auto-encoder
in all environments, indicating that DivHF can really learn from human preferences and predict
behaviors that are consistent with human preferences. DivHF achieves the best accuracy in most
cases, except the environment Humanoid Uni where DivHF w/o CE (i.e., DivHF using simple loss
in Eq. (1)) performs better. This may be due to the challenging nature of Humanoid Uni, which has
the largest search space among these four environments and leads to the worst performance of all
the DivHF variants. Overall, DivHF has the best average ranking, as shown in Table 1.
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Figure 3: Accuracy of different methods on the test sets under different environments. The medians
and the first and third quartile intervals are depicted with curves and shaded areas, respectively.

5.2 RQ2: WHEN APPLIED TO CLASSICAL ALGORITHMS, WHETHER THE SOLUTIONS ARE
DIVERSE UNDER HUMAN PREFERENCE?

Next, we use the learned behavior models as the behavior descriptors of classical QD algorithms
and examine whether they can obtain a set of solutions that are diverse under human preference. In
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Environment Auto-encoder DivHF-Vanilla DivHF w/o CE DivHF w/o BT DivHF

HalfCheetah Uni 0.171 0.347 0.487 0.265 0.563
Walker2D Uni 0.246 0.501 0.521 0.594 0.655

Ant Uni 0.365 0.453 0.444 0.644 0.719
Humanoid Uni 0.251 0.288 0.395 0.261 0.312

Average Ranking 5.00 3.25 2.50 3.00 1.25

Table 1: Preference Accuracy comparisons (mean). Bold texts denote the best method.
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Figure 4: Performance comparisons in terms of QD-Score, Coverage, and Max Fitness under the
four environments. The medians and the first and third quartile intervals are depicted with curves
and shaded areas, respectively.

order to examine the diversity, after each generation, we map the solutions to the oracle behavior
space and put them into an oracle CVT archive. Then, we calculate the classical QD metrics to show
the diversity under human preference.

The following QD metrics are considered. 1) QD-Score: The total sum of the fitness values across
all solutions in the oracle CVT archive. It can measure both the quality and the diversity of the
solutions. 2) Max Fitness: The largest fitness value of the solutions in the archive. It can measure
the quality of the solutions. 3) Coverage: The total number of solutions in the oracle CVT archive.
It can measure the diversity of the solutions.

The results are shown in Figure 4. The QD-Score and Coverage are more related to the goodness
of the learned behavior. In general, the higher the accuracy of the learned behavior, the higher QD-
Score obtained. As shown in Table 1 and 2, the average rankings of the accuracy of behavior and
QD-Score are consistent: Oracle < DivHF < DivHF w/o CE < DivHF w/o BT < DivHF-Vanilla <
Auto-encoder. We can also observe from Figure 4 that compared with the oracle behavior descriptor,
the QD-Score and Coverage of DivHF still have a large gap, implying that further improvement is
expected in the future.

Furthermore, we visualize the solutions in the oracle behavior space and the learned behavior space.
As shown in Figure 5, the sub-figures (a) and (c) denote the oracle behavior space, and the sub-
figures (b) and (d) denote the learned behavior space. The color in sub-figures (a) and (b) denote the
quality of the solutions. In sub-figure (c), we use different colors (black, red, pink, and purple) to
color the oracle behavior space. Then, we map the solutions with their colors to the learned behavior
space, i.e., sub-figure (d). Sub-figures (c) and (d) show a clear resemblance between the oracle space
and the learned behavior space: the oracle behavior space can be recovered roughly by rotating the
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Environment Auto-encoder DivHF-Vanilla DivHF w/o CE DivHF w/o BT DivHF Oracle

HalfCheetah Uni 749, 067 1,368,209 946, 628 1, 070, 816 852, 532 2, 550, 238
Walker2D Uni 209, 583 227, 111 324, 036 258, 224 353,520 700, 442

Ant Uni 26, 170 61, 090 61, 967 247, 828 278,938 796, 666
Humanoid Uni 289, 382 313, 680 363,041 334, 443 349, 922 725, 198

Average Ranking 6.00 4.25 3.25 3.50 3.00 1.00

Table 2: QD-Score comparisons (mean). Bold texts denote the best method except for Oracle.

Figure 5: Visualization of the solutions obtained from DivHF. The sub-figures (a) and (c) denote
the oracle behavior space, and the sub-figures (b) and (d) denote the learned behavior space. The
color in sub-figures (a) and (b) denote the quality of the solutions. We put gradient colors on sub-
figure (c), and map the solutions with their colors to sub-figure (d).

learned behavior space counterclockwise. This indicates that the learned behavior space captures
the essence of the oracle behavior space.

5.3 ADDITIONAL STUDIES

Dimension of Behavior Space. We examine the influence of the dimension of the behavior space.
We compare the setting of using the same dimension as the oracle behavior and that of using a
doubled dimension, which are denoted as DivHF and DivHF (2×dim), respectively. Figure 6 shows
that a higher dimension can lead to better accuracy due to the better representation ability of the
model. However, a behavior space with too high dimension may be hard for humans to understand,
and also hard for diversity optimization algorithms to optimize.

Number of Queries. We further examine the influence of the number of queries used for training.
We compare the settings that use 10k, 25k, and 50k queries. As expected, Figure 7 shows that using
a too small number of queries may lead to poor performance. The use of many human queries is
one of the limitations of the proposed method, and we will consider reducing the number of human
queries in future work.

6 DISCUSSION

Diversity plays an important role in many scenarios and usually relies on a well-defined behavior
descriptor, which is, however, challenging in practice. In this paper, we introduce a natural way
of defining diversity from human feedback for the first time. We propose a general method called
DivHF, which selects triples of data to query humans about which two are the most similar and
which two are the most diverse, and trains the behavior descriptor with cross-entropy loss to make
it consistent with human preference. DivHF can cooperate with arbitrary diversity optimization
algorithms, and we apply it to QD algorithms as an instantiation. Experimental results on QDax
show that DivHF can learn the accurate behavior descriptor from human feedback.

This paper is a preliminary work that obtains diversity from human feedback. There are many
interesting future works, including improving the accuracy of the models, reducing the number of
human queries, applying to other diversity optimization algorithms and other scenarios, and handling
the diverse underlying preferences of different humans effectively.
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