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ABSTRACT

Multi-headed self-attention-based Transformers have been a central area of re-
search for quite some time. Albeit showing a significant improvement in under-
standing short-term and long-term contexts from sequences, encoders of Trans-
former and its variants fail to preserve layer-wise contextual information. Fur-
ther, text representations learned by Transformer-based encoders are usually of
low entropy with low variance, which contradicts typical human brain functions.
In this work, we propose TransJect, an encoder model that guarantees a the-
oretical bound for layer-wise distance preservation between any pair of tokens.
We propose a simple alternative to dot product attention to ensure Lipschitz con-
tinuity that allows TransJect to learn injective mappings to transform token
representations to different manifolds and preserve Euclidean distance between
every pair of tokens in subsequent layers. Our evaluation on several benchmark
short- and long-sequence classification tasks shows a remarkable improvement of
3.1% and 11%, on average, respectively. Furthermore, empirical results suggest
that TransJect is layer-agnostic; in fact, it prefers shallower architectures than
deeper ones and prevents layer-wise incremental learning beyond a threshold. Our
empirical analyses also show the generalization capabilities of TransJect and
the robustness under different hyperparameter configurations. We conduct de-
tailed statistical analysis to confirm the necessity of high-entropic representations
to achieve human-like cognition.

1 INTRODUCTION AND RELATED WORK
Over the past few decades, deep neural networks (DNNs) have greatly improved the performance of
various downstream applications. Stacking multiple layers has been proven effective in extracting
features at different levels of abstraction, thereby learning more complex patterns (Brightwell et al.,
1996; Poole et al., 2016). Since then, tremendous efforts have been made to build larger depth mod-
els and make them faster (Bachlechner et al., 2020; Xiao et al.). Self-attention-based Transformer
model Vaswani et al. (2017) was proposed to parallelize the computation of longer sequences; it
has achieved state-of-the-art performance in various sequence modelling tasks. Following this, nu-
merous efforts have been made to reduce computation and make the Transformer suitable even for
longer sequences (Katharopoulos et al., 2020; Peng et al., 2020; Kitaev et al., 2020; Beltagy et al.,
2020; Press et al., 2021; Choromanski et al., 2021; Tay et al., 2021). However, very few of these
studies discuss information propagation in large-depth models. To understand how Transformer en-
codes contextual similarities between tokens and preserves the similarities layer-wise, we highlight
an example in Figure 1. We select three pairs of semantically similar tokens (two of them are present
in the same articles with different contexts). We observe both the Euclidean and cosine distances
of the representations learned at different layers of pre-trained BERT-base (Devlin et al., 2018) and
Transformer trained on the IMDb sentiment classification task. The fine-tuned Transformer model
preserves the semantic similarity among the same tokens across layers. However, the Euclidean
distance increases in the upper layers, concluding that Transformer projects the representations to
different and sparse subspaces, albeit preserving the angle between them. On the other hand, pre-
trained BERT demonstrates a more erratic trend in terms of layer-wise preservation of information.
Preserving both distance and semantic similarity is important to ensure that the model learns contin-
uously without forgetting any previously learned knowledge, much alike to humans.

Neuroscientists have been working for years to understand how the human brain functions and why
the human brain is superior to most other animals. Arguably, the human brain is more capable of
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‘associative learning’ and ‘behavioral formation’, which can be attributed to the number of neurons
and their inter-connectedness, rather than the size of the brain, or the number of layers through
which the information propagates (Dicke & Roth, 2016). Another recent direction in exploring the
human brain is to understand its energy state through the lens of entropy (Saxe et al., 2018). Kesh-
miri (2020) correlated human intelligence with entropy, a measure that quantifies the randomness
of a state. Interestingly, the human brain contains both high- and low-entropic neurons. High-
entropic neurons are responsible for divergent and creative thinking, whereas low-entropic neurons
are responsible for mundane and rigid thinking. Similar attempts have been made to understand the
bridge between human brain, thermodynamics and information theory (Collell & Fauquet, 2015).
Unfortunately, Transformer and none of its variants consider these viewpoints in their underlying
architecture, and thus fail to imitate the euphoric nature of the human brain. This motivates us
to develop a complete redesign of self-attention-based Transformer with explicit randomness and
enforced injectivitiy, aka TransJect.
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Figure 1: Layer-wise distances between a few se-
lected tokens from the text “The characters are
unlikeable and the script is awful. It’s a waste
of the talents of Deneuve and Auteuil.” We use
pre-trained BERT and Transformer models for ex-
tracting the token representations from different
encoding layers.

To the best of our knowledge, this is the first
attempt toward this research direction. A sig-
nificant effort has been made in reducing the
computational complexity of Transformer by
introducing sparsity in self-attention (Zaheer
et al., 2020; Tay et al., 2020), approximat-
ing softmax (Choromanski et al., 2021; Peng
et al., 2020), or introducing different kernel
tricks (Choromanski et al., 2021; Katharopou-
los et al., 2020). With a simple orthogonal
parameterization and rearrangement of a non-
normalized attention formulation, we show that
self-attention can be simplified to simple ma-
trix multiplication. Moreover, by not pro-
jecting the embeddings into low-dimensional
space, TransJect encourages more synapses
within the model, resulting in better contextu-
alization. ReZero was proposed by Bachlech-
ner et al. (2020) to felicitate dynamic isome-
try and faster convergence for large-depth mod-
els. With a modified formulation of ReZero, not
only our model maintains dynamic isometry but
also achieves Lipschitz continuity, aiding in preserving layer-wise distances between tokens. By
preserving layer-wise information within a fixed bound, TransJect ensures incremental learning
throughout the encoding layers, similar to how humans learn continually. Kim et al. (2021) con-
cluded that vanilla dot-product self-attention is not Lipschitz. An enforced Lipschitz condition al-
lows us to build layer-agnostic models, where shallower models achieve better performance. Unlike
Transformer, which only injects randomness through multi-headed self-attention and dropout, we
inject randomness explicitly to every token representation. Due to such a direct injection, our model
does not require dropouts for generalization; but it generalizes naturally. To validate our hypotheses
and empirically justify the superiority of our model, we use two short and two long sequence classi-
fication tasks, in which TransJect outperforms Transformer and other benchmark variants with
a wide margin of 7% across all four tasks. We report the model’s performances under different hy-
perparameter configurations to understand the robustness of the model. We further conduct detailed
statistical analyses to investigate different components and evaluate their effectiveness.

2 BACKGROUND

Activation bound. For any function f : Rn → Rm, we define the activation bound Kf as
supx ̸=0

||f(x)||p
||x||p , for a suitable integer p. For a linear map M , it is equivalent to the induced matrix

norm ||M ||p. Intuitively, this is the maximum scale factor by which a mapping expands a vector x.
In the Euclidean space, we usually choose p = 2.

Lemma 1 (Activation bound of linear maps). For a matrix M ∈ Rn×m, KM is same as the largest
absolute singular value, under ||.||2.
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Figure 2: Internals of TransJect with (a) an L-layered encoder with MOE, (b) approximated
eigenvalue computation, (c) orthogonal attention with injective residual. For the entropic variant
of TransJect, we use a decision function to determine the residual output (d). The intermediate
encoder outputs are fed to orthogonal residual FFN (e) layer to extract the final representation at
layer l.

Activation bound of self-attention. Transformer (Vaswani et al., 2017) relies upon bidirectional
multi-headed self-attention for capturing contextual similarity between tokens in the encoder. In
each head, the self-attention operation projects the original representation vector x into three differ-
ence subspaces with Q (query), K (key) and V (value). Formally, Transformer calculates attention
matrix SelfAttention(X) = Attention(XWQ,XWK ,XW V ) as,

Attention(Q,K,V ) = D−1AV ,A = exp
(QKT

√
d

)
,D = diag(AIL) (1)

Here d is the hidden size, and L is the length of the sequence. With the normalization, D−1A,
Transformer ensures a stochastic attention weights (column sum is 1).

Corollary 1 (Largest eigenvalue of a square stochastic matrix). The largest absolute value of any
eigenvalue of a square stochastic matrix is equal to 1.

As the activation bound of the matrix D−1A is 1, activation bound of the attention map is same as
the activation bound of W V . Usually, K and Q are used to project the original representations to
different subspaces. We show that having both Q and K in the same subspace with orthogonal basis
can reduce the activation bound of the attention map to singular values of X .

Lipschitz Continuity. A function f : Rn → Rm under ||.||p norm is called Lipschitz continuous if
there exists a real number K ≥ 0 such that

||f(x)− f(y)||p ≤ K||x− y||p (2)

for any x,y ∈ Rn. Although Lipschitz continuity can be defined over any metric space, in this
paper, we restrict its definition to only Euclidean space with p = 2. K is called Lipschitz bound.

Lemma 2 (Lipschitz bound for continuously differentiable functions). Any C1 function f : Rn →
Rm has Lipschitz bound as supx||∇xf ||.

3 DESIGNING INJECTIVE TRANSFORMER
In this section, we formally describe our model, TransJect and its variants. Our model inherits
the structure from vanilla Transformer, and achieves a smoother activation plane by utilizing injec-
tive maps for transforming token representations across layers. For an L-layered stacked encoder,
we aim to learn the representation of a sequence X = {x1,x2, · · · ,xn} at each layer l that pre-
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serves the pairwise distance between every pair of words within a theoretical bound. We illustrate
the components of TransJect in Figure 2.1

3.1 SPACE-PRESERVING ORTHOGONAL ATTENTION

The backbone of TransJect is the space-preserving orthogonal attention.

Theorem 1 (Space-Preserving Orthogonal Attention). Replacing WQ,WK ,W V with real square
orthogonal matrices in self-attention reduces the activation bound to the largest singular value of X .

Notice that the activation bound of the modified attention mechanism does not depend on any learn-
able parameters, rather can be bounded by the largest eigenvalue of XTX . Therefore, having a
stochastic XTX will ensure that the largest eigenvalue is always 1, and the attention operator pre-
serves pairwise distance between any two tokens. In each layer, we learn orthogonal projection
matrices, U and V , whereas the diagonal matrix containing eigenvalues Σ is learned on the initial
embedding obtained from the initial embedding layer defined in Section 3.4, also denoted as l = 0.

Approximating eigenvalues. Eigenvalue decomposition is computationally expensive with a run-
time complexity of O(n3). In this work, we use a simple approximation to compute Σ̃, the
eigenvalues of XTX . Formally, we compute Ũ = argminU ||XTX − UΣUT ||, and Σ̃ =
argminΣ ||XTX − UΣUT ||. To learn the approximate eigenvalues, we can minimize the re-
construction loss ||XTX − UΣUT || for a learnable orthogonal eigenvectors U . However, we
can also initialize a random diagonal matrix Σ̃, without any approximation that optimizes the only
task-specific training objective, without enforcing the reconstruction. We denote this version of the
model as Random-TransJect. We compute Σ̃ only once, only on the initial token embeddings.
Further, we standardize the eigenvalues Σ to maintain the largest absolute eigenvalue as 1.

3.2 INJECTIVE RESIDUAL (IR)
For every layer l, we fine-tune the hidden representation by learning a new attention projection on
the hidden state learned in the previous layer. Formally, we define,

X(l) = X(l−1) +
αl

L
F (X(l−1)) (3)

Here, F is the self-attention operator, followed by a suitable non-linear activation function, and αi ∈
(0, 1) is the residual weight. In the previous studies, ReLU and GELU (Hendrycks & Gimpel, 2016)
have been popular choices for the activation function. In this work, we choose ELU (Clevert et al.,
2015), a non-linear C1 (continuous and differentiable) activation function with a Lipschitz bound
of 1. Although ReLU is a Lipschitz function with K = 1, it is not everywhere differentiable and
injective. Following Bachlechner et al. (2020), we adopt ReZero (residual with zero initialization)
to enforce dynamical isometry and a stable convergence.

Lemma 3 (Residual contractions are injective). f : X → X + αl

L F (X) is one-to-one.

Injecting randomness in Transformers. In Section 1, we argued how entropy plays a pivotal role
in how human brain functions. Motivated by this neuroscientific finding, we artificially inject ran-
domness into TransJect to learn complex representations spanning across high and low-entropic
regions. Typically, Transformer injects randomness using multi-headed self-attention, where each
head aims to learn a different representation. However, Transformer learns this randomness im-
plicitly, where the learning is managed by the training objective. We infuse explicit randomness at
the neuron level. As opposed to Transformer (or any other variants of it), our model enforces each
neuron (hidden state) to attain to different subspaces to learn complex and more generalized repre-
sentations. For this randomized variation, named Entropic-TransJect, we use a randomized
variation of Equation 3 to compute hidden representation at each layer l. For each neuron i, we draw
a random sample u ∼ U(0, 1) and compute,

X
(l)
:,i =



1.5X
(l−1)
:,i +

αl

L
F (X(l−1)):,i, if u ≤ 0.25

1.5X
(l−1)
:,i − αl

L
F (X(l−1)):,i, if 0.25 < u ≤ 0.50

4
αl

L
F (X(l−1)):,i, if 0.5 < u ≤ 0.75

X
(l−1)
:,i , if 0.75 < u ≤ 1

(4)

1All the proofs presented in the paper are supplied in Appendix A.
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It is easy to verify that Eu∼U(0,1)[X
(l)
:,i ] = X

(l−1)
:,i + αl

L F (X(l−1)):,i. Also, notice that each neuron
performs same computation for all the tokens, without disturbing the distance between them.

To maintain the dimensionality, Transformer projects the representations to a lower-dimensional
space, which reduces the total number of synapses among the neurons by a factor of H , the number
of heads. As opposed to this, we devise a Mixture of Expert (MOE) attention motivated by Shazeer
et al. (2017). With this, we compute X(l,e) for each expert e ∈ {1, 2, · · · , E} in each layer l using
Equation 3, learnable expert weights λis, and use a convex combination of them to compute,

X(l) =

E∑
e=1

λeX
(l,e) s.t.

E∑
e=1

λe = 1 (5)

Corollary 2 (Injectivity of MOE). The mapping function defined in Equation 3.2 is injective.

3.3 ORTHOGONAL RESIDUAL FFN (ORF)
We reformulate the position-wise feed-forward networks with orthogonal parameterization. FFN
layers in Transformer emulate a key-value memory (Geva et al., 2021). To preserve the layer-wise
memory, we enforce Lipschitz continuity on the feed-forward sublayer. Formally, we define,

ORF (X(l)) = X(l) +
αl

L
ELU

(
ELU(X(l)W1 + b1)W2 + b2

)
(6)

where W1 and W2 are orthogonally parameterized.

Corollary 3 (Injectivity of ORF). Orthogonal residual FFNs are injective.

3.4 INJECTIVE TOKEN EMBEDDING

Positional encoding was introduced in Transformer for injecting the relative and absolute posi-
tional information of tokens into the self-attention layer. It leverages sinusodial representations
of every position and adds to the original token embeddings to infuse the positional information.
To ensure injectivity at each layer, we need to ensure that the initialization of the token embed-
dings is also injective i.e., no two tokens should have exactly same embedding. Unfortunately,
the addition operator is not injective. Therefore, we compute the initial embedding of token xi as
Xi

(0) = Concat(Emb(xi), PEi,:). Here PE is defined similarly to the positional encoding pro-
posed by Vaswani et al. (2017). Concatenation ensures the injectivity of embeddings. However,
to maintain the dimensionality, we learn the initial embedding and positional encoding at a lower
dimensional space, R d

2 , where d is the hidden size in the encoder. As the initial embeddings of
all tokens in the sequence are all unique, XTX is a full-rank matrix, hence ensuring injectivity
throughout all the subsequent layers.

We define the final encoder mapping for each sublayer l as a composite mapping defined by,

SubLayer(l)(X(l−1)) = ORF ◦MOE ◦ IR(X(l−1)) (7)

Theorem 2 (TransJect.) The composite map defined in Equation 7 is an injective Lipschitz with an
upper bound of e2.

We further show that the lower bound of activation for a multi-layered TransJect encoder with
L > 1 is 0.25. This makes TransJect a pseudo-isometry with k = e2. A bounded activa-
tion bound ensures that the incremental learning of our encoder model reduces with large depth,
which theoretically vouches for a shallower model, rather than a deeper one. This suggests that
TransJect is layer-agnostic and can perform well even with a shallower encoder. It further en-
forces the importance of learning better embeddings in the initial embedding layer, which essentially
drives the entire encoding. The runtime complexity of our orthogonal non-normalized attention is
O(nd2), whereas dot-product self-attention has a runtime complexity of O(n2d + nd2). In a com-
parable settings where n >> d, TransJect should have a lower runtime complexity than Trans-
former. However, as Transformer projects the token embeddings onto a lower-dimensional space
in multi-headed self-attention, TransJect and its variants currently exhibit higher computation
time. Similar analysis on number of parameters is furnished in Appendix B.
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3.5 TRANSJECT ABLATIONS

Table 1: Comparison of TransJect and its vari-
ants. Here Approx. denotes approximated eigen-
values by minimizing reconstruction loss.

Model Eigenvalue Residual
TransJect Approx. IR
Entropic-TransJect Approx. IR + Random
Random-TransJect Random IR
Random-Entropic-TransJect Random IR + Random

We explore total four variants of TransJect.
We summarize these ablations in Table 1. How-
ever, it is important to notice that the variants of
TransJect do not introduce any additional
learnable parameters. The variants differ in
terms of only the intermediate representation
computation. Secondly, the entropic-variants
of TransJect do not satisfy Theorem 3.4 as
the maximum activation bound of the entropic-
residual at each layer is > 2. Hence, for an

L-layered encoder, the composite activation function is unbounded. However, these variants still
ensure injectivity of representations.

3.6 EVALUATIONS

We evaluate TransJect and its variants on four short and long text classification tasks. In all these
classification tasks, we keep the configuration of our models with L = 6, E = 4, and d = 512. For
all of these tasks, we use the original train-test split, where the training data is used only for model
training, and the test data is used for evaluating TransJect and the other baselines. We furnish
all these details in Appendix B. We evaluate all the models in terms of test accuracy.

3.6.1 SHORT SEQUENCE CLASSIFICATION

We choose the IMDb movie review sentiment classification (Maas et al., 2011) and the AGnews
topic classification (Zhang et al., 2015) datasets for short text classification – the former one is
a binary classification task, whereas the latter one contains four classes. For IMDb and AGnews
classifications, we choose a maximum text length of 512 and 256, respectively.

Table 2: Text classification accuracy on IMDb and Agnews
datasets. Results for models highlighted with † are taken from
Dutta et al. (2021). For TransJect and its variants, we report
the mean and s.d. of test accuracies obtained from three different
runs with different seed initializations.

Model IMDb AGnews
Transformer (Vaswani et al., 2017)† 81.3 88.8
Transformer+ReZero (Bachlechner et al., 2020) 83.4 89.6
Linformer (Wang et al., 2020)† 82.8 86.5
Synthesizer (Tay et al., 2021)† 84.6 89.1
TransEvolve (Dutta et al., 2021)† 87.6 91.1
TransJect 88.1 ± 0.01 88.8 ± 0.00
Entropic-TransJect 87.5 ± 0.00 89.1 ± 0.00
Random-TransJect 86.5 ± 0.00 90.2 ± 0.00
Random-Entropic-TransJect 86.5 ± 0.02 90.8 ± 0.00

For these two tasks, we use a
mean pooling on the hidden rep-
resentation obtained by the final
encoder layer before passing it
to the final classification layer.
We utilize the BERT pre-trained
tokenizer to tokenize the texts
for this two tasks 2.

Table 2 shows the perfor-
mance of the competing
models. On IMDb classifica-
tion, TransJect outperforms
Transformer with a whooping
6.8% margin. TransJect

achieves 0.5% better accuracy than TransEvolve, the best baseline. On the AGnews topic classifi-
cation task, TransJect and its variants fall short of 0.3% from the best baseline, TransEvolve.
However, TransJect with randomly initialized eigenvalues achieves 1% better accuracy than
Transformer and Synthesizer. Albeit having a high-entropic component, the entropic-variants of
TransJect display very high robustness in terms of final predictions, with a nearly zero average
standard deviation. Another interesting observation on the AGnews classification task is the supe-
riority of randomly-initialized eigenvalues over actual eigenvalues, whereby injecting randomness
through randomly initialized eigenvalues aids in 2% performance improvement. Limited contextual
information can create difficulty in reconstructing the XTX from the approximate eigenvalues.
Therefore, having randomly-initialized eigenvalues can aid in learning better context when the
context itself is limited. Similarly, on AGnews classification, entropic-variants exhibit better
performance than non-entropic variants.

We further evaluate Transformer with zero residual initialization (Transformer+ReZero) model to
understand the weighted residual’s effect in achieving dynamical isometry. For both IMDb and
AGnews classifications, Transformer+ReZero achieves ∼ 1.5% better performance than vanilla

2https://huggingface.co/bert-base-uncased
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Figure 3: Performance of TransJect and Transformer under different configurations for the
IMDb classification task.

Transformer. However, TransJect consistently outperforms Transformer+ReZero, showing that
dynamical isometry may not be sufficient for better generalization.
3.6.2 LONG SEQUENCE CLASSIFICATION

To further highlight the effectiveness of TransJect on longer sequences, we evaluate our model
on the ListOps dataset (Nangia & Bowman, 2018), containing input sequences of arithmetic op-
erations and operands with the predicted output being a single digit between 0 to 9. For this task,
we choose a maximum sequence length of 1024. As opposed to the other classification tasks, for
ListOps classification, we use max pooling on the hidden representation extracted by the final en-
coder layer, followed by the final multi-class classification layer. Another task we choose under
long text classification is the character-level IMDb (CharIMDb) review sentiment classification. For
CharIMDb classification, we use a maximum sequence length of 1024.

Table 3: Classification accuracy on long range sequence classifi-
cation for the ListOps and character-level IMDb datasets. Results
of models highlighted with † are taken from Dutta et al. (2021).
For TransJect and its variants, we report the mean and s.d. of
test accuracies obtained from three different runs with different
seed initializations.

Model ListOps CharIMDb
Transformer (Vaswani et al., 2017)† 36.4 64.3
Transformer+ReZero (Bachlechner et al., 2020) 38.9 65.6
Linformer (Wang et al., 2020)† 35.7 53.9
Synthesizer (Tay et al., 2021)† 37.0 61.7
Reformer (Kitaev et al., 2020)† 37.3 56.1
Sinkhorn (Tay et al., 2020)† 17.1 63.6
Big Bird (Zaheer et al., 2020)† 36.0 64.0
Linear Attention (Katharopoulos et al., 2020)† 16.1 65.9
Performers (Choromanski et al., 2021)† 18.0 65.4
Random Feature Attention (Peng et al., 2020)† 36.8 66.0
TransEvolve (Dutta et al., 2021)† 43.2 66.1
TransJect 48.3 ± 0.00 68.8 ± 0.01
Entropic-TransJect 40.7 ± 0.02 64.7 ± 0.03
Random-TransJect 43.9 ± 0.00 68.8 ± 0.03
Random-Entropic-TransJect 39.5 ± 0.01 65.6 ± 0.01

We evaluate TransJect and
its variants against Transformer
along with several of its recent
variants and report the test ac-
curacy in Table 3. As op-
posed to short sequence classifi-
cation tasks, for long sequences,
TransJect turns out to be
very effective and consistently
outperforms all its own variants
as well as the baselines. It
achieves 2.7% and 5.1% better
accuracy on CharIMDb classi-
fication and ListOps classifica-
tion, respectively, than the best
baseline TransEvolve.

Another interesting obser-
vation is the superiority of
non-entropic models for long
sequence classification. In both
the datasets, we observe that

both TransJect and Random-TransJect outperform all other baselines as well as the
entropic variants of TransJect. The margin between random and non-random variants is 4.8%
on CharIMDb and ListOps classification tasks, on average. This certainly encourages non-entropic
representations for capturing longer contextual information.

3.7 ROBUSTNESS OF TRANSJECT UNDER DIFFERENT CONFIGURATIONS

We evaluate TransJect under different hyperparameter settings to understand its robustness un-
der different configurations. For this purpose, we choose IMDb classification and highlight the test
accuracy in Figure 3. Similar analysis is conducted on the CharIMDb classification task, which we
report in Appendix C. For IMDb classification, we observe that shallower TransJect is preferred
over deeper model; however, the standard deviation is a meagre 1.7% and 0.8%, respectively, as
compared to 2.7% and 6.6% of Transformer. Similarly, Transformer is heavily influenced under dif-
ferent sequence length, whereas both TransJect and Entropic-TransJect are very robust
and achieve very similar performance irrespective of the sequence length. With large hidden size,

7



Under review as a conference paper at ICLR 2023

3 2 1 0 1
TransJect Layer-wise Entropy

0

20

40

60

80

100

120

De
ns

ity

2 1 0 1 2
Entropic-TransJect Layer-wise Entropy

1.4 1.2 1.0 0.8
Transformer Layer-wise Entropy

L=1 L=2 L=3 L=4 L=5 L=6

(a)

0.0 0.5
TransJect Expert Weights

0

25

50

75

100

125

150

De
ns

ity

Expert 1 Expert 2 Expert 3 Expert 4

0.0 0.5 1.0
Entropic-TransJect Expert Weights

(b)

0.9975 0.9980 0.9985 0.9990 0.9995 1.0000
TransJect Layer-wise Expected Activation Bound (Euclidean)

0

20

40

60

80

100

120

140

De
ns

ity

1 2 3 4 5 6 7 8
Entropic-TransJect Layer-wise Expected Activation Bound (Euclidean)

1 2 3 4 5 6
Transformer Layer-wise Expected Activation Bound (Euclidean)

0.986 0.988 0.990 0.992 0.994 0.996 0.998 1.000
TransJect Layer-wise Expected Activation Bound (Cosine)

0

20

40

60

80

100

120

140

De
ns

ity

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Entropic-TransJect Layer-wise Activation Bound (Euclidean)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Transformer Layer-wise Expected Activation Bound (Euclidean)

L=1 L=2 L=3 L=4 L=5 L=6

(c)

Figure 5: Distribution of (a) layer-wise entropy of token representations, (b) expert weights, (c)
layer-wise activation bounds.

Transformer tends to overfit, whereas TransJect remains stable even under varying hidden sizes.
Another interesting observation is the generalization capability of our model and its variants. Even
with 50% of the training data, TransJect and its entropic-variant can attain to the best test results.
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Figure 4: Training and test loss obtained by
TransJect, Transformer and Transformer+ReZero
for the IMDb classification task.

We further compare the stepwise training
and test loss in Figure 4. For IMDb classi-
fication, Transformer starts diverging after
7000 training steps. With zero redisual ini-
tialization, however, it convergences faster,
similar to TransJect; however, it starts
overfitting the training data after 5000 steps.
On the contrary, Entropic-TransJect
learns slowly and eventually generalizes
better on the test data with overcoming
ReZero after 18000 steps.

4 ANALYSIS

We conduct a detailed statistical analysis of our model on the IMDb classification task.

Entropy states of hidden representations. We compare the differential entropy of the hidden
representations learned by TransJect at each layer to understand how the energy state changes
over the layers. We calculate differential entropy as,

entropy(l)
(

X (l)
)
= Eb,j,h

[
− logX (l)

b,j,h

]
= −Eb,j

[∫
H

Xb,j,h logXb,j,hdh
]

(8)

We highlight the distribution of entropy of token embeddings at every layer of TransJect,
Entropic-TransJect and Transformer in Figure 5a. For all of these analyses, we use the
outputs inferred by our models on test data. As argued in Section 1, Transformer usually embeds
onto a low-entropic region where each hidden state learns similar representations. Entropy distribu-
tion displayed by this model follows a normal distribution within the range of (−1.5,−0.7), where
the negative values suggest low-entropic states, and low inter-quartile range suggests low variability.
On the other hand, TransJect follows a multi-modal distribution where the entropy lies between
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(a) TransJect (b) Entropic-TransJect (c) Transformer

Figure 6: Isomap plot of layer-wise token embeddings learned by (a) TransJect, (b)
Entropic-TransJect, and (c) Transformer on the text “The characters are unlikeable and
the script is awful. It’s a waste of the talents of Deneuve and Auteuil.”

(−3, 1). The highest entropic behavior is shown by Entropic-TransJect, where the entropy
distribution is left-skewed with more positive entropy values. Further, entropy does not depend on
the encoder layer in TransJect, suggesting that the neurons learn different representations with
different entropic state, irrespective of the layer. On the contrary, in Transformer, higher layers have
higher entropy.

Effectiveness of expert model. We observe the individual importance of experts and how they
interplay in the mixture model. We illustrate the expert weight distribution in Figure 5b, which
confirms that the experts are well-balanced, and an enforced load balancing is not required for our
model. Further, we calculate the entropy of each expert representation to understand how it con-
stituents the final representation at every layer. The expert entropy values of TransJect and
Entropic-TransJect are −2.2 and −1.56, respectively. Computing an equivalent entropy of
different attention heads for Transformer gives us an entropy of 0.67. This suggests that at the indi-
vidual level, the experts learn similar projection functions; however, at the neuron level, they learn
differently. As opposed to this, Transformer enforces all the attention heads to learn embeddings
from different subspaces, leading to a high entropy at the level of attention head.

Preserving distances between tokens. Continuing our initial discussion on preserving layer-wise
distances between tokens, we calculate the distribution activation bounds at different encoding layers
in Figure 5c. The empirical activation bound of TransJect turns out to be < 1, which is much
lesser than the theoretical bound of e2 ≈ 7.39. Although we do not claim for Lipschitz continuity
in the dot-product space, the empirical activation bound under dot-product is also ≈ 1. As opposed
to TransJect, both Transformer and the high entropic variant of TransJect have much higher
empirical activation bounds. Interestingly, both Transformer and Entropic-TransJect aim to
preserve the semantic similarity at the later layers, at the expense of distance; however, TransJect
can preserve both of them with a tighter bound, leading to a more robust representations for each
token. Figure 6 shows representations obtained on tokens of a sample text at different encoder layers,
projected onto 2 −D. We use isometric mapping (Tenenbaum et al., 2000) for projecting the high
dimensional vectors to the 2−dimensional space. TransJect maintains the initial embedding
space throughout the layers, showing the robustness in learning initial embeddings. On the other
hand, Entropic-TransJect and Transformer expand the projection subspaces to a more sparse
subspaces, even though they project semantically similar tokens closer.

5 CONCLUSION

In this work, we introduced a new learning paradigm in language understanding by enforcing a
distance-preserving criterion in the multi-layered encoder models. We proposed TransJect and
its entropic-variants, motivated by neurological and cognitive sciences findings. We derived that
by enforcing orthogonal parameterization and utilizing smooth activation maps, Transformers can
preserve layer-wise information propagation within a theoretical bound, allowing the models to gen-
eralize well, even at a smaller depth. We further argued against implicit regularization techniques
like dropout, and rather preferred explicit randomness for better generalization. Our empirical anal-
yses suggested a superior performance of TransJect and its variants over other Transformer and
self-attention-based baselines. Additionally, we observed that the non-entropic models tend to per-
form well on long sequence classification, whereas entropic models tend to perform better for short
sequence classification in which the context is limited. These findings encourage us to explore the
natural laws of science for building better, intuitive and more cognitive artificial intelligence.
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A THEORETICAL RESULTS

We furnish the proofs of all the theoretical results presented in the main text.

A.1 PROOF OF LEMMA 2

KM = sup
x ̸=0

||Mx||2
||x||2

= sup
||x||2=1

||Mx||2.

Squaring both the side, we decompose M as UΣV T , where U and V are orthogonal matrices,
and Σ is the diagonal matrix containing the singular values (square root of eigenvalues of MTM ),
Σ1 ≥ Σ2 ≥ Σ3 · · · ≥ 0. For an orthogonal matrix U , ||Ux||22 = ||xTUTUx||2 = ||xTx||2 =
||x||22. This leads to

||Mx||22 = ||UΣV Tx||2
2
= ||Σx||22 =

n∑
i=1

Σ2
ix

2
i .

Hence,

K2
M = sup∑n

i=1 x2
i=1

n∑
i=1

Σ2
ix

2
i .

Being a convex sum, K2
M ≤ Σ2

1. Hence, KM ≤ |Σ1|, which completes the proof. ■
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A.2 PROOF OF COROLLARY 2

For any square stochastic matrix M ∈ Rn×n,

MI =


∑n

j=1 Mj,1∑n
j=1 Mj,2

...∑n
j=1 Mj,n

 =


1
1
...
1

 = I

Hence, 1 is an eigenvalue of M . Next we prove that 1 is the largest eigenvalue of M . For any
eigenvalue λ and its corresponding eigenvector v, λv = Mv. Without loss of generality, we
assume argmaxi |vi| = 1. Hence, for the 1st entry in this column vector λv1 =

∑n
j=1 M1,jvj .

Using triangle inequality we get,

|λ||v1| ≤ |λv1| = |
n∑

j=1

M1,jvj | ≤
n∑

j=1

|M1,j ||v1| ≤ |v1|.

Hence, for any eigenvalue |λ| ≤ 1. Hence, it proves our corollary that the largest eigenvalue is 1.
■

A.3 PROOF OF LEMMA 2

For any x,y ∈ Rn, we define g : [0, 1] → Rm as

g(t) = f(x+ t(y − x)). (9)

It is easy to verify that g(0) = f(x) and g(1) = f(y).

f(y)− f(x) = g(1)− g(0) =

∫ 1

0

∇tg(t)dt (10)

Using chain rule of differentiation on Equation A.3 we get,

∇tg(t) = ∇tf
(
x+ t(y − x)

)
(y − x)

Using this in Equation A.3 we get

||f(y)− f(x)|| =
∣∣∣∣∣∣ ∫ 1

0

∇tf
(
x+ t(y−x)

)
(y−x)dt

∣∣∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣∣∣∇tf
(
x+ t(y−x)

)
(y−x)dt

∣∣∣∣∣∣
As f is C1, supremum of its derivative exists, which allow us to set supt

∣∣∣∣∣∣∇tf
(
x+t(y−x)

)∣∣∣∣∣∣ = K

and deduce

||f(y)− f(x)|| ≤ K||y − x||
∫ 1

0

dt = K||y − x||. ■

A.4 PROOF OF THEOREM 3.1

We can compute non-normalized attention as Attention(Q,K,V ) = (QKT )V =

(XWQWKT
XT )XW V . Being a real symmetric matrix, XTX can be decomposed into

Q̃ΣQ̃T , which leads to

Attention(Q,K,V ) = XWQWKT
Q̃︸ ︷︷ ︸

orthogonal

Σ︸︷︷︸
diagonal

Q̃TW V︸ ︷︷ ︸
orthogonal

. (11)

As the product of two orthogonal matrices is orthogonal, Equation A.4 reduces to

Attention(Q,K,V ) = XUΣV . (12)

with a suitable set of learnable orthogonal matrices U and V . ■
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A.5 PROOF OF LEMMA 3.2

Let us assume ∃x ̸= y such that f(x) = f(y), which implies ||f(x)− f(y)|| = 0. Using triangle
inequality and Equation 3 we get

||x− y|| − |αl

L
| · ||F (x)− F (y)|| ≤ ||f(x)− f(y)|| = 0

⇐⇒ ||x− y|| ≤ |αl

L
| · ||F (x)− F (y)||.

Using Lemma 2 we can derive the Lipschitz bound for F as 1 (derivative of ELU activation is
bounded by 1). Using this we get

||x− y|| ≤ |αl

L
| · ||x− y||.

Which contradicts that fact that |αl

L | < 1. Hence, we proof the lemma by contradiction. ■

A.6 PROOF OF COROLLARY 3.2 AND COROLLARY 3.3

Being a convex sum of residual contractions, it follows directly from A.5. Similarly, Corollary 3.3
also follows directly. ■

A.7 PROOF OF THEOREM 3.4

Being a composition of continuously differentiable injective functions, f = ORF ◦MOE ◦ IR is
a continuously differentiable injective function.

Next we compute the Lipschitz bound for f . For the sake of simplicity, let us assume α1

L = α2

L · · · =
αl

L = α < 1
L . We first expand f as

f(x) =

E∑
e=1

λex+

E∑
e=1

λeα · ELU(xU eΣV e) + α · ELU(x)

x = ELU
( E∑
e=1

λexW1 +

E∑
e=1

λeα · ELU(xU eΣV e)W1 + b1

)
W2 + b2

=⇒ x = ELU
(
xW1 +

E∑
e=1

λeα · ELU(xU eΣV e)W1 + b1

)
W2 + b2 (13)

We break down the expression and compute Lipschitz bound of ELU(xUΣV )W1+b1 first. Using
the Lipschitz continuity of ELU, we get

||ELU(xUΣV )W1 + b1 − ELU(yUΣV )W1 − b1||
= ||ELU(xUΣV )W1 − ELU(yUΣV )W1||
≤ ||ELU(xUΣV )− ELU(yUΣV )|| · ||W1||
≤ ||ELU(xUΣV )− ELU(yUΣV )||
≤ ||xUΣV − yUΣV ||
≤ ||x− y|| · ||U || · ||Σ|| · ||V ||
≤ ||x− y||.

Feeding this into Equation A.7 and using the fact
∑E

e=1 λe = 1, we get

||x− y||
≤ (||x− y|| · ||W1||+ |α| · ||x− y||) · ||W2||
≤ (1 + |α|)||x− y||.

Finally,
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||f(x)− f(y)||
≤ ||x− y||+ |α| · ||x− y||+ |α|(1 + |α|) · ||x− y||
≤ (1 + |α|)2||x− y||

≤ (1 +
α

L
)2||x− y||.

Here, f is a layer-wise operator. Hence, for all the L encoder layers,

||f(x)− f(y)|| ≤ (1 +
α

L
)2L||x− y||.

The sequence
∏

n(1 +
x
n )

n converges only if x < n, which holds in our case through the design of
residual weights. Using limn→∞(1 + x

n )
n = ex, we get ||f(x)− f(y)|| ≤ e2||x− y|| ■.

To compute the lower bound, we can use the triangle inequality to obtain
||x− y|| · |1− α− α(1− α)|

≤ ||x− y|| · |1− 1

L
− 1

L
(1− 1

L
)|

= ||x− y|| · (1− 1

L
)2

≤ ||f(x)− f(y)||.
For a multi-layered encoder with L > 1, this value is bounded by 0.25.

B EXPERIMENTAL DETAILS

In this section, we describe the experimental setup we have followed to run experiments with
TransJect and its variants on the four sequence classification tasks. All the experiments are
run for 30 epochs. To terminate learning on plateaus, we use a early stopping based on the test loss
with a patience of 4 epochs. For all the experiments, we use Adam optimizer with learning rate
of 0.0005, β1 = 0.9, β2 = 0.98 and ϵ = 10−9. We use TransJect and all the variants with 6
encoder layers with hidden size d = 512 and 4 experts in each encoder layer, for all the models. We
highlight the model parameters in Table 4. We use both training and test batches of size 32. One
Tesla P100 and one Tesla V100 GPUs are used for conducting all the experiments.

Table 4: Comparison of number of learnable parameters. For a fair comparison we choose the
number of experts E = 8 for TransJect. Additionally, Transformer uses dff = 2048 in the
feedforward layer, whereas TransJect uses the original encoder hidden dimension to maintain in-
vertibility. For a comparable configuration, TransJect contains 45% more parameters (synapses)
than Transformer.

Model #Parameters
Transformer (Vaswani et al., 2017) 34.5M
Transformer with dff = 512 25.1M
Transformer with WQ = WK 32.9M
TransEvolve (Dutta et al., 2021) 4.2M
TransJect 36.4M

C ANALYSIS ON LONG SEQUENCE CLASSIFICATION

In this section, we continue the analysis of TransJect on the long sequence classification task.
Figure 7. presents the test accuracy obtained by our models in Similar to the word-level IMDb
classification, TransJect shows more robust performance under different selection of depth and
sequence length. On a similar note, we observe that the non-entropic variants tend to perform better
with smaller training data. On the other hand, entropic models require more data for stability. At the
same time, a higher hidden size boosts the performances for our models, which could be attributed
to the number of synapses or inter-connections among neurons.
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Figure 7: Performance of TransJect and Transformer under different configurations on the
CharIMDb classification task.
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Figure 9: Distribution of (a) layer-wise entropy of token representations, (b) expert weights, (c)
layer-wise activation bounds for the CharIMDb classification task.
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Figure 8: Training and test loss obtained by
TransJect, Transformer and Transformer+ReZero on
the CharIMDb classification task.

The convergence analysis in Figure 8
shows the robustness of our models
in terms of generalization capabili-
ties. Similar to the IMDb classifica-
tion task, in the CharIMDb classifica-
tion task, TransJect and its vari-
ants display a very stable convergence.
TransJect with random eigenvalues
generalizes better than with ReZero and
even achieves lower training loss after
30000 steps. On the other hand, Trans-
former diverges quickly after 10000
steps.

We conduct a similar statistical anal-
ysis on CharIMDb classification. For
longer sequences, TransJect and

15



Under review as a conference paper at ICLR 2023

Entropic-TransJect display even higher entropy, as compare to Transformer. Figure 9a sug-
gests that Transformer follows a normal distribution over state entropies, whereas TransJect
shows a left-skewed distribution, suggesting more entropic states. However, in CharIMDb task,
Transformer exhibits a similar behavior in terms of activation bound. In the CharIMDb task, the
activation bound for TransJect increases (though stays within the theoretical bound) due to high-
entropic projections. For the CharIMDb task, the initial embeddings sit in a lower-rank space due to
a smaller vocabulary. This allows Transformer to explore in a low-dimensional dense space, leading
to a tighter activation bound.
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