
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONJECTURING: AN OVERLOOKED STEP IN FORMAL
MATHEMATICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoformalisation, the task of expressing informal mathematical statements in
formal language, is often viewed as a direct translation process. This, however,
disregards a critical preceding step: conjecturing. Many mathematical problems
cannot be formalised directly without first conjecturing a conclusion such as an ex-
plicit answer, or a specific bound. Since Large Language Models (LLMs) already
struggle with autoformalisation, and the evaluation of their conjecturing ability
is limited and often entangled within autoformalisation or proof, it is particularly
challenging to understand its effect. To address this gap, we augment existing
datasets to create ConjectureBench, and redesign the evaluation framework and
metric specifically to measure the conjecturing capabilities of LLMs both as a
distinct task and within the autoformalisation pipeline. Our evaluation of founda-
tional models, including GPT-4.1 and DeepSeek-V3.1, reveals that their autofor-
malisation performance is substantially overestimated when the conjecture is ac-
counted for during evaluation. However, the conjecture should not be assumed to
be provided. We design an inference-time method, LEAN-FIRE to improve con-
jecturing and autoformalisation, which, to the best of our knowledge, achieves the
first successful end-to-end autoformalisation of 13 PutnamBench problems with
GPT-4.1 and 7 with DeepSeek-V3.1. We demonstrate that while LLMs possess
the requisite knowledge to generate accurate conjectures, improving autoformali-
sation performance requires treating conjecturing as an independent task, and in-
vestigating further how to correctly integrate it within autoformalisation. Finally,
we provide forward-looking guidance to steer future research toward improving
conjecturing, an overlooked step of formal mathematical reasoning.

1 INTRODUCTION

Natural language reasoning with Large Language Models (LLMs) has emerged as a powerful tool for
solving complex mathematical problems. Its effectiveness is highlighted by recent breakthroughs,
such as AI systems from OpenAI and Google solving five of six problems from the 2025 Interna-
tional Mathematics Olympiad (IMO) using natural language (Metz, 2025). The critical caveat is
that these informal solutions require validation by expert mathematicians, a process that is prone to
human error and lack scalability (Gouëzel & Shchur, 2019). Proof assistants like Isabelle (Wenzel
et al., 2008) and Lean (Moura & Ullrich, 2021) provide a path toward automated verification at scale
through formal reasoning. Their power was demonstrated when AlphaProof solved three of the six
2024 IMO problems by generating formal proofs (AlphaProof and AlphaGeometry teams, 2024)
and reiterated in 2025 with SeedProver (Chen et al., 2025) equaling OpenAI and Google’s perfor-
mance. Yet benchmarks such as PutnamBench remain difficult, with the best open-source models
achieving a correct proof rate of only 13.1% at the time of writing (Tsoukalas et al., 2024).

A central bottleneck is autoformalisation, the task of automatically expressing informal mathematics
into a precise formal language (Szegedy, 2020). On undergraduate-level problems from the ProofNet
benchmark (Azerbayev et al., 2023), the current state-of-the-art performance is only 31.28% (Liu
et al., 2025b). Moreover, the fact that state-of-the-art systems like AlphaProof are provided with
human-annotated formalisations, rather than the natural language problems, suggests that an end-to-
end approach remains challenging. Autoformalisation is non-trivial, as even highly skilled human
experts can take over eight hours to formalise a single IMO problem (Liu et al., 2025a). Improv-
ing autoformalisation would therefore be transformative, not only by providing a systematic way

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ConjectureBench

PutnamBench
CombiBench Informal

Statement
Typecheck, BEq+, LLM Grader

Autoformalised statement contains the
ground truth conjecture?

ConjectureFormal
Statement🤖

Seen
Conjecture

Unseen
Conjecture

Conjecture

Informal
Statement

 Autoformaliser🤖 ⚖️

Autoformalisation Metrics

+

 Conjecturer🤖

ConJudge

Tag solution type

Generated
Conjecture

Gold
Conjecture ⟺

equiv_rfl

Extract conjecture

Rephrase solution
out of question

Figure 1: End-to-end evaluation pipeline for conjecturing and autoformalisation, including a “seen”
setting (conjecture provided) and a more realistic “unseen” setting (conjecture must be inferred). Our
contributions, highlighted in blue, introduce ConjectureBench, “unseen” evaluation, and two corre-
sponding metrics: ConJudge for assessing conjecturing during autoformalisation and equiv rfl
for standalone conjecture generation.

to validate informal reasoning but also by enabling the synthesis of new data at scale to improve
automated provers themselves.

Autoformalisation is difficult for two interrelated reasons: faithfulness and conjecturing. Without a
ground truth formalisation1, it can be difficult to judge whether the autoformalised statement truly
reflect the intent expressed by the natural language problem (Yang et al., 2025b). Humans generally
describe problems in an informal manner, often obfuscated through real world objects and situations.
To formalise these, LLMs need to connect world knowledge with abstract mathematical concepts,
which increases the complexity of the task (Yang et al., 2025b).

Secondly, a conjecture, a mathematical conclusion such as an explicit answer, bound, or proposi-
tion, is required for formalisation. The nature of the conjecture shapes the autoformalisation, without
which proving stalls. To circumvent conjecturing during autoformalisation, one may insert a place-
holder, but it must ultimately be replaced with a valid solution for a complete proof. Most current
systems implicitly treat conjecturing as part of the proof search (Sun et al., 2025) by proposing a so-
lution and validating it when a verified proof is generated. However, using a proof as self-verification
of the conjecture comes with an important caveat; it does not guarantee completeness. For example,
solving x2 − 4x = 0 by conjecturing x = 0 yields a valid and verifiable yet incomplete solution,
as x = 4 is also a valid root. This highlights that conjecturing and proving draw on distinct skills.
Conjecturing relies on intuition, pattern recognition, and heuristic testing, whereas proving requires
the rigorous application of tactics (Fernández-León et al., 2021).

To address the overlooked role of conjecturing in formal mathematical reasoning, we measure the
conjecturing capability by introducing ConjectureBench, a new dataset designed to evaluate the
conjecturing performance of LLMs. We develop two novel metrics: ConJudge, a metric that uses
an LLM-as-a-Judge (Zheng et al., 2023) to assess conjecture presence within the autoformalisation,
and equiv rfl, a metric that uses Lean tactics to check for definitional equivalence in standalone
conjecture generation as illustrated in Figure 1. Our evaluation of foundational LLMs, including
GPT-4.1 and DeepSeek-V3.1, on ConjectureBench reveals that autoformalisation performance is
substantially overestimated when the conjecturing step is assumed to be provided.

To test the hypothesis that this performance gap stems from a failure in reasoning rather than a lack
of mathematical and world knowledge, we propose a novel inference-time method Lean Formal-
Informal Reasoning (LEAN-FIRE). This approach guides the model by interleaving Chain-of-
Thought (CoT) reasoning in natural language with Lean-of-Thought (LoT) steps in formal language,
helping it to better connect informal reasoning with formal mathematics. We show that LEAN-FIRE
leads to significant improvements, confirming our hypothesis. While end-to-end autoformalisation
remains low, our method achieves the first successful autoformalisation of 13 new PutnamBench
“no-answer” problems. More specifically, LEAN-FIRE improves conjecturing performance on our
ConJudge metric by an average of 29.1% for GPT-4.1 and 14.0% for DeepSeek-V3.1. These results
provide strong evidence that the models’ primary limitation is not a lack of requisite knowledge, but

1In this work, we always assume existence of a ground truth formalisation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Hypothesis ⇒ Conclusion Type of solution

x+ 4 = 0 ⇒ x = −4 Numerical

x2 − a = 0 ⇒ x ∈ {
√
a,−

√
a} Algebraic

cos(x) = x ⇒ ∃x s.t. cos(x) = x True but no closed-form solution

Table 1: Examples of mathematical statements paired with different solution types.

rather the need for targeted methods to unlock their ability to conjecture effectively. Lastly, through
manual analysis, we further identify two practical challenges: dataset contamination and the need
for new definitions, functions, and lemmata to support autoformalisation.

Our contributions are as follows: (1) we introduce ConjectureBench, the first benchmark evaluating
conjecture capabilities, (2) we propose two complementary metrics, ConJudge and equiv rfl, to
systematically assess thse capabilities, and (3) we develop LEAN-FIRE, an inference-time method
to improve both autoformalisation and conjecturing.

2 PRELIMINARY

In mathematics, a theorem is a statement for which a proof establishes a conclusion from a set of
hypotheses. When such a proof is not yet known, the statement is referred to as a conjecture (Pauli,
2022). A conjecture proposes a possible conclusion often expressed as an abstract object that may
or may not admit a closed-form representation such as an algebraic formula or a numerical answer,
see Table 1. In formal mathematics, autoformalisation is a necessary stage prior to using a prover
or proof assistant, as these systems require formal statements as inputs. Conjecturing is the task of
generating candidate solutions for well-posed problems (Sun et al., 2025).

Current formal mathematics datasets largely fall into two categories. The first type assumes that a
solution is already known and only requires the corresponding proof given a gold formalised state-
ment. The second type requires the discovery of a solution before or while a proof is constructed.
For this latter class, the initial step is to generate a candidate solution. Without such a conjecture, for-
malisation cannot proceed. This holds in Lean 4, a more permissive formal mathematics language;
the compiler cannot verify whether the object types are consistent (Typecheck) in an incomplete
statement.

Lean 4

theorem quad_roots: {x : R | xˆ2 - 4*x = 0} = conjecture := sorry

In the above quad roots example, the formal statement for “What are the real roots of x2−4x?”,
erasing conjecture reduces the statement to a set of hypotheses with no conclusion, leaving
nothing to prove. A quick fix is to put a placeholder, conjecture, for which Lean 4 has been
forced to assume the correct type. When the solution is known, it could be integrated directly into
the formal statement. But deriving it in the first place is challenging. If generated during the proving
stage, the formal language system can self-verify whether the conjecture is valid. However, the
validity of a conjecture does not equate to a complete conjecture or a valid solution to the informal
statement. Three valid and proof verifiable conjectures are:

Lean 4

abbrev conjecture_1:
Set R := {0}

abbrev conjecture_2:
Set R := {4}

abbrev conjecture_3:
Set R := {0, 4}

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

However, only conjecture 3 is a complete answer. In fact, natural language can frame a prob-
lem in a way that feels more intuitive and human-friendly. For example, “How many people must be
in a group for at least two of them to be born in the same month?”, this question is easier to reason
about using everyday knowledge than its more formal counterpart: determining the smallest domain
size for which there exist no injective function into a set of 12 elements. Therefore, autoformal-
isation being closer to the natural language statement allows for broader possibility of generating
conjectures. Finally, when tackling unsolved problems, the solution is not given in advance making
conjecture generation an essential step in the formal reasoning process. Therefore, this motivates
our exploration of conjecturing as an integral, yet overlooked step in formal mathematical reasoning.

3 METHODOLOGY

3.1 CONJECTUREBENCH DATASET

Two recent datasets are designed with conjecturing in mind: PutnamBench (Tsoukalas et al., 2024)
factors out the solution from the problem statement, forcing models to generate the conjecture it-
self, while CombiBench (Liu et al., 2025a) introduces a benchmark with and without the solution to
further encourage conjecture generation. To elaborate, PutnamBench is a benchmark of 640 paired
informal and formal statements from the William Lowell Putnam Mathematical Competition. The
benchmark and its leaderboard primarily emphasise proof generation, both when solutions are pro-
vided and when they are withheld. The evaluation of statements without answers is only feasible
for 355 of the problems. Similarly, CombiBench adopts the same design where possible, with 100
combinatorics problems ranging from textbook exercises to IMO questions. However, 55 questions
include the conjecture within their informal statement.

Original with integrated solution Reworded to seek a solution Type of solution Distribution
Show that there are at least

1991 red points in the plane.
What is the minimum number

of red points in the plane? Numerical 39.0%
(178)

Prove that there are at most
2n− 1 subsets in the collection.

What is the maximum number of subsets
that can be in such a collection? Algebraic 36.1%

(165)

Prove that B = {0, 3, 4, 9, 11}
is a difference set in Z21.

Prove or disprove that B = {0, 3, 4, 9, 11}
is a difference set in Z21. Proof 24.9%

(114)

Table 2: Examples of how proof questions are reformulated into the three solution types considered,
along with the distribution of these types in ConjectureBench.

To adapt both datasets to evaluate conjecturing, we first annotated all 355 PutnamBench problems
and 102 CombiBench problems (splitting multi-part questions into separate items) to ensure that no
conjecture appear directly in the problem statements. For proof-based questions, where the conclu-
sion is already embedded, we rephrased them into equivalent tasks requiring either a numerical or
algebraic solution. When rewording is not feasible, we instead reformulate the problem into a binary
classification task, requiring the model to decide whether the statement is true or false. Examples of
these reformulations, as well as the distribution across our new combined dataset, ConjectureBench,
are provided in Table 2. We finally separate the conjecture from the formal statement, retaining it
only in the “seen” setting as illustrated in Figure 1. This design choice ensures that our full dataset
of 457 paired informal–formal statements can be used consistently across both, “seen” and “unseen”
settings, enabling a more accurate evaluation of conjecturing.

This evaluation framework offers several advantages. It allows us to assess whether current LLMs
are capable of generating accurate conjectures while autoformalising, but also to evaluate models’
raw conjecturing capability. It also enables a detailed analysis of which types of conjectures present
particular challenges for existing models. The results of this benchmark provide a foundation to
investigate whether improvements in conjecturing arise naturally from enhanced autoformalisation,
or if alternative approaches, such as new data or reasoning approaches, are necessary.

3.2 CONJECTURING TASKS

We evaluate performance across two distinct tasks designed to assess conjecture-driven reasoning
as illustrated in Figure 2. The primary task is autoformalisation, which we evaluate in two settings.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

How many people
must be in a group for
at least two of them to

be born in the
same month?

🤖

🤖

1. Let the set of months be
M, with |M| = 12.
2. Let n ∈ ℕ be the number
of people in the group.
 . . .

1. M: Fin 12
2. n : ℕ
 . . .

1. Let the set of months be M, with |M| = 12.
M: Fin 12

2. Let n ∈ ℕ be the number of people in the group.
n : ℕ

3. Each person’s birth month is a function b : {1, …, n} → M
 b : Fin n → Fin 12
4. The question asks for the minimal n such that, for every
 function , there exists i ≠ j with b(i) = b(j).
 ∀ b: Fin n → Fin 12,
 ∃ (I j: Fin n), i ≠ j ∧ b i = b j
 . . .

Formal Statement generatedConjecture generated

 Autoformalising🤖 Conjecturing🤖

Lean-FIRe Generation

Lean-FIReCoT

LoT

Informal Statement

Seen only:

abbrev conjecture:
 ℕ : 13

abbrev conjecture:
 ℕ : 13ℕ : 13

theorem hackmath:
 IsLeast {n | ∀ f :
 Fin n → Fin 12,
 ∃ a b, f a = f b}
 conjecture := sorry conjecture

Figure 2: Illustration of LEAN-FIRE construction within the overall pipeline for generating auto-
formalisations and conjectures, where the conjecture in the green box is provided only in the “seen”
setting, and CoT and LoT stand for chain/lean-of-thought.

In the “seen” setting, the model is provided with the informal statement and the correct conjecture
formatted in Lean 4. The task is to produce a formal statement that correctly incorporates the
provided conjecture. In the “unseen” setting, the model is provided only with the informal statement
and must deduce and incorporate the conjecture directly into the final formalisation.

The second task is standalone conjecture generation, where we isolate conjecturing performance
entirely from the complexity of full autoformalisation. Here, the model is given only the informal
statement and is instructed to generate the conjectured solution as a concise Lean 4 statement.

3.3 METRICS

To evaluate conjecturing performance during autoformalisation, we propose ConJudge, an LLM-
as-a-judge framework (Zheng et al., 2023). Its purpose is to determine whether the problem’s gold
solution is reasonably and correctly incorporated as a conjecture within the final autoformalised
statement. To do this, ConJudge is provided with the generated formalisation, the gold conjecture,
and the gold formalisation to demonstrate the intended context and role of the conjecture. For
instance, if the correct conjecture is the integer 2, the judge would reject a formalisation where 2
appears incorrectly as a power or a subscript. To tune ConJudge, we carry out a human annotation
of 100 randomly sampled autoformalisation generations (Appendix B.3), classifying whether the
solution was correctly incorporated into the formal statement.

For standalone conjecture generation, we created equiv rfl, which evaluates definitional equiva-
lence between the generated and gold conjecture based on tactic rfl (Appx. B.4). This provides a
rigorous, formal measure of whether the model can produce the correct solution in isolation.

3.4 LEAN-GUIDED FORMAL-INFORMAL REASONING (LEAN-FIRE)

To test the hypothesis that the performance gap in conjecturing stems from a failure in reasoning
rather than a lack of knowledge, we propose LEAN-FIRE, a novel inference-time method designed
to better structure the model’s reasoning process. The goal is to distil the LLM’s latent parametric
mathematical knowledge at test-time by combining both informal and formal reasoning. As illus-
trated in Figure 2, the LEAN-FIRE method is built as a two-stage hybrid reasoning process that
integrates informal problem decomposition with formal code generation by means of interleaved
Chain-of-Thought (CoT) with Lean-of-Thought (LoT) prompting. We leverage the LLM’s ability
in informal mathematical reasoning to first generate a potential conjecture and outline the overall

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

structure of the formalisation. First, a complete CoT trace is generated in natural language from the
informal problem statement. The CoT is designed to break down the problem, identify key math-
ematical objects, and articulate the reasoning entirely in natural language. Crucially, this phase is
constrained to produce no formal code and avoid stating the final solution. Second, after the informal
reasoning trace is completed, a subsequent LLM generates a corresponding LoT step for each infor-
mal step. The purpose of the LoT is not to write a comprehensive formal statement, but to translate
the abstract concepts from the CoT into precise Lean primitives and syntax. This hybrid approach
is motivated in part by prior work, such as Jiang et al. (2023), which has already demonstrated that
leveraging both formal and informal language can improve performance in theorem proving.

Seed Data Annotation. This automated generation of CoT and LoT steps is enabled by few-shot
examples derived from a small, expert-annotated seed dataset. We created this seed data from five
diverse Putnam competition problems, which were annotated by an expert mathematics instructor
to produce gold CoTs. The problems were selected to cover a range of mathematical domains
(probability, real analysis, linear algebra, abstract algebra, number theory), solution types (as listed
in Table 2), and conjecture styles, ensuring the exemplars were broadly representative. In some
cases, questions were modified to omit parts of the solution, mirroring the annotation process for
ConjectureBench. These five seed problems are detailed in Appendix A.1 and are excluded from
our ConjectureBench evaluation. With these few-shot examples and a set of precise instructions (see
Appendix A.2), CoT and LoT pairs can be automatically generated for any new problem using only
its informal statement as input. In preliminary experiments, we evaluated five LLMs for this task
and found that GPT-4.1 consistently outperformed its other family models and Claude-4-Opus.

4 EXPERIMENTAL SETUP

Models. We experiment with two foundational autoformalisation models: GPT-4.1 (Achiam et al.,
2023) and DeepSeek-V3.1 (DeepSeek-AI et al., 2024). To measure the impact of our proposed
method, we compare the performance of LEAN-FIRE against the zero-shot performance of each
base model. Additionally, we conduct an ablation study where we remove the few-shot examples
from the LEAN-FIRE input (w/o FS) to isolate the contribution of the hybrid reasoning approach.

Metrics. We assess performance for all tasks using pass@1 and pass@10, where pass@k indicates
that at least one of k independent samples was successful. For conjecturing, we use two targeted met-
rics. Conjecturing performance during the full autoformalisation task is assessed with ConJudge,
while standalone conjecture generation is evaluated using equiv rfl.

For autoformalisation, we use three complementary metrics: Typecheck, BEq+, and LLM Grader.
Typecheck is a binary measure of syntactic correctness indicating whether the generated Lean code
compiles without error.2 For semantic equivalence, we use BEq+, a metric based on a set of Lean
tactics that presupposes typechecking and attempts to prove equivalence between the generated and
gold formalisations (Poiroux et al., 2025). We should note that while precise, BEq+ can be overly
conservative, leading to false negatives on semantically equivalent statements that differ in surface
form (Liu et al., 2025b). To capture a broader notion of correctness, we also use LLM Grader, a
pipeline that evaluates semantic alignment. First, the gold and generated formalisations are back-
translated into natural language using a math LLM.3 A separate judge LLM4 then evaluates these
natural language statements for semantic equivalence.

5 RESULTS AND DISCUSSION

5.1 CONJECTURING RESULTS

Conjecturing During Autoformalisation. Using the ConJudge metric, we find that models are
more adept at producing the correct conjecture when it is part of a full autoformalisation task. Ta-

2Each instance of ConjectureBench is provided with the appropriate Mathlib imports and a standardised
Lean 4 environment (v4.19.0-rc2) to ensure consistent evaluation.

3We employ InternLM2-Math-Plus-20B (Cai et al., 2024).
4We employ a Qwen3-14B (Yang et al., 2025a) calibrated against human annotators (see Appendix B.3).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Model Method Conjecture ConJudge @1 ConJudge @10

G
PT

-4
.1

Baseline Seen 78.77 98.03
Unseen 26.70 (−52.07) 61.27 (−36.76)

LEAN-FIRE
Seen 92.78 98.47
Unseen 55.80 (−36.98) 85.34 (−13.13)

LEAN-FIRE w/o FS Seen 77.90 96.06
Unseen 28.88 (−49.02) 56.89 (−39.17)

D
ee

pS
ee

k-
V

3.
1

Baseline Seen 80.31 95.84
Unseen 30.63 (−49.68) 58.86 (−36.98)

LEAN-FIRE
Seen 81.40 97.81
Unseen 44.64 (−36.76) 71.55 (−26.26)

LEAN-FIRE w/o FS Seen 74.62 96.72
Unseen 35.01 (−39.61) 56.86 (−39.83)

Table 3: Conjecturing during autoformalisation performance on ConjectureBench using ConJudge.
Scores are reported at pass@1 and pass@10, with relative differences between “unseen” and “seen”
in brackets. Bold indicates best performance for each model and metric in the “unseen” setting.

Model Type of solution equiv rfl@1 equiv rfl@10

GPT-4.1

All 3.28 (15/457) 5.04 (23/457)

Numerical 5.62 (10/178) 8.99 (16/178)

Algebraic 3.03 (5/165) 4.24 (7/165)

Proof 0.00 (0/114) 0.00 (0/114)

DeepSeek-V3.1

All 3.72 (17/457) 5.70 (26/457)

Numerical 7.30 (13/178) 10.67 (19/178)

Algebraic 2.42 (4/165) 3.64 (6/165)

Proof 0.00 (0/114) 0.88 (1/114)

Table 4: Standalone conjecture generation performance across ConjectureBench broken down by
type of solution. Metrics report equiv rfl at pass@1 and pass@10, with counts shown over total
examples in brackets.

ble 3 shows that LEAN-FIRE with few-shot examples significantly improves the use of conjectures
in both “seen” and “unseen” settings, boosting GPT-4.1’s pass@10 by up to 28% in the “unseen”
setting. However, the large performance drop when few-shot examples are removed (w/o FS) indi-
cates that the hybrid reasoning structure alone does not significantly improve conjecturing. Instead,
the few-shot examples, which expose the model to various solution types and map reasoning steps
to the correct conjecture format, provide the primary benefit. This suggests that a model’s ability to
conjecture is less a matter of latent reasoning and more a function of direct exposure, pointing to the
need for larger and higher-quality conjecture datasets for training.

Standalone Conjecture Generation. As shown in Table 4, performance on standalone conjecture
generation is notably low across all models. While models occasionally produce correct numer-
ical conjectures, they more often generate auxiliary constructs such as definitions or lemmata in-
stead of the conjecture itself. The performance on this task is nearly an order of magnitude lower
than for conjecturing during autoformalisation (see Table 3), suggesting that models rely heavily on
prior exposure to conjectures already embedded within complete formalised solutions. We observed
signs of data contamination in the outputs; for instance, some generations used helper functions like
IsMagicSquare, which appear only in the gold formalisation of the benchmark.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Method Conjecture TC@1 BEq+@1 Grader@1 TC@10 BEq+@10 Grader@10

G
PT

-4
.1

Baseline Seen 25.38 0.00 7.22 59.52 6.78 36.32
Unseen 24.29(−1.09) 0.22(+0.22) 3.50(−3.72) 51.42(−8.10) 4.38(−2.40) 20.35(−15.97)

LEAN-FIRE
Seen 31.95 3.72 11.82 50.98 6.56 43.33
Unseen 28.01(−3.94) 1.31(−2.41) 4.60(−7.22) 43.76(−7.22) 3.06(−3.50) 22.76(−20.57)

LEAN-FIRE Seen 35.89 2.84 7.66 49.02 4.60 40.04
w/o FS Unseen 28.45(−7.44) 2.41(−0.43) 5.69(−1.97) 42.67(−6.35) 4.16(−0.44) 23.85(−16.19)

D
ee

pS
ee

k-
V

3.
1

Baseline Seen 38.29 4.81 6.78 61.71 6.78 35.67
Unseen 33.26(−5.03) 2.63(−2.18) 5.25(−1.53) 54.49(−7.22) 5.47(−1.31) 24.95(−10.72)

LEAN-FIRE
Seen 46.17 3.72 9.85 66.74 6.13 41.36
Unseen 42.89(−3.28) 2.63(−1.09) 6.13(−3.72) 59.30(−7.44) 4.16(−1.97) 26.91(−14.45)

LEAN-FIRE Seen 39.82 3.50 9.41 56.24 4.16 39.39
w/o FS Unseen 39.61(−0.21) 2.63(−0.87) 6.35(−3.06) 53.83(−2.41) 3.72(−0.44) 23.63(−15.76)

Table 5: Autoformalisation performance of all models and methods (as percentages) on Conjec-
tureBench across seen and unseen settings. Metrics include TC (Typecheck), BEq+, and Grader
(LLM Grader), reported at pass@1 and pass@10. Unseen results show the difference relative to
seen performance in brackets. Bold values indicate the best performance for each model and metric
in the “unseen” setting.

5.2 AUTOFORMALISATION RESULTS

Table 5 shows that correct end-to-end autoformalisation remains a challenging task, with low suc-
cess rates even in the “seen” setting where the conjecture is provided. Performance is systematically
overestimated in this setting, with an average 23.7% drop in performance when moving from the
“seen” to the “unseen” setting. Despite these challenges, LEAN-FIRE achieves notable successes.
Generating conjectures, as underscored by the PutnamBench “no-answer” leaderboard, was con-
sidered as a challenge with no successful submissions to date (Tsoukalas et al., 2024). Yet, even
under the strict BEq+ metric, LEAN-FIRE enables GPT-4.1 to correctly autoformalise 13 new Put-
namBench problems and DeepSeek-V3.1 to solve 7. To our knowledge, these represent the first
successful autoformalisations on PutnamBench in a setting where the solution is withheld.

In contrast to its effect on conjecturing, LEAN-FIRE’s impact on autoformalisation is more nuanced.
When comparing across metrics, both models show consistent gains under Typecheck and LLM
Grader. Higher Typecheck scores indicate improved syntactic correctness, while better LLM Grader
scores point to improved semantic equivalence. Therefore, the limited gains in BEq+ suggest that
assembling correct components into a fully equivalent formalisation remains a key bottleneck. For
example, in the generated formalisation of putnam 2014 b2 below, both Typecheck and LLM
Grader marked the output as correct, but BEq+ did not due to a subtle error: a misplaced factorial
symbol. This highlights the sensitivity of BEq+ and illustrates that even when all components are
present, models may fail to assemble them with complete accuracy.

Lean 4

abbrev conjecture: (fun n : N => (-1)ˆ(n - 1) / ((n - 1)! * n!))

theorem putnam_2014_a2 : ∀ n : N, 0 < n
→ let A : Matrix (Fin n) (Fin n) Q := λ i j
=> 1 / (min (i.val + 1) (j.val + 1) : Q) in det A
= ((-1) ˆ (n - 1) : Q) / ((n - 1)! * n)!)
:= sorry

In general, the comparison with the baseline reveals no consistent performance benefit. In the “seen”
setting, few-shot examples are helpful, but in the “unseen” setting, they can be detrimental, some-
times wrongly encouraging template solutions where a conjecture is introduced as a separate func-
tion and then integrated into the formalisation. This suggests that the mathematical knowledge
required for complex autoformalisation including conjecturing is not fully latent in the model’s pa-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

rameters, or that LEAN-FIRE, in its current form, fails to consistently extract it. LEAN-FIRE shows
a net mean gain of 3.01% at pass@1 but a slight decline at pass@10, suggesting that the reasoning
guidance primarily helps steer the model’s token distribution towards correctness, but the effect is
diluted when multiple generations are sampled by the increase of the probability of reaching a better
distribution. Still, from Table 5, best-of-n sampling roughly doubles improvement under BEq+ and
quadruples it under the LLM Grader, indicating that necessary knowledge exists in latent space, but
is hard to reliably retrieve.

6 RELATED WORK

Several approaches to autoformalisation leverage retrieval or supervised fine-tuning to bootstrap
formal reasoning. For example, Liu et al. (2025b) incorporate retrieval to ground the translation
process, while Lin et al. (2025) train on large corpora containing both human and synthetic anno-
tations derived from the Lean Workbook (Ying et al., 2024), exposing the model to a diverse range
of formalisation examples. Data-centric strategies, focusing on increasing dataset size or improving
data quality, are also common. Some methods employ LLMs-as-a-judge (Wang et al., 2025), chain-
of-thought (CoT) model scoring (Xin et al., 2024), Lean typechecking signals (Lu et al., 2024), or
LLM feedback (Peng et al., 2025). In addition, Sun et al. (2025) combine typechecking feedback
with retrieval within their framework to further enhance autoformalisation performance.

Autoformalisation is also employed in theorem proving: for instance, Jiang et al. (2023) propose a
“draft–sketch–prove” framework that first sketches proof outlines from informal arguments before
completing subgoals with an automated prover. Collectively, these works highlight a growing toolkit
of data generation, model training, and feedback mechanisms aimed at closing the gap in autofor-
malisation. However, these work fail to improve models using test-time compute which we tackle
with LEAN-FIRE.

Conjecturing in the broader sense has been aimed to formalise open-ended conjectures to encourage
mathematical discovery (Chau et al., 2025). Methodologically, many approaches interleave con-
jecturing with proving, where a placeholder conjecture is proposed and subsequently validated by
a prover (Dong & Ma, 2025). Sun et al. (2025) extend this idea by iteratively generating special
coded cases from an autoformalised statement, forming candidate conjectures that are then tested by
a prover in a repeated cycle. Zhou et al. (2024) demonstrate that for simple enough problems, LLMs
could be used to generate the solutions and autoformalisation can verify them. However, we are the
first to explicitly extract and evaluate conjecturing.

7 CONCLUSION

In this work, we identify conjecturing as an overlooked step in formal mathematical reasoning with
LLMs, challenging the prevailing assumption that autoformalisation is a straightforward translation
task. By introducing ConjectureBench, a benchmark specifically designed to evaluate conjecture
generation, and by proposing new metrics that disentangle conjecturing from autoformalisation, we
provide the first systematic framework to measure and analyse this capability. Our results show
that existing models substantially underperform when conjectures are withheld, revealing that much
of their perceived success depends on having solutions pre-specified. To address this gap, we de-
velop LEAN-FIRE, an inference-time strategy that integrates informal Chain-of-Thought with for-
mal Lean-of-Thought reasoning. This method enables the first successful end-to-end autoformalisa-
tion of PutnamBench “no-answer” problems, demonstrating that LLMs possess latent mathematical
knowledge but require structured guidance to effectively conjecture and formalise. Manual analysis
also identify two challenges: data contamination of existing benchmarks, and the task of generating
useful definitions, functions and lemmata that would help autoformalisation, conjecturing and prov-
ing. For future work, we argue that progress in formal mathematical reasoning hinges on treating
conjecturing as an independent task. This calls for the development of richer conjecturing datasets,
improved inference-time techniques, and training strategies that explicitly separate and then reinte-
grate conjecturing with autoformalisation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In conducting this research, we strictly adhere to data protection regulations in the respective coun-
tries and follow established academic codes of ethics. We respect the licenses of all data artifacts
utilised ensuring that their usage complies with the terms set by the creators. LLMs were solely
used to assist in editing and improving the language of this manuscript. All experts involved in data
annotation and validation were fairly compensated for their contributions.

While we acknowledge that reasoning-oriented LLMs can potentially be misused to generate harm-
ful content, we believe that the associated risks are minimal in the context of improving formal
mathematical reasoning capabilities. Compared to related works in this area, we do not identify any
additional ethical risks arising from our models, datasets, or methodologies.

REPRODUCIBILITY STATEMENT

We provide all code, datasets, and scripts necessary to reproduce our experiments. ConjectureBench,
including all reworded problems, annotated conjectures, and few-shot seed examples, will be pub-
licly released. Our LEAN-FIRE implementation, including CoT and LoT generation pipelines and
evaluation scripts for ConJudge and equiv rfl, is fully documented. Experimental details, in-
cluding the Lean version used, hyperparameters, prompts, sampling strategies (pass@1, pass@10),
seeds used, are detailed in Section § 4 and Appendix B.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Tech-
nical Report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.org/pdf/
2303.08774.

AlphaProof and AlphaGeometry teams. AI achieves silver-medal standard
solving International Mathematical Olympiad problems. Google Deep-
Mind, Jul 2024. URL https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathe-
matics. 2023. URL https://arxiv.org/abs/2302.12433.

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan
Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu
Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, and et al. InternLM2 Technical Report. arXiv preprint arXiv:2403.17297, 2024. URL
https://arxiv.org/abs/2403.17297.

Herman Chau, Helen Jenne, Davis Brown, Jesse He, Mark Raugas, Sara C. Billey, and Henry
Kvinge. Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Captur-
ing Research-level Conjecturing Ability in Pure Mathematics. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
tlniJJFUW2.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jianqiu Zhao, Yichi Zhou, and Thomas Hanwen

10

https://arxiv.org/pdf/2303.08774
https://arxiv.org/pdf/2303.08774
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2403.17297
https://openreview.net/forum?id=tlniJJFUW2
https://openreview.net/forum?id=tlniJJFUW2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhu. Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving. 2025. URL
https://arxiv.org/abs/2507.23726.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang
Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,
Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Ziyi Gao, and Zizheng Pan. Deepseek-v3 Technical Report. arXiv preprint arXiv:2412.19437,
2024.

Kefan Dong and Tengyu Ma. STP: Self-play LLM theorem provers with iterative conjecturing and
proving. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=zWArMedNuW.

Aurora Fernández-León, José Marı́a Gavilán-Izquierdo, and Rocı́o Toscano. A case study of the
practices of conjecturing and proving of research mathematicians. International Journal of Math-
ematical Education in Science and Technology, 52(5):767–781, 2021. doi: 10.1080/0020739X.
2020.1717658. URL https://doi.org/10.1080/0020739X.2020.1717658.

Sébastien Gouëzel and Vladimir Shchur. A corrected quantitative version of the Morse lemma.
Journal of Functional Analysis, 277(4):1258–1268, 2019. ISSN 0022-1236. doi: https://doi.
org/10.1016/j.jfa.2019.02.021. URL https://www.sciencedirect.com/science/
article/pii/S0022123619300801.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, Sketch, and Prove: Guiding Formal
Theorem Provers with Informal Proofs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SMa9EAovKMC.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia LI, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover: A Frontier Model for Open-
Source Automated Theorem Proving. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=x2y9i2HDjD.

J Liu, X Lin, J Bayer, Y Dillies, W Jiang, X Liang, R Soletskyi, H Wang, Y Xie, B Xiong,
et al. Combibench: Benchmarking llm capability for combinatorial mathematics. arXiv preprint
arXiv:2505.03171, 2025a. URL https://arxiv.org/pdf/2505.03171.

11

https://arxiv.org/abs/2507.23726
https://openreview.net/forum?id=zWArMedNuW
https://openreview.net/forum?id=zWArMedNuW
https://doi.org/10.1080/0020739X.2020.1717658
https://www.sciencedirect.com/science/article/pii/S0022123619300801
https://www.sciencedirect.com/science/article/pii/S0022123619300801
https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=x2y9i2HDjD
https://arxiv.org/pdf/2505.03171

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and Improving
Autoformalization: Towards a Faithful Metric and a Dependency Retrieval-based Approach. In
The Thirteenth International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=hUb2At2DsQ.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
Driven Autoformalization in Lean 4, 2024. URL https://arxiv.org/abs/2406.01940.

Cade Metz. Google A.I. System Wins Gold Medal in International Math Olympiad. The New
York Times, Jul 2025. URL https://www.nytimes.com/2025/07/21/technology/
google-ai-international-mathematics-olympiad.html.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In Automated Deduction–CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12–15, 2021, Proceedings 28, pp. 625–635. Springer, 2021.

Sebastian Pauli. Mat 112 integers and modern applications for the uninitiated. Caesar Ciphers,
2022. URL https://mat112.uncg.edu/HTML/root-1-2.html.

Zhongyuan Peng, Yifan Yao, Kaijing Ma, Shuyue Guo, Yizhe Li, Yichi Zhang, Chenchen Zhang,
Yifan Zhang, Zhouliang Yu, Luming Li, et al. Criticlean: Critic-guided reinforcement learning for
mathematical formalization. arXiv preprint arXiv:2507.06181, 2025. URL https://arxiv.
org/pdf/2507.06181.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Improving Autoformalization
using Type Checking, 2025. URL https://arxiv.org/abs/2406.07222.

Jialiang Sun, Yuzhi Tang, Ao Li, Chris J Maddison, and Kuldeep S Meel. Enumerate-Conjecture-
Prove: Formally Solving Answer-Construction Problems in Math Competitions. arXiv preprint
arXiv:2505.18492, 2025. URL https://arxiv.org/abs/2505.18492.

Christian Szegedy. A Promising Path Towards Autoformalization and General Artificial Intelli-
gence. In Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Berti-
noro, Italy, July 26–31, 2020, Proceedings, pp. 3–20, Berlin, Heidelberg, 2020. Springer-Verlag.
ISBN 978-3-030-53517-9. doi: 10.1007/978-3-030-53518-6 1. URL https://doi.org/
10.1007/978-3-030-53518-6_1.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jen-
nings, Amitayush Thakur, and Swarat Chaudhuri. PutnamBench: Evaluating Neural
Theorem-Provers on the Putnam Mathematical Competition. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 11545–11569. Curran Associates, Inc., 2024.
URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_
Track.pdf.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bai-
ley, Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu,
Jiawei Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall,
Luigi Pagani, Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Bar-
royer, Wen-Ding Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang,
Zhilin Yang, Zhengying Liu, and Jia Li. Kimina-prover preview: Towards large formal rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025. URL
https://arxiv.org/abs/2504.11354.

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The isabelle framework. In Ot-
mane Ait Mohamed, César Muñoz, and Sofiène Tahar (eds.), Theorem Proving in Higher Or-
der Logics, pp. 33–38, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
71067-7.

12

https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://arxiv.org/abs/2406.01940
https://www.nytimes.com/2025/07/21/technology/google-ai-international-mathematics-olympiad.html
https://www.nytimes.com/2025/07/21/technology/google-ai-international-mathematics-olympiad.html
https://mat112.uncg.edu/HTML/root-1-2.html
https://arxiv.org/pdf/2507.06181
https://arxiv.org/pdf/2507.06181
https://arxiv.org/abs/2406.07222
https://arxiv.org/abs/2505.18492
https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.1007/978-3-030-53518-6_1
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://arxiv.org/abs/2504.11354

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huajian Xin, Daya Guo, Zhihong Shao, Z.Z. Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Advancing theorem proving in LLMs through large-scale synthetic data.
In The 4th Workshop on Mathematical Reasoning and AI at NeurIPS’24, 2024. URL https:
//openreview.net/forum?id=TPtXLihkny.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 Technical Report. 2025a. URL https://arxiv.org/pdf/2505.09388.

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin E. Lauter, Swarat Chaudhuri, and
Dawn Song. Position: Formal mathematical reasoning—a new frontier in AI. In Forty-second
International Conference on Machine Learning Position Paper Track, 2025b. URL https:
//openreview.net/forum?id=HuvAM5x2xG.

Huaiyuan Ying, Zijian Wu, Yihan Geng, JIayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A large-scale Lean problem set formalized from natural language math problems. In The Thirty-
eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?id=Vcw3vzjHDb.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Sto-
ica. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 46595–46623. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.
pdf.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
Don’t Trust: Verify - Grounding LLM Quantitative Reasoning with Autoformalization. In ICLR,
2024. URL https://openreview.net/forum?id=V5tdi14ple.

13

https://openreview.net/forum?id=TPtXLihkny
https://openreview.net/forum?id=TPtXLihkny
https://arxiv.org/pdf/2505.09388
https://openreview.net/forum?id=HuvAM5x2xG
https://openreview.net/forum?id=HuvAM5x2xG
https://openreview.net/forum?id=Vcw3vzjHDb
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=V5tdi14ple

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LEAN-FIRE

In this Appendix section, we provide the five examples used both as seed questions and few-shot
examples A.1. We also include the prompts used to generate the CoT and the subsequent LoT in
A.2.

A.1 SEED QUESTIONS

Seed/Few-shot example 1 of 5
Name
putnam 2004 a1

Informal Statement
Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N), of successful free
throws she has made in her first N attempts of the season. Early in the season, S(N) was less than
80% of N , but by the end of the season, S(N) was more than 80% of N . Proof or disprove that it there
necessarily was a moment in between when S(N) was exactly 80% of N .

LeanFIRe Reasoning

- Each attempt has a value in {0, 1}, 0 for fail, 1 for success, i.e.
attempt: N → {0, 1}.
Lean: attempt : N → Fin 2

- The function S is the average score of the attempt, i.e., the sum
of the attempts divided by the number of attempts S: attempts → R.
Lean: S : (N → Fin 2) → N → R
S attempts N = (

∑
{i : Fin N} (attempts i).1) / N

- S(N) can be written as S(N) = m_N / N where m_N is the number of

successes in N tries, i.e. m_N =
∑N

i=1 1success.
Lean: (encoded in definition of S above)

- The success rate is below 80% at one point a, S(a) < 0.8, and
above 80% at another point b > a, S(b) > 0.8.
Lean: 1 ≤ a ∧ a < b ∧ S attempts a < 0.8 ∧ S attempts b > 0.8

- Show there exists c ∈ (a,b) with S(c) = 0.8.
Lean: ∃ c : N, a < c ∧ c < b ∧ S attempts c = 0.8

Conjecture

abbrev conjecture : Prop := True

Formal Statement

theorem putnam_2004_a1
(S : (N → Fin 2) → N → R)
(hS : ∀ attempts, ∀ N ≥ 1, S attempts N = (Σ i : Fin N, (attempts
i).1) / N) :

(∀ attempts a b,
(1 ≤ a ∧ a < b ∧ S attempts a < 0.8 ∧ S attempts b > 0.8) →
(∃ c : N, a < c ∧ c < b ∧ S attempts c = 0.8))

↔ conjecture :=
sorry

Figure 3: Example (1/5) from Putnam annotated with informal and formal hint reasoning steps.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 2 of 5
Name
putnam 2009 b2

Informal Statement
A game involves jumping to the right on the real number line. If a and b are real numbers and b > a,
the cost of jumping from a to b is b3 − ab2. For what real numbers c can one travel from 0 to 1 in a
finite number of jumps with total cost exactly c?
LeanFIRe Reasoning

- The jumps can be modelled as a sequence that partitions the
interval (0,1), with N ∈ N jumps, s0 = 0, si = 1, and si < si+1 for
all 0 ≤ i < N.
Lean: s : Fin (N + 1) → R
validPath (s : Fin (N + 1) → R) : Prop :=
s 0 = 0 ∧ s (Fin.last N) = 1 ∧ i : Fin N, s i < s (i.succ)

- The cost of a jump from si to si+1 is s3i+1 − si ∗ s2i+1.
Lean: jumpCost (a b : R) : R := bˆ3 - a * bˆ2

- The total cost for all jumps is
∑N−1

i=0 (s3i+1 − si ∗ s2i+1).
Lean: totalCost (s : Fin (N + 1) → R) : R :=∑

{i : Fin N} jumpCost (s i) (s (i.succ))

- The set of reachable costs is { c ∈ R | ∃ N ∈ N, validPath s ∧
totalCost(s) = c }.
Lean: reachableCosts : Set R :=
{c : R | ∃ (N : N) (s : Fin (N + 1) → R),
validPath s ∧ totalCost s = c}

Conjecture

abbrev conjecture : Set R := Ioc (1 / 3) 1

Formal Statement

theorem putnam_2009_b2
: ({c : R | ∃ s : N → R, s 0 = 0 ∧ StrictMono s ∧ (∃ n : N, s n =

1 ∧ ((Σ i ∈ Finset.range n, ((s (i + 1)) ˆ 3 - (s i) * (s (i +
1)) ˆ 2)) = c))} = conjecture) :=

sorry

Figure 4: Example (2/5) from Putnam annotated with informal and formal hint reasoning steps.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 3 of 5
Name
putnam 2013 b2

Informal Statement
Let C =

⋃∞
N=1 CN , where CN denotes the set of those ‘cosine polynomials’ of the form

(x) = 1 +

N∑
n=1

an cos(2πnx)

which:

(i) f(x) ≥ 0 for all real x, and

(ii) an = 0 whenever n is a multiple of 3.

the maximum value of f(0) as f ranges through C, and that this maximum is attained.
LeanFIRe Reasoning

- C is the set of all C_N for a given N ∈ N.
Lean: C_N (N : N) : Set (R → R) :=
{ f | ∃ (a : N → R),
(∀ x, f x = 1 +

∑
{n ∈ Finset.range N} a n * Real.cos (2 * π *

n * x)) ∧
(∀ x, f x ≥ 0) ∧ (∀ n, n % 3 = 0 → a n = 0) }

- C_N is defined as the set of polynomials of the form f(x) = 1 +∑N
n=1 an cos(2πnx) where f(x) ≥ 0 for all x ∈ R, and the coefficient

an = 0 whenever n is a multiple of 3.
Lean: (above definition of C_N already encodes this)

- Therefore, C_N = { f(x) ∈ R | f(x) = 1 +
∑N

n=1 an cos(2πnx), f(x) ≥ 0
∀ x ∈ R, an = 0 if n mod 3 = 0 }.

Lean: (same C_N definition)

- C is the union of all the C_N, i.e. C =
⋃∞

N=1 CN.
Lean: C : Set (R → R) :=

⋃
N, C_N N

- Determine the maximum f(0) within all possible C_N, i.e. sup {
f(0) | f ∈ C }.
Lean: supF0 : R := Sup { f 0 | f ∈ C }

Conjecture

abbrev conjecture : R := 3

Formal Statement

theorem putnam_2013_b2
(CN : N → Set (R → R))
(hCN : ∀ N : N, CN N =
{f : R → R |

(∀ x : R, f x ≥ 0) ∧
∃ a : List R, a.length = N + 1 ∧ (∀ n : Fin (N + 1), 3 (n : N

) → a[n]! = 0) ∧
∀ x : R, f x = 1 + Σ n ∈ Finset.Icc 1 N, a[(n : N)]! *

Real.cos (2*Real.pi*n*x)}) :
IsGreatest {f 0 | f ∈ N ∈ Ici 1, CN N} conjecture :=

sorry

Figure 5: Example (3/5) from Putnam annotated with informal and formal hint reasoning steps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 4 of 5
Name
putnam 2014 a2

Informal Statement
Let A be the n × n matrix whose entry in the i-th row and j-th column is 1

min(i,j)
for 1 ≤ i, j ≤ n.

Compute det(A).
LeanFIRe Reasoning

- Let the dimension of the matrix be n ∈ N, and the n× n matrix
A ∈ Rn×n.
Lean: A (n : N) : Matrix (Fin n) (Fin n) R :=

- Define Aij to be the entry from the i-th row and j-th column of
matrix A.
Lean: (implicit in the matrix function arguments λ i j)

- Set each entry to be the minimum between its column and row
value, i.e. Aij = 1 / min(i, j) ∀ 1 ≤ i, j ≤ n.
Lean: λ i j => 1 / min (i.1 + 1) (j.1 + 1)
Note: i.1 + 1 and j.1 + 1 are used because Lean indices start at
0 but min(i,j) starts at 1

- Evaluate det(A).
Lean: detA (n : N) : R := Matrix.det (A n)

Conjecture

abbrev conjecture : R := 3

Formal Statement

theorem putnam_2013_b2
(CN : N → Set (R → R))
(hCN : ∀ N : N, CN N =
{f : R → R |

(∀ x : R, f x ≥ 0) ∧
∃ a : List R, a.length = N + 1 ∧ (∀ n : Fin (N + 1), 3 (n : N

) → a[n]! = 0) ∧
∀ x : R, f x = 1 + Σ n ∈ Finset.Icc 1 N, a[(n : N)]! *

Real.cos (2*Real.pi*n*x)}) :
IsGreatest {f 0 | f ∈ N ∈ Ici 1, CN N} conjecture :=

sorry

Figure 6: Example (4/5) from Putnam annotated with informal and formal hint reasoning steps.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 5 of 5
Name
putnam 2015 a2

Informal Statement
Let a0 = 1, a1 = 2, and an = 4an−1 − an−2 for n ≥ 2. Find an odd prime factor of a2015.
LeanFIRe Reasoning

- A recurrence relation is initialised with 1 and 2 as the starting
points, i.e. a0 = 1 and a1 = 2.
Lean: a : N → N
a 0 = 1
a 1 = 2

- It is defined as 4 times the previous term minus the term before
the previous one, i.e. an = 4an−1 − an−2 for n ≥ 2.
Lean: ∀n ≥ 2, a n = 4 ∗ a (n− 1)− a (n− 2)

- For the 2015th term of the sequence, a2015, determine a factor c ∈ N
such that:
• c | a2015

• c is odd (∃ n ∈ N, c = 2n− 1)
• c is prime (no divisor k > 1 except itself)
Lean: ∃ p : N, p | a 2015 ∧ Nat.Prime p ∧ Odd p

Conjecture

abbrev conjecture : N := 181

Formal Statement

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd conjecture ∧ conjecture.Prime ∧ ((conjecture : Z) a 2015) :=
sorry

Figure 7: Example (5/5) from Putnam annotated with informal and formal hint reasoning steps.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.2 LEAN-FIRE PROMPTS

Chain-of-Thought (CoT) Generation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Using the provided informal statement, write a concise sequence of hints that
guides the reader towards a formal statement in Lean.
Guidelines:
Do not include any Lean code.
Hints must be succinct and make use of mathematical notation.
Do not include proof steps|ignore any part that concerns only the proof.
Ensure that all variables, functions, and assumptions are clearly introduced
and well-defined.
Use the hints to bridge the gap between the worded (informal) problem and
the underlying mathematics|make clear how each mathematical concept
corresponds to elements of the informal statement.
Refer to the following examples of previously generated hints for style
and structure.
{%- for example in examples %}
EXAMPLE {{ example.id }}:
Informal statement
{{ example.informal_statement }}
Hints
{{ example.cot}}
{%- endfor }
Informal statement
{{ query.informal_statement }}
Hints

Figure 8: Jinja templates for the system and user prompt used in LeanFIRE for the generation of
informal reasoning steps (CoT).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Lean-of-Thought (LoT) Translation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Using the provided hints, write a Lean4 code snippets for each hints when
appropriate to guide the reader towards a formal statement in Lean.
Guidelines:
Do not provide formal proofs or imports.
Ensure that you match the hints to the Lean hints.
Refer to the following examples of previously generated hints for style
and structure.
{%- for example in examples %}
EXAMPLE {{ example.id }}:
Informal statement
{{ example.informal_statement }}
Hints
{{ example.cot}}
Lean Hints
{{ example.lot}}
{%- endfor }
Informal statement
{{ query.informal_statement }}
Hints
{{ example.cot}}
Lean Hints

Figure 9: Jinja templates for the system and user prompt used in LeanFIRE for the translation of the
CoT into formal reasoning steps (LoT).

B DETAILS ON EXPERIMENTAL SETUP

This Appendix provides details on our experimental setup. All experiments were conducted in Lean
4 4.19.0-rc2 with the appropriate Mathlib imports and standard LLM APIs for GPT-4.1 and
DeepSeek-V3.1. Each instance was run for 10 passes using the random seeds [5049, 891, 1065,
4894, 3277, 8476, 8192, 688, 377, 3568] to ensure reproducibility. The only non-default generation
parameter was a temperature of 0.7; all other settings were kept at their default values. Prompts for
autoformalisation, conjecture generation, and ConJudge are provided in Sections B.1, B.2, and B.3,
respectively. The Lean 4 code for equiv rfl is included in Section B.4.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.1 AUTOFORMALISATION PROMPT

Autoformalisation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Translate the following natural language statement, provided under
Informal statement into a formal Lean 4 theorem. Use the theorem name
specified under **Name** as the Lean identifier for the theorem. Your
response must:
- Write only valid Lean 4 code, with clear and idiomatic use of Lean
syntax and conventions.
- Only include the formalization, and do not include any proof or imports.
- Define the theorem using the provided name.
- Faithfully capture the meaning of the informal statement in your
formalization.
- Enclose all Lean code within triple backticks
Output:
‘‘‘lean
theorem [NAME] : [Lean formalization of the statement] := sorry
‘‘‘
{%- for example in examples %}
EXAMPLE {{ example.id }}:
Name
{{ example.name }}
Informal statement
{{ example.informal_statement }}
The code below presents a solution implementation written in Lean 4.
This solution has already been incorporated into the current Lean
environment and is available for use in the formalization.
import Mathlib
{%- if conjecture_is_seen %}
{{ example.conjecture }}
{%- endif %}
Output:
‘‘‘lean
{{ example.formal_statement }}
‘‘‘
Above are examples for you to model the translation of the below natural
language statement into a Lean 4 formal theorem:
{%- endfor }
Name
{{ query.name }}
Informal statement
{{ query.informal_statement }}
The code below presents a solution implementation written in Lean 4.
This solution has already been incorporated into the current Lean
environment and is available for use in the formalization.
import Mathlib
{%- if conjecture_is_seen %}
{{ example.conjecture }}
{%- endif %}
Combined Hints
{{ query.combined_cot_lot }}
Output:
‘‘‘lean

Figure 10: Jinja templates for the system and user prompt for autoformalisation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.2 STANDALONE CONJECTURE GENERATION PROMPT

Conjecturing Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.
You do not provide proofs or full theorem statements, only the mathematical
expression representing the solution, proposition, or the value being asserted.
You should first analyze the informal problem statement, then provide the final
expression as valid Lean 4 code.

User Prompt

Your task is to take a natural language mathematical statement and extract the
mathematical expression, proposition, or value, representing it as a Lean 4
expression.
Instructions:
1. Analyze the informal problem statement to deconstruct its mathematical components.
2. Provide the final solution as a single Lean 4 expression.
3. Present the final output inside a Lean code block, using:
‘‘‘lean
abbrev solution {solution code}
‘‘‘
Informal statement
{{ example.informal_statement }}

Figure 11: Jinja template for the system and user prompt used in to generate a conjecture in Lean 4.

B.3 CONJUDGE

ConJudge evaluates whether a conjecture appears in a given formalised statement. We first con-
ducted human annotations to identify which model and prompt best align with human judgments;
this model was then selected as our LLM-as-a-judge. Table 6 presents the distribution of human
annotations for 100 sample generations, while Table 7 reports the accuracy of four different models
against the human gold labels. The prompt used for ConJudge is provided below.

TRUE FALSE Total

Seen 35 11 46
Unseen 21 33 54

Total 56 44 100

Table 6: Contingency table showing counts of TRUE and FALSE values for seen and unseen in-
stances.

Model Percentage

internlm2-math-plus-20b 60
qwen3-14b 79
gpt-oss-20b 70
qwen3-30b-a3b-instruct 83

Table 7: Percentage alignment to human annotators for ConjectureBench across different models.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ConJudge Evaluation Prompt
System Prompt

You are an expert in the Lean 4 theorem proving language and formal
mathematics. Your task is to determine if a given formal statement in
Lean 4 contains a specific conjectured value, algebraic formula, or bound.
You will be given three inputs:
1. **Conjecture**: The value, formula, or bound to look for.
2. **Ground Truth Formal Statement**: An example of a Lean 4 statement that
correctly formalizes the conjecture. Use this as a reference for a valid
implementation.
3. **Formal Statement**: The Lean 4 code you need to evaluate.
Your goal is to determine if the **Formal Statement** contains the core
assertion of the **Conjecture**. The **Ground Truth Formal Statement** is
provided to help you understand how the conjecture can be formally expressed.
The statement you are evaluating might not have the exact same syntax as the
ground truth. You must carefully check for **semantically equivalent
variations** of the conjecture’s core idea. This includes, but is not limited
to, permutations of terms, different but equivalent algebraic expressions, or
reordered hypotheses. Additionally, a conjecture can be expressed either by
defining a proposition (e.g., ‘abbrev conjecture : Prop := ...‘) or by
asserting it within a theorem, which implicitly states the conjecture holds.
You should consider these forms equivalent.
Your output must follow this structure exactly:
1. First, provide a brief explanation of your reasoning.
2. Second, conclude with the final answer in the format: ’The formal
statement contains the conjecture: **True**’ or ’The formal statement
contains the conjecture: **False**’.

User Prompt

Conjecture:
‘‘‘lean
{{ conjecture }}
‘‘‘
Ground Truth Formal Statement:
‘‘‘lean
{{ statement1 }}
‘‘‘
Formal Statement:
‘‘‘lean
{{ statement2 }}
‘‘‘

Figure 12: Jinja templates for the system and user prompts used by CONJUDGE.

B.4 EQUIV RFL

Lean 4

abbrev conjecture_gold: {gold}
abbrev conjecture_generated: {generated}

theorem thm : conjecture_gold = conjecture_generated := by rfl

Figure 13: Implementation of metric equiv rfl in Lean 4.

23

	Introduction
	Preliminary
	Methodology
	ConjectureBench Dataset
	Conjecturing Tasks
	Metrics
	Lean-guided Formal-Informal Reasoning (Lean-FIRe)

	Experimental Setup
	Results and Discussion
	Conjecturing Results
	Autoformalisation Results

	Related Work
	Conclusion
	Lean-FIRe
	Seed Questions
	Lean-FIRe Prompts

	Details on Experimental Setup
	Autoformalisation Prompt
	Standalone Conjecture Generation Prompt
	ConJudge
	equiv_rfl

