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ABSTRACT

Autoformalisation, the task of expressing informal mathematical statements in
formal language, is often viewed as a direct translation process. This, however,
disregards a critical preceding step: conjecturing. Many mathematical problems
cannot be formalised directly without first conjecturing a conclusion such as an ex-
plicit answer, or a specific bound. Since Large Language Models (LLMs) already
struggle with autoformalisation, and the evaluation of their conjecturing ability
is limited and often entangled within autoformalisation or proof, it is particularly
challenging to understand its effect. To address this gap, we augment existing
datasets to create ConjectureBench, and redesign the evaluation framework and
metric specifically to measure the conjecturing capabilities of LLMs both as a
distinct task and within the autoformalisation pipeline. Our evaluation of founda-
tional models, including GPT-4.1 and DeepSeek-V3.1, reveals that their autofor-
malisation performance is substantially overestimated when the conjecture is ac-
counted for during evaluation. However, the conjecture should not be assumed to
be provided. We design an inference-time method, LEAN-FIRE to improve con-
jecturing and autoformalisation, which, to the best of our knowledge, achieves the
first successful end-to-end autoformalisation of 13 PutnamBench problems with
GPT-4.1 and 7 with DeepSeek-V3.1. We demonstrate that while LLMs possess
the requisite knowledge to generate accurate conjectures, improving autoformali-
sation performance requires treating conjecturing as an independent task, and in-
vestigating further how to correctly integrate it within autoformalisation. Finally,
we provide forward-looking guidance to steer future research toward improving
conjecturing, an overlooked step of formal mathematical reasoning.

1 INTRODUCTION

Natural language reasoning with Large Language Models (LLMs) has emerged as a powerful tool for
solving complex mathematical problems. Its effectiveness is highlighted by recent breakthroughs,
such as AI systems from OpenAI and Google solving five of six problems from the 2025 Interna-
tional Mathematics Olympiad (IMO) using natural language (Metz, 2025). The critical caveat is
that these informal solutions require validation by expert mathematicians, a process that is prone to
human error and lack scalability (Gouëzel & Shchur, 2019). Proof assistants like Isabelle (Wenzel
et al., 2008) and Lean (Moura & Ullrich, 2021) provide a path toward automated verification at scale
through formal reasoning. Their power was demonstrated when AlphaProof solved three of the six
2024 IMO problems by generating formal proofs (AlphaProof and AlphaGeometry teams, 2024)
and reiterated in 2025 with SeedProver (Chen et al., 2025) equaling OpenAI and Google’s perfor-
mance. Yet benchmarks such as PutnamBench remain difficult, with the best open-source models
achieving a correct proof rate of only 13.1% at the time of writing (Tsoukalas et al., 2024).

A central bottleneck is autoformalisation, the task of automatically expressing informal mathematics
into a precise formal language (Szegedy, 2020). On undergraduate-level problems from the ProofNet
benchmark (Azerbayev et al., 2023), the current state-of-the-art performance is only 31.28% (Liu
et al., 2025b). Moreover, the fact that state-of-the-art systems like AlphaProof are provided with
human-annotated formalisations, rather than the natural language problems, suggests that an end-to-
end approach remains challenging. Autoformalisation is non-trivial, as even highly skilled human
experts can take over eight hours to formalise a single IMO problem (Liu et al., 2025a). Improv-
ing autoformalisation would therefore be transformative, not only by providing a systematic way
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Figure 1: End-to-end evaluation pipeline for conjecturing and autoformalisation, including a “seen”
setting (conjecture provided) and a more realistic “unseen” setting (conjecture must be inferred). Our
contributions, highlighted in blue, introduce ConjectureBench, “unseen” evaluation, and two corre-
sponding metrics: ConJudge for assessing conjecturing during autoformalisation and equiv rfl
for standalone conjecture generation.

to validate informal reasoning but also by enabling the synthesis of new data at scale to improve
automated provers themselves.

Autoformalisation is difficult for two interrelated reasons: faithfulness and conjecturing. Without a
ground truth formalisation1, it can be difficult to judge whether the autoformalised statement truly
reflect the intent expressed by the natural language problem (Yang et al., 2025b). Humans generally
describe problems in an informal manner, often obfuscated through real world objects and situations.
To formalise these, LLMs need to connect world knowledge with abstract mathematical concepts,
which increases the complexity of the task (Yang et al., 2025b).

Secondly, a conjecture, a mathematical conclusion such as an explicit answer, bound, or proposi-
tion, is required for formalisation. The nature of the conjecture shapes the autoformalisation, without
which proving stalls. To circumvent conjecturing during autoformalisation, one may insert a place-
holder, but it must ultimately be replaced with a valid solution for a complete proof. Most current
systems implicitly treat conjecturing as part of the proof search (Sun et al., 2025) by proposing a so-
lution and validating it when a verified proof is generated. However, using a proof as self-verification
of the conjecture comes with an important caveat; it does not guarantee completeness. For example,
solving x2 − 4x = 0 by conjecturing x = 0 yields a valid and verifiable yet incomplete solution,
as x = 4 is also a valid root. This highlights that conjecturing and proving draw on distinct skills.
Conjecturing relies on intuition, pattern recognition, and heuristic testing, whereas proving requires
the rigorous application of tactics (Fernández-León et al., 2021).

To address the overlooked role of conjecturing in formal mathematical reasoning, we measure the
conjecturing capability by introducing ConjectureBench, a new dataset designed to evaluate the
conjecturing performance of LLMs. We develop two novel metrics: ConJudge, a metric that uses
an LLM-as-a-Judge (Zheng et al., 2023) to assess conjecture presence within the autoformalisation,
and equiv rfl, a metric that uses Lean tactics to check for definitional equivalence in standalone
conjecture generation as illustrated in Figure 1. Our evaluation of foundational LLMs, including
GPT-4.1 and DeepSeek-V3.1, on ConjectureBench reveals that autoformalisation performance is
substantially overestimated when the conjecturing step is assumed to be provided.

To test the hypothesis that this performance gap stems from a failure in reasoning rather than a lack
of mathematical and world knowledge, we propose a novel inference-time method Lean Formal-
Informal Reasoning (LEAN-FIRE). This approach guides the model by interleaving Chain-of-
Thought (CoT) reasoning in natural language with Lean-of-Thought (LoT) steps in formal language,
helping it to better connect informal reasoning with formal mathematics. We show that LEAN-FIRE
leads to significant improvements, confirming our hypothesis. While end-to-end autoformalisation
remains low, our method achieves the first successful autoformalisation of 13 new PutnamBench
“no-answer” problems. More specifically, LEAN-FIRE improves conjecturing performance on our
ConJudge metric by an average of 29.1% for GPT-4.1 and 14.0% for DeepSeek-V3.1. These results
provide strong evidence that the models’ primary limitation is not a lack of requisite knowledge, but

1In this work, we always assume existence of a ground truth formalisation.
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Hypothesis ⇒ Conclusion Type of solution

x+ 4 = 0 ⇒ x = −4 Numerical

x2 − a = 0 ⇒ x ∈ {
√
a,−

√
a} Algebraic

cos(x) = x ⇒ ∃x s.t. cos(x) = x True but no closed-form solution

Table 1: Examples of mathematical statements paired with different solution types.

rather the need for targeted methods to unlock their ability to conjecture effectively. Lastly, through
manual analysis, we further identify two practical challenges: dataset contamination and the need
for new definitions, functions, and lemmata to support autoformalisation.

Our contributions are as follows: (1) we introduce ConjectureBench, the first benchmark evaluating
conjecture capabilities, (2) we propose two complementary metrics, ConJudge and equiv rfl, to
systematically assess thse capabilities, and (3) we develop LEAN-FIRE, an inference-time method
to improve both autoformalisation and conjecturing.

2 PRELIMINARY

In mathematics, a theorem is a statement for which a proof establishes a conclusion from a set of
hypotheses. When such a proof is not yet known, the statement is referred to as a conjecture (Pauli,
2022). A conjecture proposes a possible conclusion often expressed as an abstract object that may
or may not admit a closed-form representation such as an algebraic formula or a numerical answer,
see Table 1. In formal mathematics, autoformalisation is a necessary stage prior to using a prover
or proof assistant, as these systems require formal statements as inputs. Conjecturing is the task of
generating candidate solutions for well-posed problems (Sun et al., 2025).

Current formal mathematics datasets largely fall into two categories. The first type assumes that a
solution is already known and only requires the corresponding proof given a gold formalised state-
ment. The second type requires the discovery of a solution before or while a proof is constructed.
For this latter class, the initial step is to generate a candidate solution. Without such a conjecture, for-
malisation cannot proceed. This holds in Lean 4, a more permissive formal mathematics language;
the compiler cannot verify whether the object types are consistent (Typecheck) in an incomplete
statement.

Lean 4

theorem quad_roots: {x : R | xˆ2 - 4*x = 0} = conjecture := sorry

In the above quad roots example, the formal statement for “What are the real roots of x2−4x?”,
erasing conjecture reduces the statement to a set of hypotheses with no conclusion, leaving
nothing to prove. A quick fix is to put a placeholder, conjecture, for which Lean 4 has been
forced to assume the correct type. When the solution is known, it could be integrated directly into
the formal statement. But deriving it in the first place is challenging. If generated during the proving
stage, the formal language system can self-verify whether the conjecture is valid. However, the
validity of a conjecture does not equate to a complete conjecture or a valid solution to the informal
statement. Three valid and proof verifiable conjectures are:

Lean 4

abbrev conjecture_1:
Set R := {0}

abbrev conjecture_2:
Set R := {4}

abbrev conjecture_3:
Set R := {0, 4}

3
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However, only conjecture 3 is a complete answer. In fact, natural language can frame a prob-
lem in a way that feels more intuitive and human-friendly. For example, “How many people must be
in a group for at least two of them to be born in the same month?”, this question is easier to reason
about using everyday knowledge than its more formal counterpart: determining the smallest domain
size for which there exist no injective function into a set of 12 elements. Therefore, autoformal-
isation being closer to the natural language statement allows for broader possibility of generating
conjectures. Finally, when tackling unsolved problems, the solution is not given in advance making
conjecture generation an essential step in the formal reasoning process. Therefore, this motivates
our exploration of conjecturing as an integral, yet overlooked step in formal mathematical reasoning.

3 METHODOLOGY

3.1 CONJECTUREBENCH DATASET

Two recent datasets are designed with conjecturing in mind: PutnamBench (Tsoukalas et al., 2024)
factors out the solution from the problem statement, forcing models to generate the conjecture it-
self, while CombiBench (Liu et al., 2025a) introduces a benchmark with and without the solution to
further encourage conjecture generation. To elaborate, PutnamBench is a benchmark of 640 paired
informal and formal statements from the William Lowell Putnam Mathematical Competition. The
benchmark and its leaderboard primarily emphasise proof generation, both when solutions are pro-
vided and when they are withheld. The evaluation of statements without answers is only feasible
for 355 of the problems. Similarly, CombiBench adopts the same design where possible, with 100
combinatorics problems ranging from textbook exercises to IMO questions. However, 55 questions
include the conjecture within their informal statement.

Original with integrated solution Reworded to seek a solution Type of solution Distribution
Show that there are at least

1991 red points in the plane.
What is the minimum number

of red points in the plane? Numerical 39.0%
(178)

Prove that there are at most
2n− 1 subsets in the collection.

What is the maximum number of subsets
that can be in such a collection? Algebraic 36.1%

(165)

Prove that B = {0, 3, 4, 9, 11}
is a difference set in Z21.

Prove or disprove that B = {0, 3, 4, 9, 11}
is a difference set in Z21. Proof 24.9%

(114)

Table 2: Examples of how proof questions are reformulated into the three solution types considered,
along with the distribution of these types in ConjectureBench.

To adapt both datasets to evaluate conjecturing, we first annotated all 355 PutnamBench problems
and 102 CombiBench problems (splitting multi-part questions into separate items) to ensure that no
conjecture appear directly in the problem statements. For proof-based questions, where the conclu-
sion is already embedded, we rephrased them into equivalent tasks requiring either a numerical or
algebraic solution. When rewording is not feasible, we instead reformulate the problem into a binary
classification task, requiring the model to decide whether the statement is true or false. Examples of
these reformulations, as well as the distribution across our new combined dataset, ConjectureBench,
are provided in Table 2. We finally separate the conjecture from the formal statement, retaining it
only in the “seen” setting as illustrated in Figure 1. This design choice ensures that our full dataset
of 457 paired informal–formal statements can be used consistently across both, “seen” and “unseen”
settings, enabling a more accurate evaluation of conjecturing.

This evaluation framework offers several advantages. It allows us to assess whether current LLMs
are capable of generating accurate conjectures while autoformalising, but also to evaluate models’
raw conjecturing capability. It also enables a detailed analysis of which types of conjectures present
particular challenges for existing models. The results of this benchmark provide a foundation to
investigate whether improvements in conjecturing arise naturally from enhanced autoformalisation,
or if alternative approaches, such as new data or reasoning approaches, are necessary.

3.2 CONJECTURING TASKS

We evaluate performance across two distinct tasks designed to assess conjecture-driven reasoning
as illustrated in Figure 2. The primary task is autoformalisation, which we evaluate in two settings.

4
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How many people
must be in a group for
at least two of them to

be born in the
same month?

🤖

🤖
 

1. Let the set of months be
M, with |M| = 12.
2. Let n ∈ ℕ be the number
of people in the group.
 . . .

1. M: Fin 12
2. n : ℕ
 . . .

1. Let the set of months be M, with |M| = 12.
M: Fin 12

2. Let n ∈ ℕ be the number of people in the group.
n : ℕ

3. Each person’s birth month is a function b : {1, …, n} → M
  b : Fin n → Fin 12
4. The question asks for the minimal n such that, for every 
 function , there exists i ≠ j with b(i) = b(j).
  ∀ b: Fin n → Fin 12,
  ∃ (I j: Fin n), i ≠ j ∧ b i = b j
 . . .

Formal Statement generatedConjecture generated

  Autoformalising🤖  Conjecturing🤖

Lean-FIRe Generation

Lean-FIReCoT

LoT

Informal Statement

Seen only:

abbrev conjecture:
 ℕ : 13

abbrev conjecture:
 ℕ : 13ℕ : 13

theorem hackmath:
  IsLeast {n | ∀ f :
    Fin n → Fin 12,
    ∃ a b, f a = f b}
   conjecture := sorry conjecture 

Figure 2: Illustration of LEAN-FIRE construction within the overall pipeline for generating auto-
formalisations and conjectures, where the conjecture in the green box is provided only in the “seen”
setting, and CoT and LoT stand for chain/lean-of-thought.

In the “seen” setting, the model is provided with the informal statement and the correct conjecture
formatted in Lean 4. The task is to produce a formal statement that correctly incorporates the
provided conjecture. In the “unseen” setting, the model is provided only with the informal statement
and must deduce and incorporate the conjecture directly into the final formalisation.

The second task is standalone conjecture generation, where we isolate conjecturing performance
entirely from the complexity of full autoformalisation. Here, the model is given only the informal
statement and is instructed to generate the conjectured solution as a concise Lean 4 statement.

3.3 METRICS

To evaluate conjecturing performance during autoformalisation, we propose ConJudge, an LLM-
as-a-judge framework (Zheng et al., 2023). Its purpose is to determine whether the problem’s gold
solution is reasonably and correctly incorporated as a conjecture within the final autoformalised
statement. To do this, ConJudge is provided with the generated formalisation, the gold conjecture,
and the gold formalisation to demonstrate the intended context and role of the conjecture. For
instance, if the correct conjecture is the integer 2, the judge would reject a formalisation where 2
appears incorrectly as a power or a subscript. To tune ConJudge, we carry out a human annotation
of 100 randomly sampled autoformalisation generations (Appendix B.3), classifying whether the
solution was correctly incorporated into the formal statement.

For standalone conjecture generation, we created equiv rfl, which evaluates definitional equiva-
lence between the generated and gold conjecture based on tactic rfl (Appx. B.4). This provides a
rigorous, formal measure of whether the model can produce the correct solution in isolation.

3.4 LEAN-GUIDED FORMAL-INFORMAL REASONING (LEAN-FIRE)

To test the hypothesis that the performance gap in conjecturing stems from a failure in reasoning
rather than a lack of knowledge, we propose LEAN-FIRE, a novel inference-time method designed
to better structure the model’s reasoning process. The goal is to distil the LLM’s latent parametric
mathematical knowledge at test-time by combining both informal and formal reasoning. As illus-
trated in Figure 2, the LEAN-FIRE method is built as a two-stage hybrid reasoning process that
integrates informal problem decomposition with formal code generation by means of interleaved
Chain-of-Thought (CoT) with Lean-of-Thought (LoT) prompting. We leverage the LLM’s ability
in informal mathematical reasoning to first generate a potential conjecture and outline the overall
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structure of the formalisation. First, a complete CoT trace is generated in natural language from the
informal problem statement. The CoT is designed to break down the problem, identify key math-
ematical objects, and articulate the reasoning entirely in natural language. Crucially, this phase is
constrained to produce no formal code and avoid stating the final solution. Second, after the informal
reasoning trace is completed, a subsequent LLM generates a corresponding LoT step for each infor-
mal step. The purpose of the LoT is not to write a comprehensive formal statement, but to translate
the abstract concepts from the CoT into precise Lean primitives and syntax. This hybrid approach
is motivated in part by prior work, such as Jiang et al. (2023), which has already demonstrated that
leveraging both formal and informal language can improve performance in theorem proving.

Seed Data Annotation. This automated generation of CoT and LoT steps is enabled by few-shot
examples derived from a small, expert-annotated seed dataset. We created this seed data from five
diverse Putnam competition problems, which were annotated by an expert mathematics instructor
to produce gold CoTs. The problems were selected to cover a range of mathematical domains
(probability, real analysis, linear algebra, abstract algebra, number theory), solution types (as listed
in Table 2), and conjecture styles, ensuring the exemplars were broadly representative. In some
cases, questions were modified to omit parts of the solution, mirroring the annotation process for
ConjectureBench. These five seed problems are detailed in Appendix A.1 and are excluded from
our ConjectureBench evaluation. With these few-shot examples and a set of precise instructions (see
Appendix A.2), CoT and LoT pairs can be automatically generated for any new problem using only
its informal statement as input. In preliminary experiments, we evaluated five LLMs for this task
and found that GPT-4.1 consistently outperformed its other family models and Claude-4-Opus.

4 EXPERIMENTAL SETUP

Models. We experiment with two foundational autoformalisation models: GPT-4.1 (Achiam et al.,
2023) and DeepSeek-V3.1 (DeepSeek-AI et al., 2024). To measure the impact of our proposed
method, we compare the performance of LEAN-FIRE against the zero-shot performance of each
base model. Additionally, we conduct an ablation study where we remove the few-shot examples
from the LEAN-FIRE input (w/o FS) to isolate the contribution of the hybrid reasoning approach.

Metrics. We assess performance for all tasks using pass@1 and pass@10, where pass@k indicates
that at least one of k independent samples was successful. For conjecturing, we use two targeted met-
rics. Conjecturing performance during the full autoformalisation task is assessed with ConJudge,
while standalone conjecture generation is evaluated using equiv rfl.

For autoformalisation, we use three complementary metrics: Typecheck, BEq+, and LLM Grader.
Typecheck is a binary measure of syntactic correctness indicating whether the generated Lean code
compiles without error.2 For semantic equivalence, we use BEq+, a metric based on a set of Lean
tactics that presupposes typechecking and attempts to prove equivalence between the generated and
gold formalisations (Poiroux et al., 2025). We should note that while precise, BEq+ can be overly
conservative, leading to false negatives on semantically equivalent statements that differ in surface
form (Liu et al., 2025b). To capture a broader notion of correctness, we also use LLM Grader, a
pipeline that evaluates semantic alignment. First, the gold and generated formalisations are back-
translated into natural language using a math LLM.3 A separate judge LLM4 then evaluates these
natural language statements for semantic equivalence.

5 RESULTS AND DISCUSSION

5.1 CONJECTURING RESULTS

Conjecturing During Autoformalisation. Using the ConJudge metric, we find that models are
more adept at producing the correct conjecture when it is part of a full autoformalisation task. Ta-

2Each instance of ConjectureBench is provided with the appropriate Mathlib imports and a standardised
Lean 4 environment (v4.19.0-rc2) to ensure consistent evaluation.

3We employ InternLM2-Math-Plus-20B (Cai et al., 2024).
4We employ a Qwen3-14B (Yang et al., 2025a) calibrated against human annotators (see Appendix B.3).
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Model Method Conjecture ConJudge @1 ConJudge @10

G
PT

-4
.1

Baseline Seen 78.77 98.03
Unseen 26.70 (−52.07) 61.27 (−36.76)

LEAN-FIRE
Seen 92.78 98.47
Unseen 55.80 (−36.98) 85.34 (−13.13)

LEAN-FIRE w/o FS Seen 77.90 96.06
Unseen 28.88 (−49.02) 56.89 (−39.17)

D
ee

pS
ee

k-
V

3.
1

Baseline Seen 80.31 95.84
Unseen 30.63 (−49.68) 58.86 (−36.98)

LEAN-FIRE
Seen 81.40 97.81
Unseen 44.64 (−36.76) 71.55 (−26.26)

LEAN-FIRE w/o FS Seen 74.62 96.72
Unseen 35.01 (−39.61) 56.86 (−39.83)

Table 3: Conjecturing during autoformalisation performance on ConjectureBench using ConJudge.
Scores are reported at pass@1 and pass@10, with relative differences between “unseen” and “seen”
in brackets. Bold indicates best performance for each model and metric in the “unseen” setting.

Model Type of solution equiv rfl@1 equiv rfl@10

GPT-4.1

All 3.28 (15/457) 5.04 (23/457)

Numerical 5.62 (10/178) 8.99 (16/178)

Algebraic 3.03 ( 5/165) 4.24 ( 7/165)

Proof 0.00 ( 0/114) 0.00 ( 0/114)

DeepSeek-V3.1

All 3.72 (17/457) 5.70 (26/457)

Numerical 7.30 (13/178) 10.67 (19/178)

Algebraic 2.42 ( 4/165) 3.64 ( 6/165)

Proof 0.00 ( 0/114) 0.88 ( 1/114)

Table 4: Standalone conjecture generation performance across ConjectureBench broken down by
type of solution. Metrics report equiv rfl at pass@1 and pass@10, with counts shown over total
examples in brackets.

ble 3 shows that LEAN-FIRE with few-shot examples significantly improves the use of conjectures
in both “seen” and “unseen” settings, boosting GPT-4.1’s pass@10 by up to 28% in the “unseen”
setting. However, the large performance drop when few-shot examples are removed (w/o FS) indi-
cates that the hybrid reasoning structure alone does not significantly improve conjecturing. Instead,
the few-shot examples, which expose the model to various solution types and map reasoning steps
to the correct conjecture format, provide the primary benefit. This suggests that a model’s ability to
conjecture is less a matter of latent reasoning and more a function of direct exposure, pointing to the
need for larger and higher-quality conjecture datasets for training.

Standalone Conjecture Generation. As shown in Table 4, performance on standalone conjecture
generation is notably low across all models. While models occasionally produce correct numer-
ical conjectures, they more often generate auxiliary constructs such as definitions or lemmata in-
stead of the conjecture itself. The performance on this task is nearly an order of magnitude lower
than for conjecturing during autoformalisation (see Table 3), suggesting that models rely heavily on
prior exposure to conjectures already embedded within complete formalised solutions. We observed
signs of data contamination in the outputs; for instance, some generations used helper functions like
IsMagicSquare, which appear only in the gold formalisation of the benchmark.
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Model Method Conjecture TC@1 BEq+@1 Grader@1 TC@10 BEq+@10 Grader@10

G
PT

-4
.1

Baseline Seen 25.38 0.00 7.22 59.52 6.78 36.32
Unseen 24.29(−1.09) 0.22(+0.22) 3.50(−3.72) 51.42(−8.10) 4.38(−2.40) 20.35(−15.97)

LEAN-FIRE
Seen 31.95 3.72 11.82 50.98 6.56 43.33
Unseen 28.01(−3.94) 1.31(−2.41) 4.60(−7.22) 43.76(−7.22) 3.06(−3.50) 22.76(−20.57)

LEAN-FIRE Seen 35.89 2.84 7.66 49.02 4.60 40.04
w/o FS Unseen 28.45(−7.44) 2.41(−0.43) 5.69(−1.97) 42.67(−6.35) 4.16(−0.44) 23.85(−16.19)

D
ee

pS
ee

k-
V

3.
1

Baseline Seen 38.29 4.81 6.78 61.71 6.78 35.67
Unseen 33.26(−5.03) 2.63(−2.18) 5.25(−1.53) 54.49(−7.22) 5.47(−1.31) 24.95(−10.72)

LEAN-FIRE
Seen 46.17 3.72 9.85 66.74 6.13 41.36
Unseen 42.89(−3.28) 2.63(−1.09) 6.13(−3.72) 59.30(−7.44) 4.16(−1.97) 26.91(−14.45)

LEAN-FIRE Seen 39.82 3.50 9.41 56.24 4.16 39.39
w/o FS Unseen 39.61(−0.21) 2.63(−0.87) 6.35(−3.06) 53.83(−2.41) 3.72(−0.44) 23.63(−15.76)

Table 5: Autoformalisation performance of all models and methods (as percentages) on Conjec-
tureBench across seen and unseen settings. Metrics include TC (Typecheck), BEq+, and Grader
(LLM Grader), reported at pass@1 and pass@10. Unseen results show the difference relative to
seen performance in brackets. Bold values indicate the best performance for each model and metric
in the “unseen” setting.

5.2 AUTOFORMALISATION RESULTS

Table 5 shows that correct end-to-end autoformalisation remains a challenging task, with low suc-
cess rates even in the “seen” setting where the conjecture is provided. Performance is systematically
overestimated in this setting, with an average 23.7% drop in performance when moving from the
“seen” to the “unseen” setting. Despite these challenges, LEAN-FIRE achieves notable successes.
Generating conjectures, as underscored by the PutnamBench “no-answer” leaderboard, was con-
sidered as a challenge with no successful submissions to date (Tsoukalas et al., 2024). Yet, even
under the strict BEq+ metric, LEAN-FIRE enables GPT-4.1 to correctly autoformalise 13 new Put-
namBench problems and DeepSeek-V3.1 to solve 7. To our knowledge, these represent the first
successful autoformalisations on PutnamBench in a setting where the solution is withheld.

In contrast to its effect on conjecturing, LEAN-FIRE’s impact on autoformalisation is more nuanced.
When comparing across metrics, both models show consistent gains under Typecheck and LLM
Grader. Higher Typecheck scores indicate improved syntactic correctness, while better LLM Grader
scores point to improved semantic equivalence. Therefore, the limited gains in BEq+ suggest that
assembling correct components into a fully equivalent formalisation remains a key bottleneck. For
example, in the generated formalisation of putnam 2014 b2 below, both Typecheck and LLM
Grader marked the output as correct, but BEq+ did not due to a subtle error: a misplaced factorial
symbol. This highlights the sensitivity of BEq+ and illustrates that even when all components are
present, models may fail to assemble them with complete accuracy.

Lean 4

abbrev conjecture: (fun n : N => (-1)ˆ(n - 1) / ((n - 1)! * n!))

theorem putnam_2014_a2 : ∀ n : N, 0 < n
→ let A : Matrix (Fin n) (Fin n) Q := λ i j
=> 1 / (min (i.val + 1) (j.val + 1) : Q) in det A
= ((-1) ˆ (n - 1) : Q) / ((n - 1)! * n)!)
:= sorry

In general, the comparison with the baseline reveals no consistent performance benefit. In the “seen”
setting, few-shot examples are helpful, but in the “unseen” setting, they can be detrimental, some-
times wrongly encouraging template solutions where a conjecture is introduced as a separate func-
tion and then integrated into the formalisation. This suggests that the mathematical knowledge
required for complex autoformalisation including conjecturing is not fully latent in the model’s pa-
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rameters, or that LEAN-FIRE, in its current form, fails to consistently extract it. LEAN-FIRE shows
a net mean gain of 3.01% at pass@1 but a slight decline at pass@10, suggesting that the reasoning
guidance primarily helps steer the model’s token distribution towards correctness, but the effect is
diluted when multiple generations are sampled by the increase of the probability of reaching a better
distribution. Still, from Table 5, best-of-n sampling roughly doubles improvement under BEq+ and
quadruples it under the LLM Grader, indicating that necessary knowledge exists in latent space, but
is hard to reliably retrieve.

6 RELATED WORK

Several approaches to autoformalisation leverage retrieval or supervised fine-tuning to bootstrap
formal reasoning. For example, Liu et al. (2025b) incorporate retrieval to ground the translation
process, while Lin et al. (2025) train on large corpora containing both human and synthetic anno-
tations derived from the Lean Workbook (Ying et al., 2024), exposing the model to a diverse range
of formalisation examples. Data-centric strategies, focusing on increasing dataset size or improving
data quality, are also common. Some methods employ LLMs-as-a-judge (Wang et al., 2025), chain-
of-thought (CoT) model scoring (Xin et al., 2024), Lean typechecking signals (Lu et al., 2024), or
LLM feedback (Peng et al., 2025). In addition, Sun et al. (2025) combine typechecking feedback
with retrieval within their framework to further enhance autoformalisation performance.

Autoformalisation is also employed in theorem proving: for instance, Jiang et al. (2023) propose a
“draft–sketch–prove” framework that first sketches proof outlines from informal arguments before
completing subgoals with an automated prover. Collectively, these works highlight a growing toolkit
of data generation, model training, and feedback mechanisms aimed at closing the gap in autofor-
malisation. However, these work fail to improve models using test-time compute which we tackle
with LEAN-FIRE.

Conjecturing in the broader sense has been aimed to formalise open-ended conjectures to encourage
mathematical discovery (Chau et al., 2025). Methodologically, many approaches interleave con-
jecturing with proving, where a placeholder conjecture is proposed and subsequently validated by
a prover (Dong & Ma, 2025). Sun et al. (2025) extend this idea by iteratively generating special
coded cases from an autoformalised statement, forming candidate conjectures that are then tested by
a prover in a repeated cycle. Zhou et al. (2024) demonstrate that for simple enough problems, LLMs
could be used to generate the solutions and autoformalisation can verify them. However, we are the
first to explicitly extract and evaluate conjecturing.

7 CONCLUSION

In this work, we identify conjecturing as an overlooked step in formal mathematical reasoning with
LLMs, challenging the prevailing assumption that autoformalisation is a straightforward translation
task. By introducing ConjectureBench, a benchmark specifically designed to evaluate conjecture
generation, and by proposing new metrics that disentangle conjecturing from autoformalisation, we
provide the first systematic framework to measure and analyse this capability. Our results show
that existing models substantially underperform when conjectures are withheld, revealing that much
of their perceived success depends on having solutions pre-specified. To address this gap, we de-
velop LEAN-FIRE, an inference-time strategy that integrates informal Chain-of-Thought with for-
mal Lean-of-Thought reasoning. This method enables the first successful end-to-end autoformalisa-
tion of PutnamBench “no-answer” problems, demonstrating that LLMs possess latent mathematical
knowledge but require structured guidance to effectively conjecture and formalise. Manual analysis
also identify two challenges: data contamination of existing benchmarks, and the task of generating
useful definitions, functions and lemmata that would help autoformalisation, conjecturing and prov-
ing. For future work, we argue that progress in formal mathematical reasoning hinges on treating
conjecturing as an independent task. This calls for the development of richer conjecturing datasets,
improved inference-time techniques, and training strategies that explicitly separate and then reinte-
grate conjecturing with autoformalisation.
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utilised ensuring that their usage complies with the terms set by the creators. LLMs were solely
used to assist in editing and improving the language of this manuscript. All experts involved in data
annotation and validation were fairly compensated for their contributions.

While we acknowledge that reasoning-oriented LLMs can potentially be misused to generate harm-
ful content, we believe that the associated risks are minimal in the context of improving formal
mathematical reasoning capabilities. Compared to related works in this area, we do not identify any
additional ethical risks arising from our models, datasets, or methodologies.

REPRODUCIBILITY STATEMENT

We provide all code, datasets, and scripts necessary to reproduce our experiments. ConjectureBench,
including all reworded problems, annotated conjectures, and few-shot seed examples, will be pub-
licly released. Our LEAN-FIRE implementation, including CoT and LoT generation pipelines and
evaluation scripts for ConJudge and equiv rfl, is fully documented. Experimental details, in-
cluding the Lean version used, hyperparameters, prompts, sampling strategies (pass@1, pass@10),
seeds used, are detailed in Section § 4 and Appendix B.
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A LEAN-FIRE

In this Appendix section, we provide the five examples used both as seed questions and few-shot
examples A.1. We also include the prompts used to generate the CoT and the subsequent LoT in
A.2.

A.1 SEED QUESTIONS

Seed/Few-shot example 1 of 5
Name
putnam 2004 a1

Informal Statement
Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(N), of successful free
throws she has made in her first N attempts of the season. Early in the season, S(N) was less than
80% of N , but by the end of the season, S(N) was more than 80% of N . Proof or disprove that it there
necessarily was a moment in between when S(N) was exactly 80% of N .

LeanFIRe Reasoning

- Each attempt has a value in {0, 1}, 0 for fail, 1 for success, i.e.
attempt: N → {0, 1}.
Lean: attempt : N → Fin 2

- The function S is the average score of the attempt, i.e., the sum
of the attempts divided by the number of attempts S: attempts → R.
Lean: S : (N → Fin 2) → N → R
S attempts N = (

∑
{i : Fin N} (attempts i).1) / N

- S(N) can be written as S(N) = m_N / N where m_N is the number of

successes in N tries, i.e. m_N =
∑N

i=1 1success.
Lean: (encoded in definition of S above)

- The success rate is below 80% at one point a, S(a) < 0.8, and
above 80% at another point b > a, S(b) > 0.8.
Lean: 1 ≤ a ∧ a < b ∧ S attempts a < 0.8 ∧ S attempts b > 0.8

- Show there exists c ∈ (a,b) with S(c) = 0.8.
Lean: ∃ c : N, a < c ∧ c < b ∧ S attempts c = 0.8

Conjecture

abbrev conjecture : Prop := True

Formal Statement

theorem putnam_2004_a1
(S : (N → Fin 2) → N → R)
(hS : ∀ attempts, ∀ N ≥ 1, S attempts N = (Σ i : Fin N, (attempts
i).1) / N) :

(∀ attempts a b,
(1 ≤ a ∧ a < b ∧ S attempts a < 0.8 ∧ S attempts b > 0.8) →
(∃ c : N, a < c ∧ c < b ∧ S attempts c = 0.8))

↔ conjecture :=
sorry

Figure 3: Example (1/5) from Putnam annotated with informal and formal hint reasoning steps.
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Seed/Few-shot example 2 of 5
Name
putnam 2009 b2

Informal Statement
A game involves jumping to the right on the real number line. If a and b are real numbers and b > a,
the cost of jumping from a to b is b3 − ab2. For what real numbers c can one travel from 0 to 1 in a
finite number of jumps with total cost exactly c?
LeanFIRe Reasoning

- The jumps can be modelled as a sequence that partitions the
interval (0,1), with N ∈ N jumps, s0 = 0, si = 1, and si < si+1 for
all 0 ≤ i < N.
Lean: s : Fin (N + 1) → R
validPath (s : Fin (N + 1) → R) : Prop :=
s 0 = 0 ∧ s (Fin.last N) = 1 ∧ i : Fin N, s i < s (i.succ)

- The cost of a jump from si to si+1 is s3i+1 − si ∗ s2i+1.
Lean: jumpCost (a b : R) : R := bˆ3 - a * bˆ2

- The total cost for all jumps is
∑N−1

i=0 (s3i+1 − si ∗ s2i+1).
Lean: totalCost (s : Fin (N + 1) → R) : R :=∑

{i : Fin N} jumpCost (s i) (s (i.succ))

- The set of reachable costs is { c ∈ R | ∃ N ∈ N, validPath s ∧
totalCost(s) = c }.
Lean: reachableCosts : Set R :=
{c : R | ∃ (N : N) (s : Fin (N + 1) → R),
validPath s ∧ totalCost s = c}

Conjecture

abbrev conjecture : Set R := Ioc (1 / 3) 1

Formal Statement

theorem putnam_2009_b2
: ({c : R | ∃ s : N → R, s 0 = 0 ∧ StrictMono s ∧ (∃ n : N, s n =

1 ∧ ((Σ i ∈ Finset.range n, ((s (i + 1)) ˆ 3 - (s i) * (s (i +
1)) ˆ 2)) = c))} = conjecture) :=

sorry

Figure 4: Example (2/5) from Putnam annotated with informal and formal hint reasoning steps.
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Seed/Few-shot example 3 of 5
Name
putnam 2013 b2

Informal Statement
Let C =

⋃∞
N=1 CN , where CN denotes the set of those ‘cosine polynomials’ of the form

(x) = 1 +

N∑
n=1

an cos(2πnx)

which:

(i) f(x) ≥ 0 for all real x, and

(ii) an = 0 whenever n is a multiple of 3.

the maximum value of f(0) as f ranges through C, and that this maximum is attained.
LeanFIRe Reasoning

- C is the set of all C_N for a given N ∈ N.
Lean: C_N (N : N) : Set (R → R) :=
{ f | ∃ (a : N → R),
(∀ x, f x = 1 +

∑
{n ∈ Finset.range N} a n * Real.cos (2 * π *

n * x)) ∧
(∀ x, f x ≥ 0) ∧ (∀ n, n % 3 = 0 → a n = 0) }

- C_N is defined as the set of polynomials of the form f(x) = 1 +∑N
n=1 an cos(2πnx) where f(x) ≥ 0 for all x ∈ R, and the coefficient

an = 0 whenever n is a multiple of 3.
Lean: (above definition of C_N already encodes this)

- Therefore, C_N = { f(x) ∈ R | f(x) = 1 +
∑N

n=1 an cos(2πnx), f(x) ≥ 0
∀ x ∈ R, an = 0 if n mod 3 = 0 }.

Lean: (same C_N definition)

- C is the union of all the C_N, i.e. C =
⋃∞

N=1 CN.
Lean: C : Set (R → R) :=

⋃
N, C_N N

- Determine the maximum f(0) within all possible C_N, i.e. sup {
f(0) | f ∈ C }.
Lean: supF0 : R := Sup { f 0 | f ∈ C }

Conjecture

abbrev conjecture : R := 3

Formal Statement

theorem putnam_2013_b2
(CN : N → Set (R → R))
(hCN : ∀ N : N, CN N =
{f : R → R |

(∀ x : R, f x ≥ 0) ∧
∃ a : List R, a.length = N + 1 ∧ (∀ n : Fin (N + 1), 3 (n : N

) → a[n]! = 0) ∧
∀ x : R, f x = 1 + Σ n ∈ Finset.Icc 1 N, a[(n : N)]! *

Real.cos (2*Real.pi*n*x)}) :
IsGreatest {f 0 | f ∈ N ∈ Ici 1, CN N} conjecture :=

sorry

Figure 5: Example (3/5) from Putnam annotated with informal and formal hint reasoning steps.
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Seed/Few-shot example 4 of 5
Name
putnam 2014 a2

Informal Statement
Let A be the n × n matrix whose entry in the i-th row and j-th column is 1

min(i,j)
for 1 ≤ i, j ≤ n.

Compute det(A).
LeanFIRe Reasoning

- Let the dimension of the matrix be n ∈ N, and the n× n matrix
A ∈ Rn×n.
Lean: A (n : N) : Matrix (Fin n) (Fin n) R :=

- Define Aij to be the entry from the i-th row and j-th column of
matrix A.
Lean: (implicit in the matrix function arguments λ i j)

- Set each entry to be the minimum between its column and row
value, i.e. Aij = 1 / min(i, j) ∀ 1 ≤ i, j ≤ n.
Lean: λ i j => 1 / min (i.1 + 1) (j.1 + 1)
Note: i.1 + 1 and j.1 + 1 are used because Lean indices start at
0 but min(i,j) starts at 1

- Evaluate det(A).
Lean: detA (n : N) : R := Matrix.det (A n)

Conjecture

abbrev conjecture : R := 3

Formal Statement

theorem putnam_2013_b2
(CN : N → Set (R → R))
(hCN : ∀ N : N, CN N =
{f : R → R |

(∀ x : R, f x ≥ 0) ∧
∃ a : List R, a.length = N + 1 ∧ (∀ n : Fin (N + 1), 3 (n : N

) → a[n]! = 0) ∧
∀ x : R, f x = 1 + Σ n ∈ Finset.Icc 1 N, a[(n : N)]! *

Real.cos (2*Real.pi*n*x)}) :
IsGreatest {f 0 | f ∈ N ∈ Ici 1, CN N} conjecture :=

sorry

Figure 6: Example (4/5) from Putnam annotated with informal and formal hint reasoning steps.
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Seed/Few-shot example 5 of 5
Name
putnam 2015 a2

Informal Statement
Let a0 = 1, a1 = 2, and an = 4an−1 − an−2 for n ≥ 2. Find an odd prime factor of a2015.
LeanFIRe Reasoning

- A recurrence relation is initialised with 1 and 2 as the starting
points, i.e. a0 = 1 and a1 = 2.
Lean: a : N → N
a 0 = 1
a 1 = 2

- It is defined as 4 times the previous term minus the term before
the previous one, i.e. an = 4an−1 − an−2 for n ≥ 2.
Lean: ∀n ≥ 2, a n = 4 ∗ a (n− 1)− a (n− 2)

- For the 2015th term of the sequence, a2015, determine a factor c ∈ N
such that:
• c | a2015

• c is odd (∃ n ∈ N, c = 2n− 1)
• c is prime (no divisor k > 1 except itself)
Lean: ∃ p : N, p | a 2015 ∧ Nat.Prime p ∧ Odd p

Conjecture

abbrev conjecture : N := 181

Formal Statement

theorem putnam_2015_a2
(a : N → Z)
(abase : a 0 = 1 ∧ a 1 = 2)
(arec : ∀ n ≥ 2, a n = 4 * a (n - 1) - a (n - 2))
: Odd conjecture ∧ conjecture.Prime ∧ ((conjecture : Z) a 2015) :=
sorry

Figure 7: Example (5/5) from Putnam annotated with informal and formal hint reasoning steps.
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A.2 LEAN-FIRE PROMPTS

Chain-of-Thought (CoT) Generation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Using the provided informal statement, write a concise sequence of hints that
guides the reader towards a formal statement in Lean.
Guidelines:
Do not include any Lean code.
Hints must be succinct and make use of mathematical notation.
Do not include proof steps|ignore any part that concerns only the proof.
Ensure that all variables, functions, and assumptions are clearly introduced
and well-defined.
Use the hints to bridge the gap between the worded (informal) problem and
the underlying mathematics|make clear how each mathematical concept
corresponds to elements of the informal statement.
Refer to the following examples of previously generated hints for style
and structure.
{%- for example in examples %}
EXAMPLE {{ example.id }}:
**Informal statement**
{{ example.informal_statement }}
**Hints**
{{ example.cot}}
{%- endfor }
**Informal statement**
{{ query.informal_statement }}
**Hints**

Figure 8: Jinja templates for the system and user prompt used in LeanFIRE for the generation of
informal reasoning steps (CoT).
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Lean-of-Thought (LoT) Translation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Using the provided hints, write a Lean4 code snippets for each hints when
appropriate to guide the reader towards a formal statement in Lean.
Guidelines:
Do not provide formal proofs or imports.
Ensure that you match the hints to the Lean hints.
Refer to the following examples of previously generated hints for style
and structure.
{%- for example in examples %}
EXAMPLE {{ example.id }}:
**Informal statement**
{{ example.informal_statement }}
**Hints**
{{ example.cot}}
**Lean Hints**
{{ example.lot}}
{%- endfor }
**Informal statement**
{{ query.informal_statement }}
**Hints**
{{ example.cot}}
**Lean Hints**

Figure 9: Jinja templates for the system and user prompt used in LeanFIRE for the translation of the
CoT into formal reasoning steps (LoT).

B DETAILS ON EXPERIMENTAL SETUP

This Appendix provides details on our experimental setup. All experiments were conducted in Lean
4 4.19.0-rc2 with the appropriate Mathlib imports and standard LLM APIs for GPT-4.1 and
DeepSeek-V3.1. Each instance was run for 10 passes using the random seeds [5049, 891, 1065,
4894, 3277, 8476, 8192, 688, 377, 3568] to ensure reproducibility. The only non-default generation
parameter was a temperature of 0.7; all other settings were kept at their default values. Prompts for
autoformalisation, conjecture generation, and ConJudge are provided in Sections B.1, B.2, and B.3,
respectively. The Lean 4 code for equiv rfl is included in Section B.4.
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B.1 AUTOFORMALISATION PROMPT

Autoformalisation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Translate the following natural language statement, provided under
**Informal statement** into a formal Lean 4 theorem. Use the theorem name
specified under **Name** as the Lean identifier for the theorem. Your
response must:
- Write only valid Lean 4 code, with clear and idiomatic use of Lean
syntax and conventions.
- Only include the formalization, and do not include any proof or imports.
- Define the theorem using the provided name.
- Faithfully capture the meaning of the informal statement in your
formalization.
- Enclose all Lean code within triple backticks
Output:
‘‘‘lean
theorem [NAME] : [Lean formalization of the statement] := sorry
‘‘‘
{%- for example in examples %}
EXAMPLE {{ example.id }}:
**Name**
{{ example.name }}
**Informal statement**
{{ example.informal_statement }}
The code below presents a solution implementation written in Lean 4.
This solution has already been incorporated into the current Lean
environment and is available for use in the formalization.
import Mathlib
{%- if conjecture_is_seen %}
{{ example.conjecture }}
{%- endif %}
Output:
‘‘‘lean
{{ example.formal_statement }}
‘‘‘
Above are examples for you to model the translation of the below natural
language statement into a Lean 4 formal theorem:
{%- endfor }
**Name**
{{ query.name }}
**Informal statement**
{{ query.informal_statement }}
The code below presents a solution implementation written in Lean 4.
This solution has already been incorporated into the current Lean
environment and is available for use in the formalization.
import Mathlib
{%- if conjecture_is_seen %}
{{ example.conjecture }}
{%- endif %}
**Combined Hints**
{{ query.combined_cot_lot }}
Output:
‘‘‘lean

Figure 10: Jinja templates for the system and user prompt for autoformalisation.
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B.2 STANDALONE CONJECTURE GENERATION PROMPT

Conjecturing Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.
You do not provide proofs or full theorem statements, only the mathematical
expression representing the solution, proposition, or the value being asserted.
You should first analyze the informal problem statement, then provide the final
expression as valid Lean 4 code.

User Prompt

Your task is to take a natural language mathematical statement and extract the
mathematical expression, proposition, or value, representing it as a Lean 4
expression.
**Instructions:**
1. Analyze the informal problem statement to deconstruct its mathematical components.
2. Provide the final solution as a single Lean 4 expression.
3. Present the final output inside a Lean code block, using:
‘‘‘lean
abbrev solution {solution code}
‘‘‘
**Informal statement**
{{ example.informal_statement }}

Figure 11: Jinja template for the system and user prompt used in to generate a conjecture in Lean 4.

B.3 CONJUDGE

ConJudge evaluates whether a conjecture appears in a given formalised statement. We first con-
ducted human annotations to identify which model and prompt best align with human judgments;
this model was then selected as our LLM-as-a-judge. Table 6 presents the distribution of human
annotations for 100 sample generations, while Table 7 reports the accuracy of four different models
against the human gold labels. The prompt used for ConJudge is provided below.

TRUE FALSE Total

Seen 35 11 46
Unseen 21 33 54

Total 56 44 100

Table 6: Contingency table showing counts of TRUE and FALSE values for seen and unseen in-
stances.

Model Percentage

internlm2-math-plus-20b 60
qwen3-14b 79
gpt-oss-20b 70
qwen3-30b-a3b-instruct 83

Table 7: Percentage alignment to human annotators for ConjectureBench across different models.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

ConJudge Evaluation Prompt
System Prompt

You are an expert in the Lean 4 theorem proving language and formal
mathematics. Your task is to determine if a given formal statement in
Lean 4 contains a specific conjectured value, algebraic formula, or bound.
You will be given three inputs:
1. **Conjecture**: The value, formula, or bound to look for.
2. **Ground Truth Formal Statement**: An example of a Lean 4 statement that
correctly formalizes the conjecture. Use this as a reference for a valid
implementation.
3. **Formal Statement**: The Lean 4 code you need to evaluate.
Your goal is to determine if the **Formal Statement** contains the core
assertion of the **Conjecture**. The **Ground Truth Formal Statement** is
provided to help you understand how the conjecture can be formally expressed.
The statement you are evaluating might not have the exact same syntax as the
ground truth. You must carefully check for **semantically equivalent
variations** of the conjecture’s core idea. This includes, but is not limited
to, permutations of terms, different but equivalent algebraic expressions, or
reordered hypotheses. Additionally, a conjecture can be expressed either by
defining a proposition (e.g., ‘abbrev conjecture : Prop := ...‘) or by
asserting it within a theorem, which implicitly states the conjecture holds.
You should consider these forms equivalent.
Your output must follow this structure exactly:
1. First, provide a brief explanation of your reasoning.
2. Second, conclude with the final answer in the format: ’The formal
statement contains the conjecture: **True**’ or ’The formal statement
contains the conjecture: **False**’.

User Prompt

**Conjecture:**
‘‘‘lean
{{ conjecture }}
‘‘‘
**Ground Truth Formal Statement:**
‘‘‘lean
{{ statement1 }}
‘‘‘
**Formal Statement:**
‘‘‘lean
{{ statement2 }}
‘‘‘

Figure 12: Jinja templates for the system and user prompts used by CONJUDGE.

B.4 EQUIV RFL

Lean 4

abbrev conjecture_gold: {gold}
abbrev conjecture_generated: {generated}

theorem thm : conjecture_gold = conjecture_generated := by rfl

Figure 13: Implementation of metric equiv rfl in Lean 4.
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