Under review as a conference paper at ICLR 2026

CONJECTURING: AN OVERLOOKED STEP IN FORMAL
MATHEMATICAL REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoformalisation, the task of expressing informal mathematical statements in
formal language, is often viewed as a direct translation process. This, however,
disregards a critical preceding step: conjecturing. Many mathematical problems
cannot be formalised directly without first conjecturing a conclusion such as an ex-
plicit answer, or a specific bound. Since Large Language Models (LLMs) already
struggle with autoformalisation, and the evaluation of their conjecturing ability
is limited and often entangled within autoformalisation or proof, it is particularly
challenging to understand its effect. To address this gap, we augment existing
datasets to create ConjectureBench, and redesign the evaluation framework and
metric specifically to measure the conjecturing capabilities of LLMs both as a
distinct task and within the autoformalisation pipeline. Our evaluation of founda-
tional models, including GPT-4.1 and DeepSeek-V3.1, reveals that their autofor-
malisation performance is substantially overestimated when the conjecture is ac-
counted for during evaluation. However, the conjecture should not be assumed to
be provided. We design an inference-time method, LEAN-FIRE to improve con-
jecturing and autoformalisation, which, to the best of our knowledge, achieves the
first successful end-to-end autoformalisation of 13 PutnamBench problems with
GPT-4.1 and 7 with DeepSeek-V3.1. We demonstrate that while LLMs possess
the requisite knowledge to generate accurate conjectures, improving autoformali-
sation performance requires treating conjecturing as an independent task, and in-
vestigating further how to correctly integrate it within autoformalisation. Finally,
we provide forward-looking guidance to steer future research toward improving
conjecturing, an overlooked step of formal mathematical reasoning.

1 INTRODUCTION

Natural language reasoning with Large Language Models (LLMs) has emerged as a powerful tool for
solving complex mathematical problems. Its effectiveness is highlighted by recent breakthroughs,
such as Al systems from OpenAl and Google solving five of six problems from the 2025 Interna-
tional Mathematics Olympiad (IMO) using natural language (Metz, [2025). The critical caveat is
that these informal solutions require validation by expert mathematicians, a process that is prone to
human error and lack scalability (Gouézel & Shchur, [2019). Proof assistants like Isabelle (Wenzel
et al.,2008)) and Lean (Moura & Ullrich, 2021)) provide a path toward automated verification at scale
through formal reasoning. Their power was demonstrated when AlphaProof solved three of the six
2024 IMO problems by generating formal proofs (AlphaProof and AlphaGeometry teams, [2024)
and reiterated in 2025 with SeedProver (Chen et al.| 2025) equaling OpenAl and Google’s perfor-
mance. Yet benchmarks such as PutnamBench remain difficult, with the best open-source models
achieving a correct proof rate of only 13.1% at the time of writing (Tsoukalas et al., 2024).

A central bottleneck is autoformalisation, the task of automatically expressing informal mathematics
into a precise formal language (Szegedy,|2020). On undergraduate-level problems from the ProofNet
benchmark (Azerbayev et al., [2023)), the current state-of-the-art performance is only 31.28% (Liu
et al.| |2025b). Moreover, the fact that state-of-the-art systems like AlphaProof are provided with
human-annotated formalisations, rather than the natural language problems, suggests that an end-to-
end approach remains challenging. Autoformalisation is non-trivial, as even highly skilled human
experts can take over eight hours to formalise a single IMO problem (Liu et al., 2025a)). Improv-
ing autoformalisation would therefore be transformative, not only by providing a systematic way

Under review as a conference paper at ICLR 2026

Metrics

CombiBench —
Seen Statement o KTh
PutnamBench —> A f li
| Conjecture coniot &) Autofor <le Typecheck, BEq+, LLM Grader
onjecture
Rephrase solution ConJudge
out of question Autoformalised statement contains the
ground truth conjecture?
Extract conjecture (eXe)
! @ IRemire] + Conjecture
Statement
Tag solution type
equiv_rfl
Id Generated
Unseen Informal =) . Gol —
o Conjecturer Conjecture Conjecture
ConjectureBench Conjecture | Statement €5, 4 })

Figure 1: End-to-end evaluation pipeline for conjecturing and autoformalisation, including a “seen”
setting (conjecture provided) and a more realistic “unseen” setting (conjecture must be inferred). Our
contributions, highlighted in blue, introduce ConjectureBench, “unseen” evaluation, and two corre-
sponding metrics: ConJudge for assessing conjecturing during autoformalisation and equiv_rfl
for standalone conjecture generation.

to validate informal reasoning but also by enabling the synthesis of new data at scale to improve
automated provers themselves.

Autoformalisation is difficult for two interrelated reasons: faithfulness and conjecturing. Without a
ground truth formalisatiorﬂ it can be difficult to judge whether the autoformalised statement truly
reflect the intent expressed by the natural language problem (Yang et al.,[2025b). Humans generally
describe problems in an informal manner, often obfuscated through real world objects and situations.
To formalise these, LLMs need to connect world knowledge with abstract mathematical concepts,
which increases the complexity of the task (Yang et al.,|2025b).

Secondly, a conjecture, a mathematical conclusion such as an explicit answer, bound, or proposi-
tion, is required for formalisation. The nature of the conjecture shapes the autoformalisation, without
which proving stalls. To circumvent conjecturing during autoformalisation, one may insert a place-
holder, but it must ultimately be replaced with a valid solution for a complete proof. Most current
systems implicitly treat conjecturing as part of the proof search (Sun et al.,2025) by proposing a so-
lution and validating it when a verified proof is generated. However, using a proof as self-verification
of the conjecture comes with an important caveat; it does not guarantee completeness. For example,
solving 22 — 42 = 0 by conjecturing « = 0 yields a valid and verifiable yet incomplete solution,
as x = 4 is also a valid root. This highlights that conjecturing and proving draw on distinct skills.
Conjecturing relies on intuition, pattern recognition, and heuristic testing, whereas proving requires
the rigorous application of tactics (Fernandez-Leon et al.| [2021).

To address the overlooked role of conjecturing in formal mathematical reasoning, we measure the
conjecturing capability by introducing ConjectureBench, a new dataset designed to evaluate the
conjecturing performance of LLMs. We develop two novel metrics: ConJudge, a metric that uses
an LLM-as-a-Judge (Zheng et al.|[2023) to assess conjecture presence within the autoformalisation,
and equiv_rfl, a metric that uses Lean tactics to check for definitional equivalence in standalone
conjecture generation as illustrated in Figure [I| Our evaluation of foundational LLMs, including
GPT-4.1 and DeepSeek-V3.1, on ConjectureBench reveals that autoformalisation performance is
substantially overestimated when the conjecturing step is assumed to be provided.

To test the hypothesis that this performance gap stems from a failure in reasoning rather than a lack
of mathematical and world knowledge, we propose a novel inference-time method Lean Formal-
Informal Reasoning (LEAN-FIRE). This approach guides the model by interleaving Chain-of-
Thought (CoT) reasoning in natural language with Lean-of-Thought (LoT) steps in formal language,
helping it to better connect informal reasoning with formal mathematics. We show that LEAN-FIRE
leads to significant improvements, confirming our hypothesis. While end-to-end autoformalisation
remains low, our method achieves the first successful autoformalisation of 13 new PutnamBench
“no-answer” problems. More specifically, LEAN-FIRE improves conjecturing performance on our

'In this work, we always assume existence of a ground truth formalisation.

Under review as a conference paper at ICLR 2026

Hypothesis = Conclusion | Type of solution
r+4=0 = x=—4 | Numerical
—a=0 = z€{Va,—va} | Algebraic

cos(x) =x = st cos(x) =x | True but no closed-form solution

Table 1: Examples of mathematical statements paired with different solution types.

ConJudge metric by an average of 29.1% for GPT-4.1 and 14.0% for DeepSeek-V3.1. These results
provide strong evidence that the models’ primary limitation is not a lack of requisite knowledge, but
rather the need for targeted methods to unlock their ability to conjecture effectively. Lastly, through
manual analysis, we further identify two practical challenges: dataset contamination and the need
for new definitions, functions, and lemmata to support autoformalisation.

Our contributions are as follows: (1) we introduce ConjectureBencfﬂ the first benchmark evaluating
conjecture capabilities, (2) we propose two complementary metrics, ConJudge and equiv_rfl, to
systematically assess thse capabilities, and (3) we develop LEAN-FIRE, an inference-time method
to improve both autoformalisation and conjecturing.

2 PRELIMINARY

In mathematics, a theorem is a statement for which a proof establishes a conclusion from a set of
hypotheses. When such a proof is not yet known, the statement is referred to as a conjecture (Pauli,
2022). A conjecture proposes a possible conclusion often expressed as an abstract object that may
or may not admit a closed-form representation such as an algebraic formula or a numerical answer,
see Table[I] In formal mathematics, autoformalisation is a necessary stage prior to using a prover
or proof assistant, as these systems require formal statements as inputs. Conjecturing is the task of
generating candidate solutions for well-posed problems (Sun et al., 2025)).

Current formal mathematics datasets largely fall into two categories. The first type assumes that a
solution is already known and only requires the corresponding proof given a gold formalised state-
ment. The second type requires the discovery of a solution before or while a proof is constructed.
For this latter class, the initial step is to generate a candidate solution. Without such a conjecture, for-
malisation cannot proceed. This holds in Lean 4, a more permissive formal mathematics language;
the compiler cannot verify whether the object types are consistent (Typecheck) in an incomplete
statement.

Lean 4

theorem quad_roots: {x : R | x"2 - 4xx = 0} S—eonjeeture := sorry

In the above quad_roots example, the formal statement for “Solve x? — 4z for x7, erasing

conjecture reduces the statement to a set of hypotheses with no conclusion, leaving nothing
to prove. A quick fix is to put a placeholder, conjecture, for which Lean 4 has been forced to
assume the correct type. When the solution is known, it could be integrated directly into the formal
statement. But deriving it in the first place is challenging. If generated during the proving stage,
the formal language system can self-verify whether the conjecture is valid. However, the validity of
a conjecture does not equate to a complete conjecture or a valid solution to the informal statement.
Three valid and proof verifiable conjectures are:

However, only conjecture_3 is a complete answer. In fact, natural language can frame a prob-
lem in a way that feels more intuitive and human-friendly. For example, “How many people must be
in a group for at least two of them to be born in the same month?”, this question is easier to reason

The dataset and code will be made available.

Under review as a conference paper at ICLR 2026

Lean 4
abbrev conjecture_1: abbrev conjecture_2: abbrev conjecture_3:
Set R := {0} Set R := {4} Set R := {0, 4}

about using everyday knowledge than its more formal counterpart: determining the smallest domain
size for which there exist no injective function into a set of 12 elements. Therefore, autoformal-
isation being closer to the natural language statement allows for broader possibility of generating
conjectures. Finally, when tackling unsolved problems, the solution is not given in advance making
conjecture generation an essential step in the formal reasoning process. Therefore, this motivates
our exploration of conjecturing as an integral, yet overlooked step in formal mathematical reasoning.

3 METHODOLOGY

3.1 CONJECTUREBENCH DATASET

Two recent datasets are designed with conjecturing in mind: PutnamBench (Tsoukalas et al., [2024)
factors out the solution from the problem statement, forcing models to generate the conjecture it-
self, while CombiBench (Liu et al.,[2025a) introduces a benchmark with and without the solution to
further encourage conjecture generation. To elaborate, PutnamBench is a benchmark of 640 paired
informal and formal statements from the William Lowell Putnam Mathematical Competition. The
benchmark and its leaderboard primarily emphasise proof generation, both when solutions are pro-
vided and when they are withheld. The evaluation of statements without answers is only feasible
for 355 of the problems. Similarly, CombiBench adopts the same design where possible, with 100
combinatorics problems ranging from textbook exercises to IMO questions. However, 55 questions
include the conjecture within their informal statement.

Original with integrated solution \ Reworded to seek a solution \ Type of solution \ Distribution
Show that there are at least What is the minimum number N ical 39.0%
1991 red points in the plane. of red points in the plane? umerica (178)
Prove that there are at most What is the maximum number of subsets Aleebraic 36.1%

2n — 1 subsets in the collection. that can be in such a collection? g (165)
24.9%

Prove that B ={0,3,4,9, 11} ‘ Prove or disprove that B = {0, 3, 4,9, 11}

. . . . R . Proof
is a difference set in Zs;. is a difference set in Z.

(114)

Table 2: Examples of how proof questions are reformulated into the three solution types considered,
along with the distribution of these types in ConjectureBench.

To adapt both datasets to evaluate conjecturing, we first annotated all 355 PutnamBench problems
and 102 CombiBench problems (splitting multi-part questions into separate items) to ensure that no
conjecture appear directly in the problem statements. For proof-based questions, where the conclu-
sion is already embedded, we rephrased them into equivalent tasks requiring either a numerical or
algebraic solution. When rewording is not feasible, we instead reformulate the problem into a binary
classification task, requiring the model to decide whether the statement is true or false. Examples of
these reformulations, as well as the distribution across our new combined dataset, ConjectureBench,
are provided in Table 2] We finally separate the conjecture from the formal statement, retaining it
only in the “seen” setting as illustrated in Figure[I] This design choice ensures that our full dataset
of 457 paired informal-formal statements can be used consistently across both, “seen” and “unseen”
settings, enabling a more accurate evaluation of conjecturing.

This evaluation framework offers several advantages. It allows us to assess whether current LLMs
are capable of generating accurate conjectures while autoformalising, but also to evaluate models’
raw conjecturing capability. It also enables a detailed analysis of which types of conjectures present
particular challenges for existing models. The results of this benchmark provide a foundation to
investigate whether improvements in conjecturing arise naturally from enhanced autoformalisation,
or if alternative approaches, such as new data or reasoning approaches, are necessary.

Under review as a conference paper at ICLR 2026

Lean-FIRe Generation

| Informal Statement ‘l CoT Lean-FIRe
|
| How many people : 1. Let the set of months be 1. L;t thev setlozf months be M, with IMI = 12.
| | must be in a group for s M, with IMI = 12. ¢ Fin .
| | atleast two of them to [——> W—) 2. Let n e N be the number 2. Letn e N be the number of people in the group.
| be born in the ! of people in the group. n:N) . .
same month? | . 3. Each person’s birth month is a functionb : {1, ..., n} = M
‘ | b : Fin n - Fin 12
| | LoT 4. The question asks for the minimal n such that, for every
| | function , there exists i # j with b(i) = b(j).
| - 1. M: Fin 12 V b: Fin n - Fin 12,
| —:—>@—>zn:N 3(Ij:Finn), i#=jAabi=hbj
|
|
|
| 1
| Seen only: ; v v
‘ abbrev conjecture: | = . . = ..
I | > W Conjecturing W Autoformalising
|
IR | ! !
Conjecture generated Formal Statement generated
theorem hackmath:
abbrev conjecture: IsLeast {n | V f :
N : 13 Fin n - Fin 12,
Fab, fa=fhb
conjecture :i= sorry

Figure 2: Illustration of LEAN-FIRE construction within the overall pipeline for generating auto-
formalisations and conjectures, where the conjecture in the green box is provided only in the “seen”
setting, and CoT and LoT stand for chain/lean-of-thought.

3.2 CONJECTURING TASKS

We evaluate performance across two distinct tasks designed to assess conjecture-driven reasoning
as illustrated in Figure[2} The primary task is autoformalisation, which we evaluate in two settings.
In the “seen” setting, the model is provided with the informal statement and the correct conjecture
formatted in Lean 4. The task is to produce a formal statement that correctly incorporates the
provided conjecture. In the “unseen” setting, the model is provided only with the informal statement
and must deduce and incorporate the conjecture directly into the final formalisation.

The second task is standalone conjecture generation, where we isolate conjecturing performance
entirely from the complexity of full autoformalisation. Here, the model is given only the informal
statement and is instructed to generate the conjectured solution as a concise Lean 4 statement.

3.3 METRICS

To evaluate conjecturing performance during autoformalisation, we propose ConJudge, an LLM-
as-a-judge framework (Zheng et al., 2023)). Its purpose is to determine whether the problem’s gold
solution is reasonably and correctly incorporated as a conjecture within the final autoformalised
statement. To do this, ConJudge is provided with the generated formalisation, the gold conjecture,
and the gold formalisation to demonstrate the intended context and role of the conjecture. For
instance, if the correct conjecture is the integer 2, the judge would reject a formalisation where 2
appears incorrectly as a power or a subscript. To tune ConJudge, we carry out a human annotation
of 100 randomly sampled autoformalisation generations (Appendix [B.3), classifying whether the
solution was correctly incorporated into the formal statement.

For standalone conjecture generation, we created equiv_rf1l, which evaluates definitional equiv-
alence between the generated and gold conjecture based on tactic r£1 (Appx. [B4). Definitional
equivalence captures mathematically equivalent statements that reduce to the same value, e.g.
2 + 2 = 4 or Nat.factorial4 = 24. This provides reliable formal verification through Lean’s type
checker. However, its limitation is that structural differences prevent equivalence verification: con-
jectures that are semantically identical but formatted differently are not recognized as equivalent.
Human evaluation on 200 samples shows equiv_rf1l achieves 100% precision with 71.5% recall.
This provides a rigorous, formal measure of whether the model can produce the correct solution in
isolation.

Under review as a conference paper at ICLR 2026

3.4 LEAN-GUIDED FORMAL-INFORMAL REASONING (LEAN-FIRE)

To test the hypothesis that the performance gap in conjecturing stems from a failure in reasoning
rather than a lack of knowledge, we propose LEAN-FIRE, a novel inference-time method designed
to better structure the model’s reasoning process. The goal is to distil the LLM’s latent parametric
mathematical knowledge at test-time by combining both informal and formal reasoning. As illus-
trated in Figure [2| the LEAN-FIRE method is built as a two-stage hybrid reasoning process that
integrates informal problem decomposition with formal code generation by means of interleaved
Chain-of-Thought (CoT) with Lean-of-Thought (LoT) prompting. We leverage the LLM’s ability
in informal mathematical reasoning to first generate a potential conjecture and outline the overall
structure of the formalisation. First, a complete CoT trace is generated in natural language from the
informal problem statement. The CoT is designed to break down the problem, identify key math-
ematical objects, and articulate the reasoning entirely in natural language. Crucially, this phase is
constrained to produce no formal code and avoid stating the final solution. Second, after the informal
reasoning trace is completed, a subsequent LLM generates a corresponding LoT step for each infor-
mal step. The purpose of the LoT is not to write a comprehensive formal statement, but to translate
the abstract concepts from the CoT into precise Lean primitives and syntax. This hybrid approach
is motivated in part by prior work, such as Jiang et al.| (2023)), which has already demonstrated that
leveraging both formal and informal language can improve performance in theorem proving.

Seed Data Annotation. This automated generation of CoT and LoT steps is enabled by few-shot
examples derived from a small, expert-annotated seed dataset. We created this seed data from five
diverse Putnam competition problems, which were annotated by an expert mathematics instructor
to produce gold CoTs. The problems were selected to cover a range of mathematical domains
(probability, real analysis, linear algebra, abstract algebra, number theory), solution types (as listed
in Table [2), and conjecture styles, ensuring the exemplars were broadly representative. In some
cases, questions were modified to omit parts of the solution, mirroring the annotation process for
ConjectureBench. These five seed problems are detailed in Appendix and are excluded from
our ConjectureBench evaluation. With these few-shot examples and a set of precise instructions (see
Appendix[A.2), CoT and LoT pairs can be automatically generated for any new problem using only
its informal statement as input. In preliminary experiments, we evaluated five LLMs for this task
and found that GPT-4.1 consistently outperformed its other family models and Claude-4-Opus.

4 EXPERIMENTAL SETUP

Models. We experiment with two foundational autoformalisation models: GPT-4.1 (Achiam et al.,
2023) and DeepSeek-V3.1 (DeepSeek-Al et al., 2024). To measure the impact of our proposed
method, we compare the performance of LEAN-FIRE against the zero-shot performance of each
base model. Additionally, we conduct an ablation study where we remove the few-shot examples
from the LEAN-FIRE input (w/o FS) to isolate the contribution of the hybrid reasoning approach.

Metrics. We assess performance for all tasks using pass@1 and pass@ 10, where pass @k indicates
that at least one of k£ independent samples was successful. For conjecturing, we use two targeted met-
rics. Conjecturing performance during the full autoformalisation task is assessed with ConJudge,
while standalone conjecture generation is evaluated using equiv_rfl.

For autoformalisation, we use three complementary metrics: Typecheck, BEq+, and LLM Grader.
Typecheck is a binary measure of syntactic correctness indicating whether the generated Lean code
compiles without errorE] For semantic equivalence, we use BEq+, a metric based on a set of Lean
tactics that presupposes typechecking and attempts to prove equivalence between the generated and
gold formalisations (Poiroux et al., |2025)). We should note that while precise, BEq+ can be overly
conservative, leading to false negatives on semantically equivalent statements that differ in surface
form (Liu et al., 2025b). To capture a broader notion of correctness, we also use LLM Grader, a
pipeline that evaluates semantic alignment. First, the gold and generated formalisations are back-

3Each instance of ConjectureBench is provided with the appropriate Mathlib imports and a standardised
Lean 4 environment (v4.19.0-rc2) to ensure consistent evaluation.

Under review as a conference paper at ICLR 2026

translated into natural language using a math LLME] A separate judge LLME] then evaluates these
natural language statements for semantic equivalence.

5 RESULTS AND DISCUSSION

5.1 CONIJECTURING RESULTS

Model Method Conjecture ConJudge@1 ConJudge@10
Baseline Seen 78.77 98.03

- Unseen 26.70 (—52.07) 61.27 (—36.76)

<

[) Seen 92.78 98.47

% LEAN-FIRE Unseen 55.80 (—36.98) 85.34 (—13.13)

Seen 77.90 96.06

LEAN-FIRE w/o FS Unseen 28.88 (—19.02) 56.89 (—39.17)

; Baseline Seen 80.31 95.84

> Unseen 30.63 (—419.68) 58.86 (—36.98)

-

P Seen 81.40 97.81

%_ LEAN-FIRE Unseen 44.64 (—36.76) 71.55 (—26.26)

o

%)

a) Seen 74.62 96.72
LEAN-FIRE w/o FS Unseen 35.01 (—39.61) 56.86 (—39.83)

Table 3: Conjecturing during autoformalisation performance on ConjectureBench using ConJudge.
Scores are reported at pass@1 and pass@ 10, with relative differences between “unseen” and “seen”
in brackets. Bold indicates best performance for each model and metric in the “unseen” setting.

Model Type of solution equivrfl@l equiv_rl@10
All 3.28 (15/457) 5.04 (23/457)
Numerical 5.62 (10/178) 8.99 (16/178)
PT-4.1
G Algebraic 3.03 (5/165) 4.24 (7/165)
Proof 0.00 (0/114) 0.00 (0/114)
All 3.72 (17/457) 5.70 (26/457)
Numerical 7.30 (13/178) 10.67 (19/178)
D k-V3.1
eepSeek-V3 Algebraic 2.42 (4/165) 3.64 (6/165)
Proof 0.00 ¢ 0/114) 0.88 (1/114)

Table 4: Standalone conjecture generation performance across ConjectureBench broken down by
type of solution. Metrics report equiv_rfl at pass@1 and pass@ 10, with counts shown over total
examples in brackets.

Conjecturing During Autoformalisation. Using the ConJudge metric, we find that models are
more adept at producing the correct conjecture when it is part of a full autoformalisation task. Ta-
ble 3] shows that LEAN-FIRE with few-shot examples significantly improves the use of conjectures
in both “seen” and “unseen” settings, boosting GPT-4.1’s pass@10 by up to 28% in the “unseen”
setting. However, the large performance drop when few-shot examples are removed (w/o FS) indi-
cates that the hybrid reasoning structure alone does not significantly improve conjecturing. Instead,
the few-shot examples, which expose the model to various solution types and map reasoning steps
to the correct conjecture format, provide the primary benefit. This suggests that a model’s ability to
conjecture is less a matter of latent reasoning and more a function of direct exposure, pointing to the
need for larger and higher-quality conjecture datasets for training.

“We employ InternLM?2-Math-Plus-20B (Cai et al.,[2024).
>We employ a Qwen3-14B (Yang et al.,[2025a) calibrated against human annotators to achieve 67.5%.

Under review as a conference paper at ICLR 2026

Standalone Conjecture Generation. As shown in Table d] performance on standalone conjecture
generation is notably low across all models. We attribute this difficulty to the lack of training data
specifically for conjecturing tasks, in contrast to models’ extensive exposure to autoformalisation
data. This hypothesis is supported by the substantial performance improvement in the few-shot set-
ting (Table3), where models benefit from even minimal exposure to conjecturing examples. While
models occasionally produce correct numerical conjectures, they more often generate auxiliary con-
structs such as definitions or lemmata instead of the conjecture itself. The performance on this task
is nearly an order of magnitude lower than for conjecturing during autoformalisation (see Table [3)),
suggesting that models rely heavily on prior exposure to conjectures already embedded within com-
plete formalised solutions. We observed signs of data contamination in the outputs; for instance,
some generations used helper functions like IsMagicSquare, which appear only in the gold for-
malisation of the benchmark.

5.2 AUTOFORMALISATION RESULTS

Model Method Conjecture TC@1 BEq+@1 Grader@1 \TC@IO BEq+@10 Grader@10
Baseline Seen 25.38 0.00 7.22 59.52 6.78 36.32
- Unseen 24.29(—-1.09) 0.22(+0.22) 3.50(—3.72) |51.42(—8.10) 4.38(—2.40) 20.35(—15.97)
<
=~ Seen 31.95 3.72 11.82 50.98 6.56 43.33
é LEAN-FIRE Unseen 28.01(—3.94) 1.31(—2.41) 4.60(—-7.22) ‘43 76(—7.22) 3.06(—3.50) 22.76(—20.57)
LEAN-FIRE Seen 35.89 2.84 7.66 49.02 4.60 40.04
w/o FS Unseen 28.45(-7.44) 2.41(-0.43) 5.69(—1.97) [42.67(—6.35 4.16(—0.44) 23.85(-16.19)
:; Baseline Seen 38.29 4.81 6.78 61.71 6.78 35.67
>) Unseen 33.26(—5.03) 2.63(—2.18) 5.25(—1.53) |54.49(-7.22) S547(—1.31) 2495(-10.72)
-
3 } Seen 46.17 3.72 9.85 66.74 6.13 41.36
% LEAN-FIRE Unseen 42.89(-3.28) 2.63(—1.09) 6.13(-3.72) |59.30(—7.44) 4.16(—1.97) 26.91(—14.45)
a8 LEAN-FIRE Seen 39.82 3.50 9.41 56.24 4.16 39.39
w/o FS Unseen 39.61(—0.21) 2.63(—0.87) 6.35(-3.06) [53.83(—2.41) 3.72(—0.44) 23.63(—15.76)

Table 5: Autoformalisation performance of all models and methods (as percentages) on Conjec-
tureBench across seen and unseen settings. Metrics include TC (Typecheck), BEq+, and Grader
(LLM Grader), reported at pass@1 and pass@10. Unseen results show the difference relative to
seen performance in brackets. Bold values indicate the best performance for each model and metric
in the “unseen” setting.

Table [3] shows that correct end-to-end autoformalisation remains a challenging task, with low suc-
cess rates even in the “seen” setting where the conjecture is provided. Performance is systematically
overestimated in this setting, with an average 23.7% drop in performance when moving from the
“seen” to the “unseen” setting. Despite these challenges, LEAN-FIRE achieves notable successes.
Generating conjectures, as underscored by the PutnamBench “no-answer” leaderboard, was con-
sidered as a challenge with no successful submissions to date (Tsoukalas et al., [2024). Yet, even
under the strict BEq+ metric, LEAN-FIRE enables GPT-4.1 to correctly autoformalise 13 new Put-
namBench problems and DeepSeek-V3.1 to solve 7. To our knowledge, these represent the first
successful autoformalisations on PutnamBench in a setting where the solution is withheld.

In contrast to its effect on conjecturing, LEAN-FIRE’s impact on autoformalisation is more nuanced.
When comparing across metrics, both models show consistent gains under Typecheck and LLM
Grader. Higher Typecheck scores indicate improved syntactic correctness, while better LLM Grader
scores point to improved semantic equivalence. Therefore, the limited gains in BEq+ suggest that
assembling correct components into a fully equivalent formalisation remains a key bottleneck. For
example, in the generated formalisation of putnam_2014_b2 below, both Typecheck and LLM
Grader marked the output as correct, but BEq+ did not due to a subtle error: a misplaced factorial
symbol. This highlights the sensitivity of BEq+ and illustrates that even when all components are
present, models may fail to assemble them with complete accuracy.

Under review as a conference paper at ICLR 2026

Lean 4
abbrev conjecture: (funn : N => (-1)"(n - 1) / ((n — 1)! %= n!))
theorem putnam_2014_a2 : Vn : N, 0 < n

— let A : Matrix (Fin n) (Fin n) Q := X i j

=> 1/ (min (i.val + 1) (j.val + 1) : Q) in det A

= ((-1) ~ (n-1) : Q / ((n-1)! = n)t

:= sorry

In general, the comparison with the baseline reveals no consistent performance benefit. In the “seen”
setting, few-shot examples are helpful, but in the “unseen” setting, they can be detrimental, some-
times wrongly encouraging template solutions where a conjecture is introduced as a separate func-
tion and then integrated into the formalisation. This suggests that the mathematical knowledge
required for complex autoformalisation including conjecturing is not fully latent in the model’s pa-
rameters, or that LEAN-FIRE, in its current form, fails to consistently extract it. LEAN-FIRE shows
a net mean gain of 3.01% at pass@1 but a slight decline at pass@ 10, suggesting that the reasoning
guidance primarily helps steer the model’s token distribution towards correctness, but the effect is
diluted when multiple generations are sampled by the increase of the probability of reaching a better
distribution. Still, from Table 5] best-of-n sampling roughly doubles improvement under BEq+ and
quadruples it under the LLM Grader, indicating that necessary knowledge exists in latent space, but
is hard to reliably retrieve.

6 RELATED WORK

Several approaches to autoformalisation leverage retrieval or supervised fine-tuning to bootstrap
formal reasoning. For example, [Liu et al.| (2025b)) incorporate retrieval to ground the translation
process, while |Lin et al.[(2025) train on large corpora containing both human and synthetic anno-
tations derived from the Lean Workbook (Ying et al.||2024)), exposing the model to a diverse range
of formalisation examples. Data-centric strategies, focusing on increasing dataset size or improving
data quality, are also common. Some methods employ LLMs-as-a-judge (Wang et al., 2025), chain-
of-thought (CoT) model scoring (Xin et al.l |2024), Lean typechecking signals (Lu et al., [2024), or
LLM feedback (Peng et al., 2025). In addition, Sun et al.| (2025) combine typechecking feedback
with retrieval within their framework to further enhance autoformalisation performance.

Autoformalisation is also employed in theorem proving: for instance, Jiang et al.| (2023) propose a
“draft—sketch—prove” framework that first sketches proof outlines from informal arguments before
completing subgoals with an automated prover. Collectively, these works highlight a growing toolkit
of data generation, model training, and feedback mechanisms aimed at closing the gap in autofor-
malisation. However, these work fail to improve models using test-time compute which we tackle
with LEAN-FIRE.

Conjecturing in the broader sense has been aimed to formalise open-ended conjectures to encourage
mathematical discovery (Chau et al., 2025). Methodologically, many approaches interleave con-
jecturing with proving, where a placeholder conjecture is proposed and subsequently validated by
a prover (Dong & Mal 2025). Sun et al.| (2025) extend this idea by iteratively generating special
coded cases from an autoformalised statement, forming candidate conjectures that are then tested by
a prover in a repeated cycle. While these works incorporate conjecturing as part of their pipelines,
they do not isolate or systematically evaluate the conjecturing step itself. [Zhou et al.[|(2024) demon-
strate that for simple enough problems, LLMs could be used to generate the solutions and auto-
formalisation can verify them. Our work is the first to explicitly extract solution conjecturing as a
distinct capability, provide dedicated evaluation metrics, and systematically benchmark model per-
formance.

Under review as a conference paper at ICLR 2026

7 CONCLUSION

In this work, we identify conjecturing as an overlooked step in formal mathematical reasoning with
LLMs, challenging the prevailing assumption that autoformalisation is a straightforward translation
task. By introducing ConjectureBench, a benchmark specifically designed to evaluate conjecture
generation, and by proposing new metrics that disentangle conjecturing from autoformalisation, we
provide the first systematic framework to measure and analyse this capability. Our results show
that existing models substantially underperform when conjectures are withheld, revealing that much
of their perceived success depends on having solutions pre-specified. To address this gap, we de-
velop LEAN-FIRE, an inference-time strategy that integrates informal Chain-of-Thought with for-
mal Lean-of-Thought reasoning. This method enables the first successful end-to-end autoformalisa-
tion of PutnamBench “no-answer” problems, demonstrating that LLMs possess latent mathematical
knowledge but require structured guidance to effectively conjecture and formalise. Manual analysis
also identify two challenges: data contamination of existing benchmarks, and the task of generating
useful definitions, functions and lemmata that would help autoformalisation, conjecturing and prov-
ing. For future work, we argue that progress in formal mathematical reasoning hinges on treating
conjecturing as an independent task. This calls for the development of richer conjecturing datasets,
improved inference-time techniques, and training strategies that explicitly separate and then reinte-
grate conjecturing with autoformalisation.

ETHICS STATEMENT

In conducting this research, we strictly adhere to data protection regulations in the respective coun-
tries and follow established academic codes of ethics. We respect the licenses of all data artifacts
utilised ensuring that their usage complies with the terms set by the creators. LLMs were solely
used to assist in editing and improving the language of this manuscript. All experts involved in data
annotation and validation were fairly compensated for their contributions.

While we acknowledge that reasoning-oriented LLMs can potentially be misused to generate harm-
ful content, we believe that the associated risks are minimal in the context of improving formal
mathematical reasoning capabilities. Compared to related works in this area, we do not identify any
additional ethical risks arising from our models, datasets, or methodologies.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 Tech-
nical Report. arXiv preprint arXiv:2303.08774, 2023. URL https://arxiv.org/pdf/
2303.08774\

AlphaProof and AlphaGeometry teams. Al achieves silver-medal standard
solving International =~ Mathematical =~ Olympiad problems. Google Deep-
Mind, Jul 2024. URL |https://deepmind.google/discover/blog/

ai-solves—imo-problems—-at-silver-medal-level/.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey Schoelkopf, Edward W. Ayers, Dragomir Radev, and
Jeremy Avigad. ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathe-
matics. 2023. URL https://arxiv.org/abs/2302.12433|

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen, Keyu Chen, Xin Chen, Xun Chen, Zehui
Chen, Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan, Qi Fan, Zhaoye Fei, Yang Gao, Jiaye
Ge, Chenya Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo, Conghui He, Yingfan Hu, Ting
Huang, Tao Jiang, Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li, Jingwen Li, Linyang Li,
Shuaibin Li, Wei Li, Yining Li, Hongwei Liu, Jiangning Liu, Jiawei Hong, Kaiwen Liu, Kuikun
Liu, Xiaoran Liu, Chengqi Lv, Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma, Wenchang
Ning, Linke Ouyang, Jiantao Qiu, Yuan Qu, Fukai Shang, Yunfan Shao, Demin Song, Zifan
Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Jiayu
Wang, Rui Wang, Yudong Wang, Ziyi Wang, Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, and et al. InternLM2 Technical Report. arXiv preprint arXiv:2403.17297, 2024. URL
https://arxiv.org/abs/2403.17297.

10

https://arxiv.org/pdf/2303.08774
https://arxiv.org/pdf/2303.08774
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://arxiv.org/abs/2302.12433
https://arxiv.org/abs/2403.17297

Under review as a conference paper at ICLR 2026

Herman Chau, Helen Jenne, Davis Brown, Jesse He, Mark Raugas, Sara C. Billey, and Henry
Kvinge. Machine Learning meets Algebraic Combinatorics: A Suite of Datasets Captur-
ing Research-level Conjecturing Ability in Pure Mathematics. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=
t1lniJJFUW2.

Luoxin Chen, Jinming Gu, Liankai Huang, Wenhao Huang, Zhicheng Jiang, Allan Jie, Xiaoran Jin,
Xing Jin, Chenggang Li, Kaijing Ma, Cheng Ren, Jiawei Shen, Wenlei Shi, Tong Sun, He Sun,
Jiahui Wang, Siran Wang, Zhihong Wang, Chenrui Wei, Shufa Wei, Yonghui Wu, Yuchen Wu,
Yihang Xia, Huajian Xin, Fan Yang, Huaiyuan Ying, Hongyi Yuan, Zheng Yuan, Tianyang Zhan,
Chi Zhang, Yue Zhang, Ge Zhang, Tianyun Zhao, Jiangiu Zhao, Yichi Zhou, and Thomas Hanwen
Zhu. Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving. 2025. URL
https://arxiv.org/abs/2507.23726.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Cheng-
gang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi
Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun
Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan
Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J.
Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang,
Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shut-
ing Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin,
Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang
Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin
Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan
Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang,
Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao,
Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen
Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui
Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Ziyi Gao, and Zizheng Pan. Deepseek-v3 Technical Report. arXiv preprint arXiv:2412.19437,
2024.

Kefan Dong and Tengyu Ma. STP: Self-play LLM theorem provers with iterative conjecturing and
proving. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=zWArMedNuW.

Aurora Ferndndez-Ledn, José Maria Gavilan-Izquierdo, and Rocio Toscano. A case study of the
practices of conjecturing and proving of research mathematicians. International Journal of Math-
ematical Education in Science and Technology, 52(5):767-781, 2021. doi: 10.1080/0020739X.
2020.1717658. URL |https://doi.orqg/10.1080/0020739X.2020.1717658.

Sébastien Gouézel and Vladimir Shchur. A corrected quantitative version of the Morse lemma.
Journal of Functional Analysis, 277(4):1258-1268, 2019. ISSN 0022-1236. doi: https://doi.
org/10.1016/j.jfa.2019.02.021. URL https://www.sciencedirect.com/science/
article/pii/S0022123619300801.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, Sketch, and Prove: Guiding Formal

11

https://openreview.net/forum?id=tlniJJFUW2
https://openreview.net/forum?id=tlniJJFUW2
https://arxiv.org/abs/2507.23726
https://openreview.net/forum?id=zWArMedNuW
https://openreview.net/forum?id=zWArMedNuW
https://doi.org/10.1080/0020739X.2020.1717658
https://www.sciencedirect.com/science/article/pii/S0022123619300801
https://www.sciencedirect.com/science/article/pii/S0022123619300801

Under review as a conference paper at ICLR 2026

Theorem Provers with Informal Proofs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=SMa9EA0VKMC.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia LI, Mengzhou
Xia, Danqi Chen, Sanjeev Arora, and Chi Jin. Goedel-Prover: A Frontier Model for Open-
Source Automated Theorem Proving. In Second Conference on Language Modeling, 2025. URL
https://openreview.net/forum?id=x2y912HD JD.

J Liu, X Lin, J Bayer, Y Dillies, W Jiang, X Liang, R Soletskyi, H Wang, Y Xie, B Xiong,
et al. Combibench: Benchmarking 1lm capability for combinatorial mathematics. arXiv preprint
arXiv:2505.03171,2025a. URL https://arxiv.org/pdf/2505.03171.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and Improving
Autoformalization: Towards a Faithful Metric and a Dependency Retrieval-based Approach. In
The Thirteenth International Conference on Learning Representations, 2025b. URL https:
//openreview.net/forum?id=hUb2At2DsQ.

Jiangiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, Zhicheng Yang, Jing Tang, and Zhijiang Guo. Process-
Driven Autoformalization in Lean 4, 2024. URL https://arxiv.org/abs/2406.01940.

Cade Metz. Google A.I. System Wins Gold Medal in International Math Olympiad. The New
York Times, Jul 2025. URL https://www.nytimes.com/2025/07/21/technology/
google—ai-international-mathematics—-olympiad.html.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming language.
In Automated Deduction—-CADE 28: 28th International Conference on Automated Deduction,
Virtual Event, July 12—-15, 2021, Proceedings 28, pp. 625-635. Springer, 2021.

Sebastian Pauli. Mat 112 integers and modern applications for the uninitiated. Caesar Ciphers,
2022. URL https://matll2.uncg.edu/HTML/root—-1-2.htmll

Zhongyuan Peng, Yifan Yao, Kaijing Ma, Shuyue Guo, Yizhe Li, Yichi Zhang, Chenchen Zhang,
Yifan Zhang, Zhouliang Yu, Luming Li, et al. Criticlean: Critic-guided reinforcement learning for
mathematical formalization. arXiv preprint arXiv:2507.06181, 2025. URL |https://arxiv.
org/pdf/2507.06181]

Auguste Poiroux, Gail Weiss, Viktor Kuncak, and Antoine Bosselut. Improving Autoformalization
using Type Checking, 2025. URL https://arxiv.org/abs/2406.07222.

Jialiang Sun, Yuzhi Tang, Ao Li, Chris J Maddison, and Kuldeep S Meel. Enumerate-Conjecture-
Prove: Formally Solving Answer-Construction Problems in Math Competitions. arXiv preprint
arXiv:2505.18492, 2025. URL https://arxiv.org/abs/2505.18492.

Christian Szegedy. A Promising Path Towards Autoformalization and General Artificial Intelli-
gence. In Intelligent Computer Mathematics: 13th International Conference, CICM 2020, Berti-
noro, Italy, July 26-31, 2020, Proceedings, pp. 3-20, Berlin, Heidelberg, 2020. Springer-Verlag.
ISBN 978-3-030-53517-9. doi: 10.1007/978-3-030-53518-6_1. URL https://doi.org/
10.1007/978-3-030-53518-6_1.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy Xin, Michelle Ding, Michael Jen-
nings, Amitayush Thakur, and Swarat Chaudhuri. = PutnamBench: Evaluating Neural
Theorem-Provers on the Putnam Mathematical Competition. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural In-
formation Processing Systems, volume 37, pp. 11545-11569. Curran Associates, Inc., 2024.
URL |https://proceedings.neurips.cc/paper_files/paper/2024/file/
1582eaf9%e0cf349elebabeed53100aal-Paper—-Datasets_and_Benchmarks_
Track.pdfl

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, Jianqiao Lu, Hugues de Saxcé, Bolton Bai-
ley, Chendong Song, Chenjun Xiao, Dehao Zhang, Ebony Zhang, Frederick Pu, Han Zhu,
Jiawei Liu, Jonas Bayer, Julien Michel, Longhui Yu, Léo Dreyfus-Schmidt, Lewis Tunstall,

12

https://openreview.net/forum?id=SMa9EAovKMC
https://openreview.net/forum?id=x2y9i2HDjD
https://arxiv.org/pdf/2505.03171
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://arxiv.org/abs/2406.01940
https://www.nytimes.com/2025/07/21/technology/google-ai-international-mathematics-olympiad.html
https://www.nytimes.com/2025/07/21/technology/google-ai-international-mathematics-olympiad.html
https://mat112.uncg.edu/HTML/root-1-2.html
https://arxiv.org/pdf/2507.06181
https://arxiv.org/pdf/2507.06181
https://arxiv.org/abs/2406.07222
https://arxiv.org/abs/2505.18492
https://doi.org/10.1007/978-3-030-53518-6_1
https://doi.org/10.1007/978-3-030-53518-6_1
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/1582eaf9e0cf349e1e5a6ee453100aa1-Paper-Datasets_and_Benchmarks_Track.pdf

Under review as a conference paper at ICLR 2026

Luigi Pagani, Moreira Machado, Pauline Bourigault, Ran Wang, Stanislas Polu, Thibaut Bar-
royer, Wen-Ding Li, Yazhe Niu, Yann Fleureau, Yangyang Hu, Zhouliang Yu, Zihan Wang,
Zhilin Yang, Zhengying Liu, and Jia Li. Kimina-prover preview: Towards large formal rea-
soning models with reinforcement learning. arXiv preprint arXiv:2504.11354, 2025. URL
https://arxiv.org/abs/2504.11354.

Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The isabelle framework. In Ot-
mane Ait Mohamed, César Mufioz, and Sofiene Tahar (eds.), Theorem Proving in Higher Or-
der Logics, pp. 33-38, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-
71067-7.

Huajian Xin, Daya Guo, Zhihong Shao, Z.Z. Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Advancing theorem proving in LLMs through large-scale synthetic data.
In The 4th Workshop on Mathematical Reasoning and Al at NeurIPS’24, 2024. URL https:
//openreview.net/forum?id=TPtXLihknyl

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 Technical Report. 2025a. URL https://arxiv.org/pdf/2505.09388,

Kaiyu Yang, Gabriel Poesia, Jingxuan He, Wenda Li, Kristin E. Lauter, Swarat Chaudhuri, and
Dawn Song. Position: Formal mathematical reasoning—a new frontier in Al. In Forty-second
International Conference on Machine Learning Position Paper Track, 2025b. URL https:
//openreview.net/forum?id=HuvAM5x2xG.

Huaiyuan Ying, Zijian Wu, Yihan Geng, JIayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A large-scale Lean problem set formalized from natural language math problems. In The Thirty-
eight Conference on Neural Information Processing Systems Datasets and Benchmarks Track,
2024. URL https://openreview.net/forum?id=Vcw3vzjHDb.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Sto-
ica. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 46595-46623. Curran Associates, Inc., 2023.
URL |https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a12870b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.
pdf.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian Szegedy, Kilian Q. Weinberger, and Yuhuai Wu.
Don’t Trust: Verify - Grounding LLM Quantitative Reasoning with Autoformalization. In ICLR,
2024. URL https://openreview.net/forum?id=v5tdildple.

13

https://arxiv.org/abs/2504.11354
https://openreview.net/forum?id=TPtXLihkny
https://openreview.net/forum?id=TPtXLihkny
https://arxiv.org/pdf/2505.09388
https://openreview.net/forum?id=HuvAM5x2xG
https://openreview.net/forum?id=HuvAM5x2xG
https://openreview.net/forum?id=Vcw3vzjHDb
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=V5tdi14ple

Under review as a conference paper at ICLR 2026

A LEAN-FIRE

In this Appendix section, we provide the five examples used both as seed questions and few-shot
examples [A.T] We also include the prompts used to generate the CoT and the subsequent LoT in
A2

A.1 SEED QUESTIONS

Seed/Few-shot example 1 of 5

Name
putnam_2004_al

Informal Statement

Basketball star Shanille O’Keal’s team statistician keeps track of the number, S(NV), of successful free
throws she has made in her first N attempts of the season. Early in the season, S(IN) was less than
80% of N, but by the end of the season, S(IV) was more than 80% of N. Proof or disprove that it there
necessarily was a moment in between when S(N) was exactly 80% of V.

LeanFIRe Reasoning

- Each attempt has a value in {0,1}, 0 for fail, 1 for success, i.e.
attempt: N — {0,1}.
Lean: attempt : N =+ Fin 2

— The function S is the average score of the attempt, i.e., the sum
of the attempts divided by the number of attempts S: attempts -+ R.

Lean: S : (N =+ Fin 2) = N =+ R
S attempts N = (), {i : Fin N} (attempts i).1l) / N
- S(N) can be written as S(N) = m_N / N where m_N is the number of

. . . N
successes in N tries, i.e. m_N = > .7 louccess-

Lean: (encoded in definition of S above)

— The success rate is below 80% at one point a, S(a) < 0.8, and
above 80% at another point b > a, S(b) > 0.8.
Lean: 1 < a A a < b A S attempts a < 0.8 A S attempts b > 0.8

- Show there exists ¢ € (a,b) with S(c) = 0.8.
Lean: 3 ¢ : N, a<c Ac<bAS attempts ¢ = 0.8

Conjecture

abbrev conjecture : Prop := True

Formal Statement

theorem putnam_2004_al

(s : (N = Fin 2) - N = R)
(hS : V attempts, V N > 1, S attempts N = (X i : Fin N, (attempts
i).1) / N)

(V attempts a b,
(1 <aANa<bAS attempts a < 0.8 A S attempts b > 0.8) —
(3 c : N, a<cAc<DbAS attempts ¢ = 0.8))
<> conjecture :=
sorry

Figure 3: Example (1/5) from Putnam annotated with informal and formal hint reasoning steps.

14

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 2 of 5

Name
putnam_2009_b2

Informal Statement

A game involves jumping to the right on the real number line. If a and b are real numbers and b > a,
the cost of jumping from a to b is 4> — ab®. For what real numbers ¢ can one travel from 0 to 1 in a
finite number of jumps with total cost exactly c?

LeanFIRe Reasoning

— The jumps can be modelled as a sequence that partitions the
interval (0,1), with N €N Jjumps, so=0, s;=1, and s; < si+1 for
all 0<i<N.

Lean: s : Fin (N + 1) = R
validPath (s : Fin (N + 1)

+ R) : Prop :=
s 0 =0 A s (Fin.last N) =1 A

Vi : Fin N, s 1 < s (i.succ)

— The cost of a jump from s; to S;+1 is sfﬂfsi*sfﬂ.
Lean: jumpCost (a b : R) : R := b"3 - a » b"2
- The total cost for all jumps is Zévzgl(s§+1—si*sf+1).
Lean: totalCost (s : Fin (N + 1) = R) : R :=
> {i : Fin N} jumpCost (s i) (s (i.succ))

- The set of reachable costs is { ¢ € R | 3 N € N, validPath s A
totalCost(s) = ¢ }.
Lean: reachableCosts : Set R :=
{c: R|]3 (N :N) (s : Fin (N + 1) =+ R),
validPath s A totalCost s = c}

Conjecture

abbrev conjecture : Set R := Ioc (1 / 3) 1

Formal Statement

theorem putnam_2009_b2
({c: R| d3s : N—- R, s 0=0 A StrictMono s A (I n : N, s n =

1 AN ((¥ i € Finset.range n, ((s (i + 1)) =~ 3 - (s 1) *= (s (i +
1)) ©~ 2)) = c))} = conjecture) :=
sorry

Figure 4: Example (2/5) from Putnam annotated with informal and formal hint reasoning steps.

15

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 3 of 5

Name
putnam_2013_b2

Informal Statement
Let C = |JX_, Cn, where Cv denotes the set of those ‘cosine polynomials’ of the form

N

flxy=1+ Z an, cos(2mnx)

n=1
for which:
(1) f(x) > 0 for all real z, and
(i) an, = 0 whenever n is a multiple of 3.

Determine the maximum value of f(0) as f ranges through C', and prove that this maximum is attained.

LeanFIRe Reasoning
- C is the set of all C_N for a given N € N.
Lean: CN (N : N) : Set (R—R) :=
{f£f | 31 (a: N>R,
VvV x, £ x =1+ Z{n € Finset.range N} a n * Real.cos (2 x m *
n * x)) A
VVx, £x>0 A KNVn n%3=0=an-=20) 1}

- C_N is defined as the set of polynomials of the form f(x) = 1 +
22’:1 an cos(2mnx) where f£(x) > 0 for all x €R, and the coefficient
an, =0 whenever n is a multiple of 3.

Lean: (above definition of C_N already encodes this)

- Therefore, C_N = { f(x) €R| f(x) =1 + Zgzlancos(%mx), f(x) > 0
Vxé€eR, a,=0 if n mod 3 = 0 }.
Lean: (same C_N definition)

- C is the union of all the C_N, i.e. C=Jy_,Cn.
Lean: C : Set (R—R) :=|JN, CNN

— Determine the maximum f (0) within all possible C_N, i.e. sup {
£(0) | £ €C }.

Lean: supFO : R := Sup { £ 0 | £ € C }
Conjecture
abbrev conjecture : R := 3

Formal Statement

theorem putnam_2013_b2
(CN : N = set (R — R))
(hCN : VN : N, CN N =

{f : R — R |

Vx : R, £ x >0) A

Jda : List R, a.length =N+ 1 A (Vn : Fin (N + 1), 3 | (n
N) — a[n]! 0) A

vV x R, x =1+ X n € Finset.Icc 1 N, al[(n : N)J1! =

: f
Real.cos (2xReal.pixnxx)})
IsGreatest {f 0 | £ € UN € Ici 1, CN N} conjecture :=
sorry

Figure 5: Example (3/5) from Putnam annotated with informal and formal hint reasoning steps.

16

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 4 of 5

Name
putnam_2014_a2

Informal Statement
Let A be the n x n matrix whose entry in the i-th row and j-th column is —L— for 1 < 4,5 < n.

min(z,5)
Compute det(A).

LeanFIRe Reasoning

- Let the dimension of the matrix be m €N, and the nXn matrix
Ac R
Lean: A (n : N) : Matrix (Fin n) (Fin n) R :=

- Define A;; to be the entry from the i-th row and j-th column of
matrix A.
Lean: (implicit in the matrix function arguments A i 3j)

- Set each entry to be the minimum between its column and row
value, i.e. A;;j = 1 / min(é,j5) V 1 < i, j < n.
Lean: A 1 j => 1/ min (1.1 + 1) (J.1 + 1)
Note: 1.1 + 1 and j.1 + 1 are used because Lean indices start at
0 but min(i, j) starts at 1

- Evaluate det(A4).

Lean: detA (n : N) : R := Matrix.det (A n)
Conjecture
abbrev conjecture : R := 3

Formal Statement

theorem putnam_2013_b2
(CN : N — set (R — R))
(hCN : VN : N, CN N =

{f : R — R |

(Vx : R, £ x>0 A

Jda : List R, a.length =N+ 1 A (Vn : Fin (N + 1), 3 | (n
N) — a[n]! = 0) A

Vx:R, £fx=1+Xn € Finset.Icc 1 N, al[(n : N)]J! «

Real.cos (2xReal.pi*nxx)})
IsGreatest {£f 0 | £ € UN € Ici 1, CN N} conjecture :=
sorry

Figure 6: Example (4/5) from Putnam annotated with informal and formal hint reasoning steps.

17

Under review as a conference paper at ICLR 2026

Seed/Few-shot example 5 of 5

Name
putnam_2015_a2

Informal Statement
Letap =1, a1 = 2, and a,, = 4an—1 — an—2 for n > 2. Find an odd prime factor of a2015.

LeanFIRe Reasoning

- A recurrence relation is initialised with 1 and 2 as the starting
points, i.e. ap=1 and a1 =2.
Lean: a : N— N
ao0=1
al-=2

— It is defined as 4 times the previous term minus the term before
the previous one, i.e. an =4an—1 —an—2 for n > 2.
Lean: Yn>2,a n=4%xa (n—1)—a (n—2)

— For the 2015th term of the sequence, ago15, determine a factor c€ N
such that:
. ¢ azo1s
e« ¢cis odd (3 n €N, ¢c =2n-1)
« ¢ is prime (no divisor k >1 except itself)
Lean: d p : N, p| a 2015 A Nat.Prime p A 0dd p

Conjecture

abbrev conjecture : N := 181

Formal Statement

theorem putnam_2015_a2
(a : N — 7Z)

(abase : a 0 =1 A al=2)
(arec : Vn >2, an=4%a (n-1) —a (n - 2))
0dd conjecture A conjecture.Prime A ((conjecture : Z) | a 2015) :=

sorry

Figure 7: Example (5/5) from Putnam annotated with informal and formal hint reasoning steps.

18

Under review as a conference paper at ICLR 2026

A.2 LEAN-FIRE PROMPTS

Chain-of-Thought (CoT) Generation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Using the provided informal statement, write a concise sequence of hints that
guides the reader towards a formal statement in Lean.

Guidelines:

Do not include any Lean code.

Hints must be succinct and make use of mathematical notation.

Do not include proof steps|ignore any part that concerns only the proof.
Ensure that all variables, functions, and assumptions are clearly introduced
and well-defined.

Use the hints to bridge the gap between the worded (informal) problem and
the underlying mathematics|make clear how each mathematical concept
corresponds to elements of the informal statement.

Refer to the following examples of previously generated hints for style
and structure.

{%$— for example in examples %}

EXAMPLE {{ example.id }}:

*x*Informal statementxx

{{ example.informal_statement }}

**Hintsx*x

{{ example.cot}}

{%—- endfor }

*x*Informal statementxx

{{ query.informal_statement }}

**xHintsx*x

Figure 8: Jinja templates for the system and user prompt used in LeanFIRE for the generation of
informal reasoning steps (CoT).

19

Under review as a conference paper at ICLR 2026

Lean-of-Thought (LoT) Translation Prompt
System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Using the provided hints, write a Lean4 code snippets for each hints when
appropriate to guide the reader towards a formal statement in Lean.
Guidelines:

Do not provide formal proofs or imports.

Ensure that you match the hints to the Lean hints.

Refer to the following examples of previously generated hints for style
and structure.

{$— for example in examples %}
EXAMPLE {{ example.id }}:
*xInformal statementxx

{{ example.informal_statement }}
*+Hintsxx

{{ example.cot}}

*+xLean Hints+*x

{{ example.lot}}

{%— endfor }

*+*Informal statementxx

{{ query.informal_statement }}
*+*Hintsxx

{{ example.cot}}

+xLean Hintsxx*

Figure 9: Jinja templates for the system and user prompt used in LeanFIRE for the translation of the
CoT into formal reasoning steps (LoT).

B DETAILS ON EXPERIMENTAL SETUP

This Appendix provides details on our experimental setup. All experiments were conducted in Lean
v4.19.0-rc2 with the appropriate Mathlib imports and standard LLM APIs for GPT-4.1 and
DeepSeek-V3.1. Each instance was run for 10 passes using the random seeds [5049, 891, 1065,
4894, 3277, 8476, 8192, 688, 377, 3568] to ensure reproducibility. The only non-default generation
parameter was a temperature of 0.7; all other settings were kept at their default values. Prompts for
autoformalisation, conjecture generation, and ConJudge are provided in Sections [B.1}[B.2] and[B.3]
respectively. The Lean 4 code for equiv_r£1 is included in Section[B.4]

20

Under review as a conference paper at ICLR 2026

B.1 AUTOFORMALISATION PROMPT

Autoformalisation Prompt

System Prompt

You are an advanced assistant specializing in formal mathematics and Lean
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

User Prompt

Translate the following natural language statement, provided under
*xInformal statementxx into a formal Lean 4 theorem. Use the theorem name
specified under **Namex* as the Lean identifier for the theorem. Your
response must:

- Write only valid Lean 4 code, with clear and idiomatic use of Lean
syntax and conventions.

- Only include the formalization, and do not include any proof or imports.
— Define the theorem using the provided name.

— Faithfully capture the meaning of the informal statement in your
formalization.

- Enclose all Lean code within triple backticks

Output:

‘Y ‘lean

theorem [NAME] : [Lean formalization of the statement] := sorry

{%— for example in examples %}

EXAMPLE {{ example.id }}:

*xName * x

{{ example.name }}

*xInformal statementxx

{{ example.informal_statement }}

The code below presents a solution implementation written in Lean 4.
This solution has already been incorporated into the current Lean
environment and is available for use in the formalization.

import Mathlib

{%- 1if conjecture_is_seen %}

{{ example.conjecture }}

{%$- endif %}

Output:

‘Y‘lean

{{ example.formal_statement }}

Vo

Above are examples for you to model the translation of the below natural
language statement into a Lean 4 formal theorem:

{%$- endfor }

*xName % x

{{ query.name }}

+*+*Informal statementxx

{{ query.informal_statement }}

The code below presents a solution implementation written in Lean 4.
This solution has already been incorporated into the current Lean
environment and is available for use in the formalization.

import Mathlib

{%$— 1if conjecture_is_seen %}

{{ example.conjecture }}

{%$- endif %}

**xCombined Hintsx*x*

{{ query.combined_cot_lot }}

Output:

‘Y‘lean

Figure 10: Jinja templates for the system and user prompt for autoformalisation.

21

Under review as a conference paper at ICLR 2026

B.2 STANDALONE CONJECTURE GENERATION PROMPT

Conjecturing Prompt

System Prompt

You are an advanced assistant specializing in formal mathematics and Lean 4
theorem proving. You have extensive expertise in translating mathematical
concepts from natural language into precise Lean 4 code.

You do not provide proofs or full theorem statements, only the mathematical
expression representing the solution, proposition, or the value being asserted.
You should first analyze the informal problem statement, then provide the final
expression as valid Lean 4 code.

User Prompt

Your task is to take a natural language mathematical statement and extract the
mathematical expression, proposition, or value, representing it as a Lean 4
expression.

xInstructions:x

1. Analyze the informal problem statement to deconstruct its mathematical components.
2. Provide the final solution as a single Lean 4 expression.

3. Present the final output inside a Lean code block, using:

‘‘‘lean

abbrev solution {solution code}

Vo

x*xInformal statementxx

{{ example.informal_statement }}

Figure 11: Jinja template for the system and user prompt used in to generate a conjecture in Lean 4.

B.3 CONJUDGE

ConJudge evaluates whether a conjecture appears in a given formalised statement. We first con-
ducted human annotations to identify which model and prompt best align with human judgments;
this model was then selected as our LLM-as-a-judge. Table [f] presents the distribution of human
annotations for 100 sample generations, while Table[7]reports the accuracy of four different models
against the human gold labels. The prompt used for ConJudge is provided below.

TRUE FALSE Total

Seen 35 11 46
Unseen 21 33 54

Total 56 44 100

Table 6: Contingency table showing counts of TRUE and FALSE values for seen and unseen in-
stances.

Model Percentage
internlm2-math-plus-20b 60
qwen3-14b 79
gpt-0ss-20b 70

gwen3-30b-a3b-instruct 83

Table 7: Percentage alignment to human annotators for ConjectureBench across different models.

22

Under review as a conference paper at ICLR 2026

ConJudge Evaluation Prompt

System Prompt

You are an expert in the Lean 4 theorem proving language and formal
mathematics. Your task is to determine if a given formal statement in
Lean 4 contains a specific conjectured value, algebraic formula, or bound.
You will be given three inputs:

1. xxConjecturex*: The value, formula, or bound to look for.

2. *xGround Truth Formal Statementxx: An example of a Lean 4 statement that
correctly formalizes the conjecture. Use this as a reference for a valid
implementation.

3. xxFormal Statementxx: The Lean 4 code you need to evaluate.

Your goal is to determine if the xxFormal Statementx* contains the core
assertion of the xxConjecturexx. The **xGround Truth Formal Statement*x is

provided to help you understand how the conjecture can be formally expressed.

The statement you are evaluating might not have the exact same syntax as the
ground truth. You must carefully check for *xsemantically equivalent

variations** of the conjecture’s core idea. This includes, but is not limited

to, permutations of terms, different but equivalent algebraic expressions,
reordered hypotheses. Additionally, a conjecture can be expressed either by
defining a proposition (e.g., ‘abbrev conjecture : Prop := ...') or by
asserting it within a theorem, which implicitly states the conjecture holds.
You should consider these forms equivalent.

Your output must follow this structure exactly:

1. First, provide a brief explanation of your reasoning.

2. Second, conclude with the final answer in the format: ’'The formal
statement contains the conjecture: x*Truexx’ or ’'The formal statement
contains the conjecture: **xFalsexx’.

User Prompt

*xConjecture:
‘Y'‘lean

{{ conjecture }}

PR

**Ground Truth Formal Statement:xx
‘Y‘lean

{{ statementl }}

PR

**Formal Statement:xx
‘‘‘lean

{{ statement2 }}

AUATRY

Figure 12: Jinja templates for the system and user prompts used by CONJUDGE.

B.4 EQUIV_RFL

Lean 4

abbrev conjecture_gold: {gold}
abbrev conjecture_generated: {generated}

theorem thm : conjecture_gold = conjecture_generated := by rfl

Figure 13: Implementation of metric equiv_rfl in Lean 4.

23

	Introduction
	Preliminary
	Methodology
	ConjectureBench Dataset
	Conjecturing Tasks
	Metrics
	Lean-guided Formal-Informal Reasoning (Lean-FIRe)

	Experimental Setup
	Results and Discussion
	Conjecturing Results
	Autoformalisation Results

	Related Work
	Conclusion
	Lean-FIRe
	Seed Questions
	Lean-FIRe Prompts

	Details on Experimental Setup
	Autoformalisation Prompt
	Standalone Conjecture Generation Prompt
	ConJudge
	equiv_rfl

