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ABSTRACT

Existing video generation models predominantly emphasize appearance fi-
delity while exhibiting limited ability to synthesize complex human motions,
such as whole-body movements, long-range dynamics, and fine-grained hu-
man–environment interactions. This often leads to unrealistic or physically im-
plausible movements with inadequate structural coherence. To conquer these chal-
lenges, we propose MoSA, which decouples the process of human video gener-
ation into two components, i.e., structure generation and appearance generation.
MoSA first employs a 3D structure transformer to generate a human motion se-
quence from the text prompt. The remaining video appearance is then synthesized
under the guidance of this structural sequence. We achieve fine-grained control
over the sparse human structures by introducing Human-Aware Dynamic Con-
trol modules with a dense tracking constraint during training. The modeling of
human–environment interactions is improved through the proposed contact con-
straint. Those two components work comprehensively to ensure the structural
and appearance fidelity across the generated videos. This paper also contributes
a large-scale human video dataset, which features more complex and diverse mo-
tions than existing human video datasets. We conduct comprehensive compar-
isons between MoSA and a variety of approaches, including general video gener-
ation models, human video generation models, and human animation models. Ex-
periments demonstrate that MoSA substantially outperforms existing approaches
across the majority of evaluation metrics.

1 INTRODUCTION

General human video generation from text or image prompts (Jiang et al., 2023; Song et al., 2024;
Wang et al., 2025a; Zhang et al., 2024b; Huang et al., 2024a) has recently garnered substantial
research interest due to its broad application potentials. A core challenge lies in maintaining the
structural plausibility of the human body, particularly for complex motions such as whole-body dy-
namics, long-range movement, and human–environment interactions, while preserving appearance
fidelity in the generated videos. (Chefer et al., 2025).

Existing video generation models (Kong et al., 2024; Yang et al., 2024b; Wan et al., 2025) often lack
explicit guidance from human structural priors and are typically trained with noise reconstruction
objectives in pixel space. Previous studies (Chefer et al., 2025; Jeong et al., 2024) have demon-
strated that this paradigm leads to an overemphasis on appearance fidelity while neglecting human
structural coherence, resulting in unrealistic human motion in the generated videos, as shown in
Fig. 1(a). Since human appearance and motion convey different cues, they should adhere to differ-
ent generation paradigms. This intuition leads to our MoSA, which generates human video through
decoupling the structure and appearance generation. Specifically, as it is difficult to generate human
videos with complex motions directly from the given text prompt, we first generate human motion
structures conditioned on the text prompt. Given the sparse motion structures, MoSA subsequently
synthesizes the visual appearance.

To generate the human motion structures, we first generate 3D human keypoints via a 3D structure
transformer, which is pretrained on large-scale human motion datasets (Guo et al., 2022; Zhang et al.,
2025b; Plappert et al., 2016). 3D human keypoint sequences are hence projected into a 2D skeleton
sequence. Compared with directly producing 2D structural representations (Huang et al., 2024a;
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Figure 1: Illustration of the motivation. (a) shows sampled frames from videos generated with the
prompt “running”, where existing works (Genmo, 2024; Yang et al., 2024b) struggle to generate
human videos with reasonable structures. (b) compares existing human video datasets (Wang et al.,
2024d; Jafarian & Park, 2021) and our Movid, where existing datasets mostly focus on facial or
upper-body regions, or consist of vertically oriented dance videos. More samples Movid are pro-
vided in Fig. 7 and supplementary materials.

Song et al., 2024; Wang et al., 2025a), such as skeleton sequences, leveraging 3D human keypoints
presents better robustness and accuracy because: i) 3D structure transformer leverages human priors
to efficiently generate human keypoints, thereby ensuring the plausibility of the predicted human
structure, and ii) by operating in 3D space, it can exploit implicit depth information to maintain
structural plausibility in the presence of limb occlusions.

The subsequent video appearance is then synthesized under the guidance of this structural sequence.
As the skeleton representation inherently provides only sparse structural guidance, its capability
for fine-grained supervision in subsequent appearance generation is limited. To address issue, we
propose the Human-Aware Dynamic Control module. It employs learnable dynamic weight pre-
dictors to generate weight maps corresponding to the skeleton features, hence further refines these
maps using a tailored mask loss. This mask loss encourages the propagation of sparse skeleton
guidance across the entire motion region and assigns dynamic weights to different spatial locations,
thereby enhancing the fine-grained controllability of the sparse skeleton. In addition, previous stud-
ies (Chefer et al., 2025; Jeong et al., 2024) have shown that relying solely on the noise prediction
objective during training may cause models to favor appearance fidelity over motion coherence. To
mitigate this issue, we introduce a dense tracking loss aimed at enhancing the model’s ability to pre-
serve coherent motion structures. We further incorporate a contact constraint to accurately model
human–environment interactions.

Besides the above methodology, this paper also contributes a novel human video dataset presenting
complex human motions. Most existing human video datasets (Yu et al., 2023; Wang et al., 2024d;
Li et al., 2024) primarily capture facial and upper-body movements with relatively simple move-
ments, as illustrated in Fig. 1(b). Similarly, existing dance datasets (Jafarian & Park, 2021; Castro
et al., 2018) exhibit restricted background diversity and motion complexity, which confines corre-
sponding generation approaches (Hu, 2024; Hu et al., 2025; Zhu et al., 2024; Gan et al., 2025; Zhang
et al., 2024b) to dance videos and often requires auxiliary pose inputs. The fact that most existing
open-source human video datasets (Wang et al., 2024d; Li et al., 2024; Jafarian & Park, 2021; Yu
et al., 2023) primarily focus on simple movements, makes models trained on such datasets struggle
to generate realistic and physically plausible motions. We thus introduce MoVid, a novel dataset
comprising 30K human motion videos exhibiting diverse action categories and complex motions.

We employ MoVid as the training set for MoSA, and conduct comprehensive comparisons between
MoSA and a broad spectrum of baselines, including general video generation models, human video
generation models, and human animation models. The results demonstrate that MoSA substantially
outperforms existing methods across most evaluation metrics, achieving superior performance in
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measures such as FVD, CLIP similarity, and VBench scores. As shown in Fig. 1(a), our method
presents more reasonable body structure and more fluent motion.

In summary, our key contributions lies in three aspects: i) This is an original effort on struc-
ture–appearance decoupling framework for human video generation. As shown in extensive experi-
ments, disentangling structural consistency from appearance synthesis benefits physically plausible
human video generation. ii) Our proposed modules like Human-Aware Dynamic Control, dense
tracking loss, and contact constraint lead to an effective implement of the proposed decoupling
framework. They work well to enhance the fine-grained structural guidance, the modeling of mo-
tion coherence, as well as human–environment interactions. iii) A large-scale dataset MoVid is con-
structed to offer more diverse and complex motions than existing datasets. Extensive experiments
demonstrate the superior performance of our method. The code and dataset will be released.

2 RELATED WORK

Human Video Generation. Most existing human video generation approaches rely on additional
inputs beyond the text prompt, such as reference images of the target person (He et al., 2024; Yuan
et al., 2024; Zhang et al., 2025a;c; Cao et al., 2025), driving pose sequences (Hu, 2024; Liu et al.,
2025; Hu et al., 2025; Wang et al., 2024d; Gan et al., 2025; Zhang et al., 2024b; Zhu et al., 2024),
or speech conditions (Sun et al., 2025; Lin et al., 2025; Tian et al., 2025; Meng et al., 2024a; Cui
et al., 2024). Among these works, ID-Animator (He et al., 2024) introduced a framework capa-
ble of generating identity-specific videos from reference facial images, along with a corresponding
identity-oriented dataset. Building upon this foundation, subsequent studies have further advanced
the task. For instance, ConsisID (Yuan et al., 2024) proposed a frequency decomposition strategy
to improve identity fidelity. Moreover, AnimateAnyone (Hu, 2024) introduces an additional skele-
ton sequence as input to animate static human images. Building on this, AnimateAnyone2 (Hu
et al., 2025) extends the framework to support environment-aware generation, enabling more co-
herent background migration. AnimateAnywhere (Liu et al., 2025) incorporates a camera motion
learner to model background movement, thereby enhancing the realism of generated videos. How-
ever, the aforementioned methods are typically constrained to generating minor facial or upper-body
movements, or are specialized for vertically oriented dance videos.

Some recent work (Song et al., 2024; Wang et al., 2025a; Huang et al., 2024a; Liang et al., 2025)
has focused on more general text-driven human motion video generation, but due to the limitations
of human video datasets (Wang et al., 2024d; Li et al., 2024), it is also difficult to generate realistic
and physically compliant motion. To address these challenges, we propose a structure–appearance
decoupling framework for generating motion-coherent human videos, and construct a large-scale
dataset MoVid, to support the learning of complex human motion.

Human Motion Generation. Text-driven human motion generation aims to produce a sequence of
human keypoints conditioned on a given text prompt, which can then be transformed into structural
representations such as skeletons. Several existing approaches (Zhang et al., 2023; Chen et al., 2023;
Tevet et al., 2022; Zhang et al., 2024a; Yuan et al., 2023; Meng et al., 2024b; Guo et al., 2024; Fan
et al., 2025) leverage models trained on 3D motion-annotated datasets (Guo et al., 2022; Plappert
et al., 2016; Lin et al., 2023; Zhang et al., 2025b) to generate 3D keypoint sequences. For exam-
ple, MLD (Chen et al., 2023) extends latent diffusion models to support text-to-motion generation,
while T2M-GPT (Zhang et al., 2023) employs a generative pre-trained transformer (Radford et al.,
2018) as the backbone and utilizes a vector-quantized variational autoencoder (Van Den Oord et al.,
2017) to encode and reconstruct keypoint features. In addition, several studies (Wang et al., 2025a;
2024c; Song et al., 2024) have explored directly generating 2D keypoints or skeleton sequences as
representations of human motion.

These generated motion representations serve as structural priors for video generation and contribute
to improve the plausibility of human motion. However, existing methods typically produce relatively
sparse motion representations, limiting their capacity for fine-grained control. To address this, we
introduce Human-Aware Dynamic Control modules that adaptively emphasize human-relevant re-
gions and incorporate a dense tracking loss to further enhance the model’s ability to learn structurally
coherent and temporally coherent motion patterns.

3
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Figure 2: Overview of the proposed MoSA. Given a text prompt p, we first employ a 3D structure
transformer to generate a structure sequence, which is subsequently encoded as structural features
to guide the appearance generation. To further enhance motion consistency, we introduce human-
aware dynamic control modules. For brevity, the Gate modules in blocks have been omitted.

3 METHODOLOGY

While recent video generation models (Yang et al., 2024b; Kong et al., 2024; Wan et al., 2025)
have achieved impressive visual quality, they frequently fail to generate physically plausible and
structurally coherent human motion, especially in scenarios involving complex movement. Our
MoSA aims to enhance structural consistency while preserving high-quality visual appearance, We
present our method using the text-to-video setting as the primary example, while providing details
of the image-to-video variant in Sec. H of the appendix.

Specifically, we begin by introducing the preliminaries of video generation models in Sec. 3.1.
Afterwards, we describe the structure-appearance decoupling in detail in Sec. 3.2. To enhance the
fine-grained controllability of sparse structural guidance, we propose the Human-Aware Dynamic
Control (HADC) modules in Sec. 3.3. Finally, the training objectives are summarized in Sec. 3.4,
which encompass the proposed dense tracking loss and contact constraint.

3.1 PRELIMINARY

Video Generation Model. Diffusion transformer (DiT) (Peebles & Xie, 2023) based generative
models have attracted increasing attention due to their strong performance and scalability. Building
on this (Yang et al., 2024b; Wan et al., 2025), we adopt DiT as the backbone and extend it to support
motion-coherent human video generation.

Given the text prompt p and the corresponding video V , we first employ a pretrained T5 en-
coder (Raffel et al., 2020) to obtain the text embeddings zp ∈ RB×L×D, where B,L,D denote
the batch size, token length and token dimensions, respectively. The video V is encoded using
a VAE encoder E , and Gaussian noise ϵ is added to the resulting latent to obtain the noisy latent
zv ∈ RB×F×C×H×W , where F,C,H,W denote the temporal, channel and spatial dimensions,
respectively. The embeddings zp and latent zv are then fed into the backbone Gθ. The training ob-
jective is to learn a noise predictor Gθ that estimates the added noise ϵ. The loss function is formally
defined as

Ld = Eϵ,zv,zp,t

∥∥ϵ− Gθ(
√
ᾱtzv +

√
1− ᾱtϵ, zp, t)

∥∥2
2
, (1)

where t is a random time step and α represents the predefined variance schedule.
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During inference, a random Gaussian noise zT ∼ N (0, I) is sampled as zv , and then zT is iteratively
denoised through the backward process conditioned on the text embeddings zp. The resulting latent
z0 is subsequently decoded by the VAE decoder D to generate the output video V

′
.

3.2 STRUCTURE-APPEARANCE DECOUPLING

Our method decouples the generation process into two branches, i.e., structure generation and ap-
pearance generation as illustrated in Fig. 2. Following parts proceed to provide a detailed description
of this decoupled generation paradigm.

3.2.1 STRUCTURE GENERATION BRANCH

Given a text prompt p, the structure generation branch Gs aims to produce a human motion struc-
ture that aligns with the motion semantics conveyed by p. Since the prompt p may also include
appearance-related descriptions such as details of the surrounding environment, which are irrelevant
to motion structure, we preprocess the input by extracting a motion-specific subset of p, denoted as
p′. As illustrated in Fig. 1, p′ retains only motion-relevant information. This filtering process can
be performed automatically using a Large Language Model (Yang et al., 2024a) or specified by the
user. The resulting motion-specific prompt p′ is then used as the input to the structure generation
branch.

This branch is dedicated to generating human structures from the motion-specific prompt p′ without
incorporating appearance information. However, directly training a text-driven model to produce
2D structural sequences, such as skeletons, often fails to guarantee the anatomical plausibility of the
generated structures. We thus reformulate the text-driven structure generation task as a 3D keypoint
sequence generation task. This formulation could i) leverage human priors to efficiently generate K
human keypoints, thereby ensuring the plausibility and coherence of the predicted human structure,
and ii) benefit from the generation in 3D space. In other words, it can utilize implicit depth infor-
mation to preserve structural consistency in scenarios involving limb occlusions. Once the keypoint
sequence is obtained, it is rendered into 2D space. Following common practice in conditional hu-
man video generation (Hu et al., 2025; Gan et al., 2025), we convert the keypoint sequence into a
skeleton representation, which serves as the final structural guidance gs. The above process can be
formally described as follows:

gs = Projection(Gm
s (zsT , p

′)), (2)

where Gm
s denotes the 3D structure transformer, and zsT represents Gaussian noise sampled from

a standard normal distribution N (0, I). Following previous work (Fan et al., 2025; Meng et al.,
2024b), Gm

s adopts the same autoregressive architecture and is first pretrained on million-scale mo-
tion datasets. Details are described in Sec. A of the appendix.

After obtaining gs, we employ it as an additional control signal encoding human structural informa-
tion to guide subsequent appearance generation. To effectively encode and incorporate this condition
into the appearance generation process, we introduce specialized structure generation blocks within
the DiT architecture. The overall process can be formalized as follows:

s1:N = Gs(E(gs)), (3)

where sk (k = 1, ..., N) represents the output of the k-th structure generation block in Gs, which is
used to guide the subsequent appearance generation, and N is the total number of such blocks.

3.2.2 APPEARANCE GENERATION BRANCH

The appearance generation branch Ga is designed to synthesize realistic video content conditioned
on p and s1:N , capturing both the environmental appearance and human subjects, while preserving
the realism of human motion. As described in Sec. 3.1, a pretrained T5 encoder is employed to
extract the text embedding zp from the prompt p, and the initial latent zT is sampled from N (0, I),
both of which are served as the input of this appearance generation branch.

To enhance the controllability of structure guidance, particularly in the context of sparse skeleton
representations, we introduce the Human-Aware Dynamic Control (HADC) modules within this
branch. After T steps of iterative denoising, the resulting latent z0 is decoded by a VAE decoder

5
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Table 1: Quantitative comparison with existing methods. Lower FVD values indicate better perfor-
mance, whereas higher values on the other metrics correspond to better results. Bold indicates the
best performance, and underline denotes the second-best.

Method FVD CLIPSIM Subject
Consistency

Background
Consistency

Motion
Smoothness

Dynamic
Degree

Imaging
Quality

ModelScope 1945 0.2739 90.87% 93.41% 96.22% 48.57% 60.12%
VideoCrafter2 1959 0.2801 93.43% 97.01% 97.31% 35.71% 60.32%
LaVie 1778 0.2895 93.80% 95.51% 97.21% 53.73% 62.57%
Mochi 1 1207 0.2903 94.67% 95.32% 97.75% 51.14% 54.65%
CogVideoX 1360 0.2899 93.75% 94.02% 97.78% 51.42% 62.98%
HunyuanVideo 1235 0.2948 94.41% 95.17% 98.95% 50.42% 58.13%
Wan 2.1 1251 0.2951 94.43% 95.55% 98.36% 51.71% 65.21%
Ours 1093 0.3035 96.83% 97.43% 99.25% 52.86% 65.43%

D (Kingma, 2013), yielding human videos V ′ with coherent motion and high-fidelity appearance
that align with the semantics of the text prompt p.

3.3 HUMAN-AWARE DYNAMIC CONTROL

The human structure features s1:N can be utilized as auxiliary conditions in Ga to enhance the
plausibility of human motion. However, the structural guidance gs, typically represented as a sparse
skeleton, lacks the expressiveness required for fine-grained motion control.

To address this limitation, Human-Aware Dynamic Control (HADC) modules, which are inserted
between adjacent DiT blocks within the appearance generation branch. Each k-th HADC module
takes the structural signal sk, the intermediate video latent aki , and the text embedding zkp produced
by the preceding DiT block as input. By leveraging the structural cues embedded in sk, the HADC
module refines aki to enable fine-grained control over human motion, producing motion-enhanced
latents ako that are subsequently passed to the next DiT block. Specifically, we design a human-aware
dynamic weights predictor Pk, which aims to i) facilitate the propagation of sk throughout the whole
motion region in aki and ii) assign spatially-varying control weights to these human motion regions
within aki , i.e.,

wk = Pk(sk, aki ), (4)

where wk denotes the human-aware dynamic control weights. Leveraging wk, the sparse skeleton
feature sk can exert fine-grained control over the video latents, i.e.,

ako = aki ⊕ (wk ⊙ sk), (5)

where ako denotes the motion-enhanced video latents, while ⊕ and ⊙ indicate element-wise addition
and multiplication, respectively. In addition, to ensure the effectiveness of wk, we design a learnable
network Uk to convert wk into mask latents and constrain it through a mask loss Lm during training,
i.e.,

Lm =
∑N

k=1

∥∥Uk(wk)− E(M)
∥∥2
2
, (6)

where Uk(wk) denotes the predicted mask latent mk
p , M denotes the ground truth video mask, and

E(M) is the corresponding latent m. By incorporating the proposed HADC modules, the consis-
tency of human motion within the video latent aki is significantly improved, as illustrated in Fig. 2.

3.4 TRAINING OBJECTIVES

During the training of these two branches, the pretrained 3D structure transformer Gm
s is excluded,

and the skeleton sequence extracted from the ground truth video V is directly used as the structural
condition gs. To further improve the model’s capacity for learning temporally coherent motion, we
introduce a dense tracking loss Ltrack, i.e.,

Ltrack =
1∑S

(tv,t′v)
e
|tv−t′v|

2

∑S
(tv,t′v)

e
|tv−t′v|

2 ·
∥∥∥U ′

tv→t′v
− Utv→t′v

∥∥∥
1
, (7)
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Figure 3: Visual comparison with existing video generation models. For clarity,
VideoCrafter2 (Chen et al., 2024) is denoted as VC2, and HunyuanVideo (Kong et al., 2024) is
denoted as Hunyuan.

where tv, t
′
v are video timestamps, U ′ and U represent the 2D tracks corresponding to the gen-

erated video V ′ and the ground truth video V , respectively. These tracks are extracted by Co-

Tracker3 (Karaev et al., 2024). e
|tv−t′v|

2 denotes a temporal weighting function that assigns higher
loss weights to longer time intervals, thereby encouraging the model to better capture long-range
motion dependencies. S represents the set of time intervals, and (tv, t

′
v) ∈ S, i.e.,

S = {(tv, t′v) | 0 ≤ tv < Tv, 0 ≤ t′v < Tv, tv ̸= t′v} , (8)

where Tv is the video length. Additionally, we propose a 3D contact constraint Lcont to further
enhance the modeling of human–environment interactions. Due to page limitations, full details are
presented in Sec. B of the appendix. The overall training objective is formulated as:

L = Ld + λmLm + λtrackLtrack + λcontLcont, (9)

where λm, λtrack and λcont are the weights used to balance different loss terms.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Datasets. Existing human video datasets are largely restricted to simple movements, limiting mod-
els’ ability to synthesize realistic and physically plausible motion in complex scenarios. To over-
come these limitations, we curated MoVid, a dataset of 30K real-world human motion videos with

7
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Table 2: Effect on the Wan2.1 base model.

Models FVD CLIPSIM

Wan 2.1 1251 0.2951
+ Our Decoupling Framework 1108 0.3044

Table 3: Effect of the contact constraint.

Constraint Lcont FVD CLIPSIM

✘ 1108 0.3021
Ours 1093 0.3035

Table 4: Effect of the decoupling framework.

Structure Generation Branch FVD CLIPSIM

✘ 1262 0.2971
2D Structure Generation 1230 0.2998

Ours 1093 0.3035

Table 5: Effect of the HADC modules.

HADC Modules FVD CLIPSIM

✘ 1188 0.2973
w/o Lm 1112 0.3009

Ours 1093 0.3035

Table 6: Effect of the dense tracking loss Ltrack.

Dense Tracking Loss Ltrack FVD CLIPSIM

✘ 1172 0.3009
Static Weights 1114 0.3016

Ours 1093 0.3035

Table 7: Necessity of our MoVid.

Training Dataset FVD CLIPSIM

✘ 1360 0.2899
HumanVid 1217 0.2949

MoVid (Ours) 1093 0.3035

annotations. Details are provided in Sec. C of the appendix. For evaluation, we collected more than
300 text prompts spanning motion types and environmental contexts following previous work.

Evaluation Metrics. Following previous work, we adopt Fréchet Video Distance (FVD) (Un-
terthiner et al., 2019) and CLIP similarity (CLIPSIM) (Radford et al., 2021) to measure the per-
formance. Furthermore, we utilize VBench (Huang et al., 2024b) to conduct a more comprehensive
assessment of model performance across multiple dimensions, including subject consistency, back-
ground consistency, motion smoothness, motion dynamics, and visual quality.

4.2 COMPARISON WITH EXISTING METHODS

We adopt CogVideoX-5B-T2V (Yang et al., 2024b) as the backbone of the appearance gener-
ation branch, with additional implementation details provided in Sec. D of the appendix. We
first compare our method with video generation models, including ModelScope (Wang et al.,
2023), VideoCrafter2 (Chen et al., 2024), LaVie (Wang et al., 2024a), Mochi 1 (Genmo, 2024),
CogVideoX-5B-T2V (CogVideoX) (Yang et al., 2024b), HunyuanVideo (Kong et al., 2024), and
Wan2.1-T2V-14B (Wan 2.1) (Wan et al., 2025), accompanied by a user study (Sec. E.3). For text-
driven human video generation methods (Huang et al., 2024a; Wang et al., 2025a; Song et al., 2024)
without public implementations, we conduct qualitative comparisons based on their released videos,
if available (Sec. E.2). We further compare MoSA with pose-driven human animation methods (Hu,
2024; Wang et al., 2024d; Men et al., 2025; Tu et al., 2025), with additional results and visualizations
presented in Sec. E.5 of the appendix. More video types are shown in Sec. G.

Quantitative Comparison. Quantitative comparisons with existing methods are shown in Tab. 1.
Compared with previous models, our MoSA achieves excellent performance in various metrics.

Qualitative Comparison. Visual comparisons are presented in Fig. 3. As illustrated, our approach
is capable of generating realistic human motion, both for basic actions such as walking and jumping,
as well as for more complex activities like skating. In contrast, existing methods often struggle
to generate physically plausible motion with coherent structural integrity for complex movements.
More visual results are provided in Sec. E.1.

5 ABLATION STUDY

5.1 EFFECT OF OUR DECOUPLING FRAMEWORK WHEN APPLIED TO WAN 2.1

The proposed decoupled generation framework exhibits high compatibility with state-of-the-art
video generation models and can be seamlessly integrated to enhance their performance. Specifi-
cally, the structure branch focuses on producing plausible and coherent motion, while the appearance
branch leverages the intrinsic strengths of these models to synthesize realistic textures and environ-
mental details. To further validate its effectiveness, we apply our MoSA to Wan 2.1 by incorporating
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“A man dressed in athletic attire is stretching his legs in 

a park, silhouetted against a tree and a bridge.”

“An elderly man with short, graying hair is performing 

exercise on a black mat in a well-equipped gym.”
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Figure 4: Effect of our decoupling framework MoSA when applied to Wan 2.1 (Wan et al., 2025).

“A man with long black hair, is seated on a blue rug in 

a modern living room, playing a classical guitar.”

“A woman in a red sports bra and pink shorts performs 

a leg exercise in a gym, with one leg lifted high.”
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Figure 5: Effect of structure-appearance decoupling. For experiments that employ the structure
generation branch, we also visualize the corresponding generated human structure.

the proposed components and finetuning the base model. As shown in Tab. 2 and Fig. 4, the results
demonstrate both the transferability and the effectiveness of our MoSA framework.

5.2 EFFECT OF STRUCTURE-APPEARANCE DECOUPLING

Tab. 4 presents the analysis for the effect of structure-appearance decoupling. In the first row, the
structure generation branch is removed, and the base model is directly finetuned using MoVid. The
second row utilizes outputs from an independently trained 2D skeleton sequence generation model
as the structure guidance gs. Details of this model are described in Sec. F.1 of the appendix. Visual
comparisons are provided in Fig. 5. Compared with 2D structure generation, our Gm

s effectively
preserves structure correctness, as demonstrated by the missing leg in the second-row on the left
side of Fig. 5. Additionally, our Gm

s leverages the depth information in 3D space to maintain spatial
coherence in scenarios involving limb occlusion. For example, in the second row on the right of
Fig. 5, the right leg is incorrectly placed behind the left, leading to an implausible body structure.

5.3 EFFECTS OF OTHER PROPOSED COMPONENTS

We further investigate the effects of other proposed components, including the HADC modules
(Tab. 5 and Sec. F.2), the dense tracking loss (Tab. 6 and Sec. F.3), the contact constraint (Tab. 3
and Sec. F.4), and the necessity of the MoVid dataset (Tab. 7 and Sec. F.5). Due to page limitations,
detailed analyses and extended visual comparisons are presented in the Sec. F of the appendix.

6 CONCLUSION

We present MoSA, a structure–appearance decoupling framework for realistic human video gen-
eration. A 3D structure transformer synthesizes motion structures to guide appearance generation,
while human-aware dynamic control and a dense tracking loss enhance fine-grained motion coher-
ence. To better capture human–environment interactions, we introduce a contact constraint. Further-
more, we curate a large-scale human video dataset to overcome the limitations of existing datasets.
Extensive experiments show that MoSA consistently outperforms previous approaches.
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ETHICS STATEMENT

This work focuses on human video generation and the collection of a human motion dataset. All
data were obtained from public sources. The dataset will be released for research under a license
that prohibits misuse such as surveillance, deepfake creation, or other harmful applications. This
research adheres to institutional ethical standards and legal regulations.

REPRODUCIBILITY STATEMENT

We provide the core codes and data samples in the supplementary materials. The appendix provides
additional implementation details of our work. Furthermore, the pre-processing steps for the datasets
are described in the supplementary materials. The full codebase and MoVid dataset will be released
to the public upon final preparation, ensuring that the results in this paper can be independently
verified.
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APPENDIX

The content of this appendix involves:

• Details of the 3D Structure Transformer in Sec. A.
• Details of the proposed 3D contact constraint in Sec. B, including its differential process.
• Description of the proposed MoVid dataset, including data cleaning, annotation, and statistic com-

parison in Sec. C.
• Implementation details of MoSA in Sec. D.
• More comparative experiments in Sec. E, including more comparisons with general video diffu-

sion models, text-driven human video generation models, commercial video generation models,
human animation models, and generation results with occlusion situations.

• More ablation studies in Sec. F, including details of the 2D structure generation model, final
visualization of the HADC module outputs, effect of human-aware dynamic control modules,
effect of dense tracking loss, effect of the contact constraint, necessity of the MoVid dataset,
effect of the selected camera poses, and the effect of the data from different views in our dataset..

• More video types generated by MoSA in Sec. G.
• Image-to-video generation variant of MoSA in Sec. H.
• Evaluation on more motion-centric metrics in Sec. I.
• Discussions and future work in Sec. J.
• LLM usage declaration in Sec. K.

A DETAILS OF 3D STRUCTURE TRANSFORMER
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Figure 6: Architecture of the 3D structure transformer Gm
s .

The final skeleton frames are obtained after projection.

We employ a 3D structure trans-
former Gm

s to generate 3D hu-
man keypoints. Following previ-
ous work (Fan et al., 2025; Meng
et al., 2024b), Gm

s adopts a uni-
fied autoregressive architecture and
is pretrained on million-scale mo-
tion datasets (Guo et al., 2022; Fan
et al., 2025), as illustrated in Fig. 6.
These large-scale datasets encompass
a wide variety of motion categories,
including diverse and complex hu-
man movements, which enable ro-
bust pretraining. During inference,
the model takes as input a motion-specific text prompt p′ and initial motion latents x1:N . The
prompt p′ is first encoded by a text tokenizer (Raffel et al., 2020) to obtain conditional embeddings,
which, together with x1:N , are fed into an autoregressive transformer (Vaswani, 2017) to predict the
final motion latents. These latents are then decoded by the motion decoder into a human keypoint
sequence aligned with the semantics of p′. Finally, a standardized skeleton sequence gs is derived
from the predicted keypoints.

B DETAILS OF THE PROPOSED 3D CONTACT CONSTRAINT

To ensure physically plausible human–environment interactions, we introduce a 3D contact loss that
penalizes unrealistic interpenetrations. The computation proceeds in four steps. First, each video
frame is lifted into a 3D point cloud representation using a pretrained VGGT (Wang et al., 2025b)
model. Formally, for the f -th frame, we obtain a point set Pf = pi ∈ R3. Second, human and
scene points are separated based on 2D segmentation masks. Each 3D point pi is projected onto the
image plane using the intrinsic matrix Kf and extrinsic matrix Ef predicted by the VGGT model.
If the projected pixel (ui, vi) lies within the segmented human region Mf , the point is assigned to
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the human set Hf ; otherwise, it is assigned to the scene set Sf . Third, scene points from all frames
are aggregated to reconstruct a mesh Mb via convex hull estimation. This mesh is then converted
into a signed distance function (SDF), denoted SDF (·), where negative values indicate locations
inside the scene surface and positive values denote outside regions. Finally, the 3D contact loss is
defined. If human points penetrate the scene (SDF (h) < τ ), the loss penalizes the penetration
depth; otherwise, it encourages human points to remain close to the scene surface by minimizing
their distance to the mesh. The resulting loss is formally expressed as:

Lf
cont =


∑

h∈H−
f

∣∣SDF (h)− τ
∣∣, if |H−

f | > 0,

min
h∈Hf

SDF (h)− τ, otherwise,
(10)

where H−
f = {h ∈ Hf | SDF (h) < τ} denotes the set of penetrating points, and τ is the pene-

tration threshold (set to zero by default). The final contact loss Lcont is calculated by summing
the values across all frames and then normalizing by the number of frames. By incorporating the
constraint Lcont during training, we effectively mitigate issues such as penetration and other physi-
cally implausible behaviors that frequently arise in the generation of complex human–environment
interactions.

Differential Process. For the f-th frame, the 3D contact loss is defined as Eq. 10.

The propagation path is as follows, where h denotes a human point, V ′ denotes the generated video,
θ denotes the model parameters.

Lf
cont → SDF(h) → h → V ′ → θ (11)

(1) The process begins with the loss function Lf
cont itself. Since τ is set to 0, for a human point h,

the loss form can be simplified to:

Lf,h
cont = max(0,−SDF(h)) (12)

(2) The partial derivative of this loss with respect to the SDF value is non-zero only in the case of
interpenetration:

∂Lf,h
cont

∂SDF(h)
=

{
−1, if SDF(h) < 0,

0, otherwise.
(13)

(3) The next step is to propagate the gradient from the SDF value to the 3D coordinates (x, y, z)
of the point h. The gradient of a scalar field like the SDF with respect to a point’s coordinates is a
vector:

∇hSDF =
∂SDF(h)

∂h
(14)

This gradient vector provides the most efficient direction to displace the point h in order to move it
towards the exterior of the scene mesh, thereby resolving the penetration.

Using the chain rule, we combine the gradients from the previous two steps to compute the gradient
of the loss with respect to the 3D coordinates of the human point h:

∂Lf,h
cont

∂h
=

∂Lf,h
cont

∂SDF(h)
· ∂SDF(h)

∂h
(15)

(4) Then, the gradient ∂Lf,h
cont

∂h can be backpropagated through the layers of VGGT [2] to obtain the
gradient with respect to its input, i.e. the generated video frame V ′:

∂Lf,h
cont

∂V ′ =
∂Lf,h

cont

∂h
· ∂h

∂V ′ (16)
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(5) Finally, the generated video frame V ′ is the output of our model, V ′ = MoSA(inputs; θ). With

the gradient ∂Lf,h
cont

∂V ′ computed, we can continue the backpropagation through the MoSA network to
obtain the gradients with respect to all of its learnable parameters θ:

∂Lf,h
cont

∂θ
=

∂Lf,h
cont

∂V ′ · ∂V
′

∂θ
(17)

These final gradients are then used by the optimizer to update the model’s parameters.

C IN-DEPTH DESCRIPTION OF THE MOVID DATASET

C.1 DATA CLEANING AND ANNOTATION

Following HumanVid (Wang et al., 2024d), we construct the MoVid dataset by collecting a large
number of source videos from public sources (Pexels.; YouTube.) using motion–related keywords.
To ensure data quality, we employ the ”Motion Smoothness” ”Dynamic Degree” and ”Image Qual-
ity” metrics from VBench (Huang et al., 2024b) to filter out low-quality samples. Coarse-grained
textual annotations are then generated using CogVLM2 (Hong et al., 2024), followed by manual
verification to ensure accuracy. For spatial supervision, we apply SAM (Kirillov et al., 2023) to
obtain human masks and utilize DWPose (Yang et al., 2023) to extract human keypoints and skele-
tons. To ensure motion richness, we compute the average offset ō of each keypoint across the entire
video and discard samples with ō ≤ 0.1. Additionally, videos containing only simple motions, such
as isolated facial or upper-body movements, are excluded, retaining examples that exhibit complex
dynamics. Through this rigorous pipeline, we curate a dataset comprising approximately 30K high-
quality real-world video clips encompassing more diverse and complex human motions and scenes.

C.2 DATASET STATISTICS

Tab. 8 provides a detailed comparison with several representative real-world human video datasets,
including CelebV-HQ (Zhu et al., 2022), CelebV-Text (Yu et al., 2023), TikTok (Jafarian & Park,
2021), UBC-Fashion (Zablotskaia et al., 2019), IDEA-400 (Lin et al., 2023) and HumanVid (Wang
et al., 2024d). Most existing datasets, such as CelebV (Yu et al., 2023; Zhu et al., 2022), Human-
Vid (Wang et al., 2024d), and the recent OpenHumanVid (Li et al., 2024), predominantly focus
on facial or upper-body motions. In addition, other datasets are often constrained by limited mo-
tion diversity or specific video formats. For example, TikTok (Jafarian & Park, 2021) and UBC-
Fashion (Zablotskaia et al., 2019) primarily consist of vertically oriented videos with restricted mo-
tion ranges. Others, such as IDEA-400 (Lin et al., 2023), lack fine-grained and accurate textual
annotations, which limits their applicability in text-conditioned generation tasks. To address these
limitations, we introduce the MoVid, a high-quality whole-body human video dataset with millions
of frames. Examples are provided in dataset sample.zip of the provided supplementary materials,
and are also shown in Fig. 7.

Tab. 8 also shows the comparison in terms of action complexity and action types. For Action Com-
plexity, inspired by VMBench, we first segment the regions related to human and calculate the
average optical flow of pixels in these regions. We utilize SEA-RAFT (Wang et al., 2024b) to esti-
mate optical flow, which serves as a measure of the magnitude of human motion within the dataset.
Specifically, smaller optical flow values correspond to subtler movements, whereas larger values are
indicative of more significant and intricate motion. Results demonstrate that our proposed MoVid
dataset has more complex human actions. For Action Types, CelebV-HQ and CelebV-Text are re-
stricted to facial movements, while the TikTok dataset focus on a singular category of dance. The
UBC-Fashion dataset, in turn, is composed exclusively of standing persons exhibiting only subtle
motion. For the IDEA-400, HumanVid, and our proposed MoVid datasets, we first generate text
annotations for videos using CogVLM2, and then analyze these annotations to identify all verb and
verb-object phrases related to human, calculating the number of unique action types in each dataset.
The results show that our MoVid dataset has a richer variety of human motion. The above results
provide strong evidence that the MoVid dataset encompasses a broader, more diverse, and more
complex spectrum of human motion videos.
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Table 8: Comparison of MoVid with existing representative real-world human video datasets.

Dataset Clips Resolution Action Types ↑ Action Complexity ↑ Fine-grained Caption

CelebV-HQ 35K 512×512 Facial type 0.6891 -
CelebV-Text 70K 512×512 Facial type 0.7070 Text
TikTok 340 604×1080 Dancing 0.6816 -
UBC-Fashion 500 720×964 Standing 0.3321 -
IDEA-400 12K 720P 5K 0.5969 -
HumanVid 20K 1080P 7K 0.6669 -
MoVid (Ours) 30K 1080P 17K 1.1124 Text

Video samples of our MoVid Dataset

Figure 7: Examples randomly selected from the proposed MoVid dataset.

D IMPLEMENTATION DETAILS OF MOSA

We use CogVideoX-5B-T2V (Yang et al., 2024b) as the base model of the appearance generation
branch. During training, we freeze the original weights and train only the structure generation blocks
and HADC modules. We also present the results for the version using Wan 2.1 (Wan et al., 2025)
as the base model in Tab. 2 and Fig. 4, following the same training settings as described above.
For the proposed HADC modules, Pk comprises three linear layers interleaved with two activation
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“A person is repeatedly lifting dumbbells in a well-lit gym filled with mirrors and fitness 

equipment ...”
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Figure 8: More visual comparison with existing video generation models.

functions (Hendrycks & Gimpel, 2016). Uk shares a similar architecture with Pk, but includes
an additional up-sampling layer followed by a 3D convolution layer (Tran et al., 2015) at the end.
During training, the skeleton sequence is extracted from the input video V . We train and test at a
resolution of 720×480, and train for 20,000 iterations on 4 NVIDIA A800 GPUs with a batch size
of 16. The AdamW (Loshchilov & Hutter, 2017) optimizer is used with a learning rate of 1e-5. We
set the loss weights λm, λtrack and λcont to 0.001, 0.01 and 10.0, respectively.

E MORE COMPARATIVE EXPERIMENTS

E.1 VISUAL COMPARISON WITH EXISTING VIDEO GENERATION MODELS

We provide more visual comparison with ModelScope (Wang et al., 2023), VideoCrafter2 (Chen
et al., 2024), LaVie (Wang et al., 2024a), Mochi 1 (Genmo, 2024), CogvideoX (Yang et al., 2024b),
HunyuanVideo (Kong et al., 2024) and Wan 2.1 (Wan et al., 2025) in Fig. 8 and Fig. 9. We also show
the video results in the provided video.mp4. The video.mp4 in the supplementary materials presents
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“A young man stands on an indoor basketball court, holding a basketball with both hands at 

his chest ...”
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Figure 9: More visual comparison with existing video generation models.

additional and more compelling visual comparisons. As illustrated, MoSA demonstrates superior
capability in generating human videos with coherent and physically plausible motion compared
to existing approaches. Additionally, we alson showcase a broader range of generation results to
highlight the diversity and generalization ability of MoSA in video.mp4.

E.2 VISUAL COMPARISON WITH TEXT-DRIVEN HUMAN VIDEO GENERATION METHODS

Since existing text-driven human video generation methods (Wang et al., 2025a; Huang et al., 2024a;
Song et al., 2024) are not yet open source, we perform a visual comparison based on their released
videos, if accessible. Fig. 11 presents a visual comparison with Move-in-2D (Huang et al., 2024a)
and HumanDreamer (Wang et al., 2025a). As shown, our method generates more realistic and
visually coherent results, demonstrating improved fidelity and motion consistency. The video com-
parison with Move-in-2D and HumanDreamer is shown in video.mp4.
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“An elderly man with short, graying hair is performing exercise on a black mat in a well-

equipped gym ...”
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Figure 10: More visual comparison with existing video generation models.

E.3 USER STUDY

To enable a more comprehensive evaluation, we conduct a manual assessment of the generated re-
sults across different methods. Specifically, participants are presented with video samples generated
by various models for each text prompt and are asked to select the most preferred video based on
two criteria: Motion Quality, which assesses the realism and coherence of human motion, and Video
Quality, which evaluates the overall visual fidelity and realism of the generated appearance. We
then calculated the proportion of times each method is selected as the best. As reported in Tab. 9 and
Tab. 10, our MoSA achieved the highest preference rates in both Motion Quality and Video Quality,
demonstrating its superior performance in generating visually realistic and motion-coherent human
videos.
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“A man hitting a tennis return.”

O
u
rs

  
  
  
M

o
v
e-

in
-2

D

“A man is performing a yoga pose on a mat, and he is seen moving his legs ...”
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Figure 11: Visual comparison with text-driven human video generation models Move-in-2D and
HumanDreamer (HDreamer) on their released samples.

Table 9: User study with existing video generation models. Motion Quality assesses the realism and
plausibility of human motion, while Video Quality evaluates the overall perceptual quality of the
generated videos.

Method Motion Quality ↑ Video Quality ↑

ModelScope (Wang et al., 2023) 3.91% 1.92%
VC2 (Chen et al., 2024) 4.14% 2.33%
LaVie (Wang et al., 2024a) 10.62% 5.75%
Mochi 1 (Wang et al., 2024a) 8.38% 10.34%
CogVideoX (Yang et al., 2024b) 12.07% 16.01%
Hunyuan (Kong et al., 2024) 15.21% 15.55%
Wan 2.1 (Wan et al., 2025) 15.41% 18.98%
Ours 30.26% 29.12%

E.4 COMPARISON WITH THE COMMERCIAL MODELS OF KLING AND SEEDANCE

To better illustrate the performance of our MoSA model, we provide a comparison with Kling and
Seedance in Fig. 12. Given that Kling and Seedance are commercial models requiring a queue for
access, we are only able to evaluate their performance within a limited timeframe using text prompts
from our paper. We observe that despite the impressive capabilities of commercial models like Kling
and Seedance, they are still susceptible to the issue of human anatomical distortion.

E.5 COMPARISON WITH HUMAN ANIMATION METHODS

We test the performance of human animation methods, incluing Animate Anyone (Hu, 2024), Hu-
manVid (Wang et al., 2024d), MIMO (Men et al., 2025) and StableAnimator (Tu et al., 2025), as
shown in Tab. 11. These methods use the same 2D skeletons in MoSA as input, with reference im-
ages generated from the text prompts. The results further demonstrate the superiority of our method.
Furthermore, we train an additional I2V version of our MoSA on the human animation task in
which the 3D structure transformer is removed during both training and testing. Following Human-
Vid (Wang et al., 2024d), we then compare this version with pose-driven human video generation
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Table 10: User study with Move-in-2D and HumanDreamer on their released videos.

Method Motion Quality ↑ Video Quality ↑

Move-in-2D (Huang et al., 2024a) 24.3% 24.7%
HumanDreamer (Wang et al., 2025a) 26.2% 23.4%
Ours 49.5% 51.9%

“A man stretches on a wooden pier, placing one hand on his foot and the other reaching 

towards his leg.”
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“A young woman, clad in a sleeveless beige top, stretches her leg on a gravel path in a 

tranquil park.”
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Figure 12: Visual comparisons with Kling and Seedance. The watermark in the bottom right corner
is automatically added by their models.

methods using the same training and test sets on Humanvid (Wang et al., 2024d), as well as identical
prompts and pose conditions. Results are presented in the Tab. 12, which further demonstrate the
superiority of our method. Since MIMO and StableAnimator are trained on self-collected in-house
datasets, they are not included in these tables.

E.6 GENERATION RESULTS WITH OCCLUSION SITUATIONS

The core role of the HADC modules is to enhance the model’s fine-grained control over human
motion. During training, we introduce a mask loss Lm calculated from the ground-truth human
masks. This process guides the model to learn how to effectively propagate the sparse structural
guidance s to the corresponding **visible regions** of the human body in the image. Through this
supervision, the model learns the association between the skeletal structure and the actual visible
body parts.
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Table 11: Comparison with existing human animation methods on our test sets for human video
generation in general scenarios.

Method FVD CLIPSIM Subject
Consistency

Background
Consistency

Motion
Smoothness

Dynamic
Degree

Imaging
Quality

Animate Anyone 1362 0.2850 94.09% 95.33% 97.23% 41.28% 57.06%
HumanVid 1374 0.2876 95.12% 94.77% 97.42% 42.34% 54.05%
MIMO 1285 0.2904 94.82% 95.49% 97.38% 45.57% 53.83%
StableAnimator 1326 0.2895 95.37% 94.89% 97.88% 42.85% 56.96%
Ours 1108 0.3021 97.74% 97.37% 99.31% 52.86% 64.68%

Table 12: Comparison with pose-driven methods on the HumanVid dataset.

Method SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ FID ↓

Animate Anyone (Hu, 2024) 0.602 16.108 0.368 1248.4 97.74
Champ (Zhu et al., 2024) 0.653 15.028 0.426 1985.2 100.59
HumanVid (Wang et al., 2024d) 0.672 19.534 0.275 732.7 46.06
Uni3C (Cao et al., 2025) 0.687 20.779 0.221 562.7 35.11
Ours 0.691 20.802 0.209 568.3 34.76

Consequently, this mechanism naturally handles scenarios with partial occlusions. During training,
if a part of the human body is occluded by an object (e.g., a leg hidden behind a table), the corre-
sponding ground-truth human mask for that area will be absent. The model learns that even when
the structural guidance s indicates that a leg should be present, it should avoid generating the leg’s
appearance in regions where it is actually occluded. In other words, the HADC module learns to
render the visual appearance only in the **non-occluded areas** corresponding to the structural
guidance. This capability is demonstrated on the left side of Fig. 5 in our paper, where our model
properly handles a person being occluded by objects.

To further substantiate the effectiveness of our approach, we add additional visual results in Fig. 19
in the appendix. These results showcase more diverse occlusion scenarios and clearly demonstrate
that MoSA can generate high-quality and physically plausible videos even when partial occlusions
are present.

F MORE ABLATION STUDIES

F.1 DETAILS OF THE 2D STRUCTURE GENERATION

To assess the effectiveness of the 3D Human Structure Generator, we conducted an ablation study
as reported in Tab. 4 of the main paper. The ”2D Structure Generation” row indicates that the
output of an additionally trained 2D skeleton generation model is used as gs. Specifically, we fine-
tune the base model CogVideoX-5B using text-skeleton pairs from the MoVid dataset. However,
this approach introduces two major issues: (1) directly generating 2D skeletons often compromises
structural plausibility, as exemplified by the result on the left side of Fig. 5 in main paper, where
a leg is entirely missing; (2) 2D representations struggle to resolve ambiguities arising from limb
occlusions, frequently leading to physically implausible poses, such as the example on the right side
of Fig. 5, where the right leg is incorrectly generated behind the left. In contrast, the 3D Human
Structure Generator effectively mitigates these issues by leveraging depth information and human
priors.

F.2 EFFECT OF HUMAN-AWARE DYNAMIC CONTROL

Tab. 5 presents the quantitative analysis of the HADC modules. The first row indicates discarding the
entire HADC modules, and the second row indicates discarding only Lm. We can see that they could
improve the model’s performance. To further illustrate their effect, the corresponding visual results
are shown in Fig. 13(a). When HADC modules are removed, the generated human structure remains
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“A woman performs a yoga by a calm lake, with one leg 

lifted behind her and arms reaching skyward.”

“A man stretches on a wooden pier, placing one hand 

on his foot and the other reaching towards his leg.”
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(a) Effect of the HADC modules                                               (b) Effect of the dense tracking loss

Figure 13: Effect of the HADC modules and dense tracking loss. ”Static” means applying a fixed
weight.

Visual outputs of  HADC

Generated video frames

Figure 14: The final visualization of the HADC module output after denoising. We highlight the
human part and use a Gaussian kernel to make the result look smoother.

roughly aligned with the expected body layout but lacks fine-grained motion control. Without Lm,
details of corresponding human motion will also be unrealistic.

F.3 EFFECT OF THE DENSE TRACKING LOSS

Tab. 6 and Fig. 13(b) present the effect of the dense tracking loss. ”Static weights” means applying a
fixed weight to different time intervals. By introducing temporal tracking optimization, the model’s
ability to learn temporally coherent motion is enhanced. Furthermore, assigning greater loss weights
to motion pairs with longer temporal intervals further improves the overall consistency of human
motion across time.

F.4 EFFECT OF THE CONTACT CONSTRAINT

Tab. 3 and Fig. 15 present the effect of the proposed contact constraint. As illustrated in Fig. 15,
the absence of the proposed contact constraint leads to noticeable interpenetration when the human
walks on a fallen tree trunk. In contrast, our method, with the constraint incorporated, generates
more realistic motions without penetration artifacts. This highlights the effectiveness of the contact
constraint in modeling physically plausible human–environment interactions.

F.5 NECESSITY OF THE MOVID DATASET

To explore the necessity of the proposed MoVid dataset, we conduct corresponding experiments, as
shown in Tab. 7. The first row represents the performance of the base model without any additional
human video dataset for training. The second row represents the performance after fine-tuning with
the existing open-source human video dataset. We selected the widely used HumanVid dataset with
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“A woman with long hair is running on a sandy beach, 

feeling the cool breeze on her face.”
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“A man equipped with a backpack is walking on a fallen 

tree trunk in a dense forest.”
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Figure 15: Visual effect of the proposed contact constraint Lcont.

“A woman with long hair is running on a sandy beach, 

feeling the cool breeze on her face.”
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A man hitting a tennis return.

O
u

rs
  

  
  

M
o

v
e-

in
-2

D

Figure 16: Necessity of the MoVid dataset.

various human motions and expanded it to the same scale as MoVid. Fig. 16 illustrates the visual
effects. As most existing datasets primarily capture simple motion like facial expressions or upper-
body movements, they fall short in supporting the generation of more complex motions. In contrast,
models trained on the MoVid dataset are able to synthesize physically plausible and structurally
coherent human motions. This is due to the fact that the proposed MoVid dataset covers a wide
variety of motion types and more complex dynamics, so that the model trained on it can capture a
variety of motions in the real world, enhancing the model’s ability to generate realistic and physically
plausible human motion videos.

F.6 EFFECT OF THE SELECTED CAMERA POSES WHEN RENDERING THE 3D STRUCTURE

During inference, users can freely specify camera poses, including elevation angle, azimuth angle,
and distance from the center of the coordinate system. These camera poses can be either fixed or
time-varying. The quantitative results reported in the paper are obtained by rendering the 3D human
pose from a fixed camera view. To further evaluate the impact of camera poses, we provide additional
quantitative results under two different fixed camera poses and two time-varying camera trajectories.
It is important to note that this does not require retraining the model. The corresponding results are
presented in Tab. 13, demonstrating that our method is robust to variations in the rendering views of
the generated 3D human structures.

In addition, for the camera movements of the background, we build on the capabilities of the
Cogvideo-X to generate coherent camera movements based on text descriptions and video content.
Visual results are shown in Fig. 17.

G MORE VIDEO TYPES GENERATED BY MOSA

In Fig. 18, we show examples of half-body and multi-person results generated by our MoSA. For
half-body results, our method allows users to specify which keypoints to retain when rendering the
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Table 13: Results of different camera poses when rendering the 3D human structure.

Method FVD CLIPSIM

Fixed Camera 1 1093 0.3035
Fixed Camera 2 1089 0.3032
Time-varying Camera 1 1106 0.3029
Time-varying Camera 2 1096 0.3031

Dynamic camera trajectory for human

Dynamic camera trajectory for background

Figure 17: Visual results of dynamic camera trajectory for human and background.

3D pose, thereby generating partial body skeletons. For example, by discarding lower body key-
points (knees, feet, etc.) during rendering, a skeleton containing only the upper body can be gener-
ated. For multi-person results, during inference, we can optionally use the 3D structure transformer
to generate multi-person structures, based on which we generate subsequent videos.

H IMAGE-TO-VIDEO GENERATION VARIANT OF MOSA

We additionally train an image-to-video generation variant based on the CogVideoX-5B-I2V (Yang
et al., 2024b). During training, a frame is randomly sampled from the ground-truth video to serve
as the image prompt, while the text prompt is retained as input. Moreover, data augmentation is
applied to the skeleton conditions by randomly translating and scaling the input skeleton sequences,
enhancing the model’s generative capability. During inference, the 3D structure transformer Gm

s
first produces the corresponding skeleton sequence based on the text prompt. The text prompt, image
prompt, and skeleton sequence are then fed into corresponding branches to generate the target video.
Visualization results are presented in Fig. 18.

I EVALUATION ON MORE MOTION-CENTRIC METRICS

We design more motion-centric metrics and add these evaluation metrics to the ablation study of
the structure-appearance decoupling paradigm, as shown in Table 14. Furthermore, we use these
metrics to compare existing T2V models with our approach, and the corresponding results are pre-
sented in Table 15. The Pose Confidence metric is computed by applying the DWPose [1] model to
extract human keypoints from the generated videos and averaging their confidence scores. Higher
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Half-body videos and multi-person videos generated by our MoSA

Image-to-video generation results of our MoSA

Figure 18: Half-body and multi-person results generated by our MoSA. We also provide image-to-
video generation results in this figure.

confidence indicates more accurate pose estimation, which further reflects the plausibility of the
generated human poses, avoiding structural failures such as missing limbs. Temporal Smoothness
is derived by calculating the mean jerk of tracking points within human regions, where lower val-
ues correspond to smoother motion. The Contact-Violation metric is evaluated using Qwen3-VL, a
powerful multimodal model equipped with extensive world knowledge. It identifies physically im-
plausible artifacts such as interpenetrations in the generated videos and computes the corresponding
violation rate. Action Recognizability is also assessed using Qwen3-VL, which determines whether
the generated actions faithfully match those specified in the text prompt, such as the text prompt
“walks to the blue trampoline and jumps” in Fig. 3. Motion Plausibility and Action Correctness are
the evaluation criteria used in the user study.

Moreover, we have conducted a user study, as reported in Table 9 of the paper, to assess the motion
quality of the generated videos. To more comprehensively demonstrate the advantages of our ap-
proach, we further evaluate the motion plausibility and action correctness of the generated videos,
with the corresponding results presented in Table 16. These motion-centric metrics provide addi-
tional evidence that our method exhibits clear superiority in generating high-quality human motion.
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Table 14: Effect of the decoupling paradigm, evaluating on more motion-centric metrics.

Structure Branch Pose
Confidence

Temporal
Smoothness

Contact-
Violation

Action
Recognizability

Motion
Plausibility

Action
Correctness

✘ 0.885 0.122 2.04% 96.85% 5.09% 8.24%
2D Structure Generation 0.896 0.114 1.60% 98.42% 15.13% 15.60%
Ours 0.911 0.103 1.08% 99.45% 79.78% 76.16%

Table 15: Quantitative comparison with more motion-centric metrics.

Method Pose Confidence ↑ Temporal Smoothness ↓ Contact-Violation ↓ Action Recognizability ↑

VideoCrafter2 0.831 0.155 4.06% 89.70%
LaVie 0.865 0.138 3.25% 92.14%
Mochi 1 0.886 0.121 2.04% 96.75%
CogVideoX 0.882 0.124 2.17% 96.47%
HunyuanVideo 0.894 0.119 1.89% 97.28%
Wan2.1 0.893 0.117 1.62% 97.56%
Ours 0.911 0.103 1.08% 99.45%

Table 16: User study with more motion-aware metrics.

Method Motion Plausibility ↑ Action Correctness ↑

VideoCrafter2 0.85% 2.04%
LaVie 3.37% 2.14%
Mochi 1 12.18% 11.59%
CogVideoX 12.36% 14.82%
HunyuanVideo 16.45% 16.99%
Wan2.1 17.47% 17.14%
Ours 37.32% 35.28%

Table 17: Effect of the data from different views in our dataset.

Model FVD ↓ CLIPSIM ↑

w/o side-view data 1172 0.2959
w/o back-view data 1165 0.2963
Ours 1096 0.3031
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J DISCUSSIONS AND FUTURE WORK

Generating complex inter-person contact and fine-grained hand interactions has long been a chal-
lenging problem for video generation models. Built upon a structure-appearance disentanglement
paradigm, our method substantially improves the quality of multi-person interactions and fine-
grained motion synthesis. As shown in Fig. 16, the girl’s bowstring-pulling action in the second
row and the two-person jumping and ball-contesting scene in the third row demonstrate clear en-
hancements.

Nevertheless, we found that generating highly intricate hand motions remains a challenge, where
current methods may still produce artifacts such as distorted or blurred finger structures. How-
ever, our structure-appearance disentanglement paradigm is naturally compatible with incorporating
denser structural cues, such as hand keypoints. This inherent compatibility offers a promising path-
way to enhance the realism of finger-level actions by integrating such detailed guidance.

Our further investigation reveals that the primary obstacle lies in the training data. Existing mo-
tion datasets used for training 3D structure transformers typically include only SMPL body joints.
Consequently, incorporating hand keypoints would necessitate augmenting these datasets with ad-
ditional 3D annotations for hand joints to enable effective model training. We believe this is a very
worthwhile direction to explore and will pursue it in our future work, with extending the proposed
MoVid dataset.

Table 18: Ablation study on the human animation task.

Model SSIM ↑ PSNR ↑ LPIPS ↓ FVD ↓ FID ↓

w/o Struc. branch 0.677 20.603 0.266 682.1 42.74
w/o HADC 0.682 20.716 0.247 627.9 39.55
w/o Tracking loss 0.688 20.785 0.218 594.1 36.64
Ours 0.691 20.802 0.209 568.3 34.76

K LLM USAGE DECLARATION

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
writing. They were not involved in research ideation, experimental design, data analysis, or inter-
pretation. The authors take full responsibility for all content.
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Figure 19: Visual results in which the human body is partially occluded.
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