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ABSTRACT

Recent advances in text-to-audio (TTA) generation excel at synthesizing short
audio clips but struggle with long-form narrative audio, which requires temporal
coherence and compositional reasoning. To fill this gap, we propose AudioStory, a
unified framework that integrates large language models (LLMs) with TTA sys-
tems to generate structured, long-form audio narratives. AudioStory possesses
strong instruction-following reasoning generation capabilities. It employs LLMs
to decompose complex narrative queries into temporally ordered sub-tasks with
contextual cues, enabling coherent scene transitions and emotional tone consistency.
AudioStory has two appealing features: (1) Decoupled bridging mechanism: Au-
dioStory disentangles LLM-diffuser collaboration into two specialized components,
i.e., a bridging query for intra-event semantic alignment and a residual query for
inter-event coherence preservation. (2) End-to-end training: By unifying instruc-
tion comprehension and audio generation within a single end-to-end framework,
AudioStory eliminates the need for modular training pipelines while enhancing
synergy between components. Furthermore, we establish a benchmark AudioStory-
10K, encompassing diverse domains such as animated soundscapes and natural
sound narratives. Extensive experiments show the superiority of AudioStory on
both single and narrative audio generation, in terms of instruction-following ability
and audio fidelity. Our code and dataset will be publicly available.

1 INTRODUCTION

Audio content plays a pivotal role in modern media, from immersive storytelling and podcasts to
interactive entertainment and education. Recent advancements in text-to-audio (TTA) generation,
exemplified by models such as TangoFlux (Hung et al., 2024), AudioLDM (Liu et al., 2024), and
Stable Audio (Evans et al., 2024), have demonstrated remarkable capabilities in synthesizing high-
quality, short-form audio clips from textual descriptions. However, a critical gap remains in generating
long-form narrative audio, i.e., coherent, structured sequences of audio instances that unfold over
extended durations, such as audiobooks, podcasts, or dynamic soundscapes for games.

Long-form narrative audio generation introduces unique challenges that extend beyond single-prompt
synthesis. First, it requires temporal coherence: maintaining consistency in themes, sound effects,
and emotional tone across the whole audio. Second, it demands narrative reasoning to decompose
a complex instruction into logically ordered sub-events, characters, or environmental interactions.
For instance, a prompt like “A suspenseful chase through a rainstorm: footsteps splash, thunder
roars, a car skids, and a door slams shut” necessitates not only generating individual sounds but
also orchestrating their timing, intensity, and interplay to build tension. Existing TTA models, while
proficient at capturing isolated events, often struggle with such compositional and temporal reasoning,
leading to fragmented or inconsistent outputs.

To address these challenges, we propose AudioStory, a novel multi-step framework for generating
long-form narrative audio by integrating the reasoning capabilities of LLMs with audio generation.
As shown in Fig. 1, we propose interleaved reasoning generation following a divide-and-conquer
manner: reasoning for general narrative plans, decomposing plans into sequential generation actions,
and generating interleaved audio events step-by-step. Specifically, AudioStory employs LLMs to
decompose a narrative query (in language or multimodality) into a structured sequence of audio-
generative sub-tasks, each accompanied by contextual cues such as temporal offsets, emotional tone,
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Figure 1: AudioStory effectively follows multimodal instructions, decomposing them into a sequence
of coherent audio segments that capture scene transitions, affective tone, and precise timestamps.
Unlike prior T5-based diffusion models that falter on complex queries, AudioStory endows LLMs
with explicit high-level planning, enabling robust instruction-following and temporally consistent
long-form audio generation. Video dubbing constitutes an extended application of the framework.

and character interactions. These reasoning chains are then synthesized into audio events using a
diffusion backbone, with explicit mechanisms to ensure style consistency, smooth transitions and
temporal alignment. We streamline the narrative planning via LLMs and audio synthesis via diffusion
models into an end-to-end framework, enabling the generation of rich, multi-scene audio stories that
adhere to user intent while preserving coherence over time.

AudioStory introduces several technical innovations: First, unlike prior arts (Wu et al., 2024; Lai
et al., 2024) that bridge LLMs with audio diffusers through predefined textual spaces (Raffel et al.,
2023), we propose a decoupled bridging space consisting of two distinct tokens: (1) semantic
tokens, which encode text-oriented audio semantics, and (2) residual tokens, which capture nuanced
acoustic cues and cross-event correlations. This design effectively improves both audio fidelity
and temporal consistency during generation. Second, unlike zero-shot integration of LLMs and
diffusers, our framework supports end-to-end progressive training, enabling joint optimization of
instruction understanding and audio synthesis. This synergistic training paradigm enhances both audio
understanding and generation. Third, we introduce the first narrative audio generation benchmark,
providing a comprehensive evaluation for assessing audio generation quality and consistency.

The contributions of the paper are as follows:

* We introduce AudioStory for narrative audio generation, which integrates LLM-based reasoning
and iterative diffusion-based generation in a unified framework, with strong multimodal instruction-
following and audio generation abilities.

* We propose decoupled bridging tokens for LLM-diffuser collaboration, using semantic tokens
(text-oriented audio semantics) and residual tokens (nuanced acoustic cues) to improve audio
fidelity and temporal consistency.

* We introduce a synergistic training paradigm, facilitating collaboration and complementarity
between LLM and diffusion models. Unlike zero-shot LLM-diffusion integration, our framework
enables end-to-end joint training, enhancing both multimodal understanding and generation.

* Experiments show AudoStory significantly surpasses prior diffusion-based and MLLM-based
models by a large margin in narrative audio generation. We also uncover some important findings
across multiple aspects, including reasoning formulation, bridging mechanism and training recipes.

2 RELATED WORKS

Text-to-audio generation (TTA). Recent advances in generative models have significantly ad-
vanced text-to-audio generation. Make-An-Audio (Huang et al., 2023) and AudioLDM (Liu et al.,
2023; 2024), synthesize audio through iterative denoising of text-conditioned latent representations.
Tango (Majumder et al., 2024; Ghosal et al., 2023), Audio Flamingo (Kong et al., 2024), GenAu (Haji-
Ali et al., 2024), Fugatto (Valle et al., 2025) further enhance design spaces of latent space, data quality
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and cross-modal alignments. Recently, Stable Audio series (Evans et al., 2024) employs hierarchical
latent diffusion trained on large-scale datasets for high-fidelity output. Beyond diffusion-based priors,
flow-matching techniques optimize probability density transport for audio synthesis. VoiceBox (Le
et al., 2023) enables zero-shot style transfer via continuous normalizing flows. TangoFlux (Hung et al.,
2024) introduces CLAP-ranked preference optimization to enhance text-audio alignment. Existing
methods align text and audio semantically but primarily target descriptive queries, limiting interactive
control and adaptability to evolving instructions. They are also confined to short audio domains.
These limitations demand TTA models to handle complex instructions over long durations.

Any-to-any multimodal LLMs. Any-fo-any models (Tang et al., 2023a; Wu et al., 2024; Zhan et al.,
2024; Lai et al., 2024; Ge et al., 2023) aim to accept arbitrary input modalities and generate outputs
in any desired modality. Pioneering efforts include CoDi (Tang et al., 2023b;a) leveraged composable
diffusion for diverse modality handling. Spider (Lai et al., 2024) further enables the generation of
multiple modalities in a single response. NExT-GPT (Wu et al., 2024) demonstrated the efficacy of
lightweight alignment for adapting LLMs to multimodal tasks, while AnyGPT (Zhan et al., 2024)
showcased the potential of discrete sequence modeling. Unified-IO2 (Lu et al., 2023) highlighted the
impact of scale and unified architectures in achieving remarkable performance across many tasks.
Despite these advancements, current methods exhibit limitations in long-context generation with
complex instructions: First, they primarily focus on speech generation and simple caption-to-music
or caption-to-sound tasks, struggling to comprehend general and intricate human instructions beyond
basic captions. Second, their audio generation is typically limited to single, short segments, hindering
the generation of longer audio sequences.

3 NARRATIVE AUDIO GENERATION

Problem definition. Narrative audio generation aims to generate long-form, structured and temporally

coherent audio sequences A = {Am}%: 1> given multimodal instruction i, (e.g., language, audio
or vision), where M is the number of audio segments. The task shares a similar formulation
with the text-to-audio generation, but is far more challenging due to two distinct capabilities: (1)
Temporal coherence, i.e., maintaining consistency in themes, sound effects, and emotional tone
across extended durations; (2) Compositional reasoning. i.e., decomposing high-level narrative
instructions into logically ordered events (e.g., “footsteps splash, then thunder roars”) with precise
timing and contextual interactions. Existing TTA systems, while effective for short clips, lack explicit
mechanisms to model cross-segment dependencies or align audio events with evolving narrative
structures, limiting their applicability to real-world scenarios.

The AS-10k benchmark. Given the lack of quantitative evaluation, we establish the AS-10k
benchmark for the narrative audio generation task. AS-10k comprises 10k annotated audios paired
with narrative prompts. We collect videos from two primary sources: (1) Natural sounds: We select
4,723 audio instances from UnAV-100 (Geng et al., 2023), covering a broad spectrum of real-world
environmental recordings (e.g., rainstorms, animal calls, rustling leaves) and human activities (e.g.,
footsteps, door slams, and conversations). This collection ensures sufficient coverage of everyday
acoustic events and ambient soundscapes. (2) Animated sounds: We curate 5,332 audio clips from
157 episodes of Tom & Jerry, capturing stylized background music (e.g., orchestral pieces, string
sections) and sound effects (e.g., slapstick actions, cartoonish collisions and rapid movements). These
animated sounds feature stylized and expressive audio content, distinct from natural sound recordings.

The annotation pipeline involves three stages. First, we filter the videos with sequential audio events,
ensuring the storyline of the audio is visually-grounded for meaningful activities. Then, we parse the
video into several key audio events by Gemini-2.5-Pro (Team et al., 2023), each is labeled with its
timestamps, audio caption and visual captions. Next, given these text-based timestamped captions,
we prompt GPT-40 (OpenAl, 2025) to generate diverse instructions and chain-like reasoning steps.

To be specific, we design diverse formats of multimodal instructions, including text-only instructions
for narrative audio generation, audio-text ones for audio continuation and video-text ones for video
dubbing, as in Fig. 1. For a flexible control of duration and semantic elements of generated audios, we
make the intermediate reasoning encompass at least the following steps: storyline summarization for
global summarization of general story, event decomposition for inferring the number of audio events,
sound reasoning for predicting timestamp and key elements (e.g., emotional tone, scene transition) of
each event. All detailed prompts and processing steps are in Appendix H.1.
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Figure 2: Overview of AudioStory with three core components: (a) The LLM processes the instruction
input, decomposes the long audio into structured sub-tasks, and sequentially generates a caption,
semantic tokens, and residual tokens for each audio clip. (b) After fusing semantic and residual
tokens, they are combined with the duration information as conditioning inputs to the DiT, which
then generates each audio clip. (c) The progressive training recipe with three stages.

Evaluation metrics. The AS-10k dataset includes 5.3k samples of natural sounds and 4.7k samples
of cartoon audios. We randomly divided the dataset into 85% for training and 15% for testing. We
devise a comprehensive evaluation spanning three aspects: instruction-following, consistency, and
generation quality. We employ Gemini-2.0-flash as the evaluator with a score range of 0-5 for these
metrics. More details could be found in the Appendix H.2.

4 AUDIOSTORY

Overview. To achieve instruction-followed audio generation, the ability to understand the input
instruction and reason about relevant audio sub-events is essential. To this end, AudioStory adopts a
unified understanding-generation framework (Fig. 2). Specifically, given multimodal instructions,
an LLM analyzes and decomposes it into structured audio sub-events with context. Based on the
inferred sub-events, the LLM first performs interleaved reasoning generation (Sec. 4.1), sequen-
tially producing captions and bridging tokens between the LLM and the audio generator (Sec. 4.2).
Through progressive end-to-end training, AudioStory ultimately achieves both strong instruction
comprehension and high-quality audio generation (Sec. 4.3).

4.1 INTERLEAVED REASONING GENERATION

Directly generating long-form narrative audio that aligns with complex instructions is challenging. We
take the spirit of “divide-and-conquer” and propose decoupling the input instruction into chronological
short audio clips, which are then combined to form the complete long-form narrative audio.

Single-audio clip generation. The ability to generate individual audio clips from captions is a
foundational step toward producing sequential audio events. For audio clip generation, the LLM
generates bridge tokens from a given caption, which serve as conditions for the DiT. While this
method works well for short audio generation based on simple captions, it becomes insufficient for
complex instructions involving multiple events, temporal relationships, or narrative structures.

Interleaved reasoning generation for long-audio generation. We propose to decouple a complex,
long-form audio into multiple audio segments for segment-by-segment generation. This divide-and-
conquer process consists of two components: (1) Storyline reasoning: LLMs reason through the
entire instruction, inferring the number of audio events. Furthermore, LLMs analyze the start and
end timestamps of each event, as well as the event description and corresponding audio content that
should be included. (2) Interleaved generation: For each event, the LLM infers the caption, duration,
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and corresponding bridge queries (semantic tokens and residual tokens, as described in Sec. 4.2),
enabling interleaved generation. These queries, along with duration information, are then provided as
conditional inputs to the DiT-based audio generator. By accurately predicting durations and utilizing
semantically rich bridging tokens, the model ensures both coherent audio semantics within each event
and consistency across events. The training data is structured as:

[BOS] [BOT] {#event}{storyline reasoning tokens} [EOT] [BOG] {caption }{duration}

. . 1
[EOG] - - [BOG] {caption}{duration} [EOG] [EOS]. M
The textual tokens in the entire reasoning process is supervised by the next token prediction loss:
L
# capti
Ereason = ‘Ctee;/tent + Ef:)?t[em + ﬁ:;gwn, where ‘Ctext = Hp(iL‘Z“X<i, Xp’<i). (2)

=1
4.2 DECOUPLED BRIDGING MECHANISM

Once the LLM is capable of effective reasoning, establishing a seamless bridge between the LLM and
the DiT becomes crucial. However, text alone might not be the optimal bridge. Although it carries
rich semantics, it fails to capture diverse low-level details of the audio modality, e.g., timbre, rhythm,
and ambience. Consequently, we propose decoupled bridges queries, which could be divided into
semantic Tsemantc and residual tokens T'egaua- The semantic tokens represent the audio’s high-level
semantics, while the residual tokens carry low-level audio details. They complement each other,
enabling the disentanglement of audio information. In practice, after producing the caption for each
audio event, the LLM collectively generates semantic and residual tokens. For semantic tokens, we
use the textual tokens from Flan-T5 (Raffel et al., 2020) T2 as the supervision using MSE loss:

semantic

Emse = ”Timamic - Tsemanlic||§~ 3)

The residual tokens are employed to supplement the missing information of the semantic tokens.
Then, both types of tokens are merged and fed into as the conditional inputs of DiT. Here, we adopt
multi-head cross-attention to merge these two tokens and obtain the resultant bridge queries:

Hbridge = Cross—-Attn (Tsemantica Tresidual ) Tresidual) . (4)

For audio generator with Hygee as condition, we employ flow-matching (Esser et al., 2024) for
generative modeling:
L:ﬂow = Eml,mo,t |u(mta ta C) - th%? (5)

where c is the condition and we choose ¢ = Hyyigge and ¢ is uniformly sampled from [0, 1]. Through
the generative supervision, Tiegiguar can capture detailed information and complement T'semantic-

4.3 PROGRESSIVE TRAINING STRATEGY

After establishing an effective bridge between the LLM and DiT, it becomes essential to design an
efficient end-to-end training mechanism to build synergy between the understanding and generation
tasks. We propose a progressive training strategy, following a single-to-multi and generation-to-
unification paradigm. The training could be divided into three stages, where the model (1) learn
to generate single audio segments, followed by (2) unified generation and understanding for single
audios and (3) long-audio adaptation.

Stage-I: Single-audio generation. There are two sub-stages. (1) Stage-I-Warm, AudioStory learns
to generate semantic tokens with MSE supervision in equation 3. Only the LoRA of the LLM and the
projector of T'emanic are updated. (2) Stage-I-Whole, AudioStory regresses bridge queries based on
the input caption, i.e., generating T'semantic and T'resiqual, r€Spectively. They are subsequently merged
via equation 4 and fed into DiT. Here, the regression of Temanic and the prediction of its beginning
and end tokens are supervised. We tune LoRA of the LLM, all projectors, the attention layer and the
generation model DiT. The learning objectives are shown below:

LY™ = Loge, L3 = Linge + ML + A2Latows (6)

where £9¢" is only applied to the start and the end tokens of T'semanic. After this Stage-I, AudioStory

text
possesses a strong capability for single-audio generation.
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Stage-II: Single-audio unified generation and understanding. Building upon Stage-I, we further
introduce audio understanding data to enable unified generation and understanding of single-audio
clips. The model takes audio as input for understanding. We freeze the audio encoder while the
trainable parameters remain the same as Stage-I-Whole. The learning objectives are in Eq equation 7.

ESZ = Lise + A1 Liext + A2Liow- 7)
With this unified training, AudioStory’s generation abilities can be further enhanced.

Stage-III: Long-audio unified generation and understanding. We extend the unified training in
Stage-II to long-form audio. We further introduce Interleaved Reasoning Generation (Sec. 4.1) with
a high-quality multi-audio dataset to perform supervised fine-tuning. For the generation task, the
model sequentially infers the number of audio events based on the input instruction, analyzes the
audio content, and performs interleaved generation of captions, semantic tokens, and residual tokens.
For the audio continuation task, given the input audio and instruction, the model comprehends the
inputs, reasons the key events with story details, and finally generates several short audio segments in
a clip-by-clip manner. The audio understanding data incorporates audio Q&A and instruction data.
We keep the learnable components the same as Stage-II. The overall learning objectives are:

£S3 = ﬁmse + )\1 Etext + )\2£ﬂ0w + )\3£reas0n- (8)

5 EXPERIMENTS

In this section, we first present the experimental setup (Sec. 5.1). Then, we compare AudioStory with
existing TTA and unified models on long-form audio generation (Sec. 5.2). We also study the audio
understanding and the audio generation (Sec. 5.3) ability of AudioStory in short audio clips, showing
its superior fundamental ability. Finally, in Sec. 5.5, we conduct an in-depth exploration of reasoning
forms, bridging query types, joint training strategies, and the synergy between understanding and
generation, and provide several key insights.

5.1 EXPERIMENTAL SETUP

Implementation details. We choose Qwen-2.5-3B-Instruct (Yang et al., 2024) as the LLM and
employ DiT initialized from TangoFlux (Hung et al., 2024). We employ Whisper-large-v3 (Radford
et al., 2023) as the audio encoder for the audio continuation task. The projector has two layers
with GeLU activations. In Stage-I, AudioStory is trained with Ir= 2e~* for 50 epochs with a
per-device batch size of 32. In Stage-II, we use Ir=1e-4 for 10 epochs. The ratio of understanding
and generation data is 2:1. In Stage-III, we set different learning rates for LLM and DiT. We set
A1 = 1,2 = 0.2, A3 = 0.4. The tunable parameters three-stage training are LoRAs in LLMs,
projectors, the cross-attention fuser for bridging queries, and DiT. More details are in the Appendix.

Evaluation metrics. For single-audio generation, we employ Frechet Distance (FD), Frechet Audio
Distance (FAD), KL-Divergence (KL), and CLAP score on AudioCaps testset (Kim et al., 2019). For
audio understanding, we consider the tasks of audio question answering (AQA), and audio captioning
on AudioCaps and Clotho dataset (Drossos et al., 2020), reporting SPIDEr, CIDEr, and ACC scores.
The evaluation metrics for long-audio generation are in Sec. 3.

Baseline methods. There are two groups: (1) pure TTA models like AudioLDM2 (Liu et al., 2024)
and TangoFlux (Hung et al., 2024) and (2) LLM-based unified models, including CoDi (Tang et al.,
2023b) and NExT-GPT (Wu et al., 2024). For long-form audio generation, we construct three classes
of baselines: (1) Directly generating audios with maximum available durations using the whole
textual condition. (2) Incorporating LLMs to reason and generate captions for each short audio clip,
which are then fed into TTA models to generate multiple audio clips separately. These clips are then
concatenated to constitute the final long-form audio. (3) Directly using the ground truth captions in
the benchmark, serving as the oracle setting and upper bounds.

5.2 LONG-FORM NARRATIVE AUDIO GENERATION

Instruction-following ability. As shown in Table 1, considering the instruction-following aspect,
AudioStory demonstrates a significant advantage in complex scenarios involving multiple events and
sounding objectives. It outperforms the LLM-aided TTA models by 17.85% on the CLAP score,
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Table 1: Comparative results on long-audio generation. “Instruct” is short for instruction-following
and “CLAP” denotes CLAP score, “gt” denotes ground-truth. “Consis.” and “Coher.” are short for
consistency and coherence. Here, bold and underline indicate the best and the second-best results.

Model Instruction-Following Consistency Generation Quality Max. Duration 1
Instruct. T CLAP T Reasoning T Consis. T Coher. T FD | FAD |
AudioLDM2 (Liu et al., 2024) 2.8 0.296 - 4.6 4.4 343 4.49 10s
TangoFlux (Hung et al., 2024) 32 0.317 - 4.1 4.2 248 3.49 30s
Caps (gt)+TangoFlux (Hung et al., 2024) 4.0 0.348 - 2.4 2.0 1.79 3.59 30s
LLM+TangoFlux (Hung et al., 2024) 35 0.322 35 2.1 1.9 2.55 3.82 30s
LLM+CoDi (Tang et al., 2023b) 32 0.286 35 14 1.4 3.39 4.04 10s
LLM+NEXT-GPT (Wu et al., 2024) 33 0.299 35 1.8 1.7 3.47 3.99 10s
AudioStory 4.1 0.392 4.2 4.1 3.9 1.43 3.00 150s
AudioStory-continuation 4.0 0.387 4.0 4.0 38 1.52 3.17 150s

Table 2: Single audio understanding performance. Table 3: Single audio generation performance.

Model ClothoCaps ~ ClothoAQA  AudioCaps  podel AudioCaps Test Set
SPIDEr CIDEr ACC B-ACC SPIDEr CIDEr FDopenis 4 Klpusud FD FADY KL CLAPT

Make-An-Audio (Huang et al., 2023) 128.49 1.16 1.65 3.16 0.63 0256
UIO-2 XXL (Luetal, 2023) 5.7 6.5 - - - 48.9  stable-audio-open (Evans et al., 2024)  103.68 112 1.63 298 061 0298
CoDi (Tang et al., 2023b) 62 13 - - 480 789  AudioLDM2 (Liu etal. 2024) 8774 101 159 263 057 0252
NEXT-GPT (Wuetal,2024) 138 203 264 395 534 807 TangoFlux (Hungetal, 2024) 8358 095 157 234 052 0.385
i T ’ CoDi (Tang et al., 2023b) 12166 117 169 961 060 0228
Spider (Lai et al., 2024) - - - - 53.7 819 NEXL.GPT (Wuetal. 2024) 10718 113 164 569 059 0265
AudioStory-Base 241 377 428 606 548 832  AudioStory-Base 83.39 091 152 229 051 0383

thereby demonstrating the superior instruction-following generation capability of our model. Our
method effectively addresses the issue of overlooking sounding entities, which can be attributed to
the enhanced understanding and decomposition of the instruction.

Generation quality. AudioStory demonstrates strong long-form audio generation performance
across both natural sound and music domain, outperforming baselines in FD and FAD scores. This
improvement stems from: (1) single-clip training, which extends high-quality short-audio generation
to longer sequences, and (2) generating longer audio that better matches reference lengths compared
to previous methods.

Consistency. Notably, consistency is meaningful only with strong instruction-following. For example,
AudioLDM?2, despite high consistency scores from short (10s) outputs, performs poorly on instruction-
following, making it a weak baseline. In contrast, our method achieves substantial advantages in
both consistency and coherence, reaching scores of 4.0 and 3.7, respectively, as in Table 1. It is
worth noting that in the consistency evaluation, AudioStory achieves comparable performance despite
generating significantly longer audio with richer narratives compared to TTA models.

5.3 SINGLE-AUDIO GENERATION

Joint audio generation & understanding. We also evaluate our model’s performance on short audio
generation and understanding tasks, and conduct comparisons with TTA and LLM-based models.
For the generation task in Table 3, AudioStory outperforms prior competitors on both suites of
evaluation tools, even outperforming the state-of-the-art TTA model, i.e., TangoFlux (Hung et al.,
2024), indicating the effectiveness of the proposed LLM and DiT bridging mechanism. As for the
audio understanding task in Table 2, AudioStory outperforms advanced LLM-based models, which
means that our method could competently handle both generation and understanding tasks.

5.4 QUALITATIVE ANALYSIS

AudioStory exhibits strong reasoning capabilities, it can accurately divide the input instruction into
several events based on narrative logic and temporal order, subsequently generating short audio clips
segment by segment, and ultimately composing a coherent long-form audio. Besides, AudioStory
could accurately infer the duration of each audio clip. Here, we provide a qualitative case in Fig. 3.
More cases are presented in the Appendix D.
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Instructional Audio Generation ~

“Instruction: s
Propose a detailed, immersive audio that showcases a woman chews, examines @ Audio
marshmallows, then noise abruptly ends the scene. The total duration is 38.5 seconds. A Story
A(@)-Generated Reasoning:

The caption can be divided into four points:\n\n1. **[0.0, 9.8]**\n - **Story Details**: A woman chews food slowly and deliberately.\n - **Sound
Effects**: Wet, rhythmic chewing sounds.\n\n2. **[9.8, 12.8]**\n - **Story Details**: She examines a package or wrapper briefly.\n - **Sound
Effects**: Crisp rustling of a plastic bag or wrapper.\n\n3. **[12.8, 25.5]**\n - **Story Details**: She taps and inspects the surface of a
marshmallow delicately.\n - **Sound Effects**: Soft tapping and rubbing sounds.\n\n4. **[25.5, 38.5]**\n - **Story Details**: She holds a
marshmallow near her mouth, lips slightly moving.\n - **Sound Effects**: Soft lip-smacking and mouth-opening sounds.

Jd Generated Caption:

Wet, close-miked chewing sounds, distinct and slightly squelchy. Rhythmic, slow, deliberate mastication creates an intimate, amplified
ASMR effect. <timestamp>9.8</timestamp>
A brief, crisp rustling sound of handling a plastic bag or wrapper, moderately loud, suggests movement and packaging interaction.
<timestamp>3.0</timestamp>
Soft tapping and rubbing sounds with a muffled, airy quality, like fingers on a marshmallow. The subtle, delicate noise creates a gentle
atmosphere, evoking tenderness and a light, rhythmic texture. <timestamp>12.7</timestamp>
+ Soft, subtle lip-smacking and mouth-opening sounds, quiet and slightly wet, as the woman holds a marshmallow near her mouth and
_ moves her lips slightly. <timestamp>13.0</timestamp> Y,

Figure 3: Qualitative case of long-form audio generation.
5.5 ABLATION STUDIES AND ANALYSIS

Does interleaved reasoning generation help narrative

audio generation? We investigate effective reasoning Table 4: Ablations of reasoning.
forms for long-form audio generation, testing two model
variants: (a) one that skips instruction analysis, and (b) Variant _ Cons. T Inst. T FAD | CLAPT
one without explicitly generating captions for each audio o reasoning - 3.1 3] 413 034
clips. As shown in Table 4, removing reasoning leading to  w/reasoning 40 41  3.06  0.39
missing audio events, and significantly reduces instruction-
following performance. Without interleaved reasoning,
the model infers event content but lacks contextual guidance for generating bridge queries, greatly
diminishing audio quality. We conclude that reasoning is indispensable, and explicit captions for
each clip are crucial to generation quality.

Which type of features are suitable for bridging
between the LLM and the DiT? Our analysis shows  Table 5: Ablations on bridging mechanism.
that audio features, with lower semantic density and — s PV
greater difficulty for the LLM to interpret, especially Q up. Feat, ingle Muld
: 5 (a) .. AudioMAE (Huang et al., 2022)  9.55 11.39
due to Whisper’s complex temporal structure, are less  (p) Semantic “Whipcer (Radford et al, 2023)  10.26 1231
effective than textual features. Thus, supervising se- (¢ Residual AudioMAE (Huang et al., 2022) 924 10.06
mantic tokens with text is more efficient. For residual @ Whisper (Radford etal,, 2023) 11.06 1121
. L (e) Residual AudioMAE (Huangetal,, 2022) 3.60 4.21
tokens,. Table 5 (c) (g) reveals that explicit or weak (g Soid” Whisper (Radford et al. 2023) 371 439

supervision with audio features harms performance.
In summary, textual features are ideal for supervising
semantic tokens, while weak supervision via the DiT
loss best captures complementary audio information for residual tokens.

(g) Ours T5 w/o guid. 229 312

What are the key factors in end-to-end joint training? Prior works train LLM and DiT separately,
creating a feature gap. We propose end-to-end joint training (Table 6). Notably, removing residual
tokens significantly reduces performance, revealing that LLM and DiT focus on different information
types, and directly updating the LLM with the DiT loss harms its performance. Residual tokens
help mitigate this issue. We also examine DiT’s learnable parameters. Fully freezing DiT degrades
performance, while full updates yield the best results. Unfreezing MM-DiT outperforms Single-DiT,
as the latter focuses on low-level features more sensitive to noise, impacting generation quality. one
can draw the following conclusions: (1) End-to-end joint training of the LLM and DiT is essential.
(2) Residual tokens capture complementary low-level information and reduce conflicts. (3) Fully
unfreezing DiT is necessary; selective unfreezing Single- or MM-DiT leads to suboptimal results.

How to progressively build the synergy between generation and understanding? We evaluate
the effectiveness of various training aspects. Table 7 shows that without progressive training, both
comprehension and generation significantly decline due to their inherent conflict. In contrast, a
structured progressive strategy enables unified training to outperform isolated approaches. Training
generation first, followed by comprehension, achieves the best overall performance with strong
comprehension accuracy. Reversing the order harms generation, while interleaved training also
undermines optimization. We conclude that generation and comprehension have inherent synergy,
with the optimal training order depending on the primary objective.
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Table 6: Ablations on the end-to-end joint training strategy of DiT. Here “S-DiT” and “M-DiT”
denote Single-DiT and MM-DiT. “Consis.” denotes consistency.

Semantic Residual DiT Joint  Tunable Single Audio Multi Audio

D Tokens Tokens Training Module

FD | FAD| KL | Consis. T FAD |
(a) X X - 1.57 233 052 32 523
(b) X openall 2.16 4.66 0.84 34 4.98
(c) X freeze 4.86 11.04 0.89 1.3 12.97
(d) open S-DiT 237 5.84 0.64 2.1 6.28
(e) open M-DiT 1.98 3.21 0.67 3.5 3.64
®) openall 1.53 229 0.51 4.3 3.00

Table 7: Ablations on progressive training. “Gen.”, “Und.” and “BQ” denote generation, understand-
ing and Bridge Queries. “SAG” and “LAG” are short for single and long-form audio generation.

SAG LAG  Audio Und.
FAD | FAD | CIDEr{ SPIDEr {

ID Order Stage-I Stage-II Stage-III

) Und. - ; ; C 357 231
(b) Und.—Gen. Und.  BQ - 742 953 369 238
© Und. BQ DiTjoint 650 726 386 249
(d) BQ - - 237 523 - ;
) BQ  Und. - 235 498 315 195
@ Gen—=Und po  (Und. DiTjoint 361 650 246 164
(©) BQ DiTjoint Und. 229 3.00 377 241
) N/A DiT joint + Und. 570 874 273 182

Table 8: Human evaluation of the generated audios for methods on Table 9: Correlation of Gem-

instruct-following, consistency, fidelity, and reasoning logic. ini and human scores.
Method Instruct-Follow Consist. Fidelity Reason. Logic Across  Across
LLM + TangoFlux 3.52 322 358 3.19 model  model
LLM + NExT-GPT 3.10 2.56 2.87 3.14
AudioStory (Ours) 423 4.68 437 422 Kappa Coef. 091  0.83

5.6 HUMAN EVALUATION

Beyond API-based evaluation, we conducted an anonymous user study with 30 participants manually
scoring 150 long-form narrative audio clips from 50 instructions across three methods. As shown
in Table 8, AudioStory consistently outperforms competitors in instruction-following, consistency,
quality, and reasoning. We compute Cohen’s kappa to measure agreement across methods and
samples, with results in Table 9 showing strong alignment between human and Gemini scores,
confirming the reliability of the Gemini-based evaluation. Further details are provided in Appendix C.

6 CONCLUSION

In this paper, we tackle the key limitations of existing methods in generating long-form narrative
audio in complex scenarios. We introduce AudioStory, a unified understanding-generation model
endowed with robust multimodal instruction-following and reasoning. To achieve this, we design
an interleaved reasoning generation process, a decoupled bridging mechanism, and a progressive
training strategy. Additionally, we present AS-10k, the first benchmark for long-form narrative audio
generation, which includes fine-grained annotations of audio and audio-visual events and detailed
reasoning trajectories. Our comprehensive analyses cover reasoning forms, bridge query types,
end-to-end training strategies for LLM-DiT integration, and the collaborative dynamics between
understanding and generation, providing practical insights for future model development.

Limitations and Future Work. Our work primarily targets the natural sound and music domains,
which require further research. Future efforts will explore incorporating speech, aiming for a unified
model across all auditory domains. Moreover, since multimodal instruction for long audio generation
is still underexplored, future work can integrate more sophisticated designs, such as using multiple
audio generators to address overlapping audio segments. We also plan to blend text and audio
generation within the same autoregressive multimodal LLM.
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APPENDIX

A IMPLEMENTATION DETAILS

We provide detailed hyper-parameters of three training stages in Table 10. In Stage-II and Stage-III,
the ratio of generation and understanding samples is 2:1. For LLM, we choose Qwen2.5-3B-Instruct
and only tune LoRA to avoid overfitting. TangoFlux is employed as the initialization of DiT for audio
generation. For the weights of different loss functions, we set the weight of L. for TS regression,
Liext for next-token-prediction and Ly, for DiT as 5, 2 and 1, respectively.

Table 10: Detailed hyper-parameters of three training stages. Here, “A” denotes audio, “proj.” and
“Ir” are short for the projector and learning rate. We use 16 GPUs and report the overall batch size.

. i Stage-I
Dimension Stage-II Stage-III
‘Warm-up Whole

Task A—T5 A—TS5 with DiT. A—TS5 with DiT + Und. A—TS5 with DiT + Und. + Reasoning

X I+AudioSetCaps (Q&A), VGGSound (Q&A),
Dataset AudioCaps, WavCaps AS-10k

MusicCaps, Auto-ACD

Model Trainable | LLM, proj. (Temantic) | LLM, all proj., DiT LLM, all projectors, DiT LLM, all proj., DiT
odel

Frozen Whipser, DiT Whisper Whisper Whisper

batch size 512 256 Gen.: 8, Und.: 16 Gen.: 8, Und.: 16
Training
Ir le-3 le-4 LLM (2e-5), DiT (5e-5)

Config

epoch 25 25 10 10

B TRAINING DATASETS

The training dataset comprises the understanding dataset, single-audio generation and multi-audio
(long-audio) generation datasets. For the understanding dataset, we integrated AudioSetCaps (Gem-
meke et al., 2017), VGGSound (Chen et al., 2020), MusicCaps (Agostinelli et al., 2023), and
Auto-ACD (Sun et al., 2024), converting their captions into QA format. Additionally, we incorporated
AudioSetCaps-QA and VGGSound-QA datasets, resulting in 1M audio-QA pairs in total. For the
single-audio generation dataset, we combined AudioSetCaps, VGGSound, MusicCaps (Agostinelli
et al., 2023), and Auto-ACD, resulting in 700k audio-caption pairs. For the multi-audio generation
dataset, we curated the AS-10k dataset, with details provided in Sec. 3. In Stage-I, we train the
model on we train the model on single-audio generation datasets. Stage-II further incorporates the
audio understanding dataset beyond Stage-1. As for Stage-III, our model is trained using multi-audio
generation as well as understanding datasets.

C HuMAN EVALUATION

Evaluation protocol. Beyond API-based evaluation, we further conducted an anonymous user study
on our model and baseline models. We employ 30 participants to manually score a total of 150
audio clips, generated from 50 instructions, by our model, Tangoflux, and Next-GPT, respectively.
The participants listened to the long-form audio generated by different models based on the same
instruction. They scored the audio on four criteria: instruction-following, consistency, generation
quality, and reasoning logic. The scores were averaged to compute user consistency. As shown in the
Table 8, AudioStory consistently outperforms other competitors in terms of instruction-following,
consistency, quality and reasoning logic.

Correlation between Gemini-based & human-based evaluation. Qualitatively, human evaluation
results show our model performs the best among all three models, with the LLM + TTA model
outperforming the LLM + any-to-any model. This aligns with the results from our Gemini evalua-
tion. Quantitatively, we analyze the correlation between the human subjective and Gemini-based
objective evaluation. We calculate Cohen’s kappa coefficient between these two evaluation protocols.
Specifically, we compute the correlation across two dimensions, i.e., different comparative methods

13
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2 —— -
il N

“7 Instruction: @ -
Generate a classic Tom and Jerry style soundtrack for a moment in the cartoon that m @ Audio
includes Snoopy being awakened by Woodstock. Woodstock then tries to bury a sack, but - Story
Snoopy ignores him. Later, Snoopy struggles with a garden hose, which inflates and blasts

him with water. After cautiously reappearing, Snoopy is again surprised and blasted by the
hose, this time emerging from his own doghouse. The total duration is 41.6s.

A(9)-Generated Reasoning:

The caption can be divided into five points.\n\n1. **Initial Wake-Up: ** [0.0s — 5.1s] \n - **Story Detail:** Snoopy is awakened from a deep sleep near his snuffing
fire.\n - **Derived Sound Effects:** Deep chuckle, enthusiastic 'Ahal’, toffee toot, sigh of relief.\n\n2. **Woodstock's Burial Attempt:** [5.1s — 19.5s] \n - **Story
Detail:** Woodstock tries to bury a sack, causing Snoopy to wake up.\n - **Derived Sound Effects:** 'Ooh' from Snoopy, rustling of sack, brief jump.\n\n3. **First
Water Blaster Incident:** [19.5s — 26.8s] \n - **Story Detail:** A hose inflates and blasts Snoopy with water.\n - **Derived Sound Effects:** 'Ah!' from Snoopy, air-
filled hose blowing.\n\n4. **Cautious Reappearance:** [26.8s — 38.2s] \n - **Story Detail:** Snoopy cautiously reappears after being hit by the hose.\n - **Derived
Sound Effects:** Brief reaction, sudden launch from hose, explosive water spray.\n\n5. **Final Appearance:** [38.2s — 41.6s] \n - **Story Detail:** Snoopy
emerges again from his doghouse, surprised by another blast.\n - **Derived Sound Effects:** 'Ah!', sudden launch from hose, forceful water spray.

J9 Generated Caption:
+ Asoft and gentle orchestral score typical of classic cartoons, featuring strings, woodwinds, brass, and percussion. It synchronizes with the action, enhancing
comedic timing, tension, and drama, supporting both characters and musical gags. <timestamp>5.1<\timestamp>
« The orchestral score slows, becoming suspenseful with pizzicato strings or light woodwinds, subtly highlighting the comedic tension of WoodStorck removing
the sack from Snoopy's mouth. <timestamp>14.4<\timestamp>
+ Asharp, dramatic brass hit emphasizes Snoopy‘s sudden awakening and struggle. Tense music builds anticipation as he descends the hose, with strings and
brass more prominent, reflecting his i 1t. <tir >7.3<\i np>

+ The music shifts to a lighter, faster - paced melody, accompanied by woodwinds or percussion, then suddenly takes on a comical tone, reflecting Snoopy’s
prank by the water pipes. <timestamp>7.4<\timestamp>

+ Adramatic crescendo leads to a massive orchestral explosion! Crashing cymbals, a loud timpani roll, and a frantic string glissando accompany Snoopy's
watery, chaotic exit from the house. <timestamp>3.4<\timestamp>

Figure 4: Case of naive video dubbing: First, we extract captions from the video, then write the
extracted captions as instructions and send them to AudioStory for audio generation.

in Table 8 and different test samples. The results in Table 9 indicate a high correlation between the
human and Gemini scoring distributions across various models and samples, validating the correctness
of the proposed Gemini-based evaluation.

D MORE QUALITATIVE CASES

Instructional long-form audio generation and continuation. We present more cases for long-
form audio generation. Our model could automatically derive the duration of each audio segment to be
generated, as shown in Fig. 5, Fig. 6 and Fig. 7. One could observe that AudioStory could accurately
determine the number of events based on the instruction and provide precise descriptions for each
audio segment, including both the events themselves and their associated sound effects. Finally,
AudioStory can precisely reason out the caption for each segment and generate the corresponding
audio clips accordingly.

The case of Tom&Jerry. Given an instruction for generating music of Tom&lJerry style, our model
can generate sound that not only aligns with the musical style of the Tom&Jerry cartoon but also
vividly reflects the characters’ emotions and storyline, exhibiting strong generalization capabilities.

E EXTENDED APPLICATIONS

Video dubbing. While previous experiments have focused on text-based instructions, we now
extend the application of AudioStory to a more practical scenario: video dubbing. This enhancement
enables the model to thoroughly analyze video content, reason about the sequence of events and

14



Under

review as a conference paper at ICLR 2026

Instructional Audio Generation ~

-,

or)

:Generated Reasoning:

performs energetically outdoors, introduces themselves as 'yoh!', and requests
tips. The total duration is 41.8 seconds.

Instruction: [
i Audi
Construct a detailed soundscape that tells the story of a young beatboxer @ S:orl;)

The caption can be divided into four points:\n\n1. [0.0, 2.5]\n **Story Details:** The beatboxing begins indoors and transitions
outdoors with a performer giving a shout.\n **Sound Effects:** Energetic beatboxing, voice saying \"Yoh!\", camera movement
indicating a change in location.\n\n2. [2.5, 21.5]\n **Story Details:** A young man starts beatboxing complex rhythmic patterns,
intensifies with \"skrrt\", and ends with a punchline.\n **Sound Effects:** Complex rhythmic beatboxing, intense \"skrrt\", loud breaths,
informal ending statement.\n\n3. [21.5, 27.5]\n **Story Details:** Audience responds with laughter and brief verbal appreciation, and
the performer clarifies in a friendly manner.\n **Sound Effects:** Laughter, verbal appreciation, friendly clarification in response to an
audience member's request.\n\n4. [27.5, 41.8]\n **Story Details:** Performer thanks the audience, introduces as Yoh\\", asks for tips,
and expresses excitement.\n **Sound Effects:** Grateful thank-you, friendly self-introduction, direct question, background noise from

phone call.

Generated Caption:

Energetic beatboxing performance outdoors, abruptly shifting to a voice shout of \"Yoh\" as the camera pans, indicating a move
outside. <timestamp>2.5</timestamp>

A young man enthusiastically beatboxes, creating complex and rapid rhythmic patterns that intensify with sharp 'skrrt' sounds,
followed by loud, audible breaths, ending with a punchline-like statement. <timestamp>19.0</timestamp>

Audience laughter followed by a brief, appreciative word from the performer, \"Okay.\" <timestamp>6.0</timestamp>

The performer thanks the audience, introduces themselves as 'Yoh!" and explains they don't have a YouTube channel, then asks for
tips directly in a friendly tone. <timestamp>14.3</timestamp>

%
Figure 5: Long-form audio generation case #2.
Instructional Audio Generation ~

<+ Instruction:

Construct a detailed soundscape that tells the story of an instructor
demonstrates common push technique errors in table tennis, emphasizing
power, wrist angle, and swing size issues. The total duration is 43.6 seconds.

:Generated Reasoning:

The caption can be divided into 4 points.\n\n1. [0.0, 11.8]\n**Story Details**: Instructor demonstrates a weak push technique leading
to hitting the net.\n**Sound Effects**: Instructor's voice explaining the issue, followed by a ball hitting the net.\n\n2. [11.8,
24.8]\n**Story Details**: Instructor emphasizes the need for an upright wrist during the push.\n**Sound Effects**: Consistent, fast ball
hitting sounds while demonstrating wrist movement.\n\n3. [24.8, 37.5]\n**Story Details**: Demonstrates a weak push by hitting the
table and foot repeatedly.\n**Sound Effects**: Loud ball hitting sounds, followed by a ball hitting the foot, and repeated crashing on
the table.\n\n4. [37.5, 43.6]\n**Story Details**: Fails miserly by hitting the ball with the paddle.\n**Sound Effects**: Instructor
exclaiming an error, single dramatic, high-pitched paddle-ball impact sound.

J9 Generated Caption:

An instructor explains that pushing this way lacks power and emphasizes an upright wrist technique to prevent the ball hitting the net.
The ball does not.go in the hole effectively. <timestamp>11.8</timestamp>

The instructor discusses the importance of using an upright wrist during the execution of a push, emphasizing how it affects the ball's
direction while demonstrating hand movement slowly at a consistent speed. <timestamp>13.0</timestamp>

The instructor repeats a sequence three times, ending with a weak push. A loud banging sound from the ball on the table, followed
by a dull thud where the ball hits the foot, accompanied by repeated crashing sounds. <timestamp>12.7</timestamp>

The instructor exclaims with surprise and amusement, \"Oh my god, you hit the ball with the paddle\" followed by a single, dramatic,

high-pitched paddle-ball impact sound. <timestamp>6.1</timestamp>

Figure 6: Long-form audio generation case #3.
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Instructional Audio Generation ~

“-Instruction: (o
Design a descriptive audio capturing the essence of two men perform a melancholic song, @ Audio
sharing a lighthearted moment, concluding with smiles. The total duration is 43.5 seconds. m = Story

- Generated Reasoning:

The caption can be divided into 3 points.\n\n1. [0.0, 14.0]\n **Story Details**: Two men start performing a melancholic song.\n **Sound
Effects**: Gentle, melancholic piano melody.\n\n2. [14.0, 36.0]\n **Story Details**: One man sings about loss, creating a reflective mood.\n
**Sound Effects**: Earnest singing with steady piano music.\n\n3. [36.0, 43.5]\n **Story Details**: A lighthearted moment with smiles
concludes the performance.\n **Sound Effects**: Brief pause in singing, followed by laughter and piano continuation.

Jd Generated Caption:

+ Gentle, slightly melancholic melody played on the piano, creating a calm and anticipatory atmosphere. <timestamp>14.0</timestamp>

* A man sings earnestly about loss and remembrance, with lyrics mentioning 'yesterday morning' and 'you were gone', accompanied by
steady piano music creating a reflective mood. <timestamp>22.0</timestamp>

+ Singer briefly falters on the lyrics, followed by the sound of piano continuing. Laughter and lighthearted murmurs are exchanged between
the singer and piano player before the piece concludes. <timestamp>7.5</timestamp>

Figure 7: Long-form audio generation case #4.

Video Dubbing (video-to-text-to-audio) ™

7 Instruction:
Generate a classic Tom and Jerry style soundtrack for a moment in the cartoon that
includes Snoopy being awakened by Woodstock. Woodstock then tries to bury a sack, but
Snoopy ignores him. Later, Snoopy struggles with a garden hose, which inflates and blasts
him with water. After cautiously reappearing, Snoopy is again surprised and blasted by the
hose, this time emerging from his own doghouse. The total duration is 41.6s.

X 2 - Generated Reasoning:
The caption can be divided into five points.\n\n1. **Initial Wake-Up: ** [0.0s — 5.1s] \n - **Story Detail:** Snoopy is awakened from a deep sleep near his snuffing
fire.\n - **Derived Sound Effects:** Deep chuckle, enthusiastic 'Aha!’, toffee toot, sigh of relief.\n\n2. **Woodstock's Burial Attempt:** [5.1s — 19.5s] \n - **Story
Detail:** Woodstock tries to bury a sack, causing Snoopy to wake up.\n - **Derived Sound Effects:** 'Ooh' from Snoopy, rustling of sack, brief jump.\n\n3. **First
Water Blaster Incident:** [19.5s — 26.8s] \n - **Story Detail:** A hose inflates and blasts Snoopy with water.\n - **Derived Sound Effects:** 'Ah!' from Snoopy, air-
filled hose blowing.\n\n4. **Cautious Reappearance:** [26.8s — 38.2s] \n - **Story Detail:** Snoopy cautiously reappears after being hit by the hose.\n - **Derived
Sound Effects:** Brief reaction, sudden launch from hose, explosive water spray.\n\n5. **Final Appearance:** [38.2s — 41.6s] \n - **Story Detail:** Snoopy
emerges again from his doghouse, surprised by another blast.\n - **Derived Sound Effects:** 'Ah!', sudden launch from hose, forceful water spray.

J9 Generated Caption:

« Asoft and gentle orchestral score typical of classic cartoons, featuring strings, woodwinds, brass, and percussion. It synchronizes with the action, enhancing
comedic timing, tension, and drama, supporting both characters and musical gags. <timestamp>5.1<\timestamp>
The orchestral score slows, becoming suspenseful with pizzicato strings or light woodwinds, subtly highlighting the comedic tension of WoodStorck removing
the sack from Snoopy's mouth. <timestamp>14.4<\timestamp>
« Asharp, dramatic brass hit emphasizes Snoopy's sudden awakening and struggle. Tense music builds anticipation as he descends the hose, with strings and

brass more prominent, reflecting his predi 1t <ti 7.3<\Mi

+ The music shifts to a lighter, faster - paced melody, accompanied by woodwinds or percussion, then suddenly takes on a comical tone, reflecting Snoopy’s
prank by the water pipes. <timestamp>7.4<\timestamp>

« Adramatic crescendo leads to a massive orchestral explosion! Crashing cymbals, a loud timpani roll, and a frantic string glissando accompany Snoopy's
watery, chaotic exit from the house. <timestamp>3.4<\timestamp>

\l

Figure 8: Case of naive video dubbing: First, we extract captions from the video, then write the
extracted captions as instructions and send them to AudioStory for audio generation.

their corresponding timestamps, and generate synchronized audio. An initial approach is to employ
Gemini-2.5-pro to generate a caption summarizing the entire video, followed by instruction-based
audio generation, as illustrated in Fig. 8. Specifically, given the video without audio, we first generate
the visual captions and convert them into the form of instructional language. These instructions are
subsequently fed into our model, i.e., AudioStory, to generate the audio. As a whole, we achieve
video dubbing in this multi-step process, i.e., video—visual caption—instruction—audio. Here, we
provide a case of Snoopy. We use our model AudioStory trained for Tom&Jerry. As in Fig. 9,
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eo Dubbing ( video-to-au

“# Multimodal Instruction:

Please watch a video and identify the temporal consecutive key events or scene changes in the video, and generate a Tom & Jerry-style
background soundtrack to the entire video.

Generated Reasoning:
The storyline is mainly about: Jerry escapes from tom at a dining table using quick, clever maneuvers and using a spoon and a pot lid to knock Tom
unconscious, amidst dramatic orchestral music. The video can be divided into 4 key events. \n1. Jerry’s Arrival [0.0, 1.5]. **Story Details**: Jerry tiptoes
across a dinner table. **Sound Effects**: Light, sneaky pizzicato strings and woodwinds. \n2. Tom’s Ambush [1.5, 6.5]. **Story Details**: Tom, under a
cloche, tries to eat Jerry. **Sound Effects**: A sudden orchestral crash and tense music. \n3. Jerry‘s Counter [6.5, 9.5]. **Story Details**: Jerry ties Tom’s
tongue and hits him. **Sound Effects**: Comical xylophone runs and a sharp percussive hit. \n4. Pain and Escape [9.5, 13.5]. **Story Details**: Tom is in
pain; Jerry leaps away. **Sound Effects**: Dizzying slide whistle and a triumphant flourish.

J3 Generated Caption:
Playful pizzicato strings and a sneaky clarinet melody. A light, tiptoeing rhythm matches Jerry's steps, creating a mischievous and anticipatory atmosphere

as he explores the grand dinner table. <timestamp>1.5<\timestamp>
A sudden, loud orchestral crash with blaring brass. The music turns into a tense, dramatic chase theme, reflecting Jerry's shock and Tom's menacing,

wide-mouthed ambush under the cloche. <timestamp>5.0<\timestamp>
Fast-paced, comical xylophone runs and a slide whistle for the tongue-tying. A sharp percussive hit syncs with the spoon strike, creating a chaotic,

slapstick atmosphere for Jerry's clever counter-attack. <timestamp>3.0<\timestamp>
A dizzying, descending slide whistle and wobbling brass notes for Tom's pained reaction. The piece concludes with a triumphant, quick string flourish,

celebrating Jerry's successful and comical escape. <timestamp>4.0<\timestamp>

/

Figure 9: Case of video dubbing: We input both the video and the instruction into the model, which
parses the narrative into segments, extracts story details with corresponding audio elements, and
sequentially generates aligned audio clips.

giving basketball lessons to the players. The total
duration is 36.6 seconds.

“+Instruction: la
Understand the input audio, infer the subsequent @ Audio
events, and generate the continued audio of the coach ~ + - Story

Z@Ecenerated Reasoning:

Based on the known event of \“a man speaking with an informative and engaging tone, accompanied by the sound of basketball in the background\’, we can
infer that an instructor is explaining basketball moves, with the sound of shoes ing on the court ing their practical use. Following this, we
can further infer that the coach is guiding players through these techniques, including sudden quick jabs and shots, evidenced by sounds like ‘thwack’ and
‘ping’. Building on the first two captions, we can finally infer that the coach is intensely practicing ball handling and shooting skills, accompanied by gentle
friction sounds, indicating a continuous and focused interaction with the basketball.

J9 Generated Continuous Caption:

« The whistle blows as the coach calmly describes the next move or technique, accompanied
by the sound of shoes squeaking on the floor.<timestamp>13.9</timestamp>

+ Shoes make rapid squeaking sounds on the court floor. The sharp, loud thud of the
basketball echoes clearly, with a rhythmic “bang” each time the ball hits the
rim.<timestamp>12.6</timestamp>

« The coach continues guiding the players, with the sounds of shooting and shoes sliding on
the court continuing without pause.<timestamp>4.5</timestamp> )

.

Figure 10: Qualitative cases of audio continuation #1.

the video is divided into four distinct segments, with the generated audio closely aligning with the
Tom&lJerry style, effectively reflecting Snoopy’s emotions, e.g., the calmness of waking up, the
surprise while playing with the water pipes, and the humorous tone at the end. Notably, for any given
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Audio Continuation ~

“»Instruction:

2
Understand the input audio, infer the subsequent @ Audio
events, and generate the continued audio of three bulls ~ + = Story
fight intensively in a muddy pen, then abruptly stop,

resulting in a calm atmosphere. The total duration is
45.8 seconds.

@: Generated Reasoning:

Based on the known event—a clear female voice commanding the bulls to stop fighting—it can be inferred that their intense physical conflict continues,
evident from their deep growls, snorts, and heavy collisions. This power struggle, accompanied by heavy dragging and wrestling on the muddy ground, shows
the bulls are resisting her command.\n\nThe battle appears unchanged, with the sounds of growls, snorts, and hoof friction continuing, emphasizing the bulls’
ongoing struggle for dominance.\n\nThe third section logically continues with the same auditory theme, with frequent growls, snorts, and heavy hoof clashes,
indicating the fight is still fierce and unresolved.\n\nFinally, the deep growls, snorts, and hoof friction maintain the consistent audio theme, highlighting the bulls’
continued struggle on the muddy ground.

Jd Generated Continuous Caption:

« Aclear female voice calls out, amid frequent deep grunts, breathy snorts, and dull thuds
from bulls fighting. The heavy shuffling and scuffling on muddy ground convey their
immense power and dominance.<timestamp>12.6</timestamp>

« Frequent guttural grunts and breathy snorts from the bulls punctuate their fight, alongside
heavy shuffling, scuffling hooves, and intermittent dull thuds. The soundscape conveys
immense power, aggression, and the physical struggle for dominance.
<timestamp>8.9</timestamp>

+ Deep guttural grunts, breathy snorts, shuffling hooves, and dull thuds punctuate the bulls'
intense physical struggle for dominance on muddy ground.<timestamp>18.4</timestamp>

Figure 11: Qualitative cases of audio continuation #2.

video, AudioStory could generate soundtracks that match the musical characteristics of Tomé&Jerry
in a zero-shot manner, which is a unique and interesting application of our model.

However, this method is not conducive to producing audio that aligns closely with the visual content.
Furthermore, the model is designed to accept both video data and instructions as input. The LLM
performs reasoning on the video and produces bridging tokens. During the reasoning phase, the LLM
first understands the overall content of the video, then sequentially breaks it down into events based
on their temporal order. It infers the specific visual details and corresponding audio information for
each event. Technically, we replace the LLM with a pretrained video MLLM (i.e., Qwen2.5-VL (Bai
et al., 2025)) and jointly train the LLM and audio generator using LoRA tuning. The training data is
from the animated sound partition of AS-10k. We provide the video dubbing results in Fig. 9.

Audio continuation. Given an audio segment and an instruction, our model performs audio
continuation. AudioStory first reasons about the content of the subsequent audio to be generated,
then proceeds with segment-by-segment generation. The concatenated results are shown in Fig. 10
and Fig. 11.

F MORE EXPLORATIONS OF RESIDUAL TOKENS

For residual tokens, we not only explore their forms and training strategies, but also investigate
hyperparameters such as their quantity and fusion methods with semantic tokens.

The number of residual tokens. Here, we study the impact of different numbers of residual tokens,
and report both single- and long-form audio generation, as in Table 1 1. For single-audio generation,
too few residual tokens lead to degraded performance. We attribute this to two factors: less low-level
complementary information is captured. Additionally, residual tokens help mitigate conflicts between
the LLM and the DiT, while too few tokens weaken this effect. Conversely, an excessive number
of tokens also degrades performance, because they increase the difficulty for the LLM to regress.
Similar patterns could also be observed in the long-form scenario. Overall, 8 residual tokens are most
suitable for both single and long audio scenarios.

Merging mechanism of residual tokens. For the merging mechanism between semantic and
residual tokens, we also conduct in-depth explorations. Here, we mainly consider concatenation and
cross-attention. The results of long-form audio generation are reported in Fig. 12. From the results,
one can observe that compared to concatenation, cross-attention ensures more effective fusion of the
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Table 11: Detailed ablations of the number of residual tokens

# Tokens Single Audio Long Audio
FD | FAD | KL | Consistency T
1 4.01 5.02 0.93 32
4 3.64 3.95 0.96 39
8 1.53 2.29 0.51 4.1
16 3.51 3.75 0.94 39

semantic tokens generation results

sl at Al el esin bk e aska ik |

Sample A

ek

Sample B |

Figure 13: Visualizations of residual tokens.

two features. Additionally, zero-initializing the final layer of the cross-attention module is necessary
to prevent excessive disturbance to the semantic tokens at the beginning of training.

G WHAT DO RESIDUAL TOKENS LEARN?

To thoroughly explore the effect of residual tokens, we pro-

vide visualizations in Fig. 13 (left). Specifically, the DiT

takes only the residual tokens as the input and generates ~_'° ot an)
its corresponding audio. We subsequently concatenate all 3 rossratn (zere)
audio clips to constitute the whole long-form audio. The = §.s

results reveal that for the same audio sample, the residual  g2o0

tokens capture temporally consistent low-level informa- s
tion, primarily reflecting coherence across different audio 3"
clips. In contrast, for different samples, the learned resid-
ual characteristics vary distinctly. By contrast, semantic
tokens learn the underlying global semantics of the input
audio and represent the progression of events over time,
as illustrated in Fig. 13 (right).

FD | FAD |

Figure 12: Ablations of token merging.

H AS-10K BENCHMARK

H.1 DATASET CONSTRUCTION PIPELINE

The dataset construction pipeline is illustrated as follows. First, we filter videos to select those
containing continuous audio events with visually grounded storylines. Next, in the event parsing
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Ve Annotation prompt

/{ UnAV annotation prompt ] ~

Please watch a video clip and provide a detailed analysis of the video, aiming to generate high-quality input for
subsequent text-to-speech synthesis. The results should be returned in JSON format and should include the following
sections: (1) Main Event Analysis: Identify key events or scene changes in the video. Output the event's timestamp
(start and end timestamps, two decimal places) and description. The description should integrate visual and audio
information, vividly depicting the scenario and feelings at the time the event occurs. (2) Sound Effect Analysis: Identify
sound effects (non-musical) in the video. Output the timestamp (start and end timestamps, two decimal places), type
(e.g., footsteps, door closing, bird chirping), sound_description (description of the sound), and visual_context
(description of the related visual scene) for each sound effect. The sound_caption must be detailed, vivid, and
expressive, capturing the characteristics, quality, source, intensity, duration of the sound, and any emotions or
environmental information it may convey, to facilitate high-quality sound synthesis. The visual_context should
succinctly describe the visual imagery directly related to the sound effect. (3) Music Analysis: Identify background
music or significant musical segments in the video. Output the timestamp (start and end timestamps, two decimal
places) , type (style or genre), sound_description (description of the sound), and visual_context (description of the
related visual scene) for each music segment. The sound_caption should detail the characteristics of the music,
including melody, rhythm, instruments used, emotional atmosphere, and how it complements the visuals, also aimed
at high-quality sound synthesis. The visual_context should succinctly describe the visuals present when the music
occurs.
J

/{ Tom & Jerrry annotation prompt } ~

Please watch a video clip of 'Tom and Jerry' and provide a detailed analysis of the video, aiming to generate high-
quality input for subsequent text-to-speech synthesis. The results should be returned in JSON format and should
include the following sections: (1) Main Event Analysis: Identify key events or scene changes in the video. Output the
event's timestamp (start and end timestamps, two decimal places) and description. The description should integrate
visual and audio information, vividly depicting the scenario and feelings at the time the event occurs. (2) Sound Effect
Analysis: Identify sound effects (non-musical) in the video. Output the timestamp (start and end timestamps, two
decimal places), type (e.g., footsteps, door closing, bird chirping), sound_description (description of the sound), and
visual_context (description of the related visual scene) for each sound effect. The sound_caption must be detailed,
vivid, and expressive, capturing the characteristics, quality, source, intensity, duration of the sound, and any emotions
or environmental information it may convey, to facilitate high-quality sound synthesis. The visual_context should
succinctly describe the visual imagery directly related to the sound effect. (3) Music Analysis: Identify background
music or significant musical segments in the video. Output the timestamp (start and end timestamps, two decimal
places) , type (style or genre), sound_description (description of the sound), and visual_context (description of the
related visual scene) for each music segment. The sound_caption should detail the characteristics of the music,
including melody, rhythm, instruments used, emotional atmosphere, and how it complements the visuals, also aimed
at high-quality sound synthesis. The visual_context should succinctly describe the visuals present when the music
occurs.
J

Figure 14: AS-10k annotation prompts of Gemini-2.5-pro.

stage, we use Gemini-2.0-flash to decompose each video into multiple key audio events, each
annotated with a timestamp, audio caption, and visual caption, as in Fig. 14. Finally, we perform
instruction generation: based on fine-grained textual annotations, GPT-4o is used to generate diverse
narrative instructions, accompanied by reasoning steps including task decomposition, audio event
timeline planning, scene transitions, and emotional tone inference.

H.2 BENCHMARK CONSTRUCTION

Dataset prompt. The constructed dataset consists of instructions, reasoning, and audio clips,
each with its caption and duration. Specifically, after parsing videos into key audio events using
Gemini-2.0-flash as described in Sec. 3, we obtain annotations for each event including timestamps,
audio captions, visual captions, and audiovisual event captions. For instruction generation, we use
audio-visual event captions as the source input. A prompt, shown in Fig. 15, is used to summarize the
whole caption of the full audio, which is then incorporated into a predefined instruction template to
produce the final instruction. For reasoning generation, we provide GPT-4o0 with the whole caption
along with the individual captions for each audio clip. GPT-4o is then prompted to infer the reasoning
structure. The reasoning consists of two levels: a high-level decomposition indicating how the whole
caption can be divided into several parts, followed by detailed descriptions for each part, including
the corresponding events and sound-producing content. An example is illustrated in Fig. 16.
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/

Annotation prompt

/-[ instruction prompt ] N

I will provide you with “Main Event Analysis”, which has multiple descriptions in chronological order. Please
combine the captions in each description while considering the timestamp information, and summarize them
into a brief story summary, namely whole caption. Note: Only output the final whole caption within 20 words.

r{ reasoning prompt] N

I will provide you with an input in JSON format, containing a "Sound Analysis" with multiple "sound
description” in chronological order. Meanwhile, | will also provide you with a "whole_caption", representing
the complete storyline summarized from these descriptions.

Imagine that you are given only the whole caption and required to generate a detailed story description. You
need to output the reasoning process. When doing so, you should not directly rely on the given
"sound_description". You can make reasonable inferences and deduce the details of the story events and
details, then infer the sounds objects and events, ensuring that the expanded sound details align with the
given "sound description".

The reasoning process could be divided into several points (same as the number of given "sound description"
in "Sound Analysis"). The format MUST be: first, state how many points the caption can be divided into, and
then elaborate on each point. Each point should follow the reasoning style explicitly with clear inferences and
logical conjunctions, and state the story details and the derived sound effects. Each point MUST be within 15
words.

- J
- J
Figure 15: AS-10k annotation prompts of GPT-4o.

-

Instruction

I'd like an extended audio track with rich details of a soulful singer receives loud applause and praise from the
audience and a man, celebrating her powerful performance. The total duration is 35.5 seconds.

Reasoning

The caption can be divided into 3 points:\n\n1. **[0.0, 11.5]**\n - **Story Details**: The singer delivers a
powerful and soulful performance.\n - **Sound Effects**: Intense singing, live band music.\n\n2. **[11.5,
21.5]""\n - **Story Details**: Performance ends; audience erupts into applause and cheers.\n - **Sound
Effects**: Applause, cheers.\n\n3. **[21.5, 35.5]**\n - **Story Details**: A man joins, congratulates, praises the
singer on stage; audience continues cheering.\n - **Sound Effects**: Amplified voice of man, applause,
cheers.

Audio Clips

Caption 1

A young woman delivers a powerful and soulful vocal performance, singing with intense emotion and
impressive vocal runs, accompanied by a live band including a keyboardist and a
guitarist.<timestamp>11.5 </timestamp>

Caption 2

The music stops abruptly as the singer hits her final note. The small audience erupts into loud,
enthusiastic applause and cheers, filling the venue with sounds of appreciation .<timestamp>10.0
</timestamp>

Caption 3

The man joins the singer on stage, congratulates her with an amplified voice, praises her talent. The
audience claps and cheers. The atmosphere is celebratory and appreciative .<timestamp>14.0
</timestamp>

Figure 16: AS-10k dataset cases.

Benchmark evaluation. Along with the curated dataset, we also construct the long-form narrative
audio generation task and its associated benchmark.
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(1) Evaluation with Gemini-2.0-flash API, assessing consistency, coherence, instruction following,
and reasoning logic. (2) Evaluation with traditional metrics to measure audio generation quality,
including FD, FAD, and CLAP score, among others.

For the Gemini-based evaluation, we design tailored scoring criteria for each metric:
(a) Consistency.
* Timbre and Sonic Cohesion Evaluate whether the primary sound sources maintain a
generally consistent timbre and unified sonic characteristics.

* Sound-Producing Entity Consistency Assess whether the implied sound-producing entities
remain consistent, or if changes feel natural and logical within the audio.

* Acoustic Environment Consistency Evaluate the background ambience, reverberation, and
spatial impression for overall consistency or reasonable progression.

* Transition Smoothness Assess whether the transitions between segments are smooth and
free of jarring disruptions..

(b) Coherence.

* Intentional Transitions Check whether transitions between segments are smooth, purpose-
ful, and naturally connected.

* Dynamic and Emotional Flow Assess if the dynamic and emotional progression feels
consistent or evolves logically, without unjustified sudden shifts.

* Tempo and Textural Compatibility Evaluate whether tempo, rhythm, and sonic textures
between segments are compatible and blend cohesively.

* Transition Smoothness Judge if segment connections are fluid, without abrupt or disjointed
(c) Instruction following.

* Overall Semantic Alignment Evaluate whether the generated audio broadly reflects the
intended scene, actions, and atmosphere described in the instruction. Minor differences are
acceptable if the main idea remains clear.

* Key Element Presence Verify whether the important sound-producing entities, actions, and
environmental elements mentioned in the instruction are reasonably represented. Missing
a few non-central elements is acceptable if key parts are present. Additional sounds not
specified in the instruction are acceptable if they logically fit the scene and do not disrupt
coherence.

* Event Sequence and Logical Development Assess whether the overall event progression
is reasonable according to the instruction. Small deviations in order are acceptable if they
do not break the logical flow.

* Specific Sound Detail Accuracy Evaluate whether important sound features (such as types
of sounds, tonal qualities, or intensities) are reasonably reflected. Natural variations are
acceptable as long as they do not change the overall character of the audio.

(d) Reasoning logic.
* Overall Reasoning Logic Evaluate whether the model demonstrates a coherent, logical

process in interpreting the instruction and planning the audio scene.

» Caption-Instruction Alignment Assess whether the generated audio caption accurately
reflects the instruction’s key content, sound-producing elements, and described environment.

* Event Coverage Completeness Determine whether the inferred and described audio events
fully cover the instruction’s core elements, with no major omissions.

* Semantic and Temporal Accuracy Evaluate whether the implied timeline and semantic
structure of the generated audio align with the instruction’s flow and intent.
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H.3 SINGLE-AUDIO EVALUATION DETAILS

To evaluate the audio generation model, four key metrics assess different aspects of performance:

Frechet Distance (FD) measures the statistical similarity between log-Mel spectrogram
distributions of generated and real audio, quantifying low-level spectral fidelity (e.g., pitch,
timbre) through mean and covariance comparisons in the mel-spectral domain.

Frechet Audio Distance (FAD) extends FD using high-level embeddings from a pre-trained
audio encoder (e.g., VGGish), evaluating perceptual and semantic realism by comparing
abstract features like instrument timbre, musical structure, and environmental acoustics.

CLAP Score calculates the cosine similarity between audio and text embeddings from a
cross-modal model, assessing how well generated audio aligns with semantic prompts (e.g.,
textual descriptions of sound content or context).

KL-Divergence (KL) measures the distributional dissimilarity between generated and real
audio features (spectral, latent, efc.), identifying consistency in probability distributions and
helping debug issues like mode collapse or over-dispersion in outputs. Collectively, these
metrics ensure a comprehensive evaluation of spectral realism, perceptual quality, semantic
accuracy, and distributional consistency in generated audio.
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