
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

BEYOND CORRECTNESS: HARMONIZING PROCESS AND
OUTCOME REWARDS THROUGH RL TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) has emerged as a predominant
paradigm for mathematical reasoning tasks, offering stable improvements in reasoning
ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to
distinguish flawed reasoning within correct answers or valid reasoning within incorrect
answers. This lack of granularity introduces noisy and misleading gradients significantly
and hinders further progress in reasoning process quality. While Process Reward Models
(PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from
inaccuracies and are susceptible to reward hacking.
To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective
data process curation method that harmonizes noisy, fine-grained process rewards with ac-
curate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in
the objective function (Zou et al., 2025), PROF leverages their complementary strengths
through consistency-driven sample selection. Our approach retains correct responses with
higher averaged process values and incorrect responses with lower averaged process val-
ues, while maintaining positive/negative training sample balance. Extensive experiments
demonstrate that our method not only consistently improves the final accuracy over 4%
compared to the blending approaches, but also strengthens the quality of intermediate rea-
soning steps.

1 INTRODUCTION

Verifiable rewards have spurred the widest attention recently because they can reliably improve the per-
formance on reasoning tasks with easily verifiable outcomes, such as mathematical and coding problems
(Cobbe et al., 2021; Jaech et al., 2024; Shao et al., 2024; Xiong et al., 2025b). However, since the verifiers
can only verify the outcome results, the rewards are too sparse and coarse to measure and supervise the
reasoning quality in intermediate steps. For instance, if a correct answer contains flawed logic, Outcome
Reward Models (ORMs) cannot distinguish it from a completely correct response. We present a classic
example from the training data in Table 1, which has fundamentally invalid reasoning but happens to obtain
the correct answer. Incorporating such flawed examples into the training process introduces unreliable gra-
dients, leading to significant instability and misguided learning. Moreover, the quality and interpretability of
the Chain of Thought (CoT) are crucial for the practical reasoning ability of a model, not just the accuracy
of the final answer (Zhu et al., 2025; Lyu et al., 2023; Yeo et al., 2024). The lack of faithfulness during CoT
is also observed by (Baker et al., 2025; Chen et al., 2025b), limiting its applications in areas such as LLM
safety monitoring and interpretation.

Hence, the limitation of ORMs can be partially addressed by using LLM-as-a-judge or Monte-Carlo (MC)
estimation to provide step-wise judgments or values (Wang et al., 2023; Zheng et al., 2024). However,
the cost of inferring LLM step-wise judgments or MC estimation at each iteration during online training

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Problem: There are 4 coins of 1, 2, 3, 5 cruzeiros, which weigh 1, 2, 3, 5 grams respectively. One of them is
counterfeit, differing in weight (but not known whether it is heavier or lighter). How can the counterfeit coin be
identified with the minimum number of weighings using a balance scale without weights?

Step 1: Introduction. We need to identify a counterfeit coin with an unknown weight difference from ...
Step 2 - 6: The Flawed Weighing Logic and Code.
1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and 5 grams. 2. Based on the result of the
first weighing: - If the left side is heavier, then the counterfeit coin is either 1 gram or 3 grams. - If the right side
is heavier, then the counterfeit coin is either 2 gram or 5 grams. - If both sides are equal, then the counterfeit
coin is either 2 gram or 5 grams. 3. For the second weighing, ...
Let’s illustrate this with code and ensure that the steps are correct ... output: (1, ’heavier’).
Step 7, 8, 9: Summary and Final Answer.
Here is a summary of the steps: 1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and 5 grams...
2. For the second weighing, weigh the 1 gram coin against a known genuine coin (3 grams)...
Thus, the minimum number of weighings required to identify the counterfeit coin is 2 .

Table 1: An Example of Reaching a Correct Result Through Flawed Reasoning. The proposed first weigh-
ing of {1g, 2g} (total 3g) against {3g, 5g} (total 8g) is fundamentally invalid. A balance scale requires
comparing groups of equal nominal weight. Because this weighing is unbalanced, all conclusions drawn
from it are baseless. The final answer is correct but is completely unsupported by the fallacious reasoning.

is so high. Hence, it is inefficient and expensive to infer the step-wise scores or values for online training.
Alternatively, an efficient solution is to use the pre-trained Process Reward Models (PRMs) (Lightman et al.,
2023; Zhang et al., 2025). However, applying these models to the online training process often suffers from
misspecification and distribution shift due to the limitations of offline training data. Especially in boundary
cases where the policy encounters difficult problems and produces rarely seen responses, PRMs often fail to
judge them correctly, thus leading to severe reward hacking (Michaud et al., 2020; Tien et al., 2022). Even if
some works (Zha et al., 2025; Cui et al., 2025) attempt to co-train the policy and PRMs online, they can only
train in implicit ways such as using implicit generative reward or aligning process rewards with outcomes.

Although numerous works have made enormous efforts to train PRMs offline or online, the problem of
effectively coordinating PRMs with outcome-verifiable rewards remains largely underexplored. Existing
approaches typically combine process and outcome rewards in a simple weighted manner (Zha et al., 2025;
Cui et al., 2025; Zou et al., 2025), which is vulnerable for reward hacking due to the noises and misspecifi-
cation in PRMs. Therefore, in this paper, instead of developing another PRM, we focus on how to robustly
integrate a pre-trained PRM into the online training process, i.e.,

How to harmonize the accurate but coarse-grained ORMs with fine-grained but noisy Process Reward
Models (PRMs) in Reinforcement Learning (RL)?

In this work, instead of fine-tuning another PRM, we answer this question with a PRocess cOnsistency
Filtering (PROF) framework, a data curation strategy based on process-outcome consistency. PROF over-
samples more responses at training time, and then, ranks and filters the responses by the consistency be-
tween their PRMs and ORMs. Specifically, it removes samples where the process and outcome signals
conflict—such as correct responses derived from flawed reasoning, or incorrect responses that contain sound
reasoning steps. By filtering out these inconsistent samples, PROF eliminates conflicting and noisy gradi-
ents. Furthermore, observing that correct and incorrect responses have different consistency distributions,
we rank each group separately to maintain a balanced training ratio. PROF is a modular framework that can
be combined with RL algorithms like Group Relative Policy Optimization (GRPO) for online training.

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

Figure 1: Left: Visualization of PROF Algorithm 1, where the length of each rectangle represents values
of process rewards averaged over steps for each rollout. After generating n rollouts and process rewards,
PROF ranks the correct and incorrect group separately according to PRM-ORM consistency, so for the
correct group, the longer items are kept; for the incorrect group, the shorter items are kept. The number to
remove is to balance correct and incorrect ratio. Right: Fraction of flawed-reasoning responses judged by
LLM among the filtered-out correct responses.

We conduct extensive experiments to validate the improvement of PROF-GRPO on both outcome accuracy
and process reasoning quality at diverse math reasoning benchmarks using both Qwen (Yang et al., 2024)
and LLaMA (Dubey et al., 2024) models. To summarize, we highlight our key contributions as follows:

• We propose PRocess cOnsistency Filtering (PROF) to robustly integrate noisy Process Reward
Models (PRMs) with Outcome Reward Models (ORMs). Compared to the GRPO-type algorithms
that only leverage outcome rewards, our implementation PROF-GRPO can effectively distinguish
the inconsistent trajectories, such as correct answers with flawed reasoning steps or incorrect an-
swers with mostly valid steps. Moreover, unlike prior approaches that simply blend PRMs and
PRMs, our method only rely on PRMs to rank and filter rather than directly involving them into
gradients. This separation essentially avoids reward hacking and entropy collapse, thus achieving
stable performance gains throughout training.

• We conduct extensive studies to demonstrate that PROF-GRPO not only increases the final outcome
accuracy but also shapes the intermediate reasoning steps and improves the process reasoning qual-
ity. Various metrics such as Monte-Carlo estimation, LLM-as-a judge are used to validate that our
method enable models to segment reasoning trajectories into detailed and easy-to-verify steps.

• We conduct a series of ablation studies to illustrate the importance of separating the correct and
incorrect responses during the filtration. Meanwhile, we investigate various ways of calculating the
consistency and filtering, and ablate on LLaMA base models for generalization.

2 RELATED WORK

Sample Filtering in Reinforcement Learning for LLM. A key challenge in applying reinforcement
learning to LLM applications is the imperfection of reward signals. These signals stem from a learned
reward model, such as Reinforcement Learning from Human Feedback (RLHF), or are sparse, delivered
only at the end of a trajectory (e.g. RLVR). In RLHF, the reward model is trained on human-annotated pair-
wise comparisons, typically using a Bradley-Terry model (Bradley & Terry, 1952). Due to inherent human
disagreement and finite training data, the model develops shortcuts that RL algorithms can exploit (Lin et al.,
2023; Eisenstein et al., 2023) to chase for a fake high reward. Consequently, these rewards may not fully
align with the underlying intended goals, leading to reward hacking.

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Data filtering, a data curation technique, has proven effective in mitigating this issue across various LLM
applications with RL. A prominent line of work proposes filtering training pairs based on the reward gap
between the chosen and rejected responses (Yuan et al., 2024; Dong et al., 2024; Xiong et al., 2024a; Zhang
et al., 2024). The high-level intuition is that a larger reward gap indicates higher model confidence, making
these pairs less noisy and more reliable for training when the reward model is well-calibrated. Moreover,
Kim et al. (2024); Yu et al. (2025a) further rank and filter the samples by combining their rewards and
responses length during the preference learning process.

In RLVR, where rewards are sparse and only for the outcome, filtering is also helpful. For instance, the
simple rejection sampling fine-tuning (Dong et al., 2023; Chen et al., 2025a), which discards all incorrect
trajectories, often approaches the performance of more complex algorithms like GRPO (Dong et al., 2023;
Chen et al., 2025a; Xiong et al., 2025a). Other methods like (Yang et al., 2024) filter prompts by difficulty
prior to the RL training. Yu et al. (2025b) removes prompts that yield zero gradients during training and
dynamically regenerates samples. This technique is known as dynamic sampling and has been rather widely
accepted. Xiong et al. (2025a) demonstrates that prompts where all generated responses are incorrect can
significantly hurt the performance of the vanilla Reinforce algorithm. They propose an online data filtering
strategy based on the correctness reward, showing that a modified Reinforce with filtering (Reinforce-rej)
can match or exceed GRPO’s performance. Their results suggest that the advantage of GRPO compared to
Reinforce is due to the implicit data filtering mechanism from the reward shaping. Finally, Xu et al. (2025)
proposes to over-sample and keep a subset such that the variance of the rewards in the subset is maximized,
which implies that they try to balance the ratio of correct and incorrect responses for reasoning tasks.

In contrast to these methods, which primarily rely on coarse, outcome-based metrics (e.g., final answer
correctness, trajectory-level rewards), our approach introduces a more fine-grained filtering mechanism. We
leverage process-supervised reward models (PRMs) (Lightman et al., 2023) to evaluate and filter based on
the quality of intermediate reasoning steps, and their consistency with ORMs.

3 METHOD

An LLM is a policy distribution such that given a prompt x, it provides the density π(a|x) of generating each
response a. For mathematical reasoning tasks with a binary verifiable reward, there exists a verifier mapping
prompt-response pairs (x, a) to a scalar reward ro(x, a) ∈ {−1, 1}. For each prompt, we can generate a
group of responses and their corresponding responses with the verifier {(ai, ro,i)}Gi=1.

GRPO. (Shao et al., 2024) proposes this policy gradient algorithm that simplifies the Proximal Policy
Optimization (PPO) (Schulman et al., 2017) by only computing the advantage based on the outcome rewards
in a group. Instead of maintaining and updating another value network, GRPO computes the advantage by
standardizing the outcome rewards within a group:

Ai =
r(x, ai)− mean

(
{r(x, aj)}nj=1

)
std

(
{r(x, aj)}nj=1

)
+ δ

, i = 1, . . . , n,

where r(x, ai) is the reward for a given response and δ > 0 is a small constant for numerical stability. Let
at denote the t-th token of response a and a<t denotes (a1, . . . , at−1). This advantage is then incorporated
into a clipped surrogate objective function, which is optimized to update the policy from πθold to πθ:

JGRPO(θ) = Ex∼D

 1

n

n∑
i=1

1

|ai|

|ai|∑
t=1

min

(
πθ(ai,<t|x)
πθold(ai,<t|x)

Ai, clip
(

πθ(ai,<t|x)
πθold(ai,<t|x)

, 1− ϵ, 1 + ϵ

)
Ai

) .

Although this approach stabilizes the online policy optimization and is efficient, the sparse reward signal
limits further improvement on the intermediate reasoning steps.

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

Algorithm 1 Process Consistency Filter (PROF)

1: Input: Number of rollouts n, policy update size m, rollout {a1, . . . , an}, outcome rewards {ro,1, . . . , ro,n}, step
number regularization parameter λ,Hλ > 0.

2: Obtain process rewards for each rollout ai with Hi steps: (r1i , . . . , r
Hi
i) and compute trajectory-wise consistency

rproi =
[1

Hi

Hi∑
h=1

rhi − λI(Hi = 1 or Hi ≥ Hλ)
]
· ro,i. (1)

3: Divide rollouts into correct group G+ = {a+
1 , . . . , a

+
n+

} with ro,i = 1 and incorrect group G− = {a−
1 , . . . , a

−
n−}

with ro,i = −1, where n+ + n− = n.
4: Compute kept number k+ ∈ [n+], k− ∈ [n−] in each group such that K+ + k− = m and k+k− is maximized.
5: Rank G+ and G− by rpro separately, and keep the samples

K+ = {a+
i |rank(a

+
i) ≥ n+ − k+}, K− = {a−

i |rank(a
−
i) ≥ n− − k−}.

6: Output: The kept trajectories K+ ∪ K− with final kept size m.

Process Reward Model (PRM). For a response a composed of multiple reasoning steps a =
(a1, . . . , aH), we follow previous works (Zheng et al., 2024; Zhang et al., 2025; Zou et al., 2025) to use
a newline as a sign for a new step. For each step ah, the PRM rh maps it, the previous steps and the prompt
(x, a≤h) to a scalar rh(x, a≤h), where we use the short-hand notation a≤h = (a1, . . . , ah).

Our Method PROF: Process Consistency Filter Framework We propose PROF in Algorithm 1 to incor-
porate the consistency of PRMs and ORMs robustly after the rollout phase, and also present a visualization
in Figure 1. First, we generate G samples and get the outcome reward. Then, we call the PRM to gener-
ate step-wise rewards for each rollout and compute the trajectory-wise consistency score rpro by taking the
mean over the step-wise rewards and adding a step length regularization in equation 1, where λ is the regu-
larization parameter and Hλ is the threshold for the penalized step number. This regularization is to ensure
that samples with no step segments or over-long steps are discarded in the correct group. The samples are
divided into two subgroups: G+ contains the correct samples with ro = 1, and G− contains the incorrect
samples with ro = −1. Inspired by (Xu et al., 2025), the numbers to discard in each subgroup k+, k− are
calculated to maximize the outcome-reward variance of the final kept samples k+k−/(k+ + k−)

2. Since
k++k− = m is fixed, k+k− = k+(m−k+) should be maximized and the maximum is obtained when k+ is
closest to m/2 under the constraint k+ ≤ n+, k− ≤ n−. This implies that the ratio of correct and incorrect
responses should be balanced. After that, we use rpro to rank and filter the correct group and randomly filter
the incorrect group. Finally, we collect the kept m trajectories for policy update.

4 EXPERIMENTS

4.1 SETUP

We focus on mathematical reasoning tasks in this work. For online training, we use the prompt set Numina-
Math (Beeching et al., 2024) containing nearly 860k math problems with ground-truth answers ranging from
Chinese high school math exercises to US and international mathematics Olympiad competition problems.
We choose Qwen2.5-Math-1.5B-base, Qwen2.5-Math-7B-base (Yang et al., 2024) as the training base mod-
els. For the PRM, we use Qwen2.5-Math-PRM-7B (Zhang et al., 2025) to generate process rewards. More
details are provided in Appendix C. The models’ performance is evaluated on 5 benchmarks: Math500
(Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024),

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

AMC20231 and AIME20242. We mainly use average@16 for evaluation, i.e., the accuracy is averaged over
16 responses per prompt under temperature 1.0. The models are allowed to generate 4096 tokens.

4.2 MAIN RESULTS

Model Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average

Qwen2.5-Math-
1.5B-base

Base 39.9 11.4 19.1 3.5 23.6 19.5
GRPO 70.3 29.1 33.0 9.0 44.5 37.2
Blend 67.6 27.8 31.1 7.7 42.5 35.3

PROF-GRPO 73.2 30.0 36.1 9.6 49.1 39.6

Qwen2.5-Math-
7B-base

Base 42.0 12.8 19.2 12.9 30.0 23.4
GRPO 81.6 37.2 45.5 20.6 64.4 49.9
Blend 81.7 36.7 45.0 15.2 58.0 47.3

PROF-GRPO 83.1 39.0 47.8 17.5 70.9 51.7

Table 2: Performance of different algorithms across five benchmarks including Math500 (Hendrycks
et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024), AMC2023 and
AIME2024. We denote Blend-PRM-GRPO by Blend for short. We tune all the algorithms to their best
performance. The reported accuracy is average@16 under temperature 1.0.

We summarize our main results in Table 2, where Blend denotes a common way that mixes the PRM with
outcome rewards (Zha et al., 2025; Cui et al., 2025; Zou et al., 2025). Following (Zou et al., 2025), the
PRMs are averaged over steps for each response, weighted by a parameter β, and added to outcome rewards.
We use parameter β = 0.8 according to Table 5 of (Zou et al., 2025). Our main findings are as follows.

PROF-GRPO Outperforms the Baselines. As shown in Table 2, our proposed method, PROF-GRPO,
consistently outperforms GRPO and Blend-PRM-GRPO over various benchmarks. Specifically, for models
starting from Qwen2.5-Math-1.5B-base, PROF-GRPO achieves an average accuracy of 39.6%, surpassing
the standard GRPO baseline (37.2%) and the Blend-PRM-GRPO method (35.3%). A similar trend is ob-
served with the Qwen2.5-Math-7B-base model, where PROF-GRPO achieves a 51.7% average accuracy, a
significant improvement over GRPO’s 49.9% and Blend-PRM-GRPO’s 47.3%. 3 The learning dynamics
in Figure 2 corroborate these findings, illustrating that PROF-GRPO steadily maintains a consistent per-
formance advantage over both GRPO and Blend-PRM-GRPO throughout the training process. Notably,
PROF-GRPO achieves faster convergence rate and higher final accuracy than GRPO.
Filtration Method is Much More Robust than Blending. We plot the entropy loss and response length
curves of GRPO, Blend-PRM-GRPO and PROF-GRPO in Figure 2. Blending-PRM-GRPO suffers from se-
vere rewarding hacking since its entropy collapses quickly towards zero. Simultaneously, its response length
in the right figure uncontrollably increases, indicating that the model has learned to game the PRM by over-
generating verbose responses and more repetitive steps to get a higher averaged process reward. Therefore,
Blend-PRM-GRPO’s testing accuracy even falls below GRPO. In contrast, PROF-GRPO maintains gradual
and slightly faster decrease in entropy loss and controllable response length growth. This illustrates that our
filtration method effectively leverages the PRM signal while stay robust to reward hacking. We will carefully
analyze and compare the quality of intermediate reasoning steps of our method and baselines.

4.3 HOW PROF SHAPES INTERMEDIATE REASONING STEPS

Effectiveness of Consistency Filtration. To demonstrate that our algorithm effectively differentiates the
inconsistent trajectories, especially those correct answers with flawed reasoning steps, we prompt Qwen2.5-
Math-7B-base (Yang et al., 2024) to generate rollouts for 500 problems randomly selected from the training

1https://huggingface.co/datasets/math-ai/amc23
2https://huggingface.co/datasets/math-ai/aime24
3Although PROF-GRPO underperformed GRPO on AIME24 for Qwen2.5-Math-7B-base, given the dataset’s small

size of only 30 samples, the performance difference may not be statistically significant.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Figure 2: The learning dynamics of PROF-GRPO initialized from Qwen2.5-Math-1.5B-base (upper left)
and Qwen2.5-Math-7B-base (upper right) in comparison of GRPO and Blend-PRM-GRPO. The y-axis is
the average@16 accuracy and is further averaged on Math500, Minerva Math and Olympiad Bench. Entropy
loss (lower left) and response length (lower right) of the models initialized from Qwen2.5-Math-7B-base.

set, and implement the filtration in Algorithm 1. Then, the filtered-out correct responses are judged by
Claude-3-7-sonnet from Anthropic to verify whether they contain flawed steps. We use the prompt in Zhang
et al. (2025) and provide the details in Appendix C. From Figure 1, 30.1% responses among the filtered-out
correct responses are judged to possess flawed reasoning. This indicates that our methods can efficiently
distinguish a number of flawed responses and reach consensus with LLM. Furthermore, with human check-
ing those filtered-out correct responses, there are many responses with invalid or even completely wrong
reasoning steps but luckily reaching the correct answer. A typical example is presented in Table 1. However,
such flawed reasoning processes would be entirely missed by a standard ORM.

Improved Step-wise Value. To evaluate the quality of intermediate steps, we adopt Monte Carlo (MC)
estimation, a common way to estimate probability of getting to correct final answers (Wang et al., 2023;
Xiong et al., 2024a; Luo et al., 2024). For this analysis, we select problem-response pairs from the test
prompts where our method (PROF-GRPO) and GRPO both produced the correct final answer. Both models
were initialized from Qwen2.5-Math-7B-base. To estimate the value of each reasoning step, we generate
eight independent completions from that point using a temperature of 1.0, and the resulting empirical success
rate serves as the MC value. Our primary finding is that PROF-GRPO achieves significant improvement in
step-wise values compared to GRPO. In Figure 3, the average MC estimations across all five benchmarks are
consistently higher for our model. The specific improvement gaps are 9.2% on Math500, 37.4% on Minerval
Math, 15.9% on Olympiad Bench, 9.2% on AMC2023, and 11.1% on AIME2024, which are much larger
than the outcome accuracy gap in Table 2. Hence, in addition to improving the outcome accuracy, our PROF
method substantially improves the quality and consistency of intermediate steps.

Deeper Analysis on Math500. We further compare responses where both models were correct on
Math500 in Figure 3. In the second left figure, PROF-GRPO exhibits more reasoning steps. In the third
left figure, the PRM used for training assigns higher rewards for PROF-GRPO’s responses. In the right-

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Figure 3: Reasoning intermediate-steps performance of PROF-GRPO in comparison with GRPO. The most
left plot is the Monte Carlo (MC) estimation scores across five benchmarks. The other three are on Math500
under metrics of number of steps (2nd left), the averaged process rewards generated by Qwen2.5-Math-
PRM-7B (3rd left), and LLM’s preference between two modes’ responses (most right).

most figure, we use Claude to judge which one’s reasoning process has more complete and detailed steps,
and PROF-GRPO’s responses are significantly preferred. The prompt for LLM-as-a-judge is presented in
Table C.2. The key takeaway is that our PROF method reshapes the model’s CoT process from unfaithful
reasoning into detailed and easy-to-verify steps. This is further validated by two examples in Figure 7, 8.

5 ABLATIONS

5.1 SEPARATION OF CORRECT AND INCORRECT GROUP

Figure 4: Left two: averaged accuracy over Math500, Minerva Math and Olympiad Bench for PROF-GRPO
and its variants initialized from Qwen2.5-Math-1.5B-base and Qwen2.5-Math-7B-base. Most right: the
gap between the training rewards after and before the filtering for PROF-GRPO in comparison with not
separating correct and incorrect groups (w/o separation).

We conduct an ablation experiment on the necessity of separating correct and incorrect samples, named as
PROF-GRPO w/o separation, where the rollouts are ranked and filtered together. To mitigate bias in PRM,
each step’s PRM is subtracted by the averaged PRM of the batch. Even after centering, the rightmost plot
in Figure 4 shows that PROF-GRPO w/o Separation has over 2% gap between the training reward after
and before the filtration. This indicates that a disproportionate number of negative samples are removed.
One explanation is that incorrect responses often contain several correct intermediate steps, thus increasing
the averaged PRM over steps and leading to lower consistency. Consequently, incorrect responses exhibit
lower consistency than correct ones, especially as the policy model improves over training. In contrast,
PROF-GRPO successfully balances the bias by separating the correct and incorrect groups.

To further disentangle the contributions of filtering correct versus incorrect samples, we design the following
variants of PROF: (1) Filter-Correct: use PRM consistency to filter the correct group and randomly filter the
incorrect group; (2) Filter-Incorrect: only use PRM consistency to filter the incorrect group; (3) Filter-
Random: randomly filter both correct and incorrect samples Xu et al. (2025). In Figure 4, Filter-Correct and

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

PROF-GRPO (Filter-both) achieve comparably best performances among the variants across the 1.5B and
7B models. While Filter-both converges more efficiently because it leverages the consistency filtration for
both correct and incorrect groups. Filter-incorrect is less efficient and has slightly poorer performance. In
contrast, Filter-Random only performs slightly better than GRPO, and w/o Separation performs the worst.

We find that separating the correct and incorrect groups is essential to prevent the over-removal of valuable
incorrect samples during training. While both Filter-both and Filter-Correct are top-performing strategies,
with the former being more efficient, the trade-offs between them will be discussed in the following section.
Furthermore, the comparable performance of Filter-both and Filter-Correct indicates that the process quality
for correct samples is more crucial than the consistency for incorrect samples during the training process.

5.2 ABLATION STUDY ON BASE MODEL

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
Base 30.0 8.8 6.1 2.3 10.6 11.6

GRPO 50.5 18.8 17.9 5.0 25.6 23.6
Blend-PRM-GRPO 37.2 13.1 9.9 1.0 17.2 15.7
PROF-GRPO (Both) 50.4 19.1 18.7 3.5 27.8 23.9

PROF-GRPO (Correct) 52.4 19.5 19.8 6.7 28.6 25.4
PROF-GRPO (Incorrect) 49.0 18.0 17.3 5.4 23.9 22.7

Table 3: The test accuracy of different methods initialized from LLaMA-3.2-3B-instruct that is average@16
under temperature 1.0 and further averaged across all the five benchmarks.

To showcase the generalization of our algorithm, we conduct experiments on LLaMA-3.2-3B-instruct
(Dubey et al., 2024) that has weaker math-reasoning abilities and more distribution shift since Qwen2.5-
Math-PRM-7B is trained on the distribution of Qwen’s family. As provided in Table 3, PROF-GRPO with
PRM consistency filtering both correct and incorrect groups (Both) achieves 23.9%, marginally outperform-
ing the GRPO baseline (23.6%), while only applying PRM consistency to filter the correct group (Correct)
exhibits the strongest (25.4%) performance. Conversely, applying the filter solely to the incorrect group
(PROF-GRPO (Incorrect)) is counterproductive, causing accuracy to drop to 22.7%. Blend-PRM-GRPO
still scores the worst (15.7%) among all the methods. These results suggest that our PROF methods can
consistently outperform baselines across various base models.

For the trade-off between the Both and Correct, we conclude that when the PRM is less reliable or prone to
reward hacking (as in this cross-model scenario), the “Correct” method offers more robust improvements by
safely constraining the PRM’s influence. However, when the PRM is highly reliable and training efficiency
is a priority, the “Both” method is recommended. Due to the space limit, more ablations such as rollout
numbers and various filtration methods are provided in Appendix D.

6 CONCLUSION AND FUTURE WORK

This work introduces Process Consistency Filter (PROF), a novel data curation technique that filters gener-
ated responses by the data PRM-ORM consistency, and maintains the balance of correct-incorrect ratios. We
demonstrate its effectiveness in both consistently improving the accuracy of obtaining correct final answers
and shaping the policy model to generate more detailed and fine-grained segmented intermediate reasoning
steps. Particularly, PROF is a general filtration framework without reliance on specific PRMs or the RL
algorithms. Thus, the use of Qwen2.5-Math-PRM-7B as the PRM in our experiments is not a limitation.
Exploring the integration of PROF with more accurate or diverse PRMs remains an interesting direction for
future work. Additionally, how to extend our method to other reasoning tasks, such as coding (Jimenez et al.,
2023) and web navigation (Zhou et al., 2023) deserves to be explored.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech
Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the risks
of promoting obfuscation. arXiv preprint arXiv:2503.11926, 2025.

Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina, Kashif Rasul,
Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b cot. https://huggingface.co/
AI-MO/NuminaMath-7B-CoT, 2024.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired
comparisons. Biometrika, 39(3/4):324–345, 1952.

Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin, Ming-Yu
Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement learning in math
reasoning. arXiv preprint arXiv:2505.18116, 2025a.

Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi
Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don’t always say what they
think. arXiv preprint arXiv:2505.05410, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin
Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint arXiv:2502.01456,
2025.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model
alignment. arXiv preprint arXiv:2304.06767, 2023.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pp. arXiv–2407, 2024.

Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D’Amour, DJ Dvijotham, Adam
Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herding? reward model
ensembles mitigate but do not eliminate reward hacking. arXiv preprint arXiv:2312.09244, 2023.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific problems. arXiv preprint arXiv:2402.14008, 2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

10

https://huggingface.co/AI-MO/NuminaMath-7B-CoT
https://huggingface.co/AI-MO/NuminaMath-7B-CoT

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae Lee,
Honglak Lee, and Lu Wang. Process reward models that think. arXiv preprint arXiv:2504.16828, 2025.

Sunnie SY Kim, Q Vera Liao, Mihaela Vorvoreanu, Stephanie Ballard, and Jennifer Wortman Vaughan. " i’m
not sure, but...": Examining the impact of large language models’ uncertainty expression on user reliance
and trust. In Proceedings of the 2024 ACM conference on fairness, accountability, and transparency, pp.
822–835, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning
problems with language models. Advances in neural information processing systems, 35:3843–3857,
2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth International
Conference on Learning Representations, 2023.

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang Wang,
Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. arXiv preprint arXiv:2309.06256,
2023.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu,
Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language models
by automated process supervision, 2024. URL https://arxiv.org/abs/2406.06592.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris
Callison-Burch. Faithful chain-of-thought reasoning. In The 13th International Joint Conference on
Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
Computational Linguistics (IJCNLP-AACL 2023), 2023.

Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. arXiv preprint
arXiv:2012.05862, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy opti-
mization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In Proceedings of the Twentieth
European Conference on Computer Systems, pp. 1279–1297, 2025.

Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown. Causal confu-
sion and reward misidentification in preference-based reward learning. arXiv preprint arXiv:2204.06601,
2022.

11

https://arxiv.org/abs/2406.06592

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
Math-shepherd: Verify and reinforce llms step-by-step without human annotations. arXiv preprint
arXiv:2312.08935, 2023.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha Khal-
man, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn iterative
preference learning. arXiv preprint arXiv:2409.02392, 2024a.

Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm, 2024b.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong Zhang,
Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to reinforce.
arXiv preprint arXiv:2504.11343, 2025a.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding correc-
tion for mathematical reasoning. arXiv preprint arXiv:2502.19613, 2025b.

Wei Xiong, Wenting Zhao, Weizhe Yuan, Olga Golovneva, Tong Zhang, Jason Weston, and Sainba-
yar Sukhbaatar. Stepwiser: Stepwise generative judges for wiser reasoning, 2025c. URL https:
//arxiv.org/abs/2508.19229.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model
via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

Wei Jie Yeo, Ranjan Satapathy, Rick Siow Mong Goh, and Erik Cambria. How interpretable are reasoning
explanations from prompting large language models? arXiv preprint arXiv:2402.11863, 2024.

Ping Yu, Weizhe Yuan, Olga Golovneva, Tianhao Wu, Sainbayar Sukhbaatar, Jason Weston, and Jing Xu.
Rip: Better models by survival of the fittest prompts. arXiv preprint arXiv:2501.18578, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476, 2025b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
Self-rewarding language models. arXiv preprint arXiv:2401.10020, 3, 2024.

Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi. Rl tango:
Reinforcing generator and verifier together for language reasoning. arXiv preprint arXiv:2505.15034,
2025.

Chuheng Zhang, Wei Shen, Li Zhao, Xuyun Zhang, Lianyong Qi, Wanchun Dou, and Jiang Bian. Policy
filtration in rlhf to fine-tune llm for code generation. 2024.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning.
arXiv preprint arXiv:2501.07301, 2025.

Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian, Biqing Qi,
Xiu Li, and Bowen Zhou. Genprm: Scaling test-time compute of process reward models via generative
reasoning, 2025. URL https://arxiv.org/abs/2504.00891.

12

https://arxiv.org/abs/2508.19229
https://arxiv.org/abs/2508.19229
https://arxiv.org/abs/2504.00891

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren
Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning. arXiv
preprint arXiv:2412.06559, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous
agents. arXiv preprint arXiv:2307.13854, 2023.

Dawei Zhu, Xiyu Wei, Guangxiang Zhao, Wenhao Wu, Haosheng Zou, Junfeng Ran, Xun Wang, Lin Sun,
Xiangzheng Zhang, and Sujian Li. Chain-of-thought matters: improving long-context language models
with reasoning path supervision. arXiv preprint arXiv:2502.20790, 2025.

Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-prm:
Trajectory-aware prms for long chain-of-thought reasoning in llms. arXiv preprint arXiv:2506.18896,
2025.

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

A LLM USAGE

We use LLM to find grammar mistakes and polish the writing.

B ADDITIONAL RELATED WORKS

Process-Supervised Reward Models for Fine-Grained Feedback. The RLHF focuses on the trajectory-
level comparison under the Bradley-Terry model. For reasoning-related task, Yang et al. (2024) uses the
correctness of the final answer to construct the preference pairs and trains Bradley-Terry reward models for
mathematical reasoning. A more widely used approach, termed Outcome Reward Models (ORMs) trains
a classifier to predict whether the final answer is correct or not based on the reasoning history. However,
Lightman et al. (2023) have shown that Process-Supervised Reward Models (PRMs), which evaluate each
intermediate step of a reasoning chain, significantly outperform ORMs, especially for data selection tasks
like best-of-n sampling (Lightman et al., 2023). But their approach requires human annotators to label each
intermediate steps of the reasoning. Wang et al. (2023) proposes to use Monte-Carlo estimation of the Q
value to automatically decide the label. After this, a long line of works proposes to improve the PRMs by
generative reward modeling, advanced training technique like RL, and refined engineering practices (Xiong
et al., 2024b; Zhang et al., 2025; Khalifa et al., 2025; Zhao et al., 2025; Xiong et al., 2025c). Our work does
not focus on improving PRMs but uses the PRMs to supervise the intermediate steps of CoT trajectories for
data filtering. We mainly use the Qwen2.5-Math-PRM-7B from Zhang et al. (2025) as it is trained on the
distribution of Qwen model and achieves superior performance on ProcessBench (Zheng et al., 2024).

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 MAIN EXPERIMENTS

The implementations are based on the verl framework (Sheng et al., 2025), and we follow most of the
parameter settings in verl. Detailedly, we apply the AdamW optimizer with learning rate 1 × 10−6. We
adopt the clip higher trick (Yu et al., 2025b) that clips the sampling ratio πθ/πold to an asymmetric range
(1 − ϵlow, 1 + ϵhigh). Specifically, we set ϵlow = 0.2, ϵhigh = 0.28 for models started from Qwen2.5-Math-
1.5B-base and maintain ϵhigh = ϵlow = 0.2 for other cases. In each iteration, we sample 1024 prompts,
rollout n = 4 responses per prompt for GRPO and n = 8 responses for PROF-GRPO. Note that the policy
update number for all algorithms is m = 4. For the regularization of step numbers in Algorithm 1, we take
λ = 10 and Hλ = 30. For the rollout stage, we use a temperature of 1.0 and a top-p value of 1.0. We set the
KL loss coefficient to 0.001 and entropy loss coefficient to 0.001. All the models are trained with 8 H100
GPUs. We set the training mini-batch size as 256 and allow the models to generate 4096 tokens per prompt.

C.2 PROMPT TEMPLATE

We present the template used for LLM to compare step-level reasoning.

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

Prompt for Finding Reasoning Flaws in Correct Response via LLM-as-a-judge

Here is the problem and the assistant’s solution, which has been broken down into {step} steps.

Problem:

Assistant’s Solution:

Your task is to review each step of the solution in sequence, analyzing, verifying, and critiquing the
reasoning in detail. You need to provide the analyses and the conclusion in the following format:
<step>Step 1 Analysis</step>
<step>Step 2 Analysis</step>
... [CONTINUE FOR ALL step steps in the Assistant’s Solution] ...
<conclusion>Correct/Incorrect</conclusion>

• When you analyze each step, you should use proper verification, recalculation, or reflection
to indicate whether it is logically and mathematically valid. Please elaborate on the analysis
process carefully.

• If an error is detected in any step, you should describe the nature and cause of the error in
detail, and suggest how to correct the error or the correct approach. Once a step is found
to contain any error, stop further analysis of subsequent steps (as they may depend on the
identified error) and directly provide the conclusion of “Incorrect.”

For instance, given a solution of five steps, if an error or flaw is found in the third step, you should
reply in the following format:
<step>Step 1 Analysis</step>
<step>Step 2 Analysis</step>
<step>Step 3 Analysis; since an error or flaw is found here, also provide detailed critique and cor-
rection guideline)</step>
<conclusion>Incorrect</conclusion>
Respond with your analyses and conclusion directly.

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

Prompt for Responses Comparison via LLM-as-a-judge

System You are a meticulous, comparison engine. Your ONLY function is to compare the interme-
diate reasoning steps of the two responses provided to you.
User Here is the problem and assistants’ two solutions, which have been chunked into steps. You
MUST provide preference over the two solutions.
Problem: <prompt>
Assistant’s Solution 1: <solution1>
Assistant’s Solution 2: <solution2>

Both solutions are correct. You MUST compare them based on the following criteria:
• The reasoning process is more correct, and logical.
• The reasoning process does not skip any reasoning steps.
• The reasoning process does not skip any reasoning steps.

You MUST follow this exact format:
Your detailed verification reasoning goes here. Conclude with the number of the preferred solution:
1 or 2 .

If you prefer solution 1, you MUST output 1 .
If you prefer solution 2, you MUST output 2 .

Your preference:

D ADDTIONAL EXPERIMENTAL RESULTS

In this section, we include additional ablation studies and evaluation results for a more comprehensive un-
derstanding of the PROF-GRPO framework.

D.1 EFFECT OF ROLLOUT NUMBERS

We study the scale of rollout numbers n with fixed policy-update number m = 4 by varying n = 4, 8, 12, 16.
The lower-right plot in Figure 5 presents the test accuracy averaged over all five benchmarks for PROF-
GRPO (Both) and Filter-Correct (Correct) started from Qwen2.5-Math-7B-base. We observe the perfor-
mance first increases then decreases as n increases, revealing a trade-off between enhancing process reason-
ing quality and avoiding reward hacking. Notably, Filter-Correct decreases later (after n = 12) because it
only leverages the influence of PRM only in the correct group, indicating that Filter-Correct is more robust
when the PRM’s influence is higher, like when increasing the scale of ranking and filtering.

D.2 VARIANTS OF FILTRATION METHODS

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
Mean 83.1 39.0 47.8 17.5 70.9 51.7

Minimum 82.9 38.3 46.7 20.8 65.9 50.9
Sum 82.4 38.1 47.4 17.7 67.5 50.6
Ratio 81.4 36.6 45.0 24.8 65.2 50.6

Table 4: Performance of different filtration ways in PROF starting from Qwen2.5-Math-7B-base.

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

Figure 5: The averaged accuracy across all five benchmarks over rollout sizes n = 4, 8, 12, 16 for filtering
both correct and incorrect groups with PRM consistency (Both) and only the correct group with PRM con-
sistency (Correct).

In this subsection, we investigate the influence of different computation methods of consistency score rpro

in addition to the mean of PRMs over steps, where Mean denotes averaging over steps in Algorithm 1,
Minimum and Sum denotes taking the minimum and sum summation over steps, Ratio denotes filtering
while preserving the original positive–negative sample distribution, instead of balancing. As shown in Table
4, the performances of Minimum (50.9%), Sum (50.6%), and Ratio (50.6%) are inferior to the mean. This
suggests that the mean provides a more stable estimate of reasoning consistency: unlike the minimum, it
is less sensitive to a single poorly scored step, and unlike the summation, it avoids bias towards longer
trajectories. Additionally, balancing the correct-incorrect ratio can use data consistency to select the group
with more sufficient samples without breaking their balance.

D.3 EFFECT OF STEP NUMBER

To prove that PROF effect not by simply increasing the step number, We conduct the Filter-Nstep: Ranking
and filtering out the samples with smaller number of steps instead of lower PRM-ORM consistency.

From Table 5, we find that Ratio scores 51.7% on average and cannot compete with balancing the propor-
tion (PROF-GRPO), which also corroborates the conclusion that maintaining a balanced correct-incorrect
proportion is essential. Additionally, since we observe that PROF boosts the number of intermediate reason-
ing steps, to verify that PROF does not simply increase the step length, but more importantly, enhances the
quality of reasoning steps, we simply use the step length as the filtering criterion for comparison. As shown
in Figure 6 and Table 5, Filter-Nstep manipulates the step length, which exhibits an unreasonable increase
followed by a sudden drop, and its average accuracy is inferior.

E ADDITIONAL EXAMPLES

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Algorithm Math500 Minerva Math Olympiad Bench AIME24 AMC23 Average
PROF-GRPO 83.1 39.0 47.8 17.5 70.9 51.7
Filter-Nstep 81.5 35.5 45.9 16.3 58.6 47.6

Table 5: Performance of variants of filtering methods besides PROF-GRPO starting from Qwen2.5-Math-
7B-base averaged on all five benchmarks, where Ratio denotes filtering while preserving the original correc-
t/incorrect proportion, Filter-Nstep denotes ranking and filtering based on the number of step segments.

Figure 6: The number of reasoning steps during training time for PROF-GRPO and Filter-Nstep initialized
from Qwen2.5-Math-7B-base.

Figure 7: A Minerval-Math example to compare distinct intermediate reasoning patterns of PROF-GRPO,
vanilla GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction steps. GRPO’s
solution skips detailed deduction steps and there are flaws in the calculation precision and the final rounding.
Blend-PRM-GRPO has long-winded steps and makes a big mistake in calculating the power.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

Figure 8: A Math500 example to compare distinct intermediate reasoning patterns of PROF-GRPO, vanilla
GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction steps. PROF-GRPO’s
solution shows how to find the divisors and summation in detail, and is easy to follow. GRPO skips all core
reasoning. Blend-PRM-GRPO has inefficient and excessively tedious steps.

19

	Introduction
	Related Work
	Method
	Experiments
	Setup
	Main Results
	How PROF shapes Intermediate Reasoning Steps

	Ablations
	Separation of Correct and Incorrect Group
	Ablation Study on Base Model

	Conclusion and Future Work
	LLM Usage
	Additional Related Works
	Additional Experimental Details and Results
	Main Experiments
	Prompt Template

	Addtional Experimental Results
	Effect of Rollout Numbers
	Variants of Filtration Methods
	Effect of Step Number

	Additional Examples

