

000 BEYOND CORRECTNESS: HARMONIZING PROCESS AND 001 OUTCOME REWARDS THROUGH RL TRAINING 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Reinforcement learning with verifiable rewards (RLVR) has emerged as a predominant
007 paradigm for mathematical reasoning tasks, offering stable improvements in reasoning
008 ability. However, Outcome Reward Models (ORMs) in RLVR are too coarse-grained to
009 distinguish flawed reasoning within correct answers or valid reasoning within incorrect
010 answers. This lack of granularity introduces noisy and misleading gradients significantly
011 and hinders further progress in reasoning process quality. While Process Reward Models
012 (PRMs) offer fine-grained guidance for intermediate steps, they frequently suffer from
013 inaccuracies and are susceptible to reward hacking.

014 To resolve this dilemma, we introduce PRocess cOnsistency Filter (PROF), an effective
015 data process curation method that harmonizes noisy, fine-grained process rewards with ac-
016 curate, coarse-grained outcome rewards. Rather than naively blending PRM and ORM in
017 the objective function (Zou et al., 2025), PROF leverages their complementary strengths
018 through consistency-driven sample selection. Our approach retains correct responses with
019 higher averaged process values and incorrect responses with lower averaged process val-
020 ues, while maintaining positive/negative training sample balance. Extensive experiments
021 demonstrate that our method not only consistently improves the final accuracy over 4%
022 compared to the blending approaches, but also strengthens the quality of intermediate rea-
023 soning steps.

024 1 INTRODUCTION

025 Verifiable rewards have spurred the widest attention recently because they can reliably improve the per-
026 formance on reasoning tasks with easily verifiable outcomes, such as mathematical and coding problems
027 (Cobbe et al., 2021; Jaech et al., 2024; Shao et al., 2024; Xiong et al., 2025b). However, since the verifiers
028 can only verify the outcome results, the rewards are too sparse and coarse to measure and supervise the
029 reasoning quality in intermediate steps. For instance, if a correct answer contains flawed logic, Outcome
030 Reward Models (ORMs) cannot distinguish it from a completely correct response. We present a classic
031 example from the training data in Table 1, which has fundamentally invalid reasoning but happens to obtain
032 the correct answer. Incorporating such flawed examples into the training process introduces unreliable
033 gradients, leading to significant instability and misguided learning. Moreover, the quality and interpretability of
034 the Chain of Thought (CoT) are crucial for the practical reasoning ability of a model, not just the accuracy
035 of the final answer (Zhu et al., 2025; Lyu et al., 2023; Yeo et al., 2024). The lack of faithfulness during CoT
036 is also observed by (Baker et al., 2025; Chen et al., 2025b), limiting its applications in areas such as LLM
037 safety monitoring and interpretation.

038 Hence, the limitation of ORMs can be partially addressed by using LLM-as-a-judge or Monte-Carlo (MC)
039 estimation to provide step-wise judgments or values (Wang et al., 2023; Zheng et al., 2024). However,
040 the cost of inferring LLM step-wise judgments or MC estimation at each iteration during online training

047
048
049
050

Problem: There are 4 coins of 1, 2, 3, 5 cruzeiros, which weigh 1, 2, 3, 5 grams respectively. One of them is counterfeit, differing in weight (but not known whether it is heavier or lighter). How can the counterfeit coin be identified with the minimum number of weighings using a balance scale without weights?

051
052

Step 1: Introduction. We need to identify a counterfeit coin with an unknown weight difference from ...

053
054

Step 2 - 6: The Flawed Weighing Logic and Code.

055
056
057

1. Weigh coins of **1 gram and 2 grams** against coins of **3 grams and 5 grams**. 2. Based on the result of the first weighing: - If the left side is heavier, then the counterfeit coin is either 1 gram or 3 grams. - If the right side is heavier, then the counterfeit coin is either 2 gram or 5 grams. - If both sides are equal, then the counterfeit coin is either 2 gram or 5 grams. 3. For the second weighing, ...

Let's illustrate this with code and ensure that the steps are correct ... output: (1, 'heavier').

058
059
060

Step 7, 8, 9: Summary and Final Answer.

Here is a summary of the steps: 1. Weigh coins of 1 gram and 2 grams against coins of 3 grams and 5 grams...
2. For the second weighing, weigh the 1 gram coin against a known genuine coin (3 grams)...

Thus, the minimum number of weighings required to identify the counterfeit coin is 2.

061

062
063
064
065
066

Table 1: An Example of Reaching a Correct Result Through Flawed Reasoning. The proposed first weighing of {1g, 2g} (total 3g) against {3g, 5g} (total 8g) is fundamentally **invalid**. A balance scale requires comparing groups of equal nominal weight. Because this weighing is unbalanced, all conclusions drawn from it are baseless. The final answer is correct but is completely unsupported by the fallacious reasoning.

067
068

is so high. Hence, it is inefficient and expensive to infer the step-wise scores or values for online training. Alternatively, an efficient solution is to use the pre-trained Process Reward Models (PRMs) (Lightman et al., 2023; Zhang et al., 2025). However, applying these models to the online training process often suffers from misspecification and distribution shift due to the limitations of offline training data. Especially in boundary cases where the policy encounters difficult problems and produces rarely seen responses, PRMs often fail to judge them correctly, thus leading to severe reward hacking (Michaud et al., 2020; Tien et al., 2022). Even if some works (Zha et al., 2025; Cui et al., 2025) attempt to co-train the policy and PRMs online, they can only train in implicit ways such as using implicit generative reward or aligning process rewards with outcomes.

069
070
071
072
073
074
075
076
077
078
079
080
081
082

Although numerous works have made enormous efforts to train PRMs offline or online, the problem of effectively coordinating PRMs with outcome-verifiable rewards remains largely underexplored. Existing approaches typically combine process and outcome rewards in a simple weighted manner (Zha et al., 2025; Cui et al., 2025; Zou et al., 2025), which is vulnerable for reward hacking due to the noises and misspecification in PRMs. Therefore, in this paper, instead of developing another PRM, we focus on how to robustly integrate a pre-trained PRM into the online training process, i.e.,

083
084

How to harmonize the accurate but coarse-grained ORMs with fine-grained but noisy Process Reward Models (PRMs) in Reinforcement Learning (RL)?

085
086
087
088
089
090
091
092
093

In this work, instead of fine-tuning another PRM, we answer this question with a **PROcess cOnsistency Filtering (PROF)** framework, a data curation strategy based on process-outcome consistency. PROF over-samples more responses at training time, and then, ranks and filters the responses by the consistency between their PRMs and ORMs. Specifically, it removes samples where the process and outcome signals conflict—such as correct responses derived from flawed reasoning, or incorrect responses that contain sound reasoning steps. By filtering out these inconsistent samples, PROF eliminates conflicting and noisy gradients. Furthermore, observing that correct and incorrect responses have different consistency distributions, we rank each group separately to maintain a balanced training ratio. PROF is a modular framework that can be combined with RL algorithms like Group Relative Policy Optimization (GRPO) for online training.

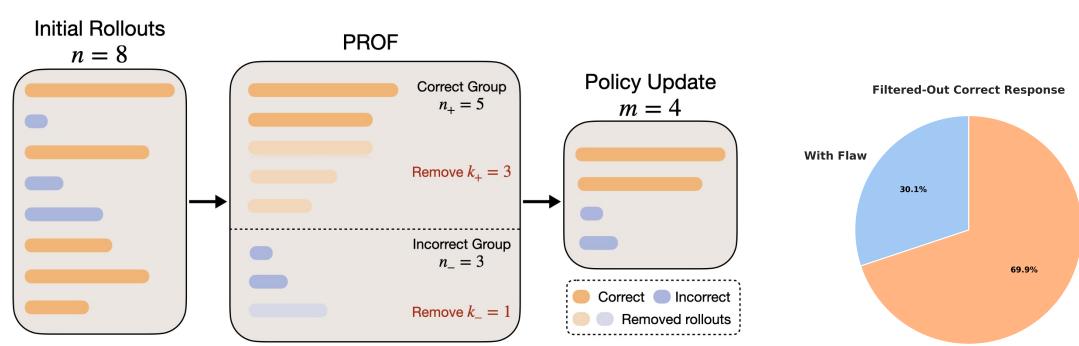


Figure 1: Left: Visualization of PROF Algorithm 1, where the length of each rectangle represents values of process rewards averaged over steps for each rollout. After generating n rollouts and process rewards, PROF ranks the correct and incorrect group separately according to PRM-ORM consistency, so for the correct group, the longer items are kept; for the incorrect group, the shorter items are kept. The number to remove is to balance correct and incorrect ratio. Right: Fraction of flawed-reasoning responses judged by LLM among the filtered-out correct responses.

We conduct extensive experiments to validate the improvement of PROF-GRPO on both outcome accuracy and process reasoning quality at diverse math reasoning benchmarks using both Qwen (Yang et al., 2024) and LLaMA (Dubey et al., 2024) models. To summarize, we highlight our key contributions as follows:

- We propose **PRO**cess **c**onsistency **F**iltering (**PROF**) to robustly integrate noisy Process Reward Models (PRMs) with Outcome Reward Models (ORMs). Compared to the GRPO-type algorithms that only leverage outcome rewards, our implementation PROF-GRPO can effectively distinguish the inconsistent trajectories, such as correct answers with flawed reasoning steps or incorrect answers with mostly valid steps. Moreover, unlike prior approaches that simply blend PRMs and PRMs, our method only rely on PRMs to rank and filter rather than directly involving them into gradients. This separation essentially avoids reward hacking and entropy collapse, thus achieving stable performance gains throughout training.
- We conduct extensive studies to demonstrate that PROF-GRPO not only increases the final outcome accuracy but also shapes the intermediate reasoning steps and improves the process reasoning quality. Various metrics such as Monte-Carlo estimation, LLM-as-a-judge are used to validate that our method enable models to segment reasoning trajectories into **detailed and easy-to-verify** steps.
- We conduct a series of ablation studies to illustrate the importance of separating the correct and incorrect responses during the filtration. Meanwhile, we investigate various ways of calculating the consistency and filtering, and ablate on LLaMA base models for generalization.

2 RELATED WORK

Sample Filtering in Reinforcement Learning for LLM. A key challenge in applying reinforcement learning to LLM applications is the imperfection of reward signals. These signals stem from a learned reward model, such as Reinforcement Learning from Human Feedback (RLHF), or are sparse, delivered only at the end of a trajectory (e.g. RLVR). In RLHF, the reward model is trained on human-annotated pairwise comparisons, typically using a Bradley-Terry model (Bradley & Terry, 1952). Due to inherent human disagreement and finite training data, the model develops shortcuts that RL algorithms can exploit (Lin et al., 2023; Eisenstein et al., 2023) to chase for a fake high reward. Consequently, these rewards may not fully align with the underlying intended goals, leading to reward hacking.

141 Data filtering, a data curation technique, has proven effective in mitigating this issue across various LLM
 142 applications with RL. A prominent line of work proposes filtering training pairs based on the reward gap
 143 between the chosen and rejected responses (Yuan et al., 2024; Dong et al., 2024; Xiong et al., 2024a; Zhang
 144 et al., 2024). The high-level intuition is that a larger reward gap indicates higher model confidence, making
 145 these pairs less noisy and more reliable for training when the reward model is well-calibrated. Moreover,
 146 Kim et al. (2024); Yu et al. (2025a) further rank and filter the samples by combining their rewards and
 147 responses length during the preference learning process.

148 In RLVR, where rewards are sparse and only for the outcome, filtering is also helpful. For instance, the
 149 simple rejection sampling fine-tuning (Dong et al., 2023; Chen et al., 2025a), which discards all incorrect
 150 trajectories, often approaches the performance of more complex algorithms like GRPO (Dong et al., 2023;
 151 Chen et al., 2025a; Xiong et al., 2025a). Other methods like (Yang et al., 2024) filter prompts by difficulty
 152 prior to the RL training. Yu et al. (2025b) removes prompts that yield zero gradients during training and
 153 dynamically regenerates samples. This technique is known as dynamic sampling and has been rather widely
 154 accepted. Xiong et al. (2025a) demonstrates that prompts where all generated responses are incorrect can
 155 significantly hurt the performance of the vanilla Reinforce algorithm. They propose an online data filtering
 156 strategy based on the correctness reward, showing that a modified Reinforce with filtering (Reinforce-rej)
 157 can match or exceed GRPO’s performance. Their results suggest that the advantage of GRPO compared to
 158 Reinforce is due to the implicit data filtering mechanism from the reward shaping. Finally, Xu et al. (2025)
 159 proposes to over-sample and keep a subset such that the variance of the rewards in the subset is maximized,
 160 which implies that they try to balance the ratio of correct and incorrect responses for reasoning tasks.

161 In contrast to these methods, which primarily rely on coarse, outcome-based metrics (e.g., final answer
 162 correctness, trajectory-level rewards), our approach introduces a more fine-grained filtering mechanism. We
 163 leverage process-supervised reward models (PRMs) (Lightman et al., 2023) to evaluate and filter based on
 164 the quality of intermediate reasoning steps, and their consistency with ORMs.

165 3 METHOD

166 An LLM is a policy distribution such that given a prompt x , it provides the density $\pi(a|x)$ of generating each
 167 response a . For mathematical reasoning tasks with a binary verifiable reward, there exists a verifier mapping
 168 prompt-response pairs (x, a) to a scalar reward $r_o(x, a) \in \{-1, 1\}$. For each prompt, we can generate a
 169 group of responses and their corresponding responses with the verifier $\{(a_i, r_{o,i})\}_{i=1}^G$.

170 **GRPO.** (Shao et al., 2024) proposes this policy gradient algorithm that simplifies the Proximal Policy
 171 Optimization (PPO) (Schulman et al., 2017) by only computing the advantage based on the outcome rewards
 172 in a group. Instead of maintaining and updating another value network, GRPO computes the advantage by
 173 standardizing the outcome rewards within a group:

$$174 A_i = \frac{r(x, a_i) - \text{mean}(\{r(x, a_j)\}_{j=1}^n)}{\text{std}(\{r(x, a_j)\}_{j=1}^n) + \delta}, \quad i = 1, \dots, n,$$

175 where $r(x, a_i)$ is the reward for a given response and $\delta > 0$ is a small constant for numerical stability. Let
 176 a_t denote the t -th token of response a and $a_{<t}$ denotes (a_1, \dots, a_{t-1}) . This advantage is then incorporated
 177 into a clipped surrogate objective function, which is optimized to update the policy from $\pi_{\theta_{\text{old}}}$ to π_{θ} :

$$178 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{x \sim \mathcal{D}} \left[\frac{1}{n} \sum_{i=1}^n \frac{1}{|a_i|} \sum_{t=1}^{|a_i|} \min \left(\frac{\pi_{\theta}(a_{i,t}|x)}{\pi_{\theta_{\text{old}}}(a_{i,t}|x)} A_i, \text{clip} \left(\frac{\pi_{\theta}(a_{i,t}|x)}{\pi_{\theta_{\text{old}}}(a_{i,t}|x)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) \right].$$

180 Although this approach stabilizes the online policy optimization and is efficient, the sparse reward signal
 181 limits further improvement on the intermediate reasoning steps.

188 **Algorithm 1** Process Consistency Filter (PROF)

189 1: **Input:** Number of rollouts n , policy update size m , rollout $\{a_1, \dots, a_n\}$, outcome rewards $\{r_{o,1}, \dots, r_{o,n}\}$, step
 190 number regularization parameter $\lambda, H_\lambda > 0$.
 191 2: Obtain process rewards for each rollout a_i with H_i steps: $(r_i^1, \dots, r_i^{H_i})$ and compute trajectory-wise consistency
 192

193
$$r_i^{\text{pro}} = \left[\frac{1}{H_i} \sum_{h=1}^{H_i} r_i^h - \lambda I(H_i = 1 \text{ or } H_i \geq H_\lambda) \right] \cdot r_{o,i}. \quad (1)$$

 194

195 3: Divide rollouts into correct group $\mathcal{G}_+ = \{a_1^+, \dots, a_{n_+}^+\}$ with $r_{o,i} = 1$ and incorrect group $\mathcal{G}_- = \{a_1^-, \dots, a_{n_-}^-\}$ with $r_{o,i} = -1$, where $n_+ + n_- = n$.
 196 4: Compute kept number $k_+ \in [n_+], k_- \in [n_-]$ in each group such that $K_+ + k_- = m$ and $k_+ k_-$ is maximized.
 197 5: Rank \mathcal{G}_+ and \mathcal{G}_- by r^{pro} separately, and keep the samples
 198

199
$$\mathcal{K}^+ = \{a_i^+ | \text{rank}(a_i^+) \geq n_+ - k_+\}, \mathcal{K}^- = \{a_i^- | \text{rank}(a_i^-) \geq n_- - k_-\}.$$

 200

201 6: **Output:** The kept trajectories $\mathcal{K}^+ \cup \mathcal{K}^-$ with final kept size m .

202
 203
 204
 205 **Process Reward Model (PRM).** For a response a composed of multiple reasoning steps $a = (a^1, \dots, a^H)$, we follow previous works (Zheng et al., 2024; Zhang et al., 2025; Zou et al., 2025) to use
 206 a newline as a sign for a new step. For each step a^h , the PRM r^h maps it, the previous steps and the prompt
 207 $(x, a^{\leq h})$ to a scalar $r^h(x, a^{\leq h})$, where we use the short-hand notation $a^{\leq h} = (a^1, \dots, a^h)$.
 208

209
 210 **Our Method PROF: Process Consistency Filter Framework** We propose PROF in Algorithm 1 to incorporate
 211 the consistency of PRMs and ORMs robustly after the rollout phase, and also present a visualization
 212 in Figure 1. First, we generate G samples and get the outcome reward. Then, we call the PRM to generate
 213 step-wise rewards for each rollout and compute the trajectory-wise consistency score r^{pro} by taking the
 214 mean over the step-wise rewards and adding a step length regularization in equation 1, where λ is the regulariza-
 215 tion parameter and H_λ is the threshold for the penalized step number. This regularization is to ensure
 216 that samples with no step segments or over-long steps are discarded in the correct group. The samples are
 217 divided into two subgroups: \mathcal{G}_+ contains the correct samples with $r_o = 1$, and \mathcal{G}_- contains the incorrect
 218 samples with $r_o = -1$. Inspired by (Xu et al., 2025), the numbers to discard in each subgroup k_+, k_- are
 219 calculated to maximize the outcome-reward variance of the final kept samples $k_+ k_- / (k_+ + k_-)^2$. Since
 220 $k_+ + k_- = m$ is fixed, $k_+ k_- = k_+ (m - k_+)$ should be maximized and the maximum is obtained when k_+ is
 221 closest to $m/2$ under the constraint $k_+ \leq n_+, k_- \leq n_-$. This implies that the ratio of correct and incorrect
 222 responses should be balanced. After that, we use r^{pro} to rank and filter the correct group and randomly filter
 223 the incorrect group. Finally, we collect the kept m trajectories for policy update.

224 4 EXPERIMENTS

225 4.1 SETUP

226
 227 We focus on mathematical reasoning tasks in this work. For online training, we use the prompt set Numina-
 228 Math (Beeching et al., 2024) containing nearly 860k math problems with ground-truth answers ranging from
 229 Chinese high school math exercises to US and international mathematics Olympiad competition problems.
 230 We choose Qwen2.5-Math-1.5B-base, Qwen2.5-Math-7B-base (Yang et al., 2024) as the training base mod-
 231 els. For the PRM, we use Qwen2.5-Math-PRM-7B (Zhang et al., 2025) to generate process rewards. More
 232 details are provided in Appendix C. The models’ performance is evaluated on 5 benchmarks: Math500
 233 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024),
 234

AMC2023¹ and AIME2024². We mainly use average@16 for evaluation, i.e., the accuracy is averaged over 16 responses per prompt under temperature 1.0. The models are allowed to generate 4096 tokens.

4.2 MAIN RESULTS

Model	Algorithm	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Average
Qwen2.5-Math-1.5B-base	Base	39.9	11.4	19.1	3.5	23.6	19.5
	GRPO	70.3	29.1	33.0	9.0	44.5	37.2
	Blend	67.6	27.8	31.1	7.7	42.5	35.3
	PROF-GRPO	73.2	30.0	36.1	9.6	49.1	39.6
Qwen2.5-Math-7B-base	Base	42.0	12.8	19.2	12.9	30.0	23.4
	GRPO	81.6	37.2	45.5	20.6	64.4	49.9
	Blend	81.7	36.7	45.0	15.2	58.0	47.3
	PROF-GRPO	83.1	39.0	47.8	17.5	70.9	51.7

Table 2: Performance of different algorithms across five benchmarks including Math500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022), Olympiad Bench (He et al., 2024), AMC2023 and AIME2024. We denote Blend-PRM-GRPO by Blend for short. We tune all the algorithms to their best performance. The reported accuracy is average@16 under temperature 1.0.

We summarize our main results in Table 2, where Blend denotes a common way that mixes the PRM with outcome rewards (Zha et al., 2025; Cui et al., 2025; Zou et al., 2025). Following (Zou et al., 2025), the PRMs are averaged over steps for each response, weighted by a parameter β , and added to outcome rewards. We use parameter $\beta = 0.8$ according to Table 5 of (Zou et al., 2025). Our main findings are as follows.

PROF-GRPO Outperforms the Baselines. As shown in Table 2, our proposed method, PROF-GRPO, consistently outperforms GRPO and Blend-PRM-GRPO over various benchmarks. Specifically, for models starting from Qwen2.5-Math-1.5B-base, PROF-GRPO achieves an average accuracy of 39.6%, surpassing the standard GRPO baseline (37.2%) and the Blend-PRM-GRPO method (35.3%). A similar trend is observed with the Qwen2.5-Math-7B-base model, where PROF-GRPO achieves a 51.7% average accuracy, a significant improvement over GRPO’s 49.9% and Blend-PRM-GRPO’s 47.3%.³ The learning dynamics in Figure 2 corroborate these findings, illustrating that PROF-GRPO steadily maintains a consistent performance advantage over both GRPO and Blend-PRM-GRPO throughout the training process. Notably, PROF-GRPO achieves faster convergence rate and higher final accuracy than GRPO.

Filtration Method is Much More Robust than Blending. We plot the entropy loss and response length curves of GRPO, Blend-PRM-GRPO and PROF-GRPO in Figure 2. Blending-PRM-GRPO suffers from severe rewarding hacking since its entropy collapses quickly towards zero. Simultaneously, its response length in the right figure uncontrollably increases, indicating that the model has learned to game the PRM by over-generating verbose responses and more repetitive steps to get a higher averaged process reward. Therefore, Blend-PRM-GRPO’s testing accuracy even falls below GRPO. In contrast, PROF-GRPO maintains gradual and slightly faster decrease in entropy loss and controllable response length growth. This illustrates that our filtration method effectively leverages the PRM signal while stay robust to reward hacking. We will carefully analyze and compare the quality of intermediate reasoning steps of our method and baselines.

4.3 How PROF SHAPES INTERMEDIATE REASONING STEPS

Effectiveness of Consistency Filtration. To demonstrate that our algorithm effectively differentiates the inconsistent trajectories, especially those correct answers with flawed reasoning steps, we prompt Qwen2.5-Math-7B-base (Yang et al., 2024) to generate rollouts for 500 problems randomly selected from the training

¹<https://huggingface.co/datasets/math-ai/amc23>

²<https://huggingface.co/datasets/math-ai/aime24>

³Although PROF-GRPO underperformed GRPO on AIME24 for Qwen2.5-Math-7B-base, given the dataset’s small size of only 30 samples, the performance difference may not be statistically significant.

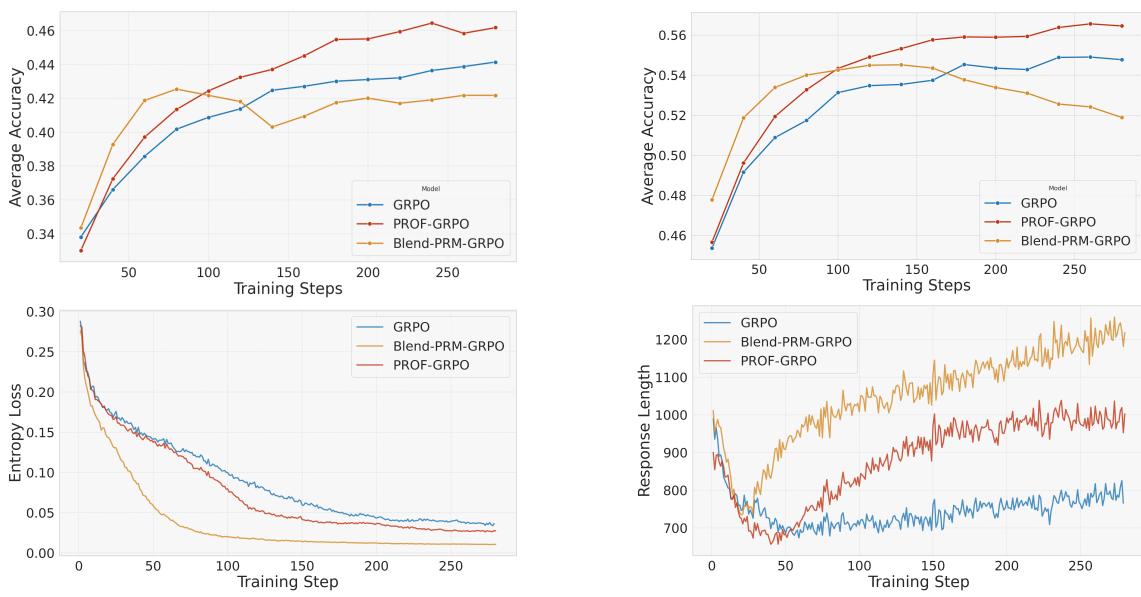


Figure 2: The learning dynamics of PROF-GRPO initialized from Qwen2.5-Math-1.5B-base (upper left) and Qwen2.5-Math-7B-base (upper right) in comparison of GRPO and Blend-PRM-GRPO. The y-axis is the average@16 accuracy and is further averaged on Math500, Minerva Math and Olympiad Bench. Entropy loss (lower left) and response length (lower right) of the models initialized from Qwen2.5-Math-7B-base.

set, and implement the filtration in Algorithm 1. Then, the filtered-out correct responses are judged by Claude-3-7-sonnet from Anthropic to verify whether they contain flawed steps. We use the prompt in Zhang et al. (2025) and provide the details in Appendix C. From Figure 1, 30.1% responses among the filtered-out correct responses are judged to possess flawed reasoning. This indicates that our methods can efficiently distinguish a number of flawed responses and reach consensus with LLM. Furthermore, with human checking those filtered-out correct responses, there are many responses with invalid or even completely wrong reasoning steps but luckily reaching the correct answer. A typical example is presented in Table 1. However, such flawed reasoning processes would be entirely missed by a standard ORM.

Improved Step-wise Value. To evaluate the quality of intermediate steps, we adopt Monte Carlo (MC) estimation, a common way to estimate probability of getting to correct final answers (Wang et al., 2023; Xiong et al., 2024a; Luo et al., 2024). For this analysis, we select problem-response pairs from the test prompts where our method (PROF-GRPO) and GRPO both produced the correct final answer. Both models were initialized from Qwen2.5-Math-7B-base. To estimate the value of each reasoning step, we generate eight independent completions from that point using a temperature of 1.0, and the resulting empirical success rate serves as the MC value. Our primary finding is that PROF-GRPO achieves significant improvement in step-wise values compared to GRPO. In Figure 3, the average MC estimations across all five benchmarks are consistently higher for our model. The specific improvement gaps are 9.2% on Math500, 37.4% on Minerva Math, 15.9% on Olympiad Bench, 9.2% on AMC2023, and 11.1% on AIME2024, which are much larger than the outcome accuracy gap in Table 2. Hence, in addition to improving the outcome accuracy, our PROF method substantially improves the quality and consistency of intermediate steps.

Deeper Analysis on Math500. We further compare responses where both models were correct on Math500 in Figure 3. In the second left figure, PROF-GRPO exhibits more reasoning steps. In the third left figure, the PRM used for training assigns higher rewards for PROF-GRPO’s responses. In the right-

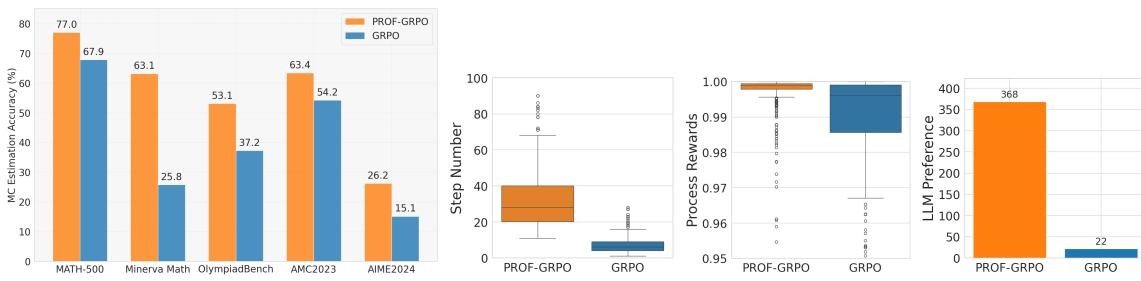


Figure 3: Reasoning intermediate-steps performance of PROF-GRPO in comparison with GRPO. The most left plot is the Monte Carlo (MC) estimation scores across five benchmarks. The other three are on Math500 under metrics of number of steps (2nd left), the averaged process rewards generated by Qwen2.5-Math-PRM-7B (3rd left), and LLM’s preference between two modes’ responses (most right).

most figure, we use Claude to judge which one’s reasoning process has more complete and detailed steps, and PROF-GRPO’s responses are significantly preferred. The prompt for LLM-as-a-judge is presented in Table C.2. The key takeaway is that our PROF method reshapes the model’s CoT process from unfaithful reasoning into **detailed and easy-to-verify** steps. This is further validated by two examples in Figure 7, 8.

5 ABLATIONS

5.1 SEPARATION OF CORRECT AND INCORRECT GROUP

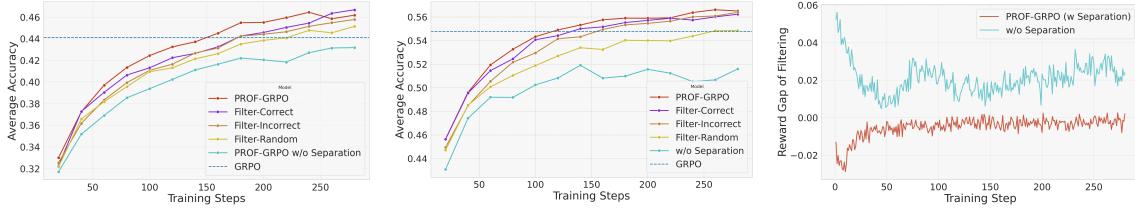


Figure 4: Left two: averaged accuracy over Math500, Minerva Math and Olympiad Bench for PROF-GRPO and its variants initialized from Qwen2.5-Math-1.5B-base and Qwen2.5-Math-7B-base. Most right: the gap between the training rewards after and before the filtering for PROF-GRPO in comparison with not separating correct and incorrect groups (w/o separation).

We conduct an ablation experiment on the necessity of separating correct and incorrect samples, named as PROF-GRPO w/o separation, where the rollouts are ranked and filtered together. To mitigate bias in PRM, each step’s PRM is subtracted by the averaged PRM of the batch. Even after centering, the rightmost plot in Figure 4 shows that PROF-GRPO w/o Separation has over 2% gap between the training reward after and before the filtration. This indicates that a disproportionate number of negative samples are removed. One explanation is that incorrect responses often contain several correct intermediate steps, thus increasing the averaged PRM over steps and leading to lower consistency. Consequently, incorrect responses exhibit lower consistency than correct ones, especially as the policy model improves over training. In contrast, PROF-GRPO successfully balances the bias by separating the correct and incorrect groups.

To further disentangle the contributions of filtering correct versus incorrect samples, we design the following variants of PROF: (1) Filter-Correct: use PRM consistency to filter the correct group and randomly filter the incorrect group; (2) Filter-Incorrect: only use PRM consistency to filter the incorrect group; (3) Filter-Random: randomly filter both correct and incorrect samples Xu et al. (2025). In Figure 4, Filter-Correct and

376 PROF-GRPO (Filter-both) achieve comparably best performances among the variants across the 1.5B and
 377 7B models. While Filter-both converges more efficiently because it leverages the consistency filtration for
 378 both correct and incorrect groups. Filter-incorrect is less efficient and has slightly poorer performance. In
 379 contrast, Filter-Random only performs slightly better than GRPO, and w/o Separation performs the worst.
 380

381 We find that separating the correct and incorrect groups is essential to prevent the over-removal of valuable
 382 incorrect samples during training. While both Filter-both and Filter-Correct are top-performing strategies,
 383 with the former being more efficient, the trade-offs between them will be discussed in the following section.
 384 Furthermore, the comparable performance of Filter-both and Filter-Correct indicates that the process quality
 385 for correct samples is more crucial than the consistency for incorrect samples during the training process.
 386

387 5.2 ABLATION STUDY ON BASE MODEL

388 Algorithm	389 Math500	390 Minerva Math	391 Olympiad Bench	392 AIME24	393 AMC23	394 Average
395 Base	30.0	8.8	6.1	2.3	10.6	11.6
396 GRPO	50.5	18.8	17.9	5.0	25.6	23.6
397 Blend-PRM-GRPO	37.2	13.1	9.9	1.0	17.2	15.7
398 PROF-GRPO (Both)	50.4	19.1	18.7	3.5	27.8	23.9
399 PROF-GRPO (Correct)	52.4	19.5	19.8	6.7	28.6	25.4
400 PROF-GRPO (Incorrect)	49.0	18.0	17.3	5.4	23.9	22.7

395 Table 3: The test accuracy of different methods initialized from LLaMA-3.2-3B-instruct that is average@16
 396 under temperature 1.0 and further averaged across all the five benchmarks.
 397

398 To showcase the generalization of our algorithm, we conduct experiments on LLaMA-3.2-3B-instruct
 399 (Dubey et al., 2024) that has weaker math-reasoning abilities and more distribution shift since Qwen2.5-
 400 Math-PRM-7B is trained on the distribution of Qwen’s family. As provided in Table 3, PROF-GRPO with
 401 PRM consistency filtering both correct and incorrect groups (Both) achieves 23.9%, marginally outperform-
 402 ing the GRPO baseline (23.6%), while only applying PRM consistency to filter the correct group (Correct)
 403 exhibits the strongest (25.4%) performance. Conversely, applying the filter solely to the incorrect group
 404 (PROF-GRPO (Incorrect)) is counterproductive, causing accuracy to drop to 22.7%. Blend-PRM-GRPO
 405 still scores the worst (15.7%) among all the methods. These results suggest that our PROF methods can
 406 consistently outperform baselines across various base models.
 407

408 For the trade-off between the Both and Correct, we conclude that when the PRM is less reliable or prone to
 409 reward hacking (as in this cross-model scenario), the “Correct” method offers more robust improvements by
 410 safely constraining the PRM’s influence. However, when the PRM is highly reliable and training efficiency
 411 is a priority, the “Both” method is recommended. Due to the space limit, more ablations such as rollout
 412 numbers and various filtration methods are provided in Appendix D.
 413

414 6 CONCLUSION AND FUTURE WORK

415 This work introduces Process Consistency Filter (PROF), a novel data curation technique that filters gener-
 416 ated responses by the data PRM-ORM consistency, and maintains the balance of correct-incorrect ratios. We
 417 demonstrate its effectiveness in both consistently improving the accuracy of obtaining correct final answers
 418 and shaping the policy model to generate more detailed and fine-grained segmented intermediate reasoning
 419 steps. Particularly, PROF is a general filtration framework without reliance on specific PRMs or the RL
 420 algorithms. Thus, the use of Qwen2.5-Math-PRM-7B as the PRM in our experiments is not a limitation.
 421 Exploring the integration of PROF with more accurate or diverse PRMs remains an interesting direction for
 422 future work. Additionally, how to extend our method to other reasoning tasks, such as coding (Jimenez et al.,
 423 2023) and web navigation (Zhou et al., 2023) deserves to be explored.
 424

423 REFERENCES

425 Bowen Baker, Joost Huizinga, Leo Gao, Zehao Dou, Melody Y Guan, Aleksander Madry, Wojciech
 426 Zaremba, Jakub Pachocki, and David Farhi. Monitoring reasoning models for misbehavior and the risks
 427 of promoting obfuscation. *arXiv preprint arXiv:2503.11926*, 2025.

428 Edward Beeching, Shengyi Costa Huang, Albert Jiang, Jia Li, Benjamin Lipkin, Zihan Qina, Kashif Rasul,
 429 Ziju Shen, Roman Soletskyi, and Lewis Tunstall. Numinamath 7b cot. <https://huggingface.co/AI-MO/NuminaMath-7B-CoT>, 2024.

430

432 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired
 433 comparisons. *Biometrika*, 39(3/4):324–345, 1952.

434

435 Huayu Chen, Kaiwen Zheng, Qinsheng Zhang, Ganqu Cui, Yin Cui, Haotian Ye, Tsung-Yi Lin, Ming-Yu
 436 Liu, Jun Zhu, and Haoxiang Wang. Bridging supervised learning and reinforcement learning in math
 437 reasoning. *arXiv preprint arXiv:2505.18116*, 2025a.

438 Yanda Chen, Joe Benton, Ansh Radhakrishnan, Jonathan Uesato, Carson Denison, John Schulman, Arushi
 439 Somani, Peter Hase, Misha Wagner, Fabien Roger, et al. Reasoning models don't always say what they
 440 think. *arXiv preprint arXiv:2505.05410*, 2025b.

441

442 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
 443 Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
 444 problems. *arXiv preprint arXiv:2110.14168*, 2021.

445

446 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu, Qixin
 447 Xu, Weize Chen, et al. Process reinforcement through implicit rewards. *arXiv preprint arXiv:2502.01456*,
 448 2025.

449 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
 450 Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative foundation model
 451 alignment. *arXiv preprint arXiv:2304.06767*, 2023.

452

453 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
 454 Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf. *arXiv preprint
 455 arXiv:2405.07863*, 2024.

456 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
 457 Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*,
 458 pp. arXiv–2407, 2024.

459

460 Jacob Eisenstein, Chirag Nagpal, Alekh Agarwal, Ahmad Beirami, Alex D'Amour, DJ Dvijotham, Adam
 461 Fisch, Katherine Heller, Stephen Pfohl, Deepak Ramachandran, et al. Helping or herding? reward model
 462 ensembles mitigate but do not eliminate reward hacking. *arXiv preprint arXiv:2312.09244*, 2023.

463

464 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han,
 465 Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi with
 466 olympiad-level bilingual multimodal scientific problems. *arXiv preprint arXiv:2402.14008*, 2024.

467

468 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
 469 Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv preprint
 arXiv:2103.03874*, 2021.

470 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Hel-
 471 yar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
 472 *arXiv:2412.16720*, 2024.

473 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 474 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint*
 475 *arXiv:2310.06770*, 2023.

476 Muhammad Khalifa, Rishabh Agarwal, Lajanugen Logeswaran, Jaekyeom Kim, Hao Peng, Moontae Lee,
 477 Honglak Lee, and Lu Wang. Process reward models that think. *arXiv preprint arXiv:2504.16828*, 2025.

478 Sunnie SY Kim, Q Vera Liao, Mihaela Vorvoreanu, Stephanie Ballard, and Jennifer Wortman Vaughan. "i'm
 479 not sure, but...": Examining the impact of large language models' uncertainty expression on user reliance
 480 and trust. In *Proceedings of the 2024 ACM conference on fairness, accountability, and transparency*, pp.
 481 822–835, 2024.

482 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
 483 Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative reasoning
 484 problems with language models. *Advances in neural information processing systems*, 35:3843–3857,
 485 2022.

486 Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan Leike,
 487 John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. In *The Twelfth International
 488 Conference on Learning Representations*, 2023.

489 Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang Wang,
 490 Wenbin Hu, Hanning Zhang, et al. Mitigating the alignment tax of rlhf. *arXiv preprint arXiv:2309.06256*,
 491 2023.

492 Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Meiqi Guo, Harsh Lara, Yunxuan Li, Lei Shu,
 493 Yun Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language models
 494 by automated process supervision, 2024. URL <https://arxiv.org/abs/2406.06592>.

495 Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and Chris
 496 Callison-Burch. Faithful chain-of-thought reasoning. In *The 13th International Joint Conference on
 497 Natural Language Processing and the 3rd Conference of the Asia-Pacific Chapter of the Association for
 498 Computational Linguistics (IJCNLP-AACL 2023)*, 2023.

499 Eric J Michaud, Adam Gleave, and Stuart Russell. Understanding learned reward functions. *arXiv preprint*
 500 *arXiv:2012.05862*, 2020.

501 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimi-
 502 zation algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

503 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
 504 Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open
 505 language models. *arXiv preprint arXiv:2402.03300*, 2024.

506 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
 507 Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings of the Twentieth
 508 European Conference on Computer Systems*, pp. 1279–1297, 2025.

509 Jeremy Tien, Jerry Zhi-Yang He, Zackory Erickson, Anca D Dragan, and Daniel S Brown. Causal confu-
 510 sion and reward misidentification in preference-based reward learning. *arXiv preprint arXiv:2204.06601*,
 511 2022.

512

517 Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
 518 Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv preprint*
 519 *arXiv:2312.08935*, 2023.

520 Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha Khalm-
 521 man, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn iterative
 522 preference learning. *arXiv preprint arXiv:2409.02392*, 2024a.

523 Wei Xiong, Hanning Zhang, Nan Jiang, and Tong Zhang. An implementation of generative prm, 2024b.

524 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong Zhang,
 525 Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to reinforce.
 526 *arXiv preprint arXiv:2504.11343*, 2025a.

527 Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang Chen, Nan Jiang, and Tong Zhang. Self-rewarding correc-
 528 tion for mathematical reasoning. *arXiv preprint arXiv:2502.19613*, 2025b.

529 Wei Xiong, Wenting Zhao, Weizhe Yuan, Olga Golovneva, Tong Zhang, Jason Weston, and Sainba-
 530 yar Sukhbaatar. Stepwiser: Stepwise generative judges for wiser reasoning, 2025c. URL <https://arxiv.org/abs/2508.19229>.

531 Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
 532 rollouts in llm reinforcement learning. *arXiv preprint arXiv:2504.13818*, 2025.

533 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu,
 534 Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model
 535 via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

536 Wei Jie Yeo, Ranjan Satapathy, Rick Siow Mong Goh, and Erik Cambria. How interpretable are reasoning
 537 explanations from prompting large language models? *arXiv preprint arXiv:2402.11863*, 2024.

538 Ping Yu, Weizhe Yuan, Olga Golovneva, Tianhao Wu, Sainbayar Sukhbaatar, Jason Weston, and Jing Xu.
 539 Rip: Better models by survival of the fittest prompts. *arXiv preprint arXiv:2501.18578*, 2025a.

540 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
 541 Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at scale.
 542 *arXiv preprint arXiv:2503.14476*, 2025b.

543 Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
 544 Self-rewarding language models. *arXiv preprint arXiv:2401.10020*, 3, 2024.

545 Kaiwen Zha, Zhengqi Gao, Maohao Shen, Zhang-Wei Hong, Duane S Boning, and Dina Katabi. Rl tango:
 546 Reinforcing generator and verifier together for language reasoning. *arXiv preprint arXiv:2505.15034*,
 547 2025.

548 Chuheng Zhang, Wei Shen, Li Zhao, Xuyun Zhang, Lianyong Qi, Wanchun Dou, and Jiang Bian. Policy
 549 filtration in rlhf to fine-tune llm for code generation. 2024.

550 Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jingren
 551 Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical reasoning.
 552 *arXiv preprint arXiv:2501.07301*, 2025.

553 Jian Zhao, Runze Liu, Kaiyan Zhang, Zhimu Zhou, Junqi Gao, Dong Li, Jiafei Lyu, Zhouyi Qian, Biqing Qi,
 554 Xiu Li, and Bowen Zhou. Genprm: Scaling test-time compute of process reward models via generative
 555 reasoning, 2025. URL <https://arxiv.org/abs/2504.00891>.

564 Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jingren
565 Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning. *arXiv*
566 preprint arXiv:2412.06559, 2024.

567

568 Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue
569 Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous
570 agents. *arXiv preprint arXiv:2307.13854*, 2023.

571

572 Dawei Zhu, Xiyu Wei, Guangxiang Zhao, Wenhao Wu, Haosheng Zou, Junfeng Ran, Xun Wang, Lin Sun,
573 Xiangzheng Zhang, and Sujian Li. Chain-of-thought matters: improving long-context language models
574 with reasoning path supervision. *arXiv preprint arXiv:2502.20790*, 2025.

575

576 Jiaru Zou, Ling Yang, Jingwen Gu, Jiahao Qiu, Ke Shen, Jingrui He, and Mengdi Wang. Reasonflux-prm:
577 Trajectory-aware prms for long chain-of-thought reasoning in llms. *arXiv preprint arXiv:2506.18896*,
578 2025.

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611 A LLM USAGE
612613
614 We use LLM to find grammar mistakes and polish the writing.
615616
617 B ADDITIONAL RELATED WORKS
618619
620
621 **Process-Supervised Reward Models for Fine-Grained Feedback.** The RLHF focuses on the *trajectory*-
622 *level comparison* under the Bradley-Terry model. For reasoning-related task, Yang et al. (2024) uses the
623 correctness of the final answer to construct the preference pairs and trains Bradley-Terry reward models for
624 mathematical reasoning. A more widely used approach, termed Outcome Reward Models (ORMs) trains
625 a classifier to predict whether the final answer is correct or not based on the reasoning history. However,
626 Lightman et al. (2023) have shown that Process-Supervised Reward Models (PRMs), which evaluate each
627 intermediate step of a reasoning chain, significantly outperform ORMs, especially for data selection tasks
628 like best-of-n sampling (Lightman et al., 2023). But their approach requires human annotators to label each
629 intermediate steps of the reasoning. Wang et al. (2023) proposes to use Monte-Carlo estimation of the Q
630 value to automatically decide the label. After this, a long line of works proposes to improve the PRMs by
631 generative reward modeling, advanced training technique like RL, and refined engineering practices (Xiong
632 et al., 2024b; Zhang et al., 2025; Khalifa et al., 2025; Zhao et al., 2025; Xiong et al., 2025c). Our work does
633 not focus on improving PRMs but uses the PRMs to supervise the intermediate steps of CoT trajectories for
634 data filtering. We mainly use the Qwen2.5-Math-PRM-7B from Zhang et al. (2025) as it is trained on the
635 distribution of Qwen model and achieves superior performance on ProcessBench (Zheng et al., 2024).
636
637638 C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS
639640 C.1 MAIN EXPERIMENTS
641642
643 The implementations are based on the verl framework (Sheng et al., 2025), and we follow most of the
644 parameter settings in verl. Detailedly, we apply the AdamW optimizer with learning rate 1×10^{-6} . We
645 adopt the clip higher trick (Yu et al., 2025b) that clips the sampling ratio $\pi_\theta / \pi_{\text{old}}$ to an asymmetric range
646 $(1 - \epsilon_{\text{low}}, 1 + \epsilon_{\text{high}})$. Specifically, we set $\epsilon_{\text{low}} = 0.2$, $\epsilon_{\text{high}} = 0.28$ for models started from Qwen2.5-Math-
647 1.5B-base and maintain $\epsilon_{\text{high}} = \epsilon_{\text{low}} = 0.2$ for other cases. In each iteration, we sample 1024 prompts,
648 rollout $n = 4$ responses per prompt for GRPO and $n = 8$ responses for PROF-GRPO. Note that the policy
649 update number for all algorithms is $m = 4$. For the regularization of step numbers in Algorithm 1, we take
650 $\lambda = 10$ and $H_\lambda = 30$. For the rollout stage, we use a temperature of 1.0 and a top-p value of 1.0. We set the
651 KL loss coefficient to 0.001 and entropy loss coefficient to 0.001. All the models are trained with 8 H100
652 GPUs. We set the training mini-batch size as 256 and allow the models to generate 4096 tokens per prompt.
653
654655 C.2 PROMPT TEMPLATE
656

657 We present the template used for LLM to compare step-level reasoning.

658 **Prompt for Finding Reasoning Flaws in Correct Response via LLM-as-a-judge**
659

660 Here is the problem and the assistant's solution, which has been broken down into {step} steps.
661

662 **Problem:**

663 **Assistant's Solution:**

664 Your task is to review each step of the solution in sequence, analyzing, verifying, and critiquing the
665 reasoning in detail. You need to provide the analyses and the conclusion in the following format:
666

667 <step>Step 1 Analysis</step>

668 <step>Step 2 Analysis</step>

669 ... [CONTINUE FOR ALL step steps in the Assistant's Solution] ...

670 <conclusion>Correct/Incorrect</conclusion>

671 • When you analyze each step, you should use proper verification, recalculation, or reflection
672 to indicate whether it is logically and mathematically valid. Please elaborate on the analysis
673 process carefully.

674 • If an error is detected in any step, you should describe the nature and cause of the error in
675 detail, and suggest how to correct the error or the correct approach. Once a step is found
676 to contain any error, stop further analysis of subsequent steps (as they may depend on the
677 identified error) and directly provide the conclusion of "Incorrect."

678 For instance, given a solution of five steps, if an error or flaw is found in the third step, you should
679 reply in the following format:

680 <step>Step 1 Analysis</step>

681 <step>Step 2 Analysis</step>

682 <step>Step 3 Analysis; since an error or flaw is found here, also provide detailed critique and cor-
683 rection guideline</step>

684 <conclusion>Incorrect</conclusion>

685 Respond with your analyses and conclusion directly.

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705 **Prompt for Responses Comparison via LLM-as-a-judge**
706707 **System** You are a meticulous, comparison engine. Your ONLY function is to compare the intermediate reasoning steps of the two responses provided to you.
708709 **User** Here is the problem and assistants' two solutions, which have been chunked into steps. You
710 MUST provide preference over the two solutions.
711712 Problem: <prompt>
713714 Assistant's Solution 1: <solution1>
715716 Assistant's Solution 2: <solution2>
717718 Both solutions are correct. You MUST compare them based on the following criteria:
719720

- 721 • The reasoning process is more correct, and logical.
722
- 723 • The reasoning process does not skip any reasoning steps.
724
- 725 • The reasoning process does not skip any reasoning steps.
726

727 You MUST follow this exact format:
728729 Your detailed verification reasoning goes here. Conclude with the number of the preferred solution:
730 1 or 2.
731732 If you prefer solution 1, you MUST output 1.
733734 If you prefer solution 2, you MUST output 2.
735736 Your preference:
737738 **D ADDITIONAL EXPERIMENTAL RESULTS**
739740 In this section, we include additional ablation studies and evaluation results for a more comprehensive un-
741 derstanding of the PROF-GRPO framework.
742743 **D.1 EFFECT OF ROLLOUT NUMBERS**
744745 We study the scale of rollout numbers n with fixed policy-update number $m = 4$ by varying $n = 4, 8, 12, 16$.
746 The lower-right plot in Figure 5 presents the test accuracy averaged over all five benchmarks for PROF-
747 GRPO (Both) and Filter-Correct (Correct) started from Qwen2.5-Math-7B-base. We observe the perfor-
748 mance first increases then decreases as n increases, revealing a trade-off between enhancing process reason-
749 ing quality and avoiding reward hacking. Notably, Filter-Correct decreases later (after $n = 12$) because it
750 only leverages the influence of PRM only in the correct group, indicating that Filter-Correct is more robust
751 when the PRM's influence is higher, like when increasing the scale of ranking and filtering.
752753 **D.2 VARIANTS OF FILTRATION METHODS**
754755

Algorithm	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Average
Mean	83.1	39.0	47.8	17.5	70.9	51.7
Minimum	82.9	38.3	46.7	20.8	65.9	50.9
Sum	82.4	38.1	47.4	17.7	67.5	50.6
Ratio	81.4	36.6	45.0	24.8	65.2	50.6

756 Table 4: Performance of different filtration ways in PROF starting from Qwen2.5-Math-7B-base.
757

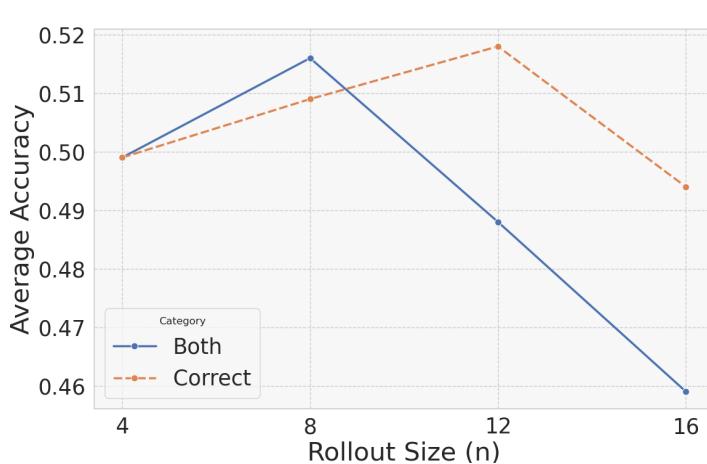


Figure 5: The averaged accuracy across all five benchmarks over rollout sizes $n = 4, 8, 12, 16$ for filtering both correct and incorrect groups with PRM consistency (Both) and only the correct group with PRM consistency (Correct).

In this subsection, we investigate the influence of different computation methods of consistency score r^{pro} in addition to the mean of PRMs over steps, where Mean denotes averaging over steps in Algorithm 1, Minimum and Sum denotes taking the minimum and sum summation over steps, Ratio denotes filtering while preserving the original positive–negative sample distribution, instead of balancing. As shown in Table 4, the performances of Minimum (50.9%), Sum (50.6%), and Ratio (50.6%) are inferior to the mean. This suggests that the mean provides a more stable estimate of reasoning consistency: unlike the minimum, it is less sensitive to a single poorly scored step, and unlike the summation, it avoids bias towards longer trajectories. Additionally, balancing the correct–incorrect ratio can use data consistency to select the group with more sufficient samples without breaking their balance.

D.3 EFFECT OF STEP NUMBER

To prove that PROF effect not by simply increasing the step number, We conduct the Filter-Nstep: Ranking and filtering out the samples with smaller number of steps instead of lower PRM-ORM consistency.

From Table 5, we find that Ratio scores 51.7% on average and cannot compete with balancing the proportion (PROF-GRPO), which also corroborates the conclusion that maintaining a balanced correct–incorrect proportion is essential. Additionally, since we observe that PROF boosts the number of intermediate reasoning steps, to verify that PROF does not simply increase the step length, but more importantly, enhances the quality of reasoning steps, we simply use the step length as the filtering criterion for comparison. As shown in Figure 6 and Table 5, Filter-Nstep manipulates the step length, which exhibits an unreasonable increase followed by a sudden drop, and its average accuracy is inferior.

E ADDITIONAL EXAMPLES

799

Algorithm	Math500	Minerva Math	Olympiad Bench	AIME24	AMC23	Average
PROF-GRPO	83.1	39.0	47.8	17.5	70.9	51.7
Filter-Nstep	81.5	35.5	45.9	16.3	58.6	47.6

803
804 Table 5: Performance of variants of filtering methods besides PROF-GRPO starting from Qwen2.5-Math-
805 7B-base averaged on all five benchmarks, where Ratio denotes filtering while preserving the original correc-
806 t/incorrect proportion, Filter-Nstep denotes ranking and filtering based on the number of step segments.
807
808

819
820 Figure 6: The number of reasoning steps during training time for PROF-GRPO and Filter-Nstep initialized
821 from Qwen2.5-Math-7B-base.
822
823

824
825 **Problem:** A white dwarf star has an effective temperature, $T_e = 50,000$ degrees Kelvin, but its radius R_{WD} is comparable to that of the
826 Earth. Take $R_{WD} = 10^4 \text{ km} (10^7 \text{ m} \text{ or } 10^9 \text{ cm})$. Compute the luminosity (power output) of the white dwarf. Treat the white dwarf as a
827 blackbody radiator. Give your answer in units of ergs per second, to two significant figures.

828 **PROF-GRPO Solution:**

829 First, let's recall the formula for the luminosity of a blackbody.

830 The luminosity L of a blackbody is given by the Stefan-Boltzmann law: $L = 4\pi R^2 \sigma T_e^4$.
831 We are given: $T_e = 50,000 \text{ K}$... The Stefan-Boltzmann constant σ is approximately $5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$.

832 Next, let's substitute the values into the Stefan-Boltzmann law.

$$833 L = 4\pi(10^7)^2 \times 5.67 \times 10^{-8} \times (50000 \text{ K})^4$$

834 Let's calculate the value step by step.

$$(10^7)^2 = 10^{14}, (50000 \text{ K})^4 = \dots = 6.25 \times 10^{18}.$$

835 Now, substitute these values back into the equation... calculate the numerical part

$$836 4\pi \approx 4 \times 3.14159 = 12.56636,$$

$$837 12.56636 \times 5.67 \approx 71.148$$

$$71.148 \times 6.25 \approx 444.675$$

$$838 L \approx 4.45 \times 10^{26} \text{ W}$$

839 Since 1 W=1 J/s and 1 erg=10⁻⁷ J, ...

$$L \approx 4.45 \times 10^{33} \text{ erg/s}$$

Therefore, the luminosity of the white dwarf is:

$$4.5 \times 10^{33} \text{ erg/s}$$

840 **GRPO Solution:**

To compute the luminosity of the white dwarf, we can use the Stefan-Boltzmann law ...

The formula for the luminosity L of a blackbody is given by: $L = 4\pi R^2 \sigma T_e^4$, where $\sigma = 5.67 \times 10^{-8} \text{ W m}^{-2} \text{ K}^{-4}$.

Given: $T_e = 5 \times 10^4 \text{ K}$, $R_{WD} = 10^9 \text{ cm}$.

First, we need to calculate:

$$T_e^4 = (5 \times 10^4)^4 = 625 \times 10^{16} = 6.25 \times 10^{18} \text{ K}^4$$

Next, we calculate the surface area of the white dwarf:

$$4\pi R_{WD}^2 = 4\pi(10^9 \text{ cm})^2 = 4\pi \times 10^{18} \text{ cm}^2.$$

Now we can compute the luminosity:

$$L = 4\pi \times 10^{18} \text{ cm}^2 \times 5.67 \times$$

$$10^{-8} \text{ ergs}^{-1} \text{ cm}^{-2} \text{ K}^{-4} \times 6.25 \times 10^{18} \text{ K}^4.$$

$$L = 4\pi \times 5.67 \times 6.25 \times 10^{18} \times 10^{-8} \times 10^{18} \text{ ergs}^{-1}$$

$$= \dots = 4.42 \times 10^{33} \text{ ergs}^{-1} \text{ s}^{-1}$$

Rounded to two significant figures, the luminosity of the white dwarf is

$$4.4 \times 10^{33} \text{ ergs}^{-1}.$$

841 **Blend-PRM-GRPO Solution:**

The luminosity L of a blackbody can be calculated using the Stefan-Boltzmann law:

$L = 4\pi R^2 \sigma T_e^4$, where σ is approximately $5.67 \times 10^{-8} \text{ ergs per square centimeter per second per Kelvin to the fourth power}$.

$R_{WD} = 10^9 \text{ cm}$.

First, we need to convert the radius from kilometers to centimeters.

First, we calculate:

$$R_{WD}^2 = (10^9 \text{ cm})^2 = 10^{18} \text{ cm}^2$$

Next, we calculate... $T_e^4 = 6.25 \times 10^{18} \text{ K}^4$

Now we can substitute these values into the Stefan-Boltzmann law:

$$L = 4\pi \times 10^{18} \text{ cm}^2 \times 5.67 \times 10^{-8} \text{ ergs/cm}^2/\text{s}/\text{K}^4 \times 6.25 \times 10^{18} \text{ K}^4$$

... We can separate the constants and the powers of 10:

$$4\pi \times 5.67 \times 6.25 \times 10^{-5+18}$$

$$\dots$$

So, 444.51875×10^{13}

Therefore, $L \approx 4.45 \times 10^{15} \text{ ergs/s}$

So the luminosity of the white dwarf is

$$4.45 \times 10^{15} \text{ ergs/s}$$

842 Figure 7: A Minerval-Math example to compare distinct intermediate reasoning patterns of PROF-GRPO,
843 vanilla GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction steps. GRPO's
844 solution skips detailed deduction steps and there are flaws in the calculation precision and the final rounding.
845 Blend-PRM-GRPO has long-winded steps and makes a big mistake in calculating the power.

846
847
848
849
850
851
852
853
854
855
856
857

858 **Problem:** The proper divisors of 12 are 1, 2, 3, 4 and 6. A proper divisor of an integer N is a positive divisor of N that is less
859 than N . What is the sum of the proper divisors of the sum of the proper divisors of 284?

860 PROF-GRPO Solution:	861 GRPO Solution:	862 Blend-PRM-GRPO Solution:
<p>First, we need to find the proper divisors of 284 ... Let's start by finding the divisors of 284. We can start by checking the obvious small divisors. Let's check if 2 is a divisor of 284. $284 \div 2 = 142$ Since the result is an integer, 2 is a divisor. Next, let's check if 4 is a divisor of 284... The proper divisors of 284 are 1, 2, 4, 71, and 142. Next, we need to find the sum of these proper divisors. Let's add these step by step ... $1 + 2 + 4 + 71 + 142 = 220$ Now, we need to find the proper divisors of 220. ... The proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110. The sum is: $1 + 2 + \dots + 110 = 284$ Therefore, the sum of the proper divisors of the sum of the proper divisors of 284 is 284.</p>	<p>First, we need to find the proper divisors of 284. The proper divisors of 284 are the positive divisors of 284 that are less than 284. The divisors of 284 are 1, 2, 4, 71, and 142. The sum of these proper divisors is: $1 + 2 + 4 + 71 + 142 = 220$ Next, we need to find the proper divisors of 220. The divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110. The sum of these proper divisors is: $1 + 2 + \dots + 110 = \boxed{284}$ So the sum of the proper divisors of the sum of the proper divisors of 284 is 284.</p>	<p>First, we need to find the proper divisors of 284. Let's start by finding all the divisors of 284. We'll start with 1, which is always a divisor. We check if 2 is a divisor. $284 \div 2 = 142$ So, 2 is a divisor. Next, we check if 3 is a divisor. $284 \div 3 \approx 94.67$ So, 3 is not a divisor ... We continue this process until we reach 142. The divisors of 284 are 1, 2, 4, 71, 142. Now, we need to find the sum of these proper divisors: $1 + 2 + 4 + 71 + 142$ First, we add 1 and 2: $1 + 2 = 3$ So, the sum of the proper divisors of 284 is 220. Now, we need to find the proper divisors of 220. We'll check each number from 1 to 219 to see if it divides 220 without leaving a remainder ... The proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110.... So, the sum of the proper divisors of 220 is 284.</p>

877
878 Figure 8: A Math500 example to compare distinct intermediate reasoning patterns of PROF-GRPO, vanilla
879 GRPO and Blend-PRM-GRPO. PROF-GRPO presents concrete and correct deduction steps. PROF-GRPO's
880 solution shows how to find the divisors and summation in detail, and is easy to follow. GRPO skips all core
881 reasoning. Blend-PRM-GRPO has inefficient and excessively tedious steps.
882
883
884
885
886
887
888
889
890
891
892