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Abstract

Large Language Models (LLMs) with API001
calling capabilities enabled building effective002
Language Agents (LA), while also revolution-003
izing the conventional task-oriented dialogue004
(TOD) paradigm. However, current approaches005
face a critical dilemma: TOD systems are of-006
ten trained on a limited set of target APIs,007
requiring new data to maintain their quality008
when interfacing with new services, while LAs009
are not trained to maintain user intent over010
multi-turn conversations. Because both robust011
multi-turn management and advanced function012
calling are crucial for effective conversational013
agents, we evaluate these skills on three popu-014
lar benchmarks: MultiWOZ 2.4 (TOD), BFCL015
V3 (LA), and API-Bank (LA)—and our anal-016
yses reveal that specialized approaches excel017
in one domain but underperform in the other.018
To bridge this chasm, we introduce CALM019
(Conversational Agentic Language Model), a020
unified approach that integrates both conver-021
sational and agentic capabilities. We created022
CALM-IT, a carefully constructed multi-task023
dataset that interleave multi-turn ReAct reason-024
ing with complex API usage. Using CALM-025
IT, we train three models CALM 8B, CALM026
70B, and CALM 405B, which outperform027
top domain-specific models, including GPT-4o,028
across all three benchmarks. This demonstrates029
the feasibility of a single model approach for030
both TOD and LA, setting a new standard for031
conversational agents. We release code, model032
weights, datasets, and training artifacts to sup-033
port future research.034

1 Introduction035

The concept of intelligent agents has been the cor-036

nerstone of artificial intelligence research for a037

long time (Minsky, 1986), developing in parallel038

with the field of human-to-machine conversation039

(Young, 2002). The advent of LLMs (OpenAI et al.,040

2024; Dubey et al., 2024) has revolutionized both041

fields and enabled powerful Language Agents (LA)042

TODs Language Agents
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Previous Work:
• Hudeček GPT3.5 (Hudeček et al., 2023)
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Figure 1: Unifying Capabilities of TOD Systems and
LAs. TOD systems excel in multi-turn conversations
and task completion but lack advanced API capabilities,
while LA handle APIs well but struggle with coherent
multi-turn dialogue.

(Schick et al., 2024) while transforming modular di- 043

alogue systems into end-to-end solutions (Hudeček 044

and Dusek, 2023). Despite sharing LLM founda- 045

tions, they are typically focused and analyzed sep- 046

arately from each other; dialogue models focused 047

on tasks such as multi-turn interactions, delivering 048

relevant information to users, and dialogue man- 049

agement with state-tracking, on the other hand LAs 050

concentrated exclusively on tool calling skills. 051

What if a single model could master both conver- 052

sational and agentic tasks at the same time? The 053

narrative of our paper aims to address the vision of 054

a unified conversational agent. Such an agent must 055

excel not only in handling multi-turn conversations 056

and TOD tasks but also in leveraging advanced LA 057

capabilities, such as compound tool usage. Pre- 058

vious research has focused on training dialogue 059

agents in controlled scenarios (e.g., booking and 060

reservation tasks) (Li et al., 2024) with limited set 061

of functions coming from dialogue actions (e.g., 062
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User: Yes, please tell me how to get tickets 
for the Jazz Festival.

SGD

Thought

System TurnAPI Call

Observation Thought

SGD ReAct

SNIPS TOD State Tracking

Hammer

ToolAce

Function Call

Function Call System Turn

Input: What are the current weather conditions in Sydney?
Output: {[{“name”: "WoDdNSe7e7K5", "arguments": {"LzZsvxUC": "Sydney"}}]}

Input: Book a table at a restaurant in Portugal with parking for me in 19 minutes.
Output: {"domain": "BookRestaurant", "slot_values": {"restaurant_type": "restaurant", "country": 
"Portugal", "facility": "parking", "party_size_description": "me", "timeRange": "in 19 minutes"}}

Action: BuyEventTickets(event_name='Jazz 
Festival', number_of_seats=2, 
date='2023-10-07', city='New York')

Thought1: The user is interested in purchasing 
tickets. I need to call the BuyEventTickets 
API for the Jazz Festival.

<Conversation History>
User: Yes, please tell me how to get tickets 
for the Jazz Festival.

Action: BuyEventTickets(event_name='Jazz 
Festival', number_of_seats=2, 
date='2023-10-07', city='New York')

Thought1: The user is interested in purchasing 
tickets. I need to call the BuyEventTickets 
API for the Jazz Festival.

<Conversation History>

Observation: Observation: {'status': 'success', 
'message': 'Successfully purchased 2 tickets'}

System: You have successfully purchased 2 
tickets for the Jazz Festival in Central Park!

Thought2: The tickets were successfully 
purchased. I need to confirm this with the user.

Llama-{8B,70B,405B}

Instruction 
Finetuning CALM

User: I am planning a trip to Japan soon. Could you recommend games popular in Japan to help me 
understand more about the local culture?"
System: Get Suggestion(term="popular", country="Japan", lang="en")

SNIPS (TOD) Hammer ToolAce 
(LA)

CALM-IT

CRA

LA

TOD

SGD ReAct 
(CRA)

Figure 2: Overview of the CALM Pipeline. This figure illustrates our dataset generation and fine-tuning framework.
The top three rows depict the data transformation processes, along with a corresponding sample shown on the right.
In each training sample, green text highlights the input components of the instruction sample, while purple text
indicates the target outputs optimized during fine-tuning. For detailed examples, refer to Figures 4 - 7.

find_attraction, book_hotel), or, relied on hand-063

crafted long prompts tied to a small set of prede-064

fined APIs (Xu et al., 2024) leveraged by propriety065

models like GPT-4. However, these approaches066

face limitations in real-world applications. Specifi-067

cally, existing systems cannot easily adapt to new068

services without expensive fine-tuning or prompt069

engineering, yet real-world users often need access070

to a diverse range of APIs and functionalities ac-071

cording to their needs. Moreover, previous work072

shown a notable performance gap reported in TOD073

tasks between closed-source and open-source mod-074

els (Hudeček and Dusek, 2023; Xu et al., 2024; Li075

et al., 2024). This tension underscores the need for076

an integrated open-source framework that supports077

both long-term dialogue state tracking and complex078

function calling from wide variety of APIs1.079

We propose CALM (Conversational Agentic080

Language Model), a unified approach that inte-081

grates TOD strengths (e.g., multi-turn state track-082

ing) with LA capabilities (e.g., dynamic tool use).083

To achieve this, we develop CALM-IT, a dataset084

spanning three dimensions: dialogue state tracking,085

complex function calling, and multi-turn conver-086

sations in ReAct style where the agent integrates087

its reasoning process with actions before providing088

1In this work, words such as "tool use", "function calling",
and "API calling" are used interchangeably.

the final response (Yao et al., 2023). The nov- 089

elty of CALM-IT comes from its Conversational 090

ReAct API (CRA) instances, which makes it the 091

first multi-turn TOD dataset explicitly incorporat- 092

ing ReAct-style reasoning with multiple think steps 093

inside, generated using GPT-4o. The first think 094

steps are responsible for deciding to call an API or 095

not and second think step is to decide whether to 096

response to user or not. Leveraging CALM-IT, we 097

trained CALM model series: CALM 8B, CALM 098

70B, and CALM 405B, a family of conversational 099

agents demonstrates state-of-the-art performance 100

on both TOD and LA domains. To comprehen- 101

sively evaluate this, we perform experiments on 102

one TOD benchmark, MultiWOZ 2.4 (Ye et al., 103

2022), and two popular function calling bench- 104

marks, the Berkeley Function Calling Leaderboard 105

V3 (BFCL) (Yan et al., 2024) and API-Bank (Li 106

et al., 2023) in completely zero-shot settings2. 107

Our experiments reveal a stark gap in existing 108

models: while LAs excel at tool calling on BFCL 109

V3, they falter on MultiWOZ 2.4 with poor task 110

completion. Conversely, base LLMs and traditional 111

TOD systems show limited function calling abili- 112

ties, as evidenced by the low performance on BFCL 113

2Here, "zero-shot" refers to none of the evaluation bench-
mark train-set was used while training the CALM models with
CALM-IT.
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V3 and API-Bank. In contrast, our CALM mod-114

els, excel across both TOD and LA tasks. Our115

larger-scale open-source variants—CALM 70B116

and CALM 405B—outperform GPT-4o and other117

domain-specific models on both TOD (MultiWOZ)118

and function calling benchmarks (BFCL V3 and119

API-Bank).120

In this paper, we study: How can we craft a121

single conversational agentic LLM that elegantly122

interweaves multi-turn dialogue mastery with pow-123

erful function calling capabilities? Our key contri-124

butions are as follows:125

• We analyze the gap between two domains: TOD126

systems and LA through evaluations on Multi-127

WOZ 2.4, BFCL V3, and API-Bank, showing128

limitations of existing approaches.129

• We introduce CALM-IT, a hybrid multi-task130

dataset for conversational agents that, for the first131

time, explicitly incorporates ReAct-style reason-132

ing steps in multi-turn TOD scenarios. Notably,133

to our knowledge, no prior effort has trained134

ReAct-based models using multi-turn TOD data135

in this manner.136

• We propose CALM, a family of model series137

trained with CALM-IT: CALM 8B, CALM 70B,138

and the largest open-source conversational agent139

CALM 405B—all unified by multi-turn dialogue140

skills and advanced function calling capabilities.141

• Our larger models, CALM 70B and CALM142

405B, outperform GPT-4o and GPT-4o-mini on143

both TOD and LA tasks, narrowing gap between144

agents using closed-source and open-source mod-145

els.146

To foster further research within the open-source147

community, we publicly release code, all model148

weights, datasets, intermediate checkpoints, and149

training configurations.150

2 Related Work151

Dialogues and the Domain Shift. Earlier stud-152

ies work on applying LLMs to dialog applications153

through supervised fine-tuning (Su et al., 2022;154

Gupta et al., 2022) or different prompting meth-155

ods (Hu et al., 2022; Chung et al., 2023; Zhang156

et al., 2023). Following these, Hudeček and Dusek157

(2023) have examined the dialogue management158

abilities of instruction-tuned LLMs in handling159

goal-oriented multi-turn conversations. More re-160

cently, existing work in dialogue agents primarily161

focuses on leveraging dialogue acts to derive API162

calls for backend services (Li et al., 2024; Xu et al.,163

2024; King and Flanigan, 2024). FNCTOD (Li 164

et al., 2024) fine-tunes on a small dataset restricted 165

to a limited set of domain-specific APIs for state 166

tracking, whereas AutoTOD (Xu et al., 2024) uses 167

GPT-4 with hand-crafted prompts that rely on a 168

narrow set of predefined APIs with long instruc- 169

tions for each dialogue domain. However, these 170

approaches are brittle and difficult to scale in real 171

life scenarios, as they require costly re-trainings or 172

extensive prompt engineering to handle new ser- 173

vices, unseen domains, and unexpected user re- 174

quests. Our work aligns with these studies in build- 175

ing such agents, but CALM can manage thousands 176

of complex APIs at the same time and can general- 177

ize to unseen domains without expensive training 178

cycles and time-intensive prompt engineering. 179

Language Agents. Tool learning with LLMs has 180

evolved from simple simple reasoning (Wei et al., 181

2022) to more sophisticated approaches (Yao et al., 182

2023; Ling et al., 2023). Early work relied on 183

prompting to enable tool usage (Yao et al., 2023; 184

Paranjape et al., 2023), but more recent research 185

has focused on specialized fine-tuning approaches 186

for effective function calling accuracy (Schick 187

et al., 2024; Patil et al., 2023; Wang et al., 2024; 188

Zhang et al., 2024). For example, Toolformer 189

(Schick et al., 2024) have explored how LLMs 190

autonomously learn when and how to call APIs, 191

leading to improved performance in task-specific 192

settings. In this direction, recent works (Abdelaziz 193

et al., 2024; Liu et al., 2024; Lin et al., 2024) fo- 194

cus on fine-tuning synthetically generated data to 195

integrate more complex tool calling capabilities, 196

such as nested function calls and irrelevance detec- 197

tion. These approaches shown promising results 198

on LA benchmarks, however they mostly operate 199

on single-turn interactions with the user and fall 200

short of enabling user-driven, multi-domain, and 201

multi-turn task completion which is essential for 202

real-world conversational systems. 203

3 Preliminaries 204

A Conversational Agent, at its core, must under- 205

stand user intents, maintain context across multi- 206

turn interactions, and respond contextually. Be- 207

yond traditional TOD tasks, modern conversational 208

agents are also expected to exhibit agentic abilities, 209

like tool calling, planning, and decision making, 210

to fulfill complex user requests. An effective con- 211

versational agent integrates these capabilities as 212

skills, ensuring natural and relevant interactions 213
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Data Domain Data Type Data Name Data Format # of Data Samples # of Total Tokens Avg. Tokens Per Sample

TOD Single-Turn SNIPS State Tracking 13, 028 12, 278, 780 942.49

LA Single-Turn Hammer API Call 13, 819 10, 199, 147 738.05
Multi-Turn ToolAce API Call 202, 500 129, 001, 612 637.04

CRA Multi-Turn SGD ReAct API Call 82, 236 59, 704, 782 726.02

Total 311, 583 211, 184, 321 760.90

Table 1: CALM-IT Dataset Details. Statistical details of our proposed CALM-IT dataset showcasing the training
mixtures. Generated CRA denotes the Conversational ReAct API dataset.

while effectively completing the user’s objectives.214

The detailed task formulations for TOD systems215

and LA are provided in Appendix A.216

3.1 Why we need both TOD and LA217

Capabilities?218

Multi-turn interactions are critical for refining am-219

biguous user requests. For example, when a user220

says "Find me a hotel", the system can ask clari-221

fying questions to clarify the user’s intention (e.g.,222

location, price range) instead of returning generic223

results. This ensures meaningful and task-specific224

conversations. That said, traditional TOD sys-225

tems excel at handling these multi-turn interac-226

tions but over a small set of predefined APIs (e.g.,227

query_restaurant, book_hotel) coming from dia-228

logue acts (Ye et al., 2022). By training on struc-229

tured dialogue flows, they achieve high task success230

rates in controlled scenarios (e.g., standard book-231

ing or reservation tasks) without requiring complex232

function calling capabilities. However, these sys-233

tems struggle to adapt to new services (e.g., airline,234

retail) without expensive re-training.235

In real-world settings, users may need to access236

a wide variety of APIs (e.g., search_direct_flight,237

get_product_details). This is where LA shines:238

they leverage LLMs and can rapidly learn how to239

use unseen new tools since they are already profi-240

cient with determining when to invoke an API and241

decide which API to use from a diverse set of avail-242

able functions. Without these skills, agents fail to243

fulfill complex user goals, limiting their utility.244

Together, these skills form the backbone of a uni-245

fied conversational agents, enabling them to tran-246

sition from being passive responders to proactive247

collaborators capable of managing intricate tasks248

and sustaining user engagement.249

3.2 Can TOD Systems Solve Function Calling250

Tasks?251

The benchmark results demonstrate the limitations252

of TOD systems in function calling scenarios. De-253

spite achieving top performance on MultiWOZ met-254

rics as in Table 2, TOD systems show significantly 255

lower accuracy on both API-Bank (Table 3 bottom 256

row) and BFCL (Table 4) benchmarks. This perfor- 257

mance gap reveals that TOD systems’ traditional 258

strengths in dialogue management do not translate 259

well to handling diverse, unseen, and complex API 260

calls. 261

3.3 Can LAs Handle Task-oriented 262

Multi-turn Conversations? 263

Conversely, agentic models like ToolAce (Liu et al., 264

2024), Hammer (Lin et al., 2024), and Granite (Ab- 265

delaziz et al., 2024) while achieving accurate re- 266

sults on API-Bank and BFCL V3, perform poorly 267

on MultiWOZ’s task completion metrics, such as 268

JGA. These results highlight a critical weakness: 269

while they deliver strong performance on function 270

execution tasks, they fall short in maintaining co- 271

herent multi-turn conversations and properly ful- 272

filling user intents. Their specialized optimization 273

for tool calling impairs their dialogue management 274

abilities, indicating that current LAs need more 275

balanced capabilities to handle task-oriented con- 276

versations more effectively. 277

4 Methodology 278

Our approach, illustrated in Figure 2, develops a 279

unified agent skilled in goal-oriented multi-turn 280

conversations and function calling. First, we 281

build the CALM-IT, a broad instruction-tuning 282

(IT) dataset that spans multiple domains, tasks, 283

and unique reasoning structures. Next, we do 284

fine-tuning on the proposed CALM-IT dataset to 285

produce CALM; a balanced conversational agent 286

model series capable of complex reasoning, flu- 287

ent dialogue, user intent fulfillment, and function 288

calling. 289

4.1 Conversational Agent Dataset Generation 290

To develop a conversational agent with diverse ca- 291

pabilities, we created a comprehensive dataset that 292

combines samples across multiple skills essential 293

for both multi-turn task-oriented conversations and 294
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tool utilization. Figure 2 summarizes how the295

dataset is created and Table 1 provides detailed296

statistics of CALM-IT.297

TOD Datasets. An accurate dialogue system needs298

to master three fundamental capabilities: providing299

accurate information to users, fulfilling user goals,300

and tracking dialogue states to understand user in-301

tents and goals throughout conversations (Walker302

et al., 1997). To equip our model with these skills,303

we utilized the SNIPS dataset (Coucke et al., 2018),304

originally designed for language understanding but305

repurposed for single-turn dialogue state tracking306

(DST). We extracted its training split and converted307

it into the state tracking IT format by crafting a308

detailed instruction prompt, as illustrated in Figure309

4. This transformation resulted in a training set of310

24,542 samples for effective DST.311

Function Calling Datasets. Tool calling capability312

is the ability to select appropriate APIs and access313

external knowledge, which is crucial in modern314

LAs. An effective agent must not only choose315

the correct API but also provide properly typed316

parameters (e.g., integers or strings) and manage317

complex scenarios involving sequential or parallel318

function calls. To develop these skills, we incor-319

porated datasets from two state-of-the-art agent320

models: Hammer (Lin et al., 2024) and ToolACE321

(Liu et al., 2024). Hammer’s training dataset in-322

corporates random noise by replacing function and323

parameter names to prevent overfitting (see Figure324

2), forcing the model to reason about API func-325

tionality through provided descriptions rather than326

memorizing specific identifiers. ToolACE provides327

multi-turn conversational scenarios in open-domain328

settings, where function calls may occur across329

multiple turns, but no database is provided. We330

post-process these datasets by incorporating the331

prompt instructions and adding conversation his-332

tory if available. As reported in Table 1, the com-333

bined API calling corpus contains 216,319 samples.334

A function calling training sample for the Hammer335

dataset can be seen in Figure 5.336

Conversational ReAct-based API Calling (CRA)337

Dataset. While state tracking enables the un-338

derstanding of user intent and function calling339

provides external knowledge access, integrating340

these capabilities within multi-turn task-oriented341

conversations requires additional reasoning about342

when to make API calls and how to interpret343

their results. Our primary contribution is a344

completely new User and Agent conversation 345

structure as User-Thought1-Action-Observation- 346

Thought2-Response. Starting from multi-turn 347

SGD dataset (Rastogi et al., 2020), we systemat- 348

ically transform each turn to include two distinct 349

reasoning steps (Thought1 and Thought2) and po- 350

tential API calls (Action and Observation), extend- 351

ing traditional ReAct format (Yao et al., 2023) by 352

incorporating GPT-4o for content generation (Fig- 353

ure 2 top row). Our structure includes two main 354

parts: (i) User-Thought1-Action, which focuses 355

on understanding the user’s intent with reasoning 356

and invoking the right API, if necessary (Figure 6 357

bottom). (ii) Observation-Thought2-Response, 358

where the agent analyzes the returned observations 359

and formulates an appropriate response to the user 360

(Figure 7 bottom). This transformation is achieved 361

with a carefully designed prompt in Table 6, which 362

enforces strict “Role Definition”, “Task Informa- 363

tion”, and “Output Format”. Since CRA is gener- 364

ated via GPT-4o (OpenAI et al., 2024), it is also 365

validated by human evaluators (Appendix D). Best 366

of our knowledge, this is the first ReAct-based Con- 367

versational API dataset that incorporates multiple 368

intermediate reasoning steps in multi-turn settings 369

for TOD. This process yielded 82,236 samples, 370

specifically tailored for task-oriented domains such 371

as hotel bookings and restaurant reservations. 372

We merge all three datasets into a single train- 373

ing set called CALM-IT, please refer to Table 1 374

for details. We fine-tune our CALM models on 375

this merged dataset in one pass. By interleaving 376

samples from TOD, LA, and CRA, the model con- 377

tinuously practices different conversational skills 378

without overfitting to any single domain or task 379

type. 380

4.2 Fine-tuning Towards Conversational 381

Agents 382

We followed a multitask fine-tuning approach to 383

develop CALM models’ diverse capabilities across 384

TOD, function calling, and multi-turn reasoning 385

by training on CALM-IT. Our training process is 386

structured to target specific skills through different 387

optimization objectives completely in zero-shot 388

settings, as our CALM-IT dataset does not contain 389

any of the evaluation benchmark training sets. 390

Multitask Fine-tuning. As described in Section 391

4.1 and illustrated in Figure 2, our CALM-IT 392

dataset combines samples from three distinct do- 393
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mains, each designed to cultivate a specific skill: (i)394

TOD (Task-Oriented Dialogue) for strengthening395

dialogue state tracking, (ii) LA (Language Agent)396

for teaching the model when and how to invoke397

function calls, and (iii) ReAct for multi-turn con-398

versation, multi-step reasoning and function call-399

ing.400

For TOD, we augment SNIPS data with prompt401

instructions (Figure 4), training the model to gen-402

erate structured dialogue states in response to user403

queries. For function calling (LA), we optimize404

CALM to select the correct APIs and produce ac-405

curate function calls with proper parameter types406

(Figure 5), emphasizing reasoning over memorized407

patterns. We then address complex multi-turn con-408

versations with API integration using our CRA409

dataset, formatted in the ReAct style. This stage410

uses two objectives: (1) action prediction (Figure411

6), where the model learns to issue the appropriate412

function call given the conversation history, and413

(2) response generation (Figure 7), where it synthe-414

sizes coherent replies based on both API results and415

intermediate reasoning steps. Rather than merely416

producing answers, the model learns to reason, de-417

cide, and act in multiple stages before arriving at418

a final response. Notably, we trained our models419

on CALM-IT by interleaving TOD, LA, and CRA420

samples, enabling the model to continuously prac-421

tice diverse conversational skills while avoiding422

overfitting to any single domain or task type.423

Training Details. We developed the CALM model424

series by fine-tuning Llama 3.1 8B, Llama 3.3425

70B, and Llama 3.1 405B (Dubey et al., 2024) us-426

ing a consistent Alpaca (Instruction-Input-Output)427

format. To balance efficiency and model qual-428

ity, we applied LoRA (Hu et al., 2021) rank (r)429

= 16 and scaling factor (α) = 32 to all linear lay-430

ers, and trained in mixed-precision bfloat16 (bf16)431

on 8 NVIDIA H100 GPUs. Under these settings,432

CALM-8B required approximately 8 hours of train-433

ing, while CALM-70B took about 60 hours. We434

used a global batch size of 8, trained for 3 epochs435

with a learning rate of 1e− 4, and employed a lin-436

ear warm-up schedule with a 0.1 ratio. For CALM437

405B, we fine-tuned Llama 3.1 405B and using438

QLoRA (Dettmers et al., 2023) with the same rank439

and scaling factor using bitsandbytes (BitsAnd-440

Bytes, 2025) with a quantization type of normal-441

ized float 4 (nf4). The precise training configura-442

tions for CALM 8B, CALM 70B and CALM 405443

is available for reproduction.444

Method Success JGA

CALM 8B (ours) 51.6 30.4
CALM 70B (ours) 69.4 43.8
CALM 405B (ours)∗ 66.7 38.8

Hammer 2.0 7B 23.5 21.7
ToolAce 18.0 34.4
Granite-20B-Code 10.7 21.8
CodeActAgent 9.5 20.2
Llama 3.1 8B Instruct 19.9 26.3
Llama 3.3 70B Instruct 67.6 40.8
Mistral-7B-Instruct-v0.3 31.2 27.0
FNCTOD (Li et al., 2024) 44.4 37.9
NC-Latent-TOD (King and Flanigan, 2024) 68.3 39.7
GPT 3.5 Turbo (Hudeček and Dusek, 2023) - 13.5
GPT4o-mini 69.9 38.4
GPT4o 75.5 36.9

Table 2: MultiWOZ 2.4 Benchmark Results. Perfor-
mance comparison across models on MultiWOZ 2.4
dialogue benchmark. Best scores are highlighted with
bold. The asterisk (*) on CALM 405B denotes the
checkpoint from one completed epoch, as the model is
still under training.

5 Experiments 445

This section presents results highlighting CALM’s 446

effectiveness in unifying conversational manage- 447

ment and advanced API calling, outperforming spe- 448

cialized models across both TOD and LA bench- 449

marks. 450

5.1 Experimental Settings 451

Evaluation Benchmarks. We evaluate our ap- 452

proach on three complementary benchmarks that 453

assess different aspects of model performance: 454

MultiWOZ 2.4 (TOD), API-Bank (LA), and BFCL 455

V3 (LA). Specifically, MultiWOZ 2.4 (Ye et al., 456

2022) is a multi-domain TOD dataset covering sce- 457

narios such as hotel booking and transportation, 458

where we measure Success Rate and Joint Goal 459

Accuracy (JGA); in our zero-shot setting, we rely 460

on the test set of 999 samples, using a slightly 461

modified AutoTOD prompt (Xu et al., 2024). API- 462

Bank (Li et al., 2023) focuses on evaluating tool- 463

augmented LAs through 314 tool-use dialogues 464

and 753 API calls, tested at two levels: L-1 (invok- 465

ing a known API) and L-2 (retrieving and calling 466

from multiple candidates). Lastly, BFCL V33 (Patil 467

et al., 2023) provides over 1,800 test cases spanning 468

tasks like simple, multiple, and parallel function 469

calls, evaluated by Abstract Syntax Tree (AST) ac- 470

curacy and Executable Function Accuracy. See 471

Appendix B for further details. 472

3https://gorilla.cs.berkeley.edu/blogs/13_
bfcl_v3_multi_turn.html
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Model Rouge-L* Rouge-1 Rouge-2 BLEU-4
L-1 L-2 L-1 L-2 L-1 L-2 L-1 L-2

CALM 8B (ours) 92.8 81.9 94.1 81.2 91.9 76.4 89.4 69.7
CALM 70B (ours) 92.7 83.2 94.5 82.7 92.5 78.9 89.5 72.4
CALM 405B (ours)∗ 93.4 77.8 94.5 77.1 92.4 71.9 90.3 64.4

Llama 3.1 8B Instruct 72.7 75.2 84.0 81.4 79.8 76.3 62.3 65.1
Qwen2.5 7B Instruct 84.3 73.9 88.9 78.5 84.6 71.2 76.4 64.2
Hammer 2.0 7B 90.1 74.0 92.3 74.1 89.9 68.5 85.4 58.4
ToolAce 81.5 63.6 88.8 71.3 85.0 63.0 76.1 67.0
Granite-20B-Code 60.3 45.7 64.7 48.9 59.5 43.4 43.8 29.3

Fnc-TOD 13B 3.9 3.3 22.1 23.4 8.0 9.2 1.5 1.1
LDST 8.3 7.1 12.8 11.6 2.7 2.4 6.2 5.7
tod-zero-bqag3oyb 3.7 4.2 11.5 12.4 1.1 2.2 1.0 0.9
nc-latent-tod-step-2 3.2 3.2 14.3 13.3 3.2 1.5 0.8 0.8

Table 3: API-Bank Benchmark Results. Performance
comparison across models on API-Bank function calling
benchmark. Best scores are highlighted with bold and
the second-best results are underlined. The asterisk (*)
on CALM 405B denotes one completed epoch, as the
model is still in the training process.

Baselines. In the LA tasks, we included strong473

baselines like Hammer (Lin et al., 2024), ToolAce474

(Liu et al., 2024), Granite (Abdelaziz et al., 2024)475

which represent state-of-the-art models in agentic476

tasks, including OpenAI models. For MultiWOZ477

evaluations, we recognize that many existing TOD478

models are trained with classification-based super-479

vised fine-tuning, focusing primarily on DST. Such480

models do not support free-form dialogue genera-481

tion, nor do they exhibit broader “chat” capabilities.482

In contrast, our approach aims to unify both conver-483

sational (LA) and agentic (TOD) tasks into a single,484

generative framework. On the other hand, there are485

some models evaluated in zero-shot settings but486

as per domain JGA, rather than overall JGA. That487

said, we used top popular zero-shot models FNC-488

TOD (Li et al., 2024) and NC-Latent-TOD (King489

and Flanigan, 2024) as our TOD baselines in TOD.490

Please see Appendix C for more details of these491

baseline models.492

5.2 Results on MultiWOZ493

LA models struggle with TOD. Table 2 summa-494

rizes results on MultiWOZ 2.4. Baseline models495

optimized for function calling (ToolAce, Hammer,496

Granite, CodeAct) achieve low Success Rate and497

JGA. Although these agents can call APIs effec-498

tively, they fail to track user intents across multiple499

sessions or deliver correct final answers to the user,500

except ToolAce JGA reaches 34.4% accuracy close501

with domain-specific TOD models like FNCTOD.502

Instruction-tuned base LLMs like Llama 3.1 8B503

perform moderately better on MultiWOZ, reaching504

a 19.9% Success rate and 26.3% JGA.505

CALM surpasses and generalizes in TOD. In 506

contrast, our smallest CALM 8B achieves 51.6% 507

Success Rate, more than doubling the Success 508

performance compared to Llama 3.1 8B and sur- 509

passing other LAs. Moreover, our CALM 70B 510

model achieves top results on DST with achiev- 511

ing 43.8% JGA, even outperforming GPT-4o and 512

GPT-4o-mini. This shows CALM’s ability with 513

coherent multi-turn state-tracking, outperforming 514

existing baselines and domain-specific models like 515

FNCTOD. Notably, CALM’s strong performance 516

is achieved without any MultiWOZ samples in its 517

CALM-IT training dataset, demonstrating its ro- 518

bustness in out-of-distribution (OOD) generaliza- 519

tion. 520

5.3 Results on API-Bank and BFCL 521

CALM adeptly orchestrates function calls. Ta- 522

ble 3 shows API-Bank scores to test model’s API 523

calling capabilities where Rouge-L is the primary 524

evaluation metric. TOD models in the bottom row 525

yield suboptimal results in this task. On the other 526

hand, CALM 8B achieves a Rouge-L score of 92.8 527

at Level-1 and 81.9 at Level-2, surpassing both 528

TOD-oriented models and tool-centric LAs by a sig- 529

nificant margin. It also achieves top performance 530

on nearly all metrics. Moreover, we scale CALM 531

8B accuracy with CALM 70B and CALM 405B 532

models achieving top best and second best scores. 533

This suggests that CALM’s balanced approach en- 534

ables it not only to retrieve and call the correct API 535

but also to generate precise responses grounded 536

in the returned results, fulfilling complex user re- 537

quests effectively. 538

CALM outperforms specialized LAs and GPT- 539

4o. We next assess function calling accuracy on 540

BFCL V3 (Table 4). Models trained only for 541

TOD or basic instruction-following underperform. 542

While LAs like Hammer and ToolAce fare bet- 543

ter, our smallest model CALM 8B surpasses them 544

(see Figure 3 for error analysis examples). Our 545

larger scale models outperform GPT-4o, GPT-4o- 546

mini and Llama-3.1-405B in overall accuracy. Re- 547

markably, CALM 405B achieves 100% accuracy 548

on the relevance detection task, highlighting its 549

agentic reasoning capabilities through hallucina- 550

tion. CALM 405B stands as the top-performing 551

fully open-source model on BFCL V3 leaderboard. 552
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Model Overall Acc Non-Live AST Acc Non-Live Exec Acc Live Acc Multi Turn Acc Relevance Detection Irrelevance Detection

Mistral-7B-Instruct-v0.3 38.35% 56.33% 63.77% 57.31% 0.25% 77.78% 41.84%
Llama-3.1-8B-Instruct 49.84% 84.25% 79.75% 60.33% 10.25% 75.61% 47.92%
Llama-3.3-70B-Instruct 51.36% 84.85% 90.05% 62.51% 7.25% 95.12% 48.33%
ToolAce 52.55% 82.19% 86.98% 71.08% 0.88% 70.73% 87.29%
Hammer2.0-7b 52.13% 86.94% 83.66% 71.17% 0.38% 95.12% 73.20%
Llama-3.1-405B-Instruct 56.38% 89.71% 84.70% 70.77% 11.75% 88.89% 70.86%
GPT-4o-mini (2024-07-18) 59.40% 86.52% 85.05% 73.26% 19.00% 78.05% 76.97%
GPT-4o (2024-08-06) 59.83% 70.08% 60.79% 76.41% 34.62% 51.22% 87.34%

CALM 8B (ours) 54.11% 85.17% 78.61% 72.59% 7.00% 77.78% 83.00%
CALM 70B (ours) 60.49% 82.94% 81.36% 72.19% 26.25% 72.22% 85.36%
CALM 405B (ours)∗ 63.34% 90.46% 84.75% 74.59% 28.25% 100.00% 72.26%

Table 4: BFCL V3 Benchmark Results. Performance comparison on the BFCL V3 function-calling benchmark.
The best results are highlighted in bold, while the second-best results are underlined. The asterisk (*) on CALM
405B denotes one completed epoch, as the model continues training.

TOD Task Function Calling Tasks

MultiWOZ 2.4 API-Bank BFCL-V3

Model Success DST Rouge-L1 Rouge-L2 Overall Success

Llama 3.1 8B Instruct 19.9 26.3 72.7 75.2 49.8
+ CALM-IT w/o LA 46.0 (26.1 ↑, 5.6 ↓) 28.5 (2.2 ↑, 1.9 ↓) 45.5 (27.2 ↓, 47.3 ↓) 48.8 (26.4 ↓, 33.1 ↓) 35.4 (14.4 ↓, 18.3 ↓)

+ CALM-IT w/o TOD 42.0 (22.1 ↑, 9.6 ↓) 19.4 (6.9 ↓, 11.0 ↓) 92.7 (20.0 ↑, 0.1 ↓) 78.9 (13.7 ↑, 3.0 ↓) 54.1 (4.3 ↑, 0.4 ↑)

+ CALM-IT w/o CRA 50.0 (30.1 ↑, 1.6 ↓) 34.5 (8.2 ↑, 4.1 ↑) 91.3 (18.6 ↑, 1.5 ↓) 78.8 (3.6 ↑, 3.1 ↓) 56.6 (10.6 ↑, 2.9 ↑)

CALM 8B 51.6 30.4 92.8 81.9 53.7

Table 5: Dataset Domain Effects. Experimental results highlighting the impact of excluding specific domain
datasets during CALM fine-tuning. w/o indicates excluding the corresponding dataset during fine-tuning. Each row
displays performance changes in parentheses with respect to base model (Llama) and final model (CALM), i.e. (∆
Llama, ∆ CALM). Performance gains are highlighted in green, while drops are marked in red.

5.4 Domain Impact on Performance553

Table 5 highlights the performance impact of554

CALM-IT’s fine-tuning components. Removing555

LA datasets significantly reduces function calling556

performance, with API-Bank Rouge-L1 dropping557

47.3% and BFCL success falling 18.3%. Exclud-558

ing the DST dataset leads to a notable decline559

in CALM’s JGA, dropping by 11.0% relative to560

CALM and even underperforming base Llama by561

6.9%. This underscores the essential role of fine-562

tuning on state tracking to capture user intents ef-563

fectively. Finally, removing the GPT-4-generated564

CRA dataset has negative impact on MultiWOZ565

2.4’s Success metric, which plummets by 11.7%.566

Also, multi-turn function calling accuracy dropped567

in API-Bank, both in L1 and L2 metrics. This568

indicates that the CRA dataset is instrumental in569

developing coherent and contextually aware re-570

sponses in multi-turn settings. However, JGA and571

BFCL’s overall success see slight improvements,572

suggesting that certain specialized skills may bene-573

fit marginally in the absence of broader conversa-574

tional reasoning. These results confirm that each575

dataset is crucial for balanced task performance,576

enabling CALM to generalize effectively across577

different tasks without overfitting to one domain.578

6 Conclusion and Future Work 579

In this work, we highlighted a critical gap be- 580

tween LA and TOD systems, where each excels in 581

complementary capabilities, function calling and 582

multi-turn conversation management, respectively. 583

To solve this, we introduced CALM, unified con- 584

versational agents that seamlessly integrates so- 585

phisticated API usage with natural multi-turn dia- 586

logue. Through fine-tuning on CALM-IT with a 587

hybrid fine-tuning strategy, CALM achieves lead- 588

ing performance on both TOD and LA benchmarks, 589

demonstrating that a single model can indeed mas- 590

ter multi-turn conversations and tool use effec- 591

tively. 592

Future work can investigate using reinforcement 593

learning (RL) to generate large-scale interaction 594

trajectories supported with API calls could further 595

enhance the self-evolution of conversational agents 596

through purely RL-based optimization. Another 597

direction is, improving multi-turn function calling 598

and user interaction abilities of these models, which 599

remains a difficult problem with generally low accu- 600

racy. We believe that our findings, methodologies, 601

and published resources will foster future research 602

to create more capable and versatile conversational 603

systems. 604
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7 Limitations605

While CALM demonstrates improved performance606

across both conversational TOD and agentic tasks,607

we conducted all experiments solely using the608

Llama model family, limiting our insights into609

other architectures like Mistral and Qwen. Further-610

more, many TOD systems rely on classification-611

based supervised fine-tuning (DST-only), lacking612

free-form chat capabilities, so we are not able to in-613

tegrate them in our chat-based evaluation setup for614

head-to-head comparisons. We also did not system-615

atically assess CALM’s general reasoning abilities616

after post-training, leaving open the question of po-617

tential catastrophic forgetting if any. Even though618

we introduced the open source model CALM 405B,619

the computational cost of doing inference with620

CALM 405B requires 16 H100 GPUs, which may621

limit accessibility for some researchers. Lastly, our622

current approach still relies on curated fine-tuning623

data; future work might investigate self-evolving624

methods that learns complex function calling skills625

continuously leveraging RL.626
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Appendix838

A Problem Formulation839

A.1 End-to-End TOD Systems with LLMs840

LLM-based end-to-end TOD systems generate841

contextually relevant responses based on dia-842

logue history and task instructions. Let F be843

a language model parameterized by θ, which844

maps an input context given as prompt T to845

an output system response yt. At each dia-846

logue turn t, the system receives three key com-847

ponents: task instructions G, dialogue history848

Ht comprising of prior user-system interactions849

{(u1, y1), ..., (ut−1, yt−1)}, and the current user850

input ut. These elements are combined to form851

the complete prompt Tt = (G,Ht, ut). The model852

generates a response yt by modeling the conditional853

probability:854

P (yt|Tt; θ) = P (yt|G,Ht, ut; θ), (1)855

where P (st|Tt; θ) denotes the probability of gen-856

erating the response yt given the prompt Tt and857

the model parameters θ. The dialogue progresses858

by updating the history after each turn Ht+1 =859

Ht + [(ut, st)], maintaining the sequential nature860

of the interaction while preserving task orientation861

through G.862

A.2 Function Calling with Language Agents863

A language model Fθ maps an input x = (G, u,Ω),864

where G is the task prompt, u is the user query, and865

Ω = {f1, . . . , fn} is the set of available functions866

with their arguments and descriptions to a struc-867

tured function call y. The model generates target868

function call in a structured format, such as JSON869

or text schema. The generation probability is de-870

fined as:871

P (y | x; θ) = P (y | G, u,Ω; θ) (2)872

This formulation enables the model to translate873

natural language inputs into precise and well-874

structured function calls, facilitating seamless inte-875

gration with external systems.876

ReAct Prompting. ReAct (Yao et al., 2023) inte-877

grate reasoning and action-taking to enable more878

effective decision-making. It facilitates interme-879

diate reasoning by breaking down complex tasks880

into smaller, interpretable reasoning steps. Addi-881

tionally, it enables interaction with external tools or882

APIs by producing structured actions that integrate883

effectively with external systems. As a result of 884

an API execution, ReAct incorporates observations 885

dynamically, adapting subsequent reasoning and 886

actions based on the results of previous steps, thus 887

improving the system’s responsiveness and overall 888

task performance. 889

B Details of the Evaluation Benchmarks 890

MultiWOZ 2.4. MultiWOZ 2.4 (Ye et al., 2022) 891

is a multi-domain TOD dataset designed to evaluate 892

dialogue systems’ ability to handle complex con- 893

versations across multiple domains such as hotel 894

booking, restaurant reservations, and transporta- 895

tion. We employ two different metrics during our 896

TOD evaluations MultiWOZ: Success Rate, which 897

assesses whether all user-requested information re- 898

lated to the entity is successfully provided and Joint 899

Goal Accuracy (JGA) which measures the accuracy 900

of predicted dialogue states, reflecting the system’s 901

ability to track user intents. During our zero-shot 902

evaluations, we used its test set that contains 999 903

samples and incorporated AutoTOD prompt (Xu 904

et al., 2024) with slight modifications, thereby gen- 905

erating system responses analogous to those pro- 906

duced in a chat-based inference setting. 907

API-Bank. API-Bank (Li et al., 2023) is de- 908

signed to evaluate tool-augmented LAs, focusing 909

on their ability to plan, retrieve, and invoke APIs 910

effectively. It includes 314 tool-use dialogues and 911

753 API calls, with two evaluation levels: Level 1 912

(L-1), which tests the accuracy of invoking a known 913

API based on a given query, and Level 2 (L-2), 914

which assesses the retrieval and invocation of APIs 915

from a candidate list, simulating real-world scenar- 916

ios with multiple API options. By addressing these 917

challenges, API-Bank advances the understanding 918

and enhancement of tool-augmented reasoning in 919

LLMs. During evaluations, we used the official 920

evaluation code from the repository of previous 921

works (Lin et al., 2024). 922

Berkeley Function Calling Leaderboard. In ad- 923

dition to API-Bank, we also used BFCL V34 (Patil 924

et al., 2023) which provides a diverse evaluation 925

framework for assessing the models’ ability to per- 926

form function calls across various objectives. It 927

includes more than 1,800 test cases that span tasks 928

such as simple functions, multiple functions, and 929

parallel functions for Python and other environ- 930

4https://gorilla.cs.berkeley.edu/blogs/13_
bfcl_v3_multi_turn.html
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ments such as REST APIs and JavaScript. Models931

are evaluated using two primary metrics: (i) Ab-932

stract Syntax Tree (AST) accuracy, which ensures933

syntactic correctness by verifying function struc-934

tures, parameters, and types against predefined doc-935

umentation and (ii) Executable Function Accuracy,936

which evaluates whether generated functions exe-937

cute correctly and produce the expected outputs,938

emphasizing real-world applicability. In our experi-939

ments, we employed the official repository released940

by authors and followed the provided instructions941

to get model results.942

C Baseline Model Overviews Used in943

Experiments944

In this section, we provide an overview of the945

models used in our experiments, including their946

brief descriptions, checkpoints, and the training947

re-production code references.948

C.1 Base Models949

Llama 3.1. The Llama (Large Language Model950

Meta AI) (Dubey et al., 2024) family is a set of951

open-source language models from Meta AI, rang-952

ing from 7 to 405 billion parameters. It trained on953

a large corpus of web content, academic texts, and954

books, they excel at reasoning, question-answering,955

and code generation. Their architecture supports956

efficient fine-tuning and deployment. In our exper-957

iments, we use Llama-3.1-8B-Instruct5, released958

in July 2024, which offers improved multilingual959

capabilities, longer context windows, and state-of-960

the-art performance in general knowledge, math,961

and tool usage962

Mistral v03. Mistral 7B (Jiang et al., 2023) is one963

of the state-of-the-art, open-source LLMs produced964

by Mistral AI. It employs innovative mechanisms965

such as grouped-query and sliding window atten-966

tion, which enable efficient processing of longer967

sequences and faster inference times. In our exper-968

iments, we use Mistral-7B-Instruct-v0.36, released969

on May 22, 2024, and available on Hugging Face.970

C.2 TOD Models971

LDST. LDST (LLM-driven Dialogue State972

Tracking) (Feng et al., 2023) is an approach that973

overcomes the limitations of proprietary models in974

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

6https://huggingface.co/mistralai/
Mistral-7B-Instruct-v0.3

state tracking by leveraging a fine-tuned LLaMa 975

7B model. The approach combines a novel assem- 976

bled domain-slot instruction tuning technique with 977

parameter-efficient strategies, enabling resource- 978

efficient performance that tries matches larger mod- 979

els. During our experiments and to fine-tune LDST 980

we used the provided checkpoints and implementa- 981

tion details for LDST are available in their public 982

repository 7. 983

Fnc-TOD. FNC-TOD (Function-Calling for 984

Task-Oriented Dialogue) focuses on DST in LLMs 985

through function calling mechanisms. The method 986

conceptualizes domain schemas as functions and 987

embeds function specifications within the system 988

prompt. This approach achieved improved con- 989

versation state tracking in task-oriented dialogues 990

using a fine-tuned Llama-2-13b-chat-hf model, 991

trained on a focused dataset of 7,200 task-oriented 992

dialogues spanning 36 domains. For our experi- 993

ments, we utilized the authors’ publicly released 994

Zekunli/FncTOD-Llama-13b model available on 995

Huggingface 8. 996

NC-Latent-TOD. This work introduces an unsu- 997

pervised approach to TOD systems that operates 998

solely with API schemas and unlabeled dialogues, 999

eliminating the need for costly turn-level anno- 1000

tations. The system generates pseudo-labels for 1001

API calls and system actions while using a Hard- 1002

Expectation maximization approach with LLM pre- 1003

dictions for iterative fine-tuning, enhanced by a 1004

noisy-channel reranking method (King and Flani- 1005

gan, 2024). During our experiments, we used two 1006

different models nc-latent-tod-step-2-final9 and tod- 1007

zero-bqag3oyb-3200010 shared by the authors. 1008

C.3 Language Agents 1009

CodeAct-Agent. CodeAct (Wang et al., 2024) is 1010

a framework that enables LLM agents to generate 1011

and execute Python code as actions to interact with 1012

environment, rather than being limited to JSON or 1013

structured text formats. By integrating a Python 1014

interpreter, it allows agents to dynamically adjust 1015

their actions based on execution results, leverage 1016

existing Python packages, and utilize programming 1017

constructs like loops and conditionals for complex 1018

7https://github.com/WoodScene/LDST
8https://huggingface.co/Zekunli/

FncTOD-Llama-13b
9https://huggingface.co/Brendan/

nc-latent-tod-step-2-final
10https://huggingface.co/Brendan/

tod-zero-bqag3oyb-32000
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operations. authors developed CodeActAgent by1019

fine-tuning both Mistral 7B and Llama2 7B models1020

on the CodeAct-Instruct dataset. For our experi-1021

ments, we utilized the authors’ officially released1022

CodeActAgent-Mistral-7b-v0.1 model, available1023

on Huggingface 11.1024

Granite-20B. This work introduces Granite-20B,1025

an open-source LLM, specifically designed for1026

function calling capabilities. The model is trained1027

using a multi-task approach on seven core function1028

calling tasks: Nested Function Calling, Function1029

Chaining, Parallel Functions, Function Name De-1030

tection, Parameter-Value Pair Detection, Next-Best1031

Function, and Response Generation. We used the1032

offical model weights granite-20b-code-instruct-8k1033

provided in Huggingface12.1034

Hammer2.0-7B. Hammer (Lin et al., 2024) is1035

a small scale model family up to 7B parameter1036

models designed for on-device function calling and1037

addresses generalization challenges in function call-1038

ing through two key innovations: an irrelevance-1039

augmented dataset that enhances models’ ability1040

to identify inappropriate functions, and a function1041

masking technique that reduces naming-based mis-1042

interpretations by focusing on function descrip-1043

tions. Built by fine-tuning the xLAM-function-1044

calling dataset13 with 7,500 additional instances1045

for irrelevance detection, Hammer achieves state-1046

of-the-art performance on BFCL Benchmark. For1047

our experiments, we utilized the official Hammer1048

2.0 model weights available on Huggingface14,1049

along with training it from scratch for reproducibil-1050

ity using provided public repository and training1051

scripts15.1052

ToolAce 8B. This work introduces ToolACE (Liu1053

et al., 2024), an automated pipeline for generating1054

high-quality function-calling training data. The1055

system features a self-evolution synthesis process1056

that curates a pool of 26,507 diverse APIs, coupled1057

with a multi-agent dialogue generation system and1058

a dual-layer verification process for ensuring data1059

accuracy. Using data generated and fine-tuning1060

on Llama-3.1-8B-Instruct, ToolACE achieve top1061

11https://huggingface.co/xingyaoww/
CodeActAgent-Mistral-7b-v0.1

12https://huggingface.co/ibm-granite/
granite-20b-code-instruct-8k

13https://huggingface.co/datasets/Salesforce/
xlam-function-calling-60k

14https://huggingface.co/MadeAgents/Hammer2.
0-7b

15https://github.com/MadeAgents/Hammer

results on the BFCL Leaderboard. We used the 1062

official Huggingface checkpoint16 and dataset17. 1063

D Human Validation for Generated CRA 1064

Dataset 1065

To analyze the quality of generated conversations, 1066

we implemented a systematic random sampling ap- 1067

proach. From the generated dataset, we randomly 1068

selected 100 dialogue instances for validation. We 1069

conducted the evaluation against a predefined set 1070

of 51 available functions, covering transportation, 1071

booking, entertainment, and utility services. We 1072

scrutinized each function’s schema, including its 1073

parameters and expected usage, to ensure compli- 1074

ance. We asked a senior Computer Science student 1075

to evaluate these generated samples across four key 1076

dimensions: 1077

• Undefined Function Call: Validating API 1078

names and parameters against the predefined 1079

function list to identify undefined functions or 1080

invalid arguments. 1081

• Incorrect Argument Type: Checking argu- 1082

ment structures to ensure compliance with the 1083

function schemas. 1084

• Argument Hallucination: Detecting unnec- 1085

essary or irrelevant arguments misaligned 1086

with the conversation context. 1087

• Low-Quality Reasoning and Planning: 1088

Identifying logical gaps in though steps or 1089

unnecessary API calls in ReAct structure. 1090

We asked for a binary score (1 for no errors, 0 for 1091

detected issues) for each generated dialogue and 1092

provided mandatory feedback for any errors. Our 1093

evaluation of 100 dialogues showed a 9% error 1094

rate, mostly in restaurant reservations where key 1095

details like the restaurant name or dining time were 1096

missing. These errors stemmed from Argument 1097

Hallucination and Low-Quality Reasoning. Re- 1098

sults, including dialogue IDs, scores, and feedback, 1099

were systematically collected to identify areas for 1100

improvement. 1101

16https://huggingface.co/Team-ACE/ToolACE-8B
17https://huggingface.co/datasets/Team-ACE/

ToolACE
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Task2: API-Bank (L1)

(c) CALM(b) ToolAce(a) Llama 3.1 8b

Task3: BFCL V3 (Parallel)

User: I had 8 pieces of frozen mango and a chai tea. Earlier I had two slices of pepperoni pizza and a coffee.

(c) CALM(b) ToolAce(a) Llama 3.1 8b

log_food(food_name=‘mango’, portion_amount=8, 
’portion_unit=‘piece’)
log_food(food_name=‘chai tea’, portion_amount=1, 
’portion_unit=‘cup’)
log_food(food_name=‘pepperoni pizza’, portion_amount=2, 
’portion_unit=‘slice’)
log_food(food_name=‘coffee’, portion_amount=1, 
’portion_unit=‘cup’)

Model Output:
log_food(food_name=“mango”, portion_amount=8.0, 
portion_unit=“piece”)
log_food(food_name=“pepperoni pizza”, portion_amount=2.0, 
portion_unit=“slice”)

Model Output:
log_food(food_name=“mango”, portion_amount=8.0, 
portion_unit=“piece”)
log_food(food_name=“chai tea”, portion_amount=1.0, 
portion_unit=“cup”)
log_food(food_name=“pepperoni pizza”, portion_amount=2.0, 
portion_unit=“slice”)
log_food(food_name=“coffee”, portion_amount=1.0, 
portion_unit=“cup”)

Ground Truth: log_food (food_name=“mango”, portion_amount=8.0, portion_unit=“piece”), log_food (food_name=“chai tea”, portion_amount=1.0, portion_unit=“cup”), 
log_food (food_name=“pepperoni pizza”, portion_amount=2.0, portion_unit=“slice”), log_food (food_name=“coffee”, portion_amount=1.0, portion_unit=“cup”)

Model Output:(Wrong syntax) (missing functions) (correct)

{“name”: “GetUserToken”, “arguments”: {“username”: 
“user3", “password”: “user3pass”}}

Model Output: Model Output: Model Output:

{“name”: “ModifyReminder”, “arguments”: {“token”: 
“p9o8i7u6y5t4r3e2w1q”, “content”: “Submit 
report”, “time”: “2023-03-25 14:00:00"}}

Ground Truth: [{“”name”“: “”GetUserToken”“, “”arguments”“: {“”username”“: “”user3"“, “”password”“: “”user3pass”“}}, {“”name”“: “”ModifyReminder”“, “”arguments”“: 
{“”token”“: “”p9o8i7u6y5t4r3e2w1q”“, “”content”“: “”Submit report”“, “”time”“: “”2023-03-25 14:00:00”“}}]

{“name”: “ModifyReminder”, “arguments”: {“token”: 
“user3pass”, “content”: “Submit report”, “time”: 
“2023-03-25 14:00:00"}}

{“name”: “ModifyReminder”, “arguments”: {“token”: 
“p9o8i7u6y5t4k3e2w1q”, “content”: “Submit report”, 
“time”: “2023-03-17 09:00:00"}}

(missing functions)
(wrong values)

(missing functions) (correct)

User: Hi, can you help me modify a reminder? AI: Of course! What do you want to modify about the reminder?
User: I need to change the content of the reminder. AI: Okay, I can help with that. Do you have a specific reminder in mind?
User: I need to change the content of the reminder for the proposal submission on March 25th at 2:00 PM. AI: I will need your user token. Can you please provide your username and password?
User: My username is user3 and password is user3pass. I want to change it to submit documents instead. Generate API Request:

Figure 3: Error Analysis of Function-Calling Results. Illustrated performance comparison on function calling
benchmarks API-Bank L1 (top) and BFCL V3 parallel function call (bottom). Results demonstrate CALM’s
consistent performance compared to other baselines.

15



SNIPS SFT Sample | Format: Dialogue State Tracking

Instruction:
You are a helpful assistant who is assigned to find the intents shown by the user on 7 domains - GetWeather,
AddToPlaylist, SearchScreeningEvent, BookRestaurant, SearchCreativeWork, RateBook, PlayMusic.

The user can seek for BookRestaurant by slots - poi, restaurant_type, served_dish, timeRange, party_size_number,
restaurant_name, state, country, party_size_description, sort, city, spatial_relation, cuisine, facility.
The user can seek for GetWeather by slots - condition_temperature, geographic_poi, current_location, timeRange,
condition_description, state, country, city, spatial_relation.
The user can seek for SearchCreativeWork by slots - object_type, object_name.
The user can seek for PlayMusic by slots - track, playlist, service, genre, year, album, music_item, sort, artist.
The user can seek for SearchScreeningEvent by slots - movie_name, location_name, timeRange, object_type,
movie_type, object_location_type, spatial_relation.
The user can seek for RateBook by slots - rating_value, rating_unit, object_type, object_select, ob-
ject_part_of_series_type, best_rating, object_name. Do not capture any other slots!

# Task
You will be provided with an user utterance. You must find all the user intents and output them in JSON format.

# Sample Output
"domain": "AddToPlaylist", "slot_values": "music_item": "abc", "artist": "xyz"

Input:
User: Book a table at a restaurant in Portugal with parking for me and bonnie in 19 minutes

Output:
System: "domain": "BookRestaurant", "slot_values": "restaurant_type": "restaurant", "country": "Portugal", "facility":
"parking", "party_size_description": "me and bonnie", "timeRange": "in 19 minutes""

Figure 4: SNIPS fine-tuning sample example.
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Hammer SFT Sample | Format: Function Calling

Instruction:
[BEGIN OF TASK INSTRUCTION]
You are a tool calling assistant. In order to complete the user’s request, you need to select one or more appropriate tools
from the following tools and fill in the correct values for the tool parameters. Your specific tasks are:
1. Make one or more function/tool calls to meet the request based on the question.
2. If none of the function can be used, point it out and refuse to answer.
3. If the given question lacks the parameters required by the function, also point it out.
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
["name": "LxOm64zLyg", "description": "Gets hourly weather forecast information for given geographical coordinates
using the RapidAPI service.", "parameters": "TDpjPd": "description": "The latitude of the geographical location.",
"type": "int", "default": 46.95828, "78th2U3lFj": "description": "The longitude of the geographical location.", "type":
"int", "default": 10.87152, "name": "WoDdNSe7e7K5", "description": "Fetches weather updates for a given city using
the RapidAPI Weather API.", "parameters": "LzZsvxUC": "description": "The name of the city for which to retrieve
weather information.", "type": "str", "default": "London", "name": "CBrCNmwOERb", "description": "Fetches the
hourly weather forecast for a given location using the RapidAPI service.", "parameters": "TDEJ.ZwMt": "description":
"The name of the location for which to retrieve the hourly weather forecast.", "type": "str", "default": "Berlin", "name":
"1YTQVXkwLY", "description": "Returns an air quality forecast for a given location.", "parameters": "2bkgDA":
"description": "The latitude of the location for which the air quality forecast is to be retrieved.", "type": "int", "default":
"35.779", "DQi.ReZ16": "description": "The longitude of the location for which the air quality forecast is to be
retrieved.", "type": "int", "default": "-78.638", "hF.1": "description": "The number of hours for which the forecast is to
be retrieved (default is 72).", "type": "int", "default": "72"]
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following JSON format, and NO other text MUST be included.
The example format is as follows. Please make sure the parameter type is correct. If no function call is needed, please
directly output an empty list ’[]’
[
"name": "func_name1", "arguments": "argument1": "value1", "argument2": "value2",
... (more tool calls as required)
]
[END OF FORMAT INSTRUCTION]

Input:
[BEGIN OF QUERY]
What are the current weather conditions in Sydney?
[END OF QUERY]

Output:
["name": "WoDdNSe7e7K5", "arguments": "LzZsvxUC": "Sydney"]

Figure 5: Hammer fine-tuning sample example.
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SGD Instruction Sample | Format: Action Optimization

Instruction:
[BEGIN OF TASK INSTRUCTION]
You are a helpful conversational assistant who can perform API function calling.
Your goal is to understand user queries and respond using the appropriate API functions.
In order to complete the user’s request, you need to select a tool from the following functions and fill in the correct
values for the function parameters.
Your specific tasks are:
1. Analyze the user’s query within the given dialogue context to identify their intent and relevant details.
2. Make a function/tool call and provide the necessary arguments to meet the request based on the user query.
3. Formulate a natural and coherent response, guiding the conversation towards resolving the user’s request.
[END OF TASK INSTRUCTION]

[BEGIN OF AVAILABLE TOOLS]
1. FindBus(from_location, to_location, leaving_date)
2. ReserveCar(pickup_location, pickup_date, pickup_time, dropoff_date, type)
.
.
.
50. FindProvider(city, type)
51. GetRide(destination, number_of_riders, shared_ride)
[END OF AVAILABLE TOOLS]

[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following structured text format.
Example Output API Call Format:
function_name(argument1=value1, argument2=value2, ...)
[END OF FORMAT INSTRUCTION]

[BEGIN OF CONVERSATION HISTORY]
User: I’m looking for events happening in New York this weekend.
Thought: The user wants to find events in a specific location and timeframe.
I’ll need to call the FindEvents API with the appropriate category and city.
Action: FindEvents(category=’all’, city_of_event=’New York’)
Observation: ’events’: [’name’: ’Jazz Festival’, ’date’: ’2023-10-07’, ’location’: ’Central Park’, ’name’: ’Food Truck
Rally’, ’date’: ’2023-10-08’, ’location’: ’Union Square’]
Thought: I have the event details now. I should summarize the events for the user.
System: This weekend in New York, you can attend the Jazz Festival at Central Park on October 7th and the Food Truck
Rally at Union Square on October 8th. Would you like more information about any of these events?
User: Yes, can you tell me more about the Jazz Festival?
Thought: I need to provide more details about the Jazz Festival. I don’t need an API call for that.
System: The Jazz Festival in Central Park will feature various artists performing live jazz music throughout the day. It
starts at 11 AM and goes until 8 PM. Would you like to know how to get tickets?
[END OF CONVERSATION HISTORY]

Input:
User: Yes, please tell me how to get tickets for the Jazz Festival.
Thought: The user is interested in purchasing tickets. I need to call the BuyEventTickets API for the Jazz Festival.

Output:
Action: BuyEventTickets(event_name=’Jazz Festival’, number_of_seats=2, date=’2023-10-07’, city_of_event=’New
York’)

Figure 6: SGD fine-tuning sample example targeting function optimization.
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SGD Instruction Sample | Format: System Response Optimization

Instruction:
[BEGIN OF TASK INSTRUCTION]
You are a helpful conversational assistant specializing in understanding user queries and providing accurate, reasoned
responses.
Your goal is to analyze the user’s input, reason about their intent and needs, and provide a coherent and contextually
appropriate system response.
Your specific tasks are:
- Ensure your response is informative and contextually relevant, guiding the conversation toward successful task
completion.
- Analyze the user’s input in the context of the conversation history (if available) to identify their intent and relevant
details.
- Use logical reasoning to determine the most suitable response, considering the user’s needs and the dialogue context.
- Generate a natural and coherent system response to address the user’s request or query effectively.
[END OF TASK INSTRUCTION]

[BEGIN OF FORMAT INSTRUCTION]
The output MUST strictly adhere to the following structured text format.
Example Output API Call Format:
function_name(argument1=value1, argument2=value2, ...)
[END OF FORMAT INSTRUCTION]

[BEGIN OF CONVERSATION HISTORY]
User: I’m looking for events happening in New York this weekend.
Thought: The user wants to find events in a specific location and timeframe.
I’ll need to call the FindEvents API with the appropriate category and city.
Action: FindEvents(category=’all’, city_of_event=’New York’)
Observation: ’events’: [’name’: ’Jazz Festival’, ’date’: ’2023-10-07’, ’location’: ’Central Park’, ’name’: ’Food Truck
Rally’, ’date’: ’2023-10-08’, ’location’: ’Union Square’]
Thought: I have the event details now. I should summarize the events for the user.
System: This weekend in New York, you can attend the Jazz Festival at Central Park on October 7th and the Food Truck
Rally at Union Square on October 8th. Would you like more information about any of these events?
User: Yes, can you tell me more about the Jazz Festival?
Thought: I need to provide more details about the Jazz Festival. I don’t need an API call for that.
System: The Jazz Festival in Central Park will feature various artists performing live jazz music throughout the day. It
starts at 11 AM and goes until 8 PM. Would you like to know how to get tickets?
[END OF CONVERSATION HISTORY]

Input:
User: Yes, please tell me how to get tickets for the Jazz Festival.
Thought: The user is interested in purchasing tickets. I need to call the BuyEventTickets API for the Jazz Festival.
Action: BuyEventTickets(event_name=’Jazz Festival’, number_of_seats=2, date=’2023-10-07’, city_of_event=’New
York’)
Observation: ’status’: ’success’, ’message’: ’You have successfully purchased 2 tickets for the Jazz Festival.’
Thought: The tickets were successfully purchased. I need to confirm this with the user.

Output:
System: You have successfully purchased 2 tickets for the Jazz Festival in Central Park! Enjoy the music!

Figure 7: SGD fine-tuning sample example targeting system response optimization.
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You are an advanced AI assistant specializing in conversational dialogues.
You have access to a variety of services and APIs to assist users with their requests and your goal is to provide helpful and
informative responses to user queries and commands.
You can interact with multiple services and APIs to fulfill user requests.
Your responses should be natural, informative, and tailored to the user’s needs.

# Task Information:
- You are asked to create a dataset in the format: User - Thought1 - API - API Input Arguments - API Result - Thought2 - System, or
User - Thought - System.
- For the given # User Input, generate a multi-turn dialogue that follows this format, with each turn exhibiting realistic context
reasoning, thought processes, and API interaction where applicable.
- The dialogues should be converted to follow a specific # Output Format, which includes reasoning on whether an API call is needed
or if the system can respond directly.
- If the system decides that an API call is necessary, use this format: User - Thought1 - API - API Input Arguments - API Result -
Thought2 - System.
- Call the right API from # Avaliable Functions and provide the necessary input arguments to fulfill the user’s request.
- If you think a function argument is not necessary, you can skip it. Don’t provide unnecessary arguments and None values.
- Ensure that the API calls are used logically and that the dialogue remains coherent and natural throughout the exchange.
- If the system determines that an API call is not necessary, use this format: User - Thought - System.
- Include intermediate thoughts where appropriate to capture the model’s internal reasoning, and clearly separate the different
components of the format.

# Available Functions:
1. CheckBalance(account_type)
2. TransferMoney(account_type, amount, recipient_account_name)
.
.
.
52. FindAttractions(location)
53. GetWeather(city)

# Output Format:
- If an API Call is Needed:
User: [User Input]
Thought1: [I need to call an API]
API Name: [API Call Name: CheckBalance(), TransferMoney(),..., FindAttractions(), GetWeather()]
API Input: [The input parameters for the API]
API Result: [API output result]
Thought2: [2nd thought after API Result that ensure if the information is enough before the system response]
System: [Your system response here]

- If an API Call is Not Needed:
User: [User Input]
Thought: [I don’t need an API and I want to respond to the user]
System: [Your system response here]

Below is an example of the format:

# Example:
User: Add Don and Sherri to my "Meditate to Sounds of Nature" playlist.
Thought1: The user wants to add two artists to a specific playlist. I’ll need to extract the playlist name and the artists’ names.
API Name: AddToPlaylist
API Input: ’playlist_name’: ’Meditate to Sounds of Nature’, ’artists’: Don Sherri
API Result: ’status’: ’success’, ’message’: ’Don and Sherri have been added to your playlist.’
Thought2: The API call was successful, and the artists were added to the playlist. I need to inform the user about this.
System: Don and Sherri have been successfully added to your "Meditate to Sounds of Nature" playlist. Enjoy your music!

User: Thank you for adding them. I think I can add more songs to the playlist.
Thought: I don’t need an API call for that, I want to respond to the user.
System: Would you like to add more songs?

User: Yes, please add "Calm River" to the playlist.
Thought1: The user wants to add another song to the playlist. I’ll note the song title and proceed with the request.
API Name: AddToPlaylist
API Input: ’playlist_name’: ’Meditate to Sounds of Nature’, ’songs’: Calm River
API Result: ’status’: ’success’, ’message’: ’Calm River has been added to your playlist.’
Thought2: The song was successfully added. I should let the user know.
System: "Calm River" has been successfully added to your "Meditate to Sounds of Nature" playlist. Would you like to do anything
else?

User: No, that’s all for now. Thank you!
Thought: The user is satisfied and doesn’t need further assistance. I should acknowledge their gratitude.
System: You’re welcome! If you need anything else, feel free to ask. Enjoy your relaxing music!

# User Input:

Table 6: API-driven conversation prompt to generate SGD fine-tuning samples with GPT4-o. Only functions used
across all dialogues are included due to their large number.
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